CN103372408B - With while gasification prepare the method for core-carbon complex and prepared core-shell structure metall-carbon complex - Google Patents
With while gasification prepare the method for core-carbon complex and prepared core-shell structure metall-carbon complex Download PDFInfo
- Publication number
- CN103372408B CN103372408B CN201310145660.4A CN201310145660A CN103372408B CN 103372408 B CN103372408 B CN 103372408B CN 201310145660 A CN201310145660 A CN 201310145660A CN 103372408 B CN103372408 B CN 103372408B
- Authority
- CN
- China
- Prior art keywords
- metal
- presoma
- mentioned
- carbon
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 79
- 239000011258 core-shell material Substances 0.000 title abstract description 44
- 238000000034 method Methods 0.000 title abstract description 24
- 238000002309 gasification Methods 0.000 title 1
- 239000002243 precursor Substances 0.000 claims abstract description 103
- 239000002131 composite material Substances 0.000 claims abstract description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 238000002360 preparation method Methods 0.000 claims abstract description 22
- 238000009834 vaporization Methods 0.000 claims abstract description 17
- 230000008016 vaporization Effects 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 23
- 229910052697 platinum Inorganic materials 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 claims description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 239000010457 zeolite Substances 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- ZABVBYGUHBRHFJ-UHFFFAOYSA-N C[Pt]C.C1CC=CCCC=C1 Chemical compound C[Pt]C.C1CC=CCCC=C1 ZABVBYGUHBRHFJ-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- ZCMXXMBISYVGNE-UHFFFAOYSA-N [Au].CC1=C(C=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound [Au].CC1=C(C=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 ZCMXXMBISYVGNE-UHFFFAOYSA-N 0.000 claims description 3
- 239000012705 liquid precursor Substances 0.000 claims description 3
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 claims description 3
- UYXWTYRQGBBXHB-UHFFFAOYSA-N platinum 1,2,3,4-tetramethylcyclopenta-1,3-diene Chemical compound [Pt].CC1=C(C(=C(C1)C)C)C UYXWTYRQGBBXHB-UHFFFAOYSA-N 0.000 claims description 3
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- JKDRQYIYVJVOPF-FDGPNNRMSA-L palladium(ii) acetylacetonate Chemical compound [Pd+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O JKDRQYIYVJVOPF-FDGPNNRMSA-L 0.000 claims description 2
- 239000000123 paper Substances 0.000 claims description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims 12
- 239000005416 organic matter Substances 0.000 claims 8
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 claims 4
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 claims 4
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 claims 2
- FTFYDDRPCCMKBT-UHFFFAOYSA-N 1-butylcyclopenta-1,3-diene Chemical group CCCCC1=CC=CC1 FTFYDDRPCCMKBT-UHFFFAOYSA-N 0.000 claims 2
- QIPLUHUCBWAFNS-UHFFFAOYSA-N C(C)C(=O)C(=O)C.[Ru] Chemical compound C(C)C(=O)C(=O)C.[Ru] QIPLUHUCBWAFNS-UHFFFAOYSA-N 0.000 claims 2
- IHSFMZNPFDLEHI-UHFFFAOYSA-N C1=CC=CC1.CCBBB.[Co] Chemical compound C1=CC=CC1.CCBBB.[Co] IHSFMZNPFDLEHI-UHFFFAOYSA-N 0.000 claims 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 2
- NQQNJSBVFPONJM-UHFFFAOYSA-N [Co].CCC(=O)C(C)=O Chemical compound [Co].CCC(=O)C(C)=O NQQNJSBVFPONJM-UHFFFAOYSA-N 0.000 claims 2
- BQBRMDQPBZUUEV-UHFFFAOYSA-N [Ni].C(C)C(=O)C(=O)C Chemical compound [Ni].C(C)C(=O)C(=O)C BQBRMDQPBZUUEV-UHFFFAOYSA-N 0.000 claims 2
- WVJIOUJYLKKXMK-UHFFFAOYSA-N [Ni].C1=CC=CC1 Chemical compound [Ni].C1=CC=CC1 WVJIOUJYLKKXMK-UHFFFAOYSA-N 0.000 claims 2
- SOQXOILVAMUTKS-UHFFFAOYSA-N [Ru].C(C)C1=CC=CC1 Chemical compound [Ru].C(C)C1=CC=CC1 SOQXOILVAMUTKS-UHFFFAOYSA-N 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 2
- CJYKYDSNPJGVNZ-UHFFFAOYSA-N cobalt;cyclopenta-1,3-diene Chemical compound [Co].C1C=CC=C1 CJYKYDSNPJGVNZ-UHFFFAOYSA-N 0.000 claims 2
- UMYVESYOFCWRIW-UHFFFAOYSA-N cobalt;methanone Chemical compound O=C=[Co] UMYVESYOFCWRIW-UHFFFAOYSA-N 0.000 claims 2
- 150000002431 hydrogen Chemical class 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 239000011574 phosphorus Substances 0.000 claims 2
- NDBYXKQCPYUOMI-UHFFFAOYSA-N platinum(4+) Chemical compound [Pt+4] NDBYXKQCPYUOMI-UHFFFAOYSA-N 0.000 claims 2
- XAKYZBMFCZISAU-UHFFFAOYSA-N platinum;triphenylphosphane Chemical compound [Pt].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 XAKYZBMFCZISAU-UHFFFAOYSA-N 0.000 claims 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 239000002923 metal particle Substances 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract description 2
- 229910021386 carbon form Inorganic materials 0.000 abstract 1
- 229910021645 metal ion Inorganic materials 0.000 abstract 1
- 238000012805 post-processing Methods 0.000 abstract 1
- 239000006200 vaporizer Substances 0.000 description 15
- DSVGQVZAZSZEEX-UHFFFAOYSA-N [C].[Pt] Chemical class [C].[Pt] DSVGQVZAZSZEEX-UHFFFAOYSA-N 0.000 description 13
- 235000010210 aluminium Nutrition 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000012159 carrier gas Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 8
- 238000006555 catalytic reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- -1 bis(cyclopentadienyl)ruthenium(II) Chemical compound 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- JJUQPZZUJMFLRI-UHFFFAOYSA-N [Pt].CC1=CC=CC1 Chemical compound [Pt].CC1=CC=CC1 JJUQPZZUJMFLRI-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical compound [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- IQSUNBLELDRPEY-UHFFFAOYSA-N 1-ethylcyclopenta-1,3-diene Chemical compound CCC1=CC=CC1 IQSUNBLELDRPEY-UHFFFAOYSA-N 0.000 description 1
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 239000012696 Pd precursors Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- PQCYXHTUDKAWAG-UHFFFAOYSA-N [C+4].[O-2].[Mn+2].[Li+] Chemical compound [C+4].[O-2].[Mn+2].[Li+] PQCYXHTUDKAWAG-UHFFFAOYSA-N 0.000 description 1
- ZETYICZOEMMWEG-UHFFFAOYSA-N [C].[C].[Pt] Chemical class [C].[C].[Pt] ZETYICZOEMMWEG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- LAXIOTUSRGRRNA-UHFFFAOYSA-N cyclopenta-1,3-diene nickel Chemical compound [Ni].C1C=CC=C1.C1C=CC=C1 LAXIOTUSRGRRNA-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 125000004989 dicarbonyl group Chemical group 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NFWSQSCIDYBUOU-UHFFFAOYSA-N methylcyclopentadiene Chemical compound CC1=CC=CC1 NFWSQSCIDYBUOU-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- SYKXNRFLNZUGAJ-UHFFFAOYSA-N platinum;triphenylphosphane Chemical compound [Pt].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 SYKXNRFLNZUGAJ-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Abstract
本发明涉及一种应用同时汽化法,以粉末状与负载于载体的形式,制备用金属粒子形成核并用碳形成壳的核‑壳结构的金属‑碳复合物的方法,以及据此制备的核‑壳结构的金属‑碳复合物。根据本发明的制备方法,由于其使用同时汽化技术,从而能够同时汽化金属及包括碳的有机物前驱体,而合成金属‑碳核‑壳结构的复合物,因此具有无需像以前工程一样进行另外的后处理的优点。并且,如此制备的复合物,由于碳壳覆盖金属核表面的一部分或全部,因此适用于高温、长时间、强酸性及碱性等严酷的反应工程上时,也不会发生金属离子凝聚或脱落及腐蚀的现象,从而具备高性能及耐久性。
The present invention relates to a method for preparing a metal-carbon composite having a core-shell structure in which metal particles form the core and carbon forms the shell, in the form of powder and supported on a carrier, using a simultaneous vaporization method, and the core prepared thereby ‑shell-structured metal‑carbon composites. According to the preparation method of the present invention, since it uses simultaneous vaporization technology, it can simultaneously vaporize metal and organic precursors including carbon to synthesize metal-carbon core-shell structure composites, so there is no need to carry out additional steps like previous projects. Advantages of postprocessing. Moreover, the composite prepared in this way, because the carbon shell covers part or all of the surface of the metal core, is suitable for high temperature, long time, strong acid and alkaline and other harsh reaction engineering, and metal ions will not condense or fall off. And corrosion phenomenon, so as to have high performance and durability.
