CN103371814A - Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis - Google Patents
Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis Download PDFInfo
- Publication number
- CN103371814A CN103371814A CN2012101088241A CN201210108824A CN103371814A CN 103371814 A CN103371814 A CN 103371814A CN 2012101088241 A CN2012101088241 A CN 2012101088241A CN 201210108824 A CN201210108824 A CN 201210108824A CN 103371814 A CN103371814 A CN 103371814A
- Authority
- CN
- China
- Prior art keywords
- ecg
- subsystem
- intelligent diagnosis
- diagnosis
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 62
- 238000012544 monitoring process Methods 0.000 title claims abstract description 30
- 238000000605 extraction Methods 0.000 title claims abstract description 17
- 230000036772 blood pressure Effects 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 230000006870 function Effects 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000003750 conditioning effect Effects 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 238000002565 electrocardiography Methods 0.000 description 59
- 208000019622 heart disease Diseases 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 208000000418 Premature Cardiac Complexes Diseases 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 208000003663 ventricular fibrillation Diseases 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 208000003734 Supraventricular Tachycardia Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000718 qrs complex Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
基于智能诊断的远程无线心电监护系统及特征提取方法,由心电采集子系统、血压采集子系统、智能诊断单元、GPS定位子系统、人机交互子系统、无线传输子系统、存储器单元与系统处理器单元组成;用户佩戴本系统后,可以对其心电信号进行实时监测并对心电波形实时显示,当检测到心脏工作异常时,系统处理器将控制血压采集子系统和GPS定位子系统获取用户当前血压值和位置坐标,并利用无线传输子系统将以上信息发送给与用户相关联的各监护终端上;特征提取方法是采用基于阈值和奇点检测相结合的方法来实现对心电信号中R波和S-T段的定位以及其他心电特征的提取。
A remote wireless ECG monitoring system based on intelligent diagnosis and a feature extraction method, including an ECG acquisition subsystem, a blood pressure acquisition subsystem, an intelligent diagnosis unit, a GPS positioning subsystem, a human-computer interaction subsystem, a wireless transmission subsystem, a memory unit and System processor unit; after wearing the system, the user can monitor the ECG signal in real time and display the ECG waveform in real time. When the heart is abnormal, the system processor will control the blood pressure acquisition subsystem and the GPS positioner. The system obtains the user's current blood pressure value and position coordinates, and uses the wireless transmission subsystem to send the above information to each monitoring terminal associated with the user; the feature extraction method is based on a combination of threshold and singular point detection to achieve heart The location of R wave and ST segment in the electrical signal and the extraction of other ECG features.
Description
技术领域 technical field
本发明涉及基于智能诊断的远程无线心电监护系统。The invention relates to a remote wireless ECG monitoring system based on intelligent diagnosis.
背景技术 Background technique
目前心脏病诊断主要以心电图和心脏彩超为主,心电图主要应用于心律失常、心肌缺血等功能性心脏病诊断;心脏彩超则对风湿性心脏病、先天性心脏病等结构异常的心脏病才有用。由于功能性疾病往往具有病情隐蔽、发病突然、危险性高、持续时间短等特征,因此很难把握最佳的诊断时间,发病时病人往往也很难进行有效的自救措施。因此,病人的心电特征对于突发性心脏病的诊断和治疗有非常重大的指导作用。At present, the diagnosis of heart disease is mainly based on electrocardiogram and cardiac color Doppler ultrasound. Electrocardiography is mainly used in the diagnosis of functional heart disease such as arrhythmia and myocardial ischemia; it works. Since functional diseases often have the characteristics of concealment, sudden onset, high risk, and short duration, it is difficult to grasp the best diagnosis time, and it is often difficult for patients to take effective self-rescue measures when they develop. Therefore, the patient's ECG characteristics have a very important guiding role in the diagnosis and treatment of sudden heart disease.
目前医疗机构较常用的心电采集设备主要包括三种:1、心电监护仪,这类设备可以检测患者的心搏频率、呼吸、血压、脉搏、血氧饱和度等生命特征,在一些重症病房非常常见。设备采集到病人的以上生理指标,在屏幕上实时显示,对术后或者危重病人的看护有重要意义。但这类设备采集的心电信号多数是单导联信号,往往只能反应病人心脏是否在正常跳动,对于心脏病的诊断,没有太多的参考意义。2、心电图机,目前较常用的导联数是十二导联,这类心电采集设备可以采集较完整的心电信号,能够比较全面的反应多种心脏功能性异常。但这类设备一般结构庞大,每次只能记录很短时间的心电信号,需要专业人员操作,因此只有在医院等大型的医疗机构才能采用这种设备进行检测。很多心脏病具有发病突然、持续时间短等特点,往往会出现病人感觉到异常时前往医院进行诊断,待到达医院时病情得到缓解,在心电图机上不能发现明显的病变特征的情况,长期住院观察又将花费大量的人力财力,很多患者难以承受。因此,这类心电采集设备在实际应用中还存在很多弊端。3、动态心电采集设备(Holter),这类设备主要是为了解决普通心电图机难以完成全天候监测的问题设计的,这类设备体积小,便于随身佩戴,主要包括心电数据的采集和存储两部分,大容量的存储设备将24小时的心电信号进行存储,然后将这些信号传送给计算机进行初步筛选,将可能存在异常的部分送给医生进行经验判断。这类设备在一定程度上解决了普通心电图机存在的问题,但仍存在很多亟待解决的问题。首先是这类设备非常昂贵,需要长时间佩戴的患者很多难以承受其巨大的花费。其次这类设备智能化水平较低,需要经过多道工序才能筛选出最终用来诊断需要的病变信号,耗费大量的人力、物力。而且这种设备对于一些急性、突发使人失去自救能力的致命发病情况也束手无策,不能有效的缩短救援所需时间。因此还不能完全满足心脏病患者监护的全部需求。At present, there are three types of ECG collection equipment commonly used in medical institutions: 1. ECG monitors, which can detect vital signs such as heart rate, respiration, blood pressure, pulse, and blood oxygen saturation of patients. Wards are very common. The equipment collects the above physiological indicators of the patient and displays them on the screen in real time, which is of great significance for the care of postoperative or critically ill patients. However, most of the ECG signals collected by this type of equipment are single-lead signals, which often only reflect whether the patient's heart is beating normally, and do not have much reference value for the diagnosis of heart disease. 