Description
技术领域 technical field
本发明涉及一种核-壳结构的金属-碳复合物及其制备方法,尤其涉及一种以粉末状或负载在载体的形状制备用金属粒子形成核并用碳形成壳的核-壳结构的金属-碳复合物的方法与,据此制备的核-壳结构的金属-碳复合物。 The invention relates to a metal-carbon composite with a core-shell structure and a preparation method thereof, in particular to a metal with a core-shell structure in which metal particles are used to form the core and carbon is used to form the shell in the form of powder or supported on a carrier. - A method of carbon composites, whereby core-shell structured metal-carbon composites are prepared.
背景技术 Background technique
由于近来出现贵金属资源枯竭的问题,因此大量的研究涉及具有各种功能的贵金属催化剂,并同时提供耐久性。贵金属催化剂本身与其他金属催化剂相比,具有优秀的催化活性,但制备费用昂贵,因此正在开发将贵金属粒子纳米化并高分散化的技术,另一方面随着催化反应温度的提高,金属粒子相凝聚(agglomeration),并且在催化过程中,金属颗粒从复合物上脱落,因此发生耐久性下降的严重问题,从而正在进行解决这些问题的研究。 Due to the recent problem of depletion of noble metal resources, a great deal of research has been directed to noble metal catalysts having various functions while providing durability. The noble metal catalyst itself has excellent catalytic activity compared with other metal catalysts, but the preparation cost is expensive. Therefore, the technology of nano-sized and highly dispersed noble metal particles is being developed. On the other hand, with the increase of the catalytic reaction temperature, the metal particle phase Agglomeration, and during the catalytic process, metal particles are detached from the composite, and thus a serious problem of durability degradation occurs, so that research to solve these problems is underway.
本发明作为解决如上问题的最佳方法,其应用同时汽化法,将贵金属等昂贵的金属进行纳米粒子化的同时合成在贵金属粒子的表面形成碳层的核-壳结构,因此高温催化过程中,也不会发生粒子的凝聚,并且反应进行时也不会发生催化剂粒子的腐蚀或脱落,因此能够显著提高催化剂耐久性。 As the best method to solve the above problems, the present invention uses the simultaneous vaporization method to synthesize expensive metals such as precious metals into nanoparticles while synthesizing a core-shell structure that forms a carbon layer on the surface of the precious metal particles. Therefore, in the high-temperature catalytic process, Aggregation of particles does not occur, and catalyst particles do not corrode or fall off during the reaction, so catalyst durability can be remarkably improved.
Tao Zheng等曾将铂(Pt)配合物盐与表面活性剂、水、乙醇的混合物进行碳化,而制备了铂-碳复合物,并测试了在一氧化碳氧化反应下的性能(参照文献[Colloids and Sufraces A:Physicochem.Eng.Aspects262(2005)52-56,onic surfactant-mediated synthesis of Pt nanoparticles/nanoporous carbons composites])。然而,此方法使用溶液法,前驱体溶液的碳环需要在高温下进行,因此制备成本增加,并且需要经过多个步骤的工序进行生产制备Pt/C复合物,因此存在工序繁杂的缺点。 Tao Zheng etc. have prepared platinum-carbon composites by carbonizing the mixture of platinum (Pt) complex salts, surfactants, water, and ethanol, and tested their performance under the oxidation reaction of carbon monoxide (refer to the literature [Colloids and Sufraces A: Physicochem. Eng. Aspects 262 (2005) 52-56, onic surfactant-mediated synthesis of Pt nanoparticles/nanoporous carbons composites]). However, this method uses a solution method, and the carbocycle of the precursor solution needs to be carried out at high temperature, so the preparation cost increases, and it needs to go through multiple steps to produce the Pt/C composite, so there are disadvantages of complicated procedures.
并且,韩国公开专利第10-2011-0139994A号中,也公开了在离子溶液状态 下混合而制备锂锰氧化物-碳纳米复合物的技术。上述专利为了合成复合物需要进行溶液反应、晶体生长、为了脱除模板用强酸/强碱化学处理的工序、以及为了合金化进行热处理等多个步骤。 In addition, Korean Laid-Open Patent No. 10-2011-0139994A also discloses a technique for preparing lithium manganese oxide-carbon nanocomposites by mixing them in an ionic solution state. The above-mentioned patents require multiple steps such as solution reaction, crystal growth, chemical treatment with strong acid/strong base for template removal, and heat treatment for alloying in order to synthesize the composite.
发明内容 Contents of the invention
本发明的目的在于提供一种不会因生产规模转变而发生变数,从而适用于大量生产的,应用比以前技术简单的同时汽化工程的核-壳结构的金属-碳复合物的制备方法。 The purpose of the present invention is to provide a method for preparing metal-carbon composites with a core-shell structure that does not change due to production scale changes, is suitable for mass production, and uses simpler simultaneous vaporization engineering than previous technologies.
本发明的另一目的在于提供一种适用于高温、长时间、强酸性及碱性等严酷的反应工程时,也不会发生金属粒子凝聚或脱落,也不会发生腐蚀的现象的具备高性能及高耐久性的核-壳结构的金属-碳复合物。 Another object of the present invention is to provide a kind of high-performance steel sheet that is suitable for severe reaction processes such as high temperature, long time, strong acidity and alkalinity, and will not cause metal particles to agglomerate or fall off, and will not cause corrosion. And high-durability core-shell metal-carbon composites.
本发明的又一目的在于提供一种制备核-壳结构金属-碳复合物的方法,其利用不会因生产规模转变而发生变数而适用于大量生产的同时汽化方法制备,并包括多种碳材料、铝、硅、沸石、氧化锆、氧化钛等作为载体,从而能够有效适用于以前采用非均相催化剂(heterogeneous catalysis)的大多数催化过程中,具有高性能/高耐久性。 Another object of the present invention is to provide a method for preparing metal-carbon composites with a core-shell structure, which is prepared by a simultaneous vaporization method that does not change due to changes in production scale and is suitable for mass production, and includes a variety of carbon Materials, aluminum, silicon, zeolite, zirconia, titania, etc. are used as supports, so that they can be effectively applied to most catalytic processes that previously used heterogeneous catalysts (heterogeneous catalysis), and have high performance/high durability.
本发明的又一目的在于提供一种具有出色性能和稿耐久的性金属-碳复合物,其包括负载于多样的碳材料、铝、硅、沸石、氧化钴、氧化钛等载体的表面及内部气孔中的核-壳纳米复合物,从而能够有效适用于采用以前的非均相催化剂的大多数催化工程。 Another object of the present invention is to provide a high-performance metal-carbon composite with excellent performance and durability, which includes the surface and interior of various carbon materials, aluminum, silicon, zeolite, cobalt oxide, titanium oxide and other carriers. The core-shell nanocomposite in the stomata can be effectively applied to most catalytic engineering using previous heterogeneous catalysts.
为了实现上述目的,本发明提供一种核-壳结构的金属-碳复合物的制备方法,其包括:提供在各自汽化器内汽化的金属前驱体及用于形成碳骨架的有机物前驱体的步骤-S1;利用运载气体以非接触状态,在反应器内供应汽化的各个金属前驱体及有机物前驱体的步骤-S2;加热上述反应器后保持一恒定温度而合成金属-碳复合物的步骤-S3。 In order to achieve the above object, the present invention provides a method for preparing a metal-carbon composite with a core-shell structure, which includes the steps of providing metal precursors vaporized in respective vaporizers and organic precursors for forming carbon skeletons- S1; Step-S2 of supplying vaporized metal precursors and organic precursors in the reactor in a non-contact state by using a carrier gas; Step-S3 of synthesizing metal-carbon composites by heating the reactor and maintaining a constant temperature .
并且,本发明提供一种核-壳结构的金属-碳复合物,其用金属形成核并用碳形成壳,特征在于,具有上述壳包裹核的一部分或全部的结构。 Furthermore, the present invention provides a metal-carbon composite having a core-shell structure, wherein the core is formed of metal and the shell is formed of carbon, characterized in that the shell has a structure in which part or all of the core is surrounded by the shell.
本发明还提供一种负载在载体的核-壳结构的金属-碳复合物的制备方法,其包括:在反应器内布置载体的步骤-S1;提供在各个汽化器内汽化的金属前驱体 及用于形成碳骨架的有机物前驱体的步骤-S2;利用运载气体以非接触状态,在反应器内供应汽化的各个金属前驱体及有机物前驱体的步骤-S3;以及加热上述反应器后保持一恒定温度而合成负载在载体的金属-碳复合物的步骤-S4。 The present invention also provides a method for preparing a metal-carbon composite with a core-shell structure supported on a carrier, which includes: step-S1 of arranging the carrier in the reactor; providing metal precursors vaporized in each vaporizer and using In the step-S2 of forming the organic precursor of the carbon skeleton; the step-S3 of supplying vaporized metal precursors and organic precursors in the reactor in a non-contact state by using the carrier gas; and keeping a constant temperature after heating the above reactor The step-S4 of synthesizing the metal-carbon composite loaded on the support at the temperature.
最后,本发明提供一种负载在载体的核-壳结构的金属-碳复合物,其特征在于,用金属形成核并用碳形成壳,且上述壳包裹核的一部分或全部。 Finally, the present invention provides a metal-carbon composite with a core-shell structure supported on a carrier, characterized in that the core is formed of metal and the shell is formed of carbon, and the shell wraps part or all of the core.
根据本发明实施例,所述核-壳结构的金属-碳复合物通过同时汽化金属和碳前驱体制备,通过调整合成温度和组合物,可以具有不同的性能,并且不需要其它后处理,因此是过程简化。 According to an embodiment of the present invention, the metal-carbon composite with a core-shell structure is prepared by vaporizing metal and carbon precursors at the same time. By adjusting the synthesis temperature and composition, it can have different properties and does not require other post-treatments. Therefore It is process simplification.
附图说明 Description of drawings
本发明上述的以及其它目的、特征和优点,通过参照附图所给出的实施例的描述,将更易于理解,其中: The above and other objects, features and advantages of the present invention will be easier to understand by referring to the description of the embodiments given in the accompanying drawings, wherein:
图1是利用扫描电子显微镜(SEM)拍摄实施例1中制备的核-壳结构的铂-碳复合物与实施例2至4中制备的负载于载体的核-壳结构的铂碳复合物的显微照片。 Figure 1 is a photograph of the platinum-carbon composite with a core-shell structure prepared in Example 1 and the platinum-carbon composite with a core-shell structure prepared on a carrier prepared in Examples 2 to 4 using a scanning electron microscope (SEM). micrograph.
图2是利用透射电子显微镜(TEM)拍摄实施例2中制备的负载于碳纸的核-壳结构的铂-碳复合物的显微照片。 FIG. 2 is a photomicrograph of the platinum-carbon composite with core-shell structure supported on carbon paper prepared in Example 2, taken with a transmission electron microscope (TEM).
具体实施方式 detailed description
下面,本发明实施例将参照附图进行进一步详细说明本发明。 Hereinafter, the embodiments of the present invention will be further described in detail with reference to the accompanying drawings.
本发明一方面,利用同时汽化工艺能够以独立的粉末状制备核-壳结构的金属-碳复合物。具体说,本发明的核-壳结构的金属-碳复合物的制备方法,其特征在于,包括:提供在各自汽化器内汽化的金属前驱体及用于形成碳骨架的有机物前驱体的步骤-S1;利用运载气体以非接触状态,在反应器内供应汽化的各个金属前驱体及有机物前驱体的步骤-S2;加热上述反应器后保持一恒定温度而合成金属-碳复合物的步骤-S3。 In one aspect of the present invention, a metal-carbon composite with a core-shell structure can be prepared in an independent powder form by using a simultaneous vaporization process. Specifically, the method for preparing a metal-carbon composite with a core-shell structure of the present invention is characterized in that it includes: step-S1 of providing metal precursors vaporized in respective vaporizers and organic precursors for forming carbon skeletons ; The step-S2 of supplying vaporized metal precursors and organic precursors in the reactor in a non-contact state by using the carrier gas; the step-S3 of synthesizing the metal-carbon composite by heating the reactor and maintaining a constant temperature.