2. Electrocardiography machine, currently the most commonly used number of leads is twelve leads. This type of ECG acquisition equipment can collect relatively complete ECG signals, and can comprehensively reflect various cardiac functional abnormalities. However, this type of equipment generally has a large structure, and can only record ECG signals for a short time each time, requiring professional operation. Therefore, only large medical institutions such as hospitals can use this equipment for detection. Many heart diseases have the characteristics of sudden onset and short duration. Patients often go to the hospital for diagnosis when they feel abnormal. It will cost a lot of human and financial resources, which is unbearable for many patients. Therefore, there are still many disadvantages in practical application of this type of ECG acquisition device. 3. Dynamic ECG acquisition equipment (Holter), this type of equipment is mainly designed to solve the problem that ordinary ECG machines are difficult to complete all-weather monitoring. This type of equipment is small in size and easy to wear, mainly including the collection and storage of ECG data Partly, the large-capacity storage device stores the 24-hour ECG signals, and then transmits these signals to the computer for preliminary screening, and sends the possible abnormal parts to the doctor for empirical judgment. This type of equipment has solved the existing problems of common electrocardiographs to a certain extent, but there are still many problems to be solved urgently. First of all, this type of equipment is very expensive, and many patients who need to wear it for a long time cannot afford its huge cost. Secondly, this kind of equipment has a low level of intelligence, and it needs to go through multiple processes to screen out the pathological signals that are finally used for diagnosis, which consumes a lot of manpower and material resources. And this equipment is also helpless for some acute and sudden fatal morbidity situations that make people lose self-rescue ability, and can not effectively shorten the time required for rescue. Therefore, it can not fully meet all the needs of cardiac patient monitoring.
发明内容 Contents of the invention
本发明的目的是提供一种基于智能诊断的远程无线心电监护系统及特征提取方法。The purpose of the present invention is to provide a remote wireless ECG monitoring system and feature extraction method based on intelligent diagnosis.
本发明是基于智能诊断的远程无线心电监护系统及特征提取方法,其远程无线心电监护系统,包括心电采集子系统、血压采集子系统、智能诊断单元、GPS定位子系统、人机交互子系统、无线传输子系统、存储器单元以及系统处理器单元,其特征是将智能诊断功能和无线传输功能相结合应用于心电监护设备中,其中:电极片采集到的心电信号经A/D转换模块转换为数字信号后经过预处理和特征提取后交给智能诊断单元,同时血压采集子系统将采集到的血压信号送给处理器作为心电特征诊断的辅助信息,智能诊断单元得出的最终诊断结果交给处理器进行存储,并在液晶显示屏上实时显示心电波形和诊断结果,GPS定位子系统定位患者当前的精确位置,处理器将诊断结果和位置信息通过无线传输子系统发送给监测端。The present invention is a remote wireless ECG monitoring system based on intelligent diagnosis and a feature extraction method. The remote wireless ECG monitoring system includes an ECG acquisition subsystem, a blood pressure acquisition subsystem, an intelligent diagnosis unit, a GPS positioning subsystem, and a human-computer interaction system. The subsystem, the wireless transmission subsystem, the memory unit and the system processor unit are characterized in that the intelligent diagnosis function and the wireless transmission function are combined and applied to the ECG monitoring equipment, wherein: the ECG signal collected by the electrode sheet is passed through A/ The D conversion module converts the digital signal to the intelligent diagnosis unit after preprocessing and feature extraction. At the same time, the blood pressure acquisition subsystem sends the collected blood pressure signal to the processor as auxiliary information for ECG characteristic diagnosis. The intelligent diagnosis unit obtains The final diagnosis result is handed over to the processor for storage, and the ECG waveform and diagnosis result are displayed on the LCD screen in real time. The GPS positioning subsystem locates the patient's current precise position, and the processor transmits the diagnosis result and position information through the wireless transmission subsystem. sent to the monitor.
基于智能诊断的远程无线心电监护系统的特征提取方法,其特征是使用R波检测算法,采用基于阈值和奇点检测相结合的方法来实现对心电信号中R波和S-T段的定位以及其他心电特征的提取,其步骤为:The feature extraction method of the remote wireless ECG monitoring system based on intelligent diagnosis is characterized by using the R wave detection algorithm, and adopting a method based on a combination of threshold and singular point detection to realize the positioning of the R wave and S-T segment in the ECG signal and The extraction of other ECG features, its steps are:
(1)设定一个时间窗,在该时间段内采用二次差分方法,寻找波形奇异点;对长度为N(取N=4096)的数据进行奇点检测;(1) set a time window, adopt quadratic difference method in this period of time, find waveform singular point; Length is N (get N=4096) data and carry out singular point detection;
奇点检测采用的算法为对一个采样周期的心电信号数据,按照公式(1)至(3)进行diff(sign(diff(N)))运算:The algorithm used for singular point detection is to perform diff(sign(diff(N))) operation on the ECG signal data of one sampling period according to formulas (1) to (3):
其中diff为信号差分,sign为符号函数,N为一个采样周期的心电信号,运算结果为-2的点即为心电信号的极大值点;Among them, diff is the signal difference, sign is the sign function, N is the ECG signal of a sampling period, and the point where the operation result is -2 is the maximum value point of the ECG signal;
保留得到的所有极大值在一个数组A内,并记录其对应波形位置;Keep all the maximum values obtained in an array A, and record their corresponding waveform positions;
取阈值Rth,与上述数组A的值比较,保留大于Rth的极大值在数组B内,并记录其对应波形位置;Take the threshold value Rth, compare it with the value of the above array A, keep the maximum value greater than Rth in the array B, and record its corresponding waveform position;
认为B中数据为检测到的R波幅值,其对应位置为R波位置;It is considered that the data in B is the detected R wave amplitude, and its corresponding position is the R wave position;
(2)自适应阈值Rth设置:(2) Adaptive threshold Rth setting:
选取的N点ECG滤波之后的数据,做奇异点检测之后,寻找奇异点中的极大值信号幅值范围,按公式(4),均分为15份,并将每份幅值记录在Th数组中;After the selected N-point ECG filtered data, after the singular point detection, find the maximum value signal amplitude range in the singular point, divide it into 15 parts according to the formula (4), and record the amplitude of each part in Th in the array;
设积分投影函数为:Let the integral projection function be:
其中:in:
即做极大值点在划分的各幅值段Th(i)上的积分投影;That is, do the integral projection of the maximum value point on each divided amplitude segment Th(i);
选取零分布与非零分布的交接点处i值,计算Th(i),确定Rth为Th(i);Select the i value at the junction point between the zero distribution and the non-zero distribution, calculate Th(i), and determine Rth as Th(i);
阈值确定出R波位置和幅值之后,计算平均心率Rate,单位:次/分,After the threshold determines the R wave position and amplitude, calculate the average heart rate Rate, unit: beats/minute,
Rate=60*Nr/(nr(end)-nr(1)/fs) (8)Rate=60*Nr/(nr(end)-nr(1)/f s ) (8)
其中,Nr是固定时间窗中测得的R波个数,nr(end)是固定时间窗内最后一个R波的位置,nr(1)是固定时间窗内第一个R波的位置,fs是数据采样率;where Nr is the number of R waves measured in a fixed time window, nr(end) is the position of the last R wave in a fixed time window, nr(1) is the position of the first R wave in a fixed time window, f s is the data sampling rate;
根据平均心率加入相关误检、漏检更正,最终修正出正确R波位置和平均心率Rate;According to the average heart rate, the relevant false detection and missed detection correction are added, and the correct R wave position and average heart rate Rate are finally corrected;
然后用公式(9),计算HRV间期。Then use formula (9) to calculate the HRV interval.
HRV=RR(i+1)-RR(i) (9)HRV=RR(i+1)-RR(i) (9)
其中RR为相邻两个R波间期。Where RR is the interval between two adjacent R waves.
综上算法,可得到后续诊断所需特征参数:Rate和H RV;Based on the above algorithm, the characteristic parameters required for subsequent diagnosis can be obtained: Rate and HRV;
(3)根据此指标通过查表的方式将提取到的心电特征与MIT-BI H数据库分析总结得出诊断结果。(3) According to this indicator, the extracted ECG characteristics and MIT-BI H database were analyzed and summarized to obtain the diagnosis result by means of table lookup.
本发明针对现有的心电监护设备在对心脏病患者的诊断和监护过程中存在的问题提供了一种将智能诊断和远程监护合为一体的高效的、稳定的监护系统。该系统可以实时监测病人的心电、血压变化情况,并进行综合的智能诊断,当有病变特征出现时及时的通过无线网络向病人家属或医生发送诊断报告,并可通过GPS定位系统实时定位患者所处位置,缩短救援所需时间,减少由于救援不力造成患者死亡的悲剧。The invention provides an efficient and stable monitoring system which integrates intelligent diagnosis and remote monitoring, aiming at the problems existing in the existing electrocardiographic monitoring equipment in the process of diagnosing and monitoring heart disease patients. The system can monitor the patient's ECG and blood pressure changes in real time, and perform comprehensive intelligent diagnosis. When there are lesion characteristics, it will send a diagnosis report to the patient's family or doctor through the wireless network in time, and can locate the patient in real time through the GPS positioning system. The location shortens the time required for rescue and reduces the tragedy of patient death due to poor rescue.
附图说明 Description of drawings
图1本发明整体系统框图,图2(a)本发明心电采集子系统架构图,图2(b)本发明心电采集子系统智能诊断部分流程图,图3(a)本发明血压采集子系统架构图,图3(b)本发明血压采集子系统流程图,图4(a)本发明GPS定位子系统架构图,图4(b)本发明GPS定位子系统流程图,图5(a)本发明人机交互子系统架构图,图5(b)本发明人机交互子系统流程图,图6(a)本发明无线传输子系统架构图,图6(b)本发明无线传输子系统流程图,图中符号说明:11-心电采集子系统采集到的心电特征信号,12-血压采集子系统采集到的血压特征信号,13-处理器对心电采集子系统的控制信号,14-处理器对血压采集子系统的控制信号,15-综合心电、血压等生理参数智能诊断的结果,16-GPS定位子系统返回给处理器的方位信息,17-处理器发送给液晶屏的刷屏信息,18-触屏驱动器返回给处理器的触屏按键位置,19-处理器发送给无线模块的指令和诊断信息。Fig. 1 overall system block diagram of the present invention, Fig. 2 (a) framework diagram of the ECG acquisition subsystem of the present invention, Fig. 2 (b) flow chart of the intelligent diagnosis part of the ECG acquisition subsystem of the present invention, Fig. 3 (a) blood pressure acquisition of the present invention Subsystem architecture diagram, Fig. 3 (b) flow chart of blood pressure acquisition subsystem of the present invention, Fig. 4 (a) architecture diagram of GPS positioning subsystem of the present invention, Fig. 4 (b) flow chart of GPS positioning subsystem of the present invention, Fig. 5 ( a) Architecture diagram of the human-computer interaction subsystem of the present invention, Fig. 5 (b) flow chart of the human-computer interaction subsystem of the present invention, Fig. 6 (a) architecture diagram of the wireless transmission subsystem of the present invention, Fig. 6 (b) wireless transmission of the present invention Subsystem flow chart, symbol description in the figure: 11-ECG characteristic signal collected by the ECG collection subsystem, 12-blood pressure characteristic signal collected by the blood pressure collection subsystem, 13-processor's control of the ECG collection subsystem Signal, 14-the control signal of the processor to the blood pressure acquisition subsystem, 15-the result of intelligent diagnosis of physiological parameters such as comprehensive ECG and blood pressure, 16-the orientation information returned by the GPS positioning subsystem to the processor, 17-the processor sends to Screen refresh information of the LCD screen, 18-the touch screen key position returned to the processor by the touch screen driver, and 19-instructions and diagnostic information sent by the processor to the wireless module.