首先,提供在各自汽化器内汽化的金属前驱体及用于形成碳骨架的有机物前驱体-步骤S1。 First, metal precursors vaporized in respective vaporizers and organic precursors for forming carbon skeletons are provided—step S1.
本步骤中在一个汽化器内供应金属前驱体,并在另一汽化器内供应用于形成 碳骨架的有机物前驱体后,将各个汽化器的温度上升为各前驱体的沸点附近,就能够同时汽化金属前驱体及有机物前驱体。当使用气态有机物前驱体时,不经过另外的汽化过程而在汽化器内直接供应该前驱体。 In this step, the metal precursor is supplied in one vaporizer, and the organic precursor used to form the carbon skeleton is supplied in the other vaporizer, and the temperature of each vaporizer is raised to around the boiling point of each precursor, so that the metal precursor can be vaporized simultaneously. bodies and organic precursors. When a gaseous organic precursor is used, the precursor is directly supplied in the vaporizer without going through an additional vaporization process.
本步骤中使用的金属前驱体是最后形成异质复合物的核的金属的前驱体,能够使用可汽化的所有物质。优先使用由铂前驱体、钯前驱体、钌前驱体、镍前驱体、钴前驱体、钼前驱体以及金前驱体组成的组中选择的一个,作为铂前驱体优先使用由三甲基(甲基环戊二烯)铂(IV)、乙酰丙酮铂(Ⅱ)、四(三氟化磷)铂(0)、四(三苯基膦)铂(0)、六氟乙酰丙酮铂(Ⅱ)、三甲基(甲基环戊二烯)铂(Ⅳ)以及(1,5-环辛二烯)二甲基铂(Ⅱ)组成的组中选择的。作为钯(Pd)前驱体优先使用醋酸钯(Ⅱ)、六氟乙酰丙酮钯(Ⅱ)或乙酰丙酮钯(Ⅱ),并且作为钌(Ru)前驱体优先使用乙酰乙酮钌、双(乙基环戊二烯)钌(Ⅱ)、双(环戊二烯)钌(Ⅱ)、或三(2,2,6,6-四甲基-3,5-庚二酮)钌(Ⅲ)。作为镍(Ni)前驱体优先使用乙酰乙酮镍(Ⅱ)、双(环戊二烯)镍、或四(三氟化磷)镍,并且作为钴(Co)前驱体优先使用乙酰乙酮钴(Ⅱ)、二羰基环戊二烯钴、羰基钴、或环戊二烯二羰基钴(Ⅰ),并且作为钼(Mo)前驱体优先使用六羰基钼或氯化钼(Ⅴ),作为金(Au)前驱体优先使用甲基(三苯基膦)金(Ⅰ),然而适合各个前驱体的气相条件及汽化温度互不相同,因此需要适当调节。 The metal precursor used in this step is a precursor of the metal that finally forms the core of the heterocomposite, and any vaporizable substance can be used. Preferably use one selected from the group consisting of a platinum precursor, a palladium precursor, a ruthenium precursor, a nickel precursor, a cobalt precursor, a molybdenum precursor, and a gold precursor. Cyclopentadiene) platinum (IV), platinum acetylacetonate (II), platinum tetrakis (phosphorus trifluoride) (0), platinum tetrakis (triphenylphosphine) (0), platinum hexafluoroacetylacetonate (II) , trimethyl(methylcyclopentadiene)platinum(IV) and (1,5-cyclooctadiene)dimethylplatinum(II) selected from the group. Palladium(II) acetate, palladium(II) hexafluoroacetylacetonate, or palladium(II) acetylacetonate are preferably used as palladium (Pd) precursors, and ruthenium acetylacetonate, bis(ethyl Cyclopentadiene)ruthenium(II), bis(cyclopentadienyl)ruthenium(II), or tris(2,2,6,6-tetramethyl-3,5-heptanedione)ruthenium(III). Nickel(II) acetoacetonate, nickel bis(cyclopentadiene), or nickel tetrakis(phosphorous trifluoride) is preferentially used as nickel (Ni) precursor, and cobalt acetylacetonate is preferentially used as cobalt (Co) precursor (II), cobalt dicarbonyl cyclopentadiene, cobalt carbonyl, or cyclopentadiene dicarbonyl cobalt (I), and molybdenum hexacarbonyl or molybdenum chloride (V) is preferentially used as a molybdenum (Mo) precursor, as gold The (Au) precursor is preferentially methyl(triphenylphosphine) gold (I), but the gas phase conditions and vaporization temperatures suitable for each precursor are different, so appropriate adjustments are required.
本步骤中使用的有机物前驱体是最后形成异质复合物的壳的碳的前驱体,可使用包含碳的烃基前驱体。优先使用由甲醇、乙醇、丙酮、苯、甲苯及二甲苯组成的组中选择的液态前驱体,或使用如甲烷或乙炔的气态前驱体。 The organic precursor used in this step is a precursor of carbon that finally forms the shell of the heterocomposite, and a hydrocarbon-based precursor containing carbon can be used. Preferably a liquid precursor selected from the group consisting of methanol, ethanol, acetone, benzene, toluene and xylene is used, or a gaseous precursor such as methane or acetylene is used.
本步骤中使用的汽化器可使用公知的或直接制作的,通常可使用金属材料或玻璃类(如石英玻璃或派热克斯玻璃)等材料的汽化器。要想边维持一恒定温度边确认内容物的性质、余量,汽化器用不会与前驱体产生反应的玻璃制作为宜。 The evaporator used in this step can be known or directly manufactured, and generally can use a evaporator made of metal material or glass (such as quartz glass or pyrex glass). In order to confirm the nature and balance of the content while maintaining a constant temperature, the vaporizer should be made of glass that does not react with the precursor.
本步骤中前驱体的具体汽化条件根据所选择的前驱体种类而异。根据本发明的一具体实施例,若作为铂前驱体使用三甲基(甲基环戊二烯)铂时,用50-70℃温度进行汽化,若作为有机物前驱体使用丙酮时,用50-60℃温度进行汽化。根据本发明的另一具体实施例,若作为铂前驱体使用(1,5-环辛二烯)二甲基铂(Ⅱ)时,在如苯等溶剂中溶解的状态下,用100℃以上的高温进行汽化。 The specific vaporization conditions of the precursor in this step vary according to the type of precursor selected. According to a specific embodiment of the present invention, if trimethyl (methylcyclopentadiene) platinum is used as the platinum precursor, vaporization is carried out at a temperature of 50-70° C., and if acetone is used as the organic precursor, it is vaporized with 50- Vaporization is carried out at a temperature of 60°C. According to another specific embodiment of the present invention, if (1,5-cyclooctadiene) dimethyl platinum (II) is used as the platinum precursor, in the state of being dissolved in a solvent such as benzene, use a temperature above 100 ° C high temperature vaporization.
然后,利用运载气体以非接触状态,在反应器内供应在步骤S1中汽化的各 个金属前驱体及有机物前驱体-步骤S2。 Then, the respective metal precursors and organic precursors vaporized in step S1 are supplied in the reactor in a non-contact state using a carrier gas—step S2.