具体实施方式 Detailed ways
如图1所示,本发明的基于智能诊断的远程无线心电监护系统包括:心电采集子系统、血压采集子系统、智能诊断单元、GPS定位子系统、人机交互子系统、无线传输子系统、存储器单元、系统处理器单元。通过以上八个子系统来完成对病人的24小时智能监控。处理器通过心电采集子系统的控制信号13实现导联的切换和A/D转换功能的实现;处理器通过血压采集子系统的控制信号14来实现气泵的充气、放气以及血压值的读取;心电采集子系统提取到的心电特征信号11送给处理器中的智能诊断单元做进一步分析;血压采集子系统采集到的血压值信号12送给处理器作为心电特征诊断的辅助信息,智能诊断单元得出的最终诊断结果15由处理器进行存储;GPS定位子系统通过串口以中断的形式向处理器发送时间、坐标、速度等信息16,处理器根据格式匹配的方式从中提取出所需的坐标信息;人机交互子系统有触屏和显示屏组成,通过信号17、18实现了用户和处理器之间的各种交互需求和功能显示;无线传输子系统与处理器之间通过串口方式通信,处理器得到的诊断信息和位置坐标19通过无线模块发送给监护端。As shown in Figure 1, the remote wireless ECG monitoring system based on intelligent diagnosis of the present invention includes: ECG acquisition subsystem, blood pressure acquisition subsystem, intelligent diagnosis unit, GPS positioning subsystem, human-computer interaction subsystem, wireless transmission subsystem System, memory unit, system processor unit. The 24-hour intelligent monitoring of patients is completed through the above eight subsystems. The processor realizes the switching of leads and the realization of the A/D conversion function through the
如图2(a)所示,心电采集子系统主要包括心电电极、导联控制器和信号预处理部分;心电电极片与导联控制器相连,导联控制器的输出经由放大、滤波电路后进行A/D转换,A/D转换模块的输出端连接小波滤波电路,小波滤波电路的输出结果送给智能诊断单元。As shown in Figure 2(a), the ECG acquisition subsystem mainly includes ECG electrodes, a lead controller and a signal preprocessing part; the ECG electrodes are connected to the lead controller, and the output of the lead controller is amplified, A/D conversion is performed after the filter circuit, the output end of the A/D conversion module is connected to the wavelet filter circuit, and the output result of the wavelet filter circuit is sent to the intelligent diagnosis unit.
本实施方案中导联控制器由模拟开关MAX397实现,放大电路和滤波电路由运算放大器AD620和TLV2254搭建,A/D转换芯片采用TLC1549,处理器采用Altera Cyclonell 2C70FPGA,coif5小波在FPGA上以硬件电路的方式设计实现。In this embodiment, the lead controller is implemented by the analog switch MAX397, the amplifier circuit and the filter circuit are built by the operational amplifier AD620 and TLV2254, the A/D conversion chip adopts TLC1549, the processor adopts Altera Cyclonell 2C70FPGA, and the coif5 wavelet is implemented as a hardware circuit on the FPGA. way of design and implementation.
该心电采集子系统通过电极片从人体表面采集心电信号,导联控制器以时分复用的方式分时段连通不同的导联,实现了十二导联心电信号的同时采集。采集到的心电信号非常微弱,通常在0.5~2mv之间,该差分信号叠加在由电极和皮肤接触所产生的300mv左右的直流电压分量之上,其中还包含着由电极和地之间电势所产生的1.5v的共模电压,因此本发明采用了仪用放大器AD620搭建放大电路,该运放在接近1kHz共模抑制比高达100dB,50uV的最大输入失调电压,1nA的最大输入偏置电流,性能能够满足这里心电信号发达的要求。由于心电信号的频率大约在0.05~100Hz之间,所以需要一个低通滤波器来消除高于100Hz的高频噪声,一个高通滤波器用于滤除低于0.05Hz的低频噪声,同时还需要一个陷波电路用于消除50Hz的工频干扰。滤波器的截止频率为f=1/2πRC,分别将0.05Hz、50Hz、100Hz带入上式,可得出各滤波器的参数,滤波器利用运放TLV2254搭建实现。本设计采用了TLC 1549作为模数转换器,该芯片是一款串行10位A/D转换芯片,数据端口少,而且可以满足本发明对数据精度的要求。从身体表面采集到的心电信号经过以上预处理后以数字信号形式交给FPGA中的小波滤波电路,本发明采用coif5滤波器,经过三层分解、重构,该滤波过程在FPGA中的FIFO(先进先出)单元完成,每次对512个数据进行滤波处理。The ECG acquisition subsystem collects ECG signals from the surface of the human body through electrode sheets, and the lead controller connects different leads in time divisions in a time-division multiplexing manner, realizing the simultaneous acquisition of twelve-lead ECG signals. The collected ECG signal is very weak, usually between 0.5 and 2mv. The differential signal is superimposed on the DC voltage component of about 300mv generated by the contact between the electrode and the skin, which also contains the electric potential between the electrode and the ground. The generated common-mode voltage of 1.5v, so the present invention adopts the instrument amplifier AD620 to build an amplifying circuit, the operational amplifier is close to 1kHz with a common-mode rejection ratio up to 100dB, a maximum input offset voltage of 50uV, and a maximum input bias current of 1nA , the performance can meet the requirements of developed ECG signal here. Since the frequency of the ECG signal is between 0.05 and 100Hz, a low-pass filter is needed to eliminate high-frequency noise above 100Hz, a high-pass filter is used to filter out low-frequency noise below 0.05Hz, and a The notch circuit is used to eliminate 50Hz power frequency interference. The cut-off frequency of the filter is f=1/2πRC, and 0.05Hz, 50Hz, and 100Hz are brought into the above formula respectively, and the parameters of each filter can be obtained. The filter is realized by using the operational amplifier TLV2254. This design uses TLC 1549 as the analog-to-digital converter. This chip is a serial 10-bit A/D conversion chip with few data ports and can meet the requirements of the present invention for data accuracy. The ECG signal collected from the body surface is delivered to the wavelet filter circuit in the FPGA in the form of a digital signal after the above preprocessing. The present invention adopts the coif5 filter, and through three layers of decomposition and reconstruction, the filtering process is carried out in the FIFO in the FPGA. The (FIFO) unit is completed, and 512 data are filtered each time.
血压采集子系统实施方案:很多心脏病患者往往伴有血压异常的问题,因此本发明添加了血压采集功能。如图3(a)所示,血压采集子系统主要包括气泵控制器、气泵、压力传感器、A/D转换模块。处理器连接气泵控制器,气泵控制器连接气泵,气泵控制器可控制气泵充气、放气,并可以通过压力传感器读取袖带中的气压值。压力传感器安装在袖带中,处理器通过TLC1549模数转换器读取压力传感器测得的当前压力值,通过压力的变化可以确定脉搏情况。Implementation of the blood pressure collection subsystem: many heart disease patients often suffer from abnormal blood pressure, so the present invention adds a blood pressure collection function. As shown in Figure 3(a), the blood pressure acquisition subsystem mainly includes an air pump controller, an air pump, a pressure sensor, and an A/D conversion module. The processor is connected to the air pump controller, and the air pump controller is connected to the air pump. The air pump controller can control the inflation and deflation of the air pump, and can read the air pressure value in the cuff through the pressure sensor. The pressure sensor is installed in the cuff, and the processor reads the current pressure value measured by the pressure sensor through the TLC1549 analog-to-digital converter, and the pulse condition can be determined through the change of pressure.
如图3(b)所示,当处理器需要采集当前血压时,气泵控制器控制气泵对袖带充气,压力传感器时刻检测当前脉搏情况,当动脉搏动消失后,气泵控制器控制气泵缓慢放气,当压力传感器再次检测到脉搏时,记下袖带中的气压值P1,气泵继续放气,当脉搏再次消失时,记录袖带中的气压值P2,两次得到的气压值经过数据矫正后即可得到最终包含收缩压和舒张压的血压值。As shown in Figure 3(b), when the processor needs to collect the current blood pressure, the air pump controller controls the air pump to inflate the cuff, and the pressure sensor detects the current pulse at all times. When the arterial pulse disappears, the air pump controller controls the air pump to deflate slowly , when the pressure sensor detects the pulse again, write down the air pressure value P1 in the cuff, and the air pump continues to deflate, when the pulse disappears again, record the air pressure value P2 in the cuff, and the two air pressure values obtained after data correction The final blood pressure value including systolic blood pressure and diastolic blood pressure can be obtained.
如图2(b)所示,智能诊断单元是本发明的核心,该单元包括特征提取和智能诊断两个主要功能,该单元通过FPGA中设计的硬件电路实现。一个标准的心电图主要包含P波、QRS波群、T波、PR间期、ST段、QT间期、HRV间期等,心脏病变往往会引起这些波的幅值和间期的变化,这是本发明智能诊断的依据。As shown in Figure 2(b), the intelligent diagnosis unit is the core of the present invention, and this unit includes two main functions of feature extraction and intelligent diagnosis, and this unit is realized by a hardware circuit designed in FPGA. A standard electrocardiogram mainly includes P wave, QRS wave group, T wave, PR interval, ST segment, QT interval, HRV interval, etc. Heart disease often causes changes in the amplitude and interval of these waves, which is The basis of intelligent diagnosis of the present invention.
智能诊断单元中的特征提取功能单元,主要检测R波、平均心率Rate与HRV间期。QRS波群是一个心电周期特征最显著的部分,它具有高幅度和高斜率、具有一定的宽度的时域波形特征和频谱分布在ECG信号的中、高频区域的频域特征(峰值频率在10~20Hz)。The feature extraction function unit in the intelligent diagnosis unit mainly detects R wave, average heart rate Rate and HRV interval. The QRS complex is the most significant part of an electrocardiographic cycle feature. It has high amplitude and high slope, time-domain waveform features with a certain width, and frequency-domain features (peak frequency at 10-20Hz).
如图4(a)所示,GPS模块采用RS232电平逻辑,因此在与处理器连接前需要经过串行接口芯片进行电平转换。GPS定位子系统工作流程参见图4(b),GPS模块以串口中断形式向处理器发送包含时间、坐标、高度、速度等的信息,处理器在中断处理程序中,通过判断开始位、结束位来定位完整的数据包,并从中提取出坐标信息,来确定当前患者所处位置。As shown in Figure 4(a), the GPS module uses RS232 level logic, so it needs to go through the serial interface chip for level conversion before connecting with the processor. Refer to Figure 4(b) for the workflow of the GPS positioning subsystem. The GPS module sends information including time, coordinates, altitude, speed, etc. to the processor in the form of a serial port interrupt. To locate the complete data package, and extract the coordinate information from it to determine the current location of the patient.