本步骤中利用包括气体状态的各前驱体的运载气体以非接触状态如、通过独立的供应线供到反应器。从而汽化的前驱体在最终产生反应的反应器流入部,相汇合。若各个前驱体在传送途中相汇合时,就会发生意想不到的副反应或有可能附在路径壁上。 In this step, a carrier gas including each precursor in a gaseous state is supplied to the reactor in a non-contact state, for example, through an independent supply line. The vaporized precursors thus merge at the inflow portion of the reactor where the final reaction takes place. If the various precursors meet during the transmission, unexpected side reactions will occur or may be attached to the path wall.
本步骤中使用的运载气体用于防止前驱体相凝聚或发生副反应,可以使用氮气、氩气、氦气、氧气或氢气等。主要使用氮气、氩气、氦气等惰性气体为佳,但根据前驱体也可以使用氧气或氢气。 The carrier gas used in this step is used to prevent the condensation of the precursor phase or side reactions, and nitrogen, argon, helium, oxygen or hydrogen can be used. Inert gases such as nitrogen, argon, and helium are preferably used mainly, but oxygen or hydrogen may also be used depending on the precursor.
本步骤中通过调节供应到反应器的各前驱体的流量比,就可控制最终复合物的性质。例如,金属前驱体与有机物前驱体的流量比为2:1时与流量比为1:1时相比,碳壳的厚度及石墨层数量减少。从而根据适用的催化反应改变流量比,就能够合成多样的金属-复合物。 In this step, the properties of the final complex can be controlled by adjusting the flow ratio of each precursor supplied to the reactor. For example, when the flow ratio of the metal precursor to the organic precursor is 2:1, compared with the flow ratio of 1:1, the thickness of the carbon shell and the number of graphite layers are reduced. Thus, various metal-composites can be synthesized by changing the flow ratio according to the applicable catalytic reaction.
根据本发明的一具体实施例,在保持一定温度的烤炉内汽化的各个前驱体气体移送渠道传送到反应器,气体移送渠道绕有加热线以防止汽化前驱体的凝缩或凝结。此时,在反应器内供应各前驱体时,温度保持在前驱体的沸点附近,为佳。 According to an embodiment of the present invention, each precursor vaporized in an oven maintained at a certain temperature is transported to the reactor through a gas delivery channel, and a heating wire is wound around the gas delivery channel to prevent condensation or condensation of the vaporized precursor. At this time, when supplying each precursor in the reactor, it is preferable to keep the temperature near the boiling point of the precursor.
最后,加热在步骤S2中供入各前驱体的反应器并维持一预定温度,从而制备粉末状的核-壳结构的金属-碳复合物-步骤S3。本步骤中用于合成核-壳结构的金属-碳复合物的反应温度,根据各前驱体即、金属及有机物前驱体的种类而异,通常温度约为300℃或以上,优先在300-1800℃下合成顺利进行,但是应当理解的是,根据适当设计加热炉及反应器,可以选择合成温度。例如、若使用石英玻璃反应器时,优先使用300-1100℃温度,并且若使用铝管或石墨(graphite)反应器时,可以使用到1800℃,并且通过适当设计加热炉及反应器,也可以使用1800℃或以上的温度。合成温度越上升,包裹金属粒子的壳的缺陷(defect)越少,改善了结晶性。合成时间优先为5分钟或以上,最好维持约1小时,但合成时间越增加,金属-碳复合物的量越增加。 Finally, heating the reactor supplied with each precursor in step S2 and maintaining a predetermined temperature, thereby preparing a powdery metal-carbon composite with a core-shell structure—step S3. The reaction temperature used to synthesize the metal-carbon composite with core-shell structure in this step varies according to the types of precursors, metal and organic precursors. Usually, the temperature is about 300 ° C or above, preferably 300-1800 ° C. The synthesis proceeds well at 0°C, but it is understood that the synthesis temperature can be selected with proper design of the furnace and reactor. For example, if a quartz glass reactor is used, the temperature of 300-1100°C is preferred, and if an aluminum tube or graphite (graphite) reactor is used, it can be used up to 1800°C, and by properly designing the furnace and reactor, it can also be used Use a temperature of 1800°C or above. As the synthesis temperature rises, the defects in the shell covering the metal particles decrease, improving crystallinity. The synthesis time is preferably 5 minutes or more, preferably about 1 hour, but the longer the synthesis time is, the more the amount of metal-carbon composites will increase.
按照本发明的制备方法制备的核-壳结构的金属-碳复合物,具有金属形成核以及碳形成壳,其特征在于,上述壳包裹核的一部分或全部。 The metal-carbon composite with a core-shell structure prepared according to the preparation method of the present invention has a core formed by metal and a shell formed by carbon, and is characterized in that the shell wraps part or all of the core.
应用于普通分子催化时,根据本发明的复合物具有核-壳结构,其特征在于,上述壳包裹核的一部分,即、由于核-壳结构组合物存在部分壳缺陷(defect), 因此形成在催化反应中反应物及产物的移动非常通畅。并且,当根据本发明的复合物用于如燃料电池或二次电池一样的电极材料时,所述核-壳结构复合物具有核-壳结构,其中,以离子或电子的移动为对象,因此具备壳包裹核的全部的结构,即、形成如石墨烯一样没有缺陷(defect)的圆滑的碳壳,为佳。根据本发明的复合物由于碳壳包裹金属核表面的一部分或全部,因此即使在高温、长时间、在强酸性及碱性等严酷的反应工程中使用,也不会发生金属粒子凝聚或脱落,并且不会发生腐蚀的现象,从而具备高性能及高耐久性。 When applied to ordinary molecular catalysis, the complex according to the present invention has a core-shell structure, which is characterized in that the above-mentioned shell wraps a part of the core, that is, due to the partial shell defect in the core-shell structure composition, it is formed in the The movement of reactants and products in the catalytic reaction is very smooth. And, when the composite according to the present invention is used as an electrode material such as a fuel cell or a secondary battery, the core-shell structure composite has a core-shell structure in which the movement of ions or electrons is targeted, so It is preferable to have a complete structure in which the core is surrounded by the shell, that is, to form a smooth carbon shell without defects like graphene. According to the compound of the present invention, because the carbon shell wraps a part or all of the surface of the metal core, even if it is used at high temperature, for a long time, in severe reaction projects such as strong acidity and alkalinity, the metal particles will not aggregate or fall off, And there will be no corrosion, so it has high performance and high durability.