如图5(a)所示,人机交互子系统主要包括液晶显示和触屏输入功能。液晶显示部分本发明采用Y70-4024-65K彩色液晶模块,该屏幕是广泛地应用于工业控制等设备上的彩色TFT液晶显示屏,具有7寸超大显示面积的同时兼有400*240的分辨率,大大降低了系统数据传输和存储的压力,采用16位标准8080总线接口方式,色彩支持65536色使图像更加细腻,独有2页显存,单独操作一页不影响其它页,便于满足本项目中需要实时部分刷屏的需求。本发明基于该屏开发了一套友好的人机交互界面,可以很方便的显示各项检测信息和功能菜单。触屏显示部分主要包括触屏、触屏驱动器两部分,本发明采用7寸电阻式触屏,在触屏上电后,按压触屏的不同位置可引起输出电位的相应变化,根据输出电压的情况可以精确的定位出用户的触摸位置和功能选项,本发明采用ADS7843作为触屏控制器,ADS7843是TI公司生产的4线电阻触摸屏转换接口芯片,它是一款具有同步串行接口的12位取样模数转换器,通过两次A/D转换可以定位出与之连接的触屏的触摸位置的横坐标和纵坐标。该子系统可完成设备运行情况的显示,和用户命令输入,即人机交互功能。As shown in Figure 5(a), the human-computer interaction subsystem mainly includes liquid crystal display and touch screen input functions. The liquid crystal display part of the present invention adopts Y70-4024-65K color liquid crystal module, which is a color TFT liquid crystal display widely used in industrial control and other equipment. It has a 7-inch super large display area and a resolution of 400*240 , which greatly reduces the pressure of system data transmission and storage, adopts 16-bit standard 8080 bus interface mode, supports 65536 colors to make the image more delicate, unique 2-page video memory, and operating one page alone does not affect other pages, which is convenient to meet the requirements of this project Requires real-time partial screen refresh. The invention develops a set of friendly human-computer interaction interface based on the screen, which can conveniently display various detection information and function menus. The display part of the touch screen mainly includes two parts: the touch screen and the touch screen driver. The present invention adopts a 7-inch resistive touch screen. After the touch screen is powered on, pressing different positions of the touch screen can cause corresponding changes in the output potential. The situation can accurately locate the user's touch position and function options. The present invention uses ADS7843 as a touch screen controller. ADS7843 is a 4-wire resistive touch screen conversion interface chip produced by TI. It is a 12-bit synchronous serial interface. The sampling analog-to-digital converter can locate the abscissa and ordinate of the touch position of the touch screen connected to it through two A/D conversions. This subsystem can complete the display of equipment operation and user command input, that is, the human-computer interaction function.
如图6(a)所示,本发明将心电诊断设备以移动终端的形式挂载在通信网络上,这样就可以非常方便的借助公共无线网络实现终端和监护端之间的通信。本发明采用MC323CDMA模块,该模块采用RS232电平逻辑,与处理器间通过串口转换芯片连接,处理器通过AT指令的形式通过串口给无线模块发送指令设计采用短信的方式向监护端发送患者诊断信息,短信发送流程参见图6(b)示,处理器对无线模块完成波特率等的初始化后进入短信发送过程,该过程主要括监护端(信息接收端)号码录入、发送信息录入、结束符插入等,完成以上操作后,无线模块即可以通过电信CDMA网络向监护端发出诊断信息。As shown in Figure 6(a), the present invention mounts the electrocardiographic diagnosis equipment on the communication network in the form of a mobile terminal, so that the communication between the terminal and the monitoring terminal can be realized very conveniently by means of a public wireless network. The present invention adopts MC323CDMA module, which adopts RS232 level logic, and is connected with the processor through a serial port conversion chip, and the processor sends instructions to the wireless module through the serial port in the form of AT commands. The design uses short messages to send patient diagnosis information to the monitoring terminal. The short message sending process is shown in Figure 6(b). After the processor completes the initialization of the baud rate for the wireless module, it enters the short message sending process. After the above operations are completed, the wireless module can send diagnostic information to the monitoring terminal through the telecom CDMA network.
基于智能诊断的远程无线心电监护系统的特征提取方法,使用R波检测算法,采用基于阈值和奇点检测相结合的方法来实现对心电信号中R波和S-T段的定位以及其他心电特征的提取,其步骤为:The feature extraction method of the remote wireless ECG monitoring system based on intelligent diagnosis, using the R wave detection algorithm, adopts the method based on the combination of threshold and singular point detection to realize the positioning of the R wave and S-T segment in the ECG signal and other ECG signals. Feature extraction, the steps are:
(1)设定一个时间窗,在该时间段内采用二次差分方法,寻找波形奇异点;对长度为N(取N=4096)的数据进行奇点检测;(1) set a time window, adopt quadratic difference method in this period of time, find waveform singular point; Length is N (get N=4096) data and carry out singular point detection;
奇点检测采用的算法为对一个采样周期的心电信号数据,按照公式(1)至(3)进行diff(sign(diff(N)))运算:The algorithm used for singular point detection is to perform diff(sign(diff(N))) operation on the ECG signal data of one sampling period according to formulas (1) to (3):
其中diff为信号差分,sign为符号函数,N为一个采样周期的心电信号,运算结果为-2的点即为心电信号的极大值点;Among them, diff is the signal difference, sign is the sign function, N is the ECG signal of a sampling period, and the point where the operation result is -2 is the maximum value point of the ECG signal;
保留得到的所有极大值在一个数组A内,并记录其对应波形位置;Keep all the maximum values obtained in an array A, and record their corresponding waveform positions;
取阈值Rth,与上述数组A的值比较,保留大于Rth的极大值在数组B内,并记录其对应波形位置;Take the threshold value Rth, compare it with the value of the above array A, keep the maximum value greater than Rth in the array B, and record its corresponding waveform position;
认为B中数据为检测到的R波幅值,其对应位置为R波位置;It is considered that the data in B is the detected R wave amplitude, and its corresponding position is the R wave position;
(2)自适应阈值Rth设置:(2) Adaptive threshold Rth setting:
选取的N点ECG滤波之后的数据,做奇异点检测之后,寻找奇异点中的极大值信号幅值范围,按公式(4),均分为15份,并将每份幅值记录在Th数组中;After the selected N-point ECG filtered data, after the singular point detection, find the maximum value signal amplitude range in the singular point, divide it into 15 parts according to the formula (4), and record the amplitude of each part in Th in the array;
设积分投影函数为:Let the integral projection function be:
其中.in.
即做极大值点在划分的各幅值段Th(i)上的积分投影;That is, do the integral projection of the maximum value point on each divided amplitude segment Th(i);
选取零分布与非零分布的交接点处i值,计算Th(i),确定Rth为Th(i);Select the i value at the junction point between the zero distribution and the non-zero distribution, calculate Th(i), and determine Rth as Th(i);
阈值确定出R波位置和幅值之后,计算平均心率Rate,单位:次/分,After the threshold determines the R wave position and amplitude, calculate the average heart rate Rate, unit: beats/minute,
Rate=60*Nr/(nr(end)-nr(1)/fs) (8)Rate=60*Nr/(nr(end)-nr(1)/f s ) (8)
其中,Nr是固定时间窗中测得的R波个数,nr(end)是固定时间窗内最后一个R波的位置,nr(1)是固定时间窗内第一个R波的位置,fs是数据采样率;where Nr is the number of R waves measured in a fixed time window, nr(end) is the position of the last R wave in a fixed time window, nr(1) is the position of the first R wave in a fixed time window, f s is the data sampling rate;
根据平均心率加入相关误检、漏检更正,最终修正出正确R波位置和平均心率Rate;According to the average heart rate, the relevant false detection and missed detection correction are added, and the correct R wave position and average heart rate Rate are finally corrected;
然后用公式(9),计算HRV间期。Then use formula (9) to calculate the HRV interval.
HRV=RR(i+1)-RR(i) (9)HRV=RR(i+1)-RR(i) (9)
其中RR为相邻两个R波间期。Where RR is the interval between two adjacent R waves.
综上算法,可得到后续诊断所需特征参数:Rate和H RV;Based on the above algorithm, the characteristic parameters required for subsequent diagnosis can be obtained: Rate and HRV;
(3)根据此指标通过查表的方式将提取到的心电特征与MIT-BI H数据库分析总结得出诊断结果。(3) According to this indicator, the extracted ECG characteristics and MIT-BI H database were analyzed and summarized to obtain the diagnosis result by means of table lookup.
本发明可以诊断的心脏病包括房性早搏、室性早搏、室性心动过速、停搏、房性颤动、室性颤动、房扑、室颤、室上速和交接逸搏。The heart disease that can be diagnosed by the present invention includes atrial premature beat, ventricular premature beat, ventricular tachycardia, asystole, atrial fibrillation, ventricular fibrillation, atrial flutter, ventricular fibrillation, supraventricular tachycardia and handover escape.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012101088241A CN103371814A (en) | 2012-04-14 | 2012-04-14 | Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012101088241A CN103371814A (en) | 2012-04-14 | 2012-04-14 | Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103371814A true CN103371814A (en) | 2013-10-30 |
Family
ID=49458101
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012101088241A Pending CN103371814A (en) | 2012-04-14 | 2012-04-14 | Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103371814A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103610458A (en) * | 2013-11-27 | 2014-03-05 | 中国科学院深圳先进技术研究院 | Electrocardiographic data resampling method and electrocardiogram displaying method and device |
| CN104188651A (en) * | 2014-08-20 | 2014-12-10 | 南京贺普检测仪器有限公司 | Electrocardiogram monitoring device and control method of electrocardiogram monitoring device |
| CN105997054A (en) * | 2016-06-22 | 2016-10-12 | 天津理工大学 | Electrocardiosignal preanalysis method |
| CN107016248A (en) * | 2017-04-18 | 2017-08-04 | 成都琅瑞医疗技术股份有限公司 | A kind of electrocardiogram (ECG) data analysis system and analysis method |
| CN107260163A (en) * | 2017-07-31 | 2017-10-20 | 广东南方电信规划咨询设计院有限公司 | Wireless remote cardioelectric monitor system and method |
| CN108272444A (en) * | 2017-03-31 | 2018-07-13 | 上海大学 | Based on the wearable physiological compensation effects wrist-watch systems of MSP430F5529 |
| CN109171712A (en) * | 2018-09-28 | 2019-01-11 | 东软集团股份有限公司 | Auricular fibrillation recognition methods, device, equipment and computer readable storage medium |
| CN109350072A (en) * | 2018-11-15 | 2019-02-19 | 北京航空航天大学 | A cadence detection method based on artificial neural network |
| CN115089125A (en) * | 2022-07-26 | 2022-09-23 | 山东华汇家居科技有限公司 | A method and apparatus for monitoring sleep characteristics and respiration rate |
| CN115500803A (en) * | 2022-09-29 | 2022-12-23 | 联想(北京)有限公司 | Information determination method and electronic equipment |
| CN116782818A (en) * | 2021-02-24 | 2023-09-19 | Bsp医疗有限公司 | Devices and methods for analyzing and monitoring high-frequency electrograms and electrocardiograms under various physiological conditions |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2236286Y (en) * | 1996-01-11 | 1996-10-02 | 敖振铭 | Miniature monitoring and analysing instrument for cardiac function |
| CN1282567A (en) * | 2000-07-24 | 2001-02-07 | 广东省科学院自动化工程研制中心 | Internet-based remote network system for cardioelectric monitor |
| WO2004071295A1 (en) * | 2003-02-14 | 2004-08-26 | SANTANA CABEZA, Juan, Jesús | Transtelephonic electrocardiographic monitoring system |
| CN1887218A (en) * | 2006-07-21 | 2007-01-03 | 天津大学 | Portable multiple-parameter remote monitoring system |
| CN1907214A (en) * | 2006-08-18 | 2007-02-07 | 方祖祥 | Portable remote real-time monitor with first-aid and locate function |
| US20080000801A1 (en) * | 2004-12-13 | 2008-01-03 | Mackie Robert W Jr | Automated system, method, and kit for immediate treatment of acute medical condition |
| CN201259720Y (en) * | 2008-06-02 | 2009-06-17 | 深圳市安鹏达科技有限公司 | Life pre-alarm device and life pre-alarm rescue system |
-
2012
- 2012-04-14 CN CN2012101088241A patent/CN103371814A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2236286Y (en) * | 1996-01-11 | 1996-10-02 | 敖振铭 | Miniature monitoring and analysing instrument for cardiac function |
| CN1282567A (en) * | 2000-07-24 | 2001-02-07 | 广东省科学院自动化工程研制中心 | Internet-based remote network system for cardioelectric monitor |
| WO2004071295A1 (en) * | 2003-02-14 | 2004-08-26 | SANTANA CABEZA, Juan, Jesús | Transtelephonic electrocardiographic monitoring system |