本发明另一方面,应用同时汽化工艺与载体能够以负载于载体的形式制备核-壳结构的金属-碳复合物。具体说,本发明的负载于载体的核-壳结构的金属-碳复合物的制备方法,其包括:在反应器内布置载体的步骤-S1;提供在各自汽化器内汽化的金属前驱体及用于形成碳骨架的有机物前驱体的步骤-S2;利用运载气体以非接触状态,在反应器内供应汽化的各个金属前驱体及有机物前驱体的步骤-S3;以及加热上述反应器后保持一恒定温度而合成负载于载体的金属-碳复合物的步骤-S4。 In another aspect of the present invention, a metal-carbon composite with a core-shell structure can be prepared in the form of being supported on a carrier by using a simultaneous vaporization process and a carrier. Specifically, the method for preparing a metal-carbon composite with a core-shell structure loaded on a carrier of the present invention includes: step-S1 of arranging a carrier in a reactor; providing metal precursors vaporized in respective vaporizers and using In the step-S2 of forming the organic precursor of the carbon skeleton; the step-S3 of supplying vaporized metal precursors and organic precursors in the reactor in a non-contact state by using the carrier gas; and keeping a constant temperature after heating the above reactor The step-S4 of synthesizing the metal-carbon composite supported on the carrier at a higher temperature.
本发明中使用的载体没有特别限制,可以使用由碳纸、活性炭、碳黑等碳类、铝粉、铝板等铝类、硅灰、氧化钛粉、氧化锆粉、各种沸石类以及镍、铝等金属箔(foil)组成的组中选择的。优先使用表面积大的载体,其能够最大化负载的效果,因此碳粉、铝粉、沸石粉可以被用来制备金属核-碳壳结构,而金属核-碳壳结构够能适用于改性反应、热分解反应、氢化/脱氢反应等各种催化反应。 The carrier used in the present invention is not particularly limited, and carbons such as carbon paper, activated carbon, and carbon black, aluminums such as aluminum powder and aluminum plate, silica fume, titanium oxide powder, zirconium oxide powder, various zeolites, and nickel, Selected from the group consisting of aluminum and other metal foils (foil). Prioritize the use of a carrier with a large surface area, which can maximize the loading effect, so carbon powder, aluminum powder, and zeolite powder can be used to prepare a metal core-carbon shell structure, and the metal core-carbon shell structure is suitable for modification reactions , thermal decomposition reaction, hydrogenation/dehydrogenation reaction and other catalytic reactions.
本发明的这一具体实施例的复合物合成方法,是在反应器内部事先布置载体,并在载体上合成复合物,最终产物是负载在载体的核-壳结构的金属-碳复合物,从这一点上与上述的具体实施例存在差异,但步骤S2至步骤S4与如上所述具体实施例的方法相同。 The composite synthesis method of this specific embodiment of the present invention is to arrange the carrier in advance in the reactor, and synthesize the composite on the carrier, and the final product is a metal-carbon composite with a core-shell structure loaded on the carrier, from This point is different from the above specific embodiment, but steps S2 to S4 are the same as the method of the above specific embodiment.
根据本具体实施例的方法,能够以负载于载体的形式制备用金属形成核并用碳形成壳,且壳包裹核的一部分或全部的结构的金属-碳复合物。当应用于气相状态下普通分子催化反应时,本发明组合物具有核-壳结构,其中,壳包裹核的一部分,即核-壳结构的壳有缺陷(defect)。根据本发明的这一实施例中,复合物负载于,因此,催化反应完成后,便于回收催化剂,并且复合物负载于载体的状态下使用,因此在利用以前的整装催化剂、蜂窝形催化剂(Honeycomb)或 微型反应器、膜反应器、固定床(packed bed)反应器等进行催化反应时,特别有用,并且根据本发明的复合物负载于现有的吸附剂的情况下,便于应用于各种吸附/脱附工程。 According to the method of this specific example, a metal-carbon composite in which a core is formed of metal and a shell is formed of carbon can be prepared in the form of being supported on a carrier, and the shell wraps a part or all of the core. When applied to catalytic reactions of ordinary molecules in the gas phase state, the composition of the present invention has a core-shell structure, wherein the shell wraps a part of the core, that is, the shell of the core-shell structure has defects. According to this embodiment of the present invention, the composite is loaded on, therefore, after the catalytic reaction is completed, it is convenient to recycle the catalyst, and the composite is used in the state loaded on the carrier, so when using the previous monolithic catalyst, honeycomb catalyst ( Honeycomb) or microreactors, membrane reactors, fixed bed (packed bed) reactors, etc., are particularly useful for catalytic reactions, and when the complex according to the present invention is loaded on an existing adsorbent, it is easy to apply to various Adsorption/desorption engineering.
下面,为了便于理解本发明提议优先实施例,但下述实施例只是本发明的例示,在本发明的范畴及技术思想范围内可进行多样的变更及修正,因此,本发明的保护范围仅受所附权利要求及其等效替代所限制。 Below, in order to facilitate the understanding of the present invention to propose preferred embodiments, but the following embodiments are only illustrations of the present invention, various changes and amendments can be made within the scope of the present invention and the scope of technical ideas, therefore, the protection scope of the present invention is limited only by limited by the appended claims and their equivalents.
实施例1:制备核-壳结构的铂-碳复合物 Embodiment 1: Prepare the platinum-carbon composite of core-shell structure
作为铂前驱体使用了甲基环戊二烯铂(MeCpPtMe3)并且作为碳前驱体使用了丙酮(99.8%,Merck)。为了捕集金属-碳复合物,在石英管(1/2inch)内设置石英过滤器,在120℃下流入氮气并维持2小时而除去试剂内部的水分及杂质。此时,安装在烤炉内的两个汽化器,在其内部保持氮环境的状态下,关闭所有流入及流出活栓,通过不经过汽化器的旁通线(bypass line),流入氮气30分钟从而除去反应器内部的杂质。 Methylcyclopentadiene platinum (MeCpPtMe 3 ) was used as platinum precursor and acetone (99.8%, Merck) was used as carbon precursor. In order to capture metal-carbon complexes, a quartz filter was installed in a quartz tube (1/2 inch), and nitrogen gas was flowed in at 120°C and maintained for 2 hours to remove moisture and impurities inside the reagent. At this time, the two evaporators installed in the oven, while maintaining a nitrogen environment inside, closed all inflow and outflow cocks, and flowed nitrogen gas for 30 minutes through a bypass line that does not pass through the evaporator to remove the reaction. Impurities inside the device.
然后,以每分钟10℃的升温速度,将反应器部分的温度升温至400℃,而形成合成复合物的条件,当反应器部分的温度到达最终反应温度时,将盛装铂前驱体的汽化器安装在内的烤炉1的温度上升为60℃,并且将盛装丙酮的汽化器安装在内烤炉2的温度上升为55℃。当各个前驱体及反应器的温度到达最终目标温度时,打开各个汽化器的活栓以使运载气体与汽化的前驱体一起,到达反应器部分。此时作为运载气体使用氮气,对于经过盛装铂前驱体的烤炉1的管线,流量为20sccm,并且对于经过盛装丙酮的烤炉2的管线,流量为10sccm,另外氮气还以20sccm的流量供应与独立连接反应器的管线。反应开始的瞬间是汽化器的活栓打开的时候,从此时开始维持1小时反应时间,而合成核-壳结构的铂-碳复合物。 Then, at a heating rate of 10°C per minute, the temperature of the reactor part is raised to 400°C to form the conditions for the synthesis of complexes. When the temperature of the reactor part reaches the final reaction temperature, the vaporizer containing the platinum precursor is installed The temperature of the inner oven 1 was raised to 60°C, and the temperature of the inner oven 2 was raised to 55°C with a vaporizer containing acetone installed. When the temperature of each precursor and the reactor reaches the final target temperature, open the valve of each vaporizer so that the carrier gas and the vaporized precursor can reach the reactor part. Now use nitrogen as the carrier gas, for the pipeline through the oven 1 filled with platinum precursor, the flow rate is 20 sccm, and for the pipeline through the oven 2 filled with acetone, the flow rate is 10 sccm, nitrogen is also supplied with the flow rate of 20 sccm in addition Pipelines connected to the reactor independently. The instant the reaction starts is when the cock of the vaporizer is opened, and the reaction time is maintained for 1 hour from this moment to synthesize a platinum-carbon composite with a core-shell structure.