| US20080000801A1 (en) * | 2004-12-13 | 2008-01-03 | Mackie Robert W Jr | Automated system, method, and kit for immediate treatment of acute medical condition |
| CN1887218A (en) * | 2006-07-21 | 2007-01-03 | 天津大学 | Portable multiple-parameter remote monitoring system |
| CN1907214A (en) * | 2006-08-18 | 2007-02-07 | 方祖祥 | Portable remote real-time monitor with first-aid and locate function |
| CN201259720Y (en) * | 2008-06-02 | 2009-06-17 | 深圳市安鹏达科技有限公司 | Life pre-alarm device and life pre-alarm rescue system |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103610458A (en) * | 2013-11-27 | 2014-03-05 | 中国科学院深圳先进技术研究院 | Electrocardiographic data resampling method and electrocardiogram displaying method and device |
| CN103610458B (en) * | 2013-11-27 | 2015-05-13 | 中国科学院深圳先进技术研究院 | Electrocardiographic data resampling method and electrocardiogram displaying method and device |
| CN104188651A (en) * | 2014-08-20 | 2014-12-10 | 南京贺普检测仪器有限公司 | Electrocardiogram monitoring device and control method of electrocardiogram monitoring device |
| CN105997054B (en) * | 2016-06-22 | 2019-07-09 | 天津理工大学 | A kind of method of electrocardiosignal preanalysis |
| CN105997054A (en) * | 2016-06-22 | 2016-10-12 | 天津理工大学 | Electrocardiosignal preanalysis method |
| CN108272444A (en) * | 2017-03-31 | 2018-07-13 | 上海大学 | Based on the wearable physiological compensation effects wrist-watch systems of MSP430F5529 |
| CN107016248A (en) * | 2017-04-18 | 2017-08-04 | 成都琅瑞医疗技术股份有限公司 | A kind of electrocardiogram (ECG) data analysis system and analysis method |
| CN107260163A (en) * | 2017-07-31 | 2017-10-20 | 广东南方电信规划咨询设计院有限公司 | Wireless remote cardioelectric monitor system and method |
| CN109171712A (en) * | 2018-09-28 | 2019-01-11 | 东软集团股份有限公司 | Auricular fibrillation recognition methods, device, equipment and computer readable storage medium |
| CN109171712B (en) * | 2018-09-28 | 2022-03-08 | 东软集团股份有限公司 | Atrial fibrillation identification method, atrial fibrillation identification device, atrial fibrillation identification equipment and computer readable storage medium |
| CN109350072A (en) * | 2018-11-15 | 2019-02-19 | 北京航空航天大学 | A cadence detection method based on artificial neural network |
| CN116782818A (en) * | 2021-02-24 | 2023-09-19 | Bsp医疗有限公司 | Devices and methods for analyzing and monitoring high-frequency electrograms and electrocardiograms under various physiological conditions |
| CN115089125A (en) * | 2022-07-26 | 2022-09-23 | 山东华汇家居科技有限公司 | A method and apparatus for monitoring sleep characteristics and respiration rate |
| CN115089125B (en) * | 2022-07-26 | 2025-01-28 | 山东华汇家居科技有限公司 | A method and device for monitoring sleep characteristics and breathing rate |
| CN115500803A (en) * | 2022-09-29 | 2022-12-23 | 联想(北京)有限公司 | Information determination method and electronic equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103371814A (en) | Remote wireless electrocardiograph monitoring system and feature extraction method on basis of intelligent diagnosis | |
| RU2677767C2 (en) | Non-contact registration system of electrocardiography | |
| Preejith et al. | Wearable ECG platform for continuous cardiac monitoring | |
| CN203662751U (en) | Portable electrocardiogram equipment | |
| TW200920317A (en) | Medical device capable of recording physiological signals | |
| CN103027675A (en) | Novel portable three-lead real-time wireless electrocardiogram monitoring system and analyzing method | |
| CN104188683A (en) | Multifunctional intelligent stethoscope capable of displaying, storing and transmitting electrocardiograph signals | |
| WO2013040995A1 (en) | Hand-held, medical, multi-channel biological information collection mobile terminal system | |
| ITMI20110957A1 (en) | PORTABLE AND WEARABLE SYSTEM FOR THE ACQUISITION, VISUALIZATION, STORAGE AND NEXT PROCESSING OF THE ELECTROCARDIOGRAPHIC SIGNAL (ECG), FOR THE RECOGNITION OF ARITHMIC AND ISCHEMIC EVENTS, WITH REMOTE TRANSMISSION | |
| CN211883766U (en) | Cardiovascular disease remote monitoring and early warning system | |
| EP4426199A1 (en) | Three dimensional tool for ecg st segment measurements, representation, and analysis | |
| CN110881970A (en) | Electrocardiogram measuring method, electrocardiogram measuring device, electronic equipment and storage medium | |
| CN202875323U (en) | Holter electrocardiograph monitoring system for period-parting wireless transmission | |
| CN211484546U (en) | Intelligent electrocardiogram blood pressure instrument | |
| CN203122389U (en) | 12 lead remote electrocardiogram diagnostic system transmitted through mobile phone | |
| Li et al. | A wearable button-like system for long-term multiple biopotential monitoring using non-contact electrodes | |
| CN110090013B (en) | Electrocardiosignal acquisition method and acquisition circuit based on navel reference electrode | |
| CN108186009A (en) | A kind of wireless electrocardiogram acquisition system | |
| CN103637791A (en) | GSM network based remote electrocardiogram monitoring system | |
| CN102920450B (en) | Time-phased wireless transmission Holter electrocardiograph monitoring system | |
| CN102028458A (en) | Method for synchronously outputting electrocardiogram and vectorcardiogram | |
| Triwiyanto et al. | Recent technology and challenge in ECG data acquisition design: A review | |
| AU2020101730A4 (en) | A system for real-time heart health monitoring | |
| Shin et al. | WHAM: A novel, wearable heart activity monitor based on Laplacian potential mapping | |
| CN208355461U (en) | electrocardiogram capturing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131030 |