实施例2至4:制备负载于载体的核-壳结构的铂-碳复合物 Examples 2 to 4: Preparation of platinum-carbon composites with a core-shell structure loaded on a carrier
作为铂前驱体使用了甲基环戊二烯铂(MeCpPtMe3)并且作为碳前驱体使用了丙酮(99.8%,Merck)。为了捕集金属-碳复合物,在石英管(1/2inch)内设置石英过滤器,并在其上面设置10mm X10mm大小的碳纸(实施例2)、10mmX10mm大小的铝板(实施例3)、10mm X10mm大小的镍箔(Ni foil)(实施例4),然后在120℃下流入氮气并维持2小时,而除去试剂内部的水分及杂质。 此时,安装在烤炉内的两个汽化器,在其内部保持氮环境的状态下,关闭所有流入及流出活栓,通过不经过汽化器的旁通线(bypass line),流入氮气30分钟而除去反应器内部的杂质。 Methylcyclopentadiene platinum (MeCpPtMe 3 ) was used as platinum precursor and acetone (99.8%, Merck) was used as carbon precursor. In order to trap metal-carbon composites, a quartz filter is set in a quartz tube (1/2inch), and a carbon paper of a size of 10mm X10mm (Example 2), an aluminum plate of a size of 10mmX10mm (Example 3), A nickel foil (Ni foil) with a size of 10mm×10mm (Example 4) was then flowed into nitrogen gas at 120° C. and maintained for 2 hours to remove moisture and impurities inside the reagent. At this time, the two vaporizers installed in the oven, while maintaining a nitrogen environment inside, close all the inflow and outflow valves, and flow nitrogen through a bypass line that does not pass through the vaporizer for 30 minutes to remove the reaction. Impurities inside the device.
然后,以每分钟10℃的升温速度,将反应器部分的温度升温至400℃,从而形成合成金属-碳复合物的条件,当反应器部分的温度到达最终反应温度(碳纸:400℃、铝板:400℃、镍箔:400℃)时,将盛装铂前驱体的汽化器安装在内的烤炉1的温度上升为60℃,并且将盛装丙酮的汽化器安装在内的烤炉2的温度上升为55℃。当各个前驱体及反应器的温度到达最终目标温度时,打开各个汽化器的活栓以使运载气体与汽化的前驱体一起,到达反应器部分。此时作为运载气体使用氮气,对于经过盛装铂前驱体的烤炉1的管线,流量为20sccm,并且对于经过盛装丙酮的烤炉2的管线,流量为10sccm,另外独立连接反应器的管线内还流入20sccm的氮气。反应开始的瞬间是汽化器的活栓打开的时候,从此时开始一定时间(碳纸:1小时、铝板:1小时、镍箔:1小时)维持反应时间,而合成具有核-壳结构的铂-碳复合物。 Then, at a rate of 10°C per minute, the temperature of the reactor part was raised to 400°C to form conditions for the synthesis of metal-carbon composites. When the temperature of the reactor part reached the final reaction temperature (carbon paper: 400°C, Aluminum plate: 400°C, nickel foil: 400°C), the temperature of Oven 1 equipped with a vaporizer containing a platinum precursor is raised to 60°C, and the temperature of Oven 2 equipped with a vaporizer containing acetone is increased is 55°C. When the temperature of each precursor and the reactor reaches the final target temperature, open the valve of each vaporizer so that the carrier gas and the vaporized precursor can reach the reactor part. At this time, nitrogen is used as the carrier gas. For the pipeline passing through the oven 1 containing the platinum precursor, the flow rate is 20 sccm, and for the pipeline passing through the oven 2 containing acetone, the flow rate is 10 sccm. Nitrogen gas was flowed at 20 sccm. The moment the reaction starts is when the stopcock of the vaporizer is opened, and a certain period of time (carbon paper: 1 hour, aluminum plate: 1 hour, nickel foil: 1 hour) is maintained from then on to synthesize platinum-carbon with a core-shell structure. Complex.
实验例1:扫描电子显微镜(SEM)分析 Experimental Example 1: Scanning Electron Microscopy (SEM) Analysis
利用扫描电子显微镜(SEM)分析了在实施例1中制备的核-壳结构的铂-碳复合物(A)与在实施例2至4中制备的负载于载体的核-壳结构的铂-碳复合物(依次称为B、C、D),其结果如图1所示。结论是,在碳纸、铝、镍箔表面都能合成铂-碳复合物,其中在碳纸上形成了最多量的铂-碳复合物。镍箔上合成的铂粒子大小比其他两个情况下更大。 The platinum-carbon composite (A) with a core-shell structure prepared in Example 1 and the platinum-carbon Carbon composites (referred to as B, C, D in turn), the results are shown in Figure 1. The conclusion is that platinum-carbon composites can be synthesized on the surface of carbon paper, aluminum, and nickel foil, and the largest amount of platinum-carbon composites is formed on carbon paper. The platinum particle size synthesized on nickel foil was larger than in the other two cases.
实验例2:透射电子显微型(TEM)分析 Experimental Example 2: Transmission Electron Microscopy (TEM) Analysis
利用透射电子显微镜分析了在实施例1中制备的核-壳结构的铂-碳复合物,该结果如图2所示。图2A是能够确认复合物粒子的整体分布的TEM显微照片,图2B是进一步放大的显微照片,能够观察细致的结构。图2中能够确认通过本发明合成了具有核-壳结构的铂-碳复合物,其中,铂位于结构中央形成核、碳即、石墨层包裹在核的外部形成壳。位于核外部的碳壳一般由1-5个石墨层构成,通过改变合成温度,能够调节碳壳的缺陷(defect)程度。并且,粒子的大小约为2-5nm范围。即、越是在高温合成的核-壳结构,碳壳的缺陷越少、表面越圆滑。并且,随着有机物前驱体流量与金属前驱体流量比值的减小,碳壳的厚度越小。 然而,碳壳的形状不仅因为碳的流量,还由于有机物前驱体的种类而异。即、若使用甲烷一样含碳数少的前驱体时,与使用诸如乙炔或醇等前驱体时相比,碳壳形成的数量更少。这种金属-碳核-壳结构提供了便于气体分子、离子及电子的移动,并且铂粒子不会腐蚀的反应条件。 The platinum-carbon composite with a core-shell structure prepared in Example 1 was analyzed using a transmission electron microscope, and the results are shown in FIG. 2 . FIG. 2A is a TEM micrograph in which the overall distribution of composite particles can be confirmed, and FIG. 2B is a further enlarged micrograph in which a fine structure can be observed. In FIG. 2, it can be confirmed that a platinum-carbon composite having a core-shell structure was synthesized by the present invention, wherein platinum is located in the center of the structure to form a core, and carbon, that is, graphite layers are wrapped around the core to form a shell. The carbon shell located outside the core is generally composed of 1-5 graphite layers, and the defect degree of the carbon shell can be adjusted by changing the synthesis temperature. Also, the size of the particles is about in the range of 2-5nm. That is, the higher the core-shell structure synthesized at high temperature, the fewer defects of the carbon shell and the smoother the surface. Moreover, as the ratio of organic precursor flow rate to metal precursor flow rate decreases, the thickness of the carbon shell becomes smaller. However, the shape of the carbon shell varies not only due to the flow of carbon but also due to the type of organic precursor. That is, when a precursor with a low carbon number such as methane is used, the number of carbon shells formed is smaller than when a precursor such as acetylene or alcohol is used. This metal-carbon core-shell structure provides reaction conditions that facilitate the movement of gas molecules, ions, and electrons, and the platinum particles do not corrode.
如上所述,根据本发明,在核-壳结构的金属-碳复合物中,碳壳包裹金属表面的一部分或全部,因此当适用于高温、长时间、强酸性及碱性等严酷的反应工程时,也不会发生金属粒子凝聚或脱落以及腐蚀的现象,从而具有高性能及高耐久性。本发明的核-壳结构的金属-碳复合物可适用于多样的应用领域,具体说,能够应用于各种反应中的催化材料、采用整装催化剂、蜂窝(Honeycomb)形催化剂等催化材料的渠道式催化反应器、各种分离膜材料及吸收及吸附剂等。 As mentioned above, according to the present invention, in the metal-carbon composite of core-shell structure, the carbon shell wraps a part or all of the metal surface, so it is suitable for severe reaction projects such as high temperature, long time, strong acidity and alkalinity. At the same time, there will be no aggregation or shedding of metal particles and no corrosion, so it has high performance and high durability. The metal-carbon composite with a core-shell structure of the present invention can be applied to a variety of application fields, specifically, it can be applied to catalytic materials in various reactions, catalytic materials such as monolithic catalysts, honeycomb (Honeycomb) catalysts, etc. Channel-type catalytic reactor, various separation membrane materials, absorption and adsorbents, etc.
尽管一些具体实施例被提供以阐释本发明,但是应当理解的是,这些实施例仅作为举例给出,在不脱离本发明精神和范围的情况下,可以进行各种改进、变化和替代。本发明范围应当仅限于所附权利要求及其等效替代。 Although some specific examples are provided to illustrate the present invention, it should be understood that these examples are given by way of example only, and that various modifications, changes and substitutions can be made without departing from the spirit and scope of the invention. The scope of the invention should be limited only by the appended claims and their equivalents.
Claims (16)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2012-0045166 | 2012-04-30 | ||
| KR1020120045166A KR101381646B1 (en) | 2012-04-30 | 2012-04-30 | Method for preparing metal-carbon composite having core-shell structure using co-vaporization, and metal-carbon composite having core-shell structure prepared thereby |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103372408A CN103372408A (en) | 2013-10-30 |
| CN103372408B true CN103372408B (en) | 2016-11-30 |
Family
ID=
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101337667A (en) * | 2007-07-04 | 2009-01-07 | 中国科学院理化技术研究所 | Preparation method of carbon nanotube or magnetic nanocarbon sphere |
| CN101678323A (en) * | 2007-05-23 | 2010-03-24 | 丰田自动车株式会社 | Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure |
| CN101954480A (en) * | 2010-11-08 | 2011-01-26 | 华东理工大学 | Method for preparing carbon-coated core-shell nanoparticles continuously |
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101678323A (en) * | 2007-05-23 | 2010-03-24 | 丰田自动车株式会社 | Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure |
| CN101337667A (en) * | 2007-07-04 | 2009-01-07 | 中国科学院理化技术研究所 | Preparation method of carbon nanotube or magnetic nanocarbon sphere |
| CN101954480A (en) * | 2010-11-08 | 2011-01-26 | 华东理工大学 | Method for preparing carbon-coated core-shell nanoparticles continuously |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5709954B2 (en) | Method for producing metal-carbon composite supported catalyst | |
| JP6058075B2 (en) | Metal-carbon hybrid composite having nitrogen-doped carbon surface and method for producing the same | |
| US9175385B2 (en) | Method for preparing metal-carbon composite of core-shell structure through simultaneous vaporization and metal-carbon composite of core-shell structure prepared thereby | |
| Shi et al. | Modulating mxene‐derived Ni‐Mom‐Mo2‐mTiC2Tx structure for intensified low‐temperature ethanol reforming | |
| JP6143761B2 (en) | Hydrogen production catalyst and method for producing hydrogen | |
| KR101341550B1 (en) | Preparation method of catalyst for fuel cell electrode using covaporization and preparation method of fuel cell electrode including catalyst prepared by and fuel cell including the same | |
| CN112452315B (en) | Application of a high temperature anti-sintering catalyst | |
| Goulas et al. | Scalable production of nanostructured particles using atomic layer deposition | |
| JP5859601B2 (en) | Method for producing alloy catalyst for fuel cell | |
| CN110694690A (en) | Method for preparing metal monatomic catalyst | |
| KR100751557B1 (en) | Method for preparing carbon nanotube-supported platinum catalyst by chemical vapor deposition | |
| Belousov et al. | Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials | |
| Wu et al. | Regulation of surface carbides on palladium nanocubes with zeolitic imidazolate frameworks for propyne selective hydrogenation | |
| CN110732335B (en) | Transition metal @ BO for methane dry gas reforming reactionxCore-shell structure nano catalyst and preparation method thereof | |
| KR101334057B1 (en) | Method for preparing multicomponent metal-hybrid nanocomposite using co-vaporization, and multicomponent metal-hybrid nanocomposite prepared thereby | |
| Zhang et al. | Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level | |
| CN103372408B (en) | With while gasification prepare the method for core-carbon complex and prepared core-shell structure metall-carbon complex | |
| KR20040082949A (en) | Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth | |
| JP2019025378A (en) | Composite material and manufacturing method thereof | |
| Wu et al. | Atomic-Scale Engineering of CuOx–Au Interfaces over AuCu Single-Nanoparticles | |
| Duan et al. | Highly efficient nano-octahedral Au/γ-Fe 2 O 3 catalyst synthesized by dealloying combined with calcination for low-temperature CO oxidation | |
| US20240351880A1 (en) | Method for preparing single-walled carbon nanotubes using singel-atom catalyst, and single-walled carbon nanotubes prepared thereby | |
| CN111470948A (en) | Synthesis method of cyclohexanol compound | |
| US20230182126A1 (en) | Method for preparing single-atom, atomic cluster or single-molecular catalyst for oxidative coupling of methane using chemical vapor deposition | |
| CN111470929A (en) | A kind of synthetic method of cycloalkane compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant |