CN103373708A - Treatment method for recovery and reuse of hydrofluoric acid waste liquid - Google Patents
Treatment method for recovery and reuse of hydrofluoric acid waste liquid Download PDFInfo
- Publication number
- CN103373708A CN103373708A CN2012101225728A CN201210122572A CN103373708A CN 103373708 A CN103373708 A CN 103373708A CN 2012101225728 A CN2012101225728 A CN 2012101225728A CN 201210122572 A CN201210122572 A CN 201210122572A CN 103373708 A CN103373708 A CN 103373708A
- Authority
- CN
- China
- Prior art keywords
- hydrofluoric acid
- waste liquid
- sodium
- acid waste
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 title claims abstract description 409
- 239000007788 liquid Substances 0.000 title claims abstract description 119
- 239000002699 waste material Substances 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000011282 treatment Methods 0.000 title claims abstract description 83
- 238000011084 recovery Methods 0.000 title claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000010703 silicon Substances 0.000 claims abstract description 78
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 78
- 230000008569 process Effects 0.000 claims abstract description 70
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 29
- 239000011737 fluorine Substances 0.000 claims abstract description 29
- 239000011734 sodium Substances 0.000 claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 23
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 19
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011591 potassium Substances 0.000 claims abstract description 17
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 17
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 14
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052788 barium Inorganic materials 0.000 claims abstract description 8
- 229910001422 barium ion Inorganic materials 0.000 claims abstract description 8
- 229910001414 potassium ion Inorganic materials 0.000 claims abstract description 8
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract 2
- -1 sodium fluorosilicate Chemical compound 0.000 claims description 44
- 239000006228 supernatant Substances 0.000 claims description 17
- 229940104869 fluorosilicate Drugs 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 9
- 150000001553 barium compounds Chemical class 0.000 claims description 8
- 239000002002 slurry Substances 0.000 claims description 8
- 150000003112 potassium compounds Chemical class 0.000 claims description 7
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 7
- 150000003388 sodium compounds Chemical class 0.000 claims description 7
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 6
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 claims description 4
- 229910001626 barium chloride Inorganic materials 0.000 claims description 4
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 4
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 4
- 239000001103 potassium chloride Substances 0.000 claims description 4
- 235000011164 potassium chloride Nutrition 0.000 claims description 4
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011698 potassium fluoride Substances 0.000 claims description 3
- 235000003270 potassium fluoride Nutrition 0.000 claims description 3
- 239000011775 sodium fluoride Substances 0.000 claims description 3
- 235000013024 sodium fluoride Nutrition 0.000 claims description 3
- 238000003672 processing method Methods 0.000 abstract description 10
- 230000008901 benefit Effects 0.000 abstract description 7
- 239000002351 wastewater Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000013043 chemical agent Substances 0.000 abstract description 2
- 239000002253 acid Substances 0.000 description 28
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000005530 etching Methods 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000012545 processing Methods 0.000 description 11
- 229940125782 compound 2 Drugs 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- 239000000779 smoke Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 208000005156 Dehydration Diseases 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 229910001610 cryolite Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910016036 BaF 2 Inorganic materials 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012213 gelatinous substance Substances 0.000 description 2
- 235000015110 jellies Nutrition 0.000 description 2
- 239000008274 jelly Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- HSESRBXIBSXFGI-UHFFFAOYSA-N F[Si][K] Chemical compound F[Si][K] HSESRBXIBSXFGI-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- QDIYZGWZTHZFNM-UHFFFAOYSA-N [F].[K] Chemical compound [F].[K] QDIYZGWZTHZFNM-UHFFFAOYSA-N 0.000 description 1
- JZJNHPJBZWEHPD-UHFFFAOYSA-N [F].[Na] Chemical compound [F].[Na] JZJNHPJBZWEHPD-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种氢氟酸废液回收再使用的处理方法,具体涉及一种可将氢氟酸废液中的氢氟酸回收并能重复使用于蚀刻制程的方法,其具有节省原蚀刻制程氢氟酸使用量的购买成本,且处理量既大又快速简易,并避免高热导致火灾产生氢氟酸浓烟伤害人体等多重功效。 The invention relates to a treatment method for recycling and reusing hydrofluoric acid waste liquid, in particular to a method that can recycle hydrofluoric acid in hydrofluoric acid waste liquid and reuse it in the etching process, which has the advantages of saving the original etching process The purchase cost of hydrofluoric acid usage is low, and the processing volume is large, fast and easy, and it has multiple functions such as avoiding high heat to cause fire and producing thick smoke of hydrofluoric acid to harm the human body. the
背景技术 Background technique
随着半导体、液晶面板及太阳能电池等产业的蓬勃发展,其生产流程中使用氢氟酸(Hydrofluoric Acid;HF(aq))来作为蚀刻硅及硅化合物的使用量也会愈来愈多,而在氢氟酸蚀刻硅或硅化合物后所产生含硅的氢氟酸废液的量也伴随增加;由于氢氟酸废液中的硅含量偏高,不仅让氢氟酸的蚀刻能力降低,且会让蚀刻物表面产生凸出物而影响蚀刻的精准度,并导致产品质量降低、蚀刻处理的耗费时间增长,故含硅的氢氟酸废液便不能再次反复使用,而当氢氟酸内的硅含量到达预定值(一般约为10000ppm以上)时就因不能再使用,而形成氢氟酸废液。 With the vigorous development of industries such as semiconductors, liquid crystal panels, and solar cells, the use of hydrofluoric acid (Hydrofluoric Acid; HF (aq)) in the production process to etch silicon and silicon compounds will also increase. After hydrofluoric acid etches silicon or silicon compounds, the amount of silicon-containing hydrofluoric acid waste liquid also increases; due to the high silicon content in hydrofluoric acid waste liquid, not only the etching ability of hydrofluoric acid is reduced, but also It will cause protrusions on the surface of the etched object, which will affect the accuracy of etching, and lead to a decrease in product quality and an increase in the time spent on etching. Therefore, the silicon-containing hydrofluoric acid waste liquid cannot be reused again, and when the hydrofluoric acid contains When the silicon content in the silicon reaches a predetermined value (generally about 10000ppm or more), it can no longer be used, and a hydrofluoric acid waste liquid is formed. the
再者,某些产业则以混酸方式来使用氢氟酸,例如氢氟酸添加硝酸用以蚀刻太阳能板的硅、或氢氟酸添加硝酸及盐酸来蚀刻玻璃板、或氢氟酸添加盐酸形成蚀刻液,如此便会导致一般氢氟酸废液中不仅含有约2~10%的氟化氢及浓度略小于1%(10000ppm)的硅,并同时含有1~3%的硝酸或含有约5%的盐酸的结果,然而,不论是混酸方式的氢氟酸或是纯氢氟酸,当被使用后成为氢氟酸废液时,其所含有的氢氟酸却具有高腐蚀性及高脂溶性,不仅对人体的皮肤会造成严重烧伤,也极易穿过人体而与体内的钙、镁离子结合来侵蚀骨骼与肌肉,若吸入氢氟酸散发的蒸气则会引起肺水肿,且吸入过量更是会致命,此外,氢氟酸废液排放到自然界中也会破坏生态系的平衡,故氢氟酸废液皆须经过处理后才可排放,以避免 危害人体及污染环境。 Moreover, some industries use hydrofluoric acid in the form of mixed acids, such as hydrofluoric acid plus nitric acid to etch the silicon of solar panels, or hydrofluoric acid plus nitric acid and hydrochloric acid to etch glass plates, or hydrofluoric acid plus hydrochloric acid to form Etching solution, so just can cause in general hydrofluoric acid waste liquid not only containing the silicon of about 2~10% hydrogen fluoride and concentration slightly less than 1% (10000ppm), and simultaneously contain the nitric acid of 1~3% or contain about 5% As a result of hydrochloric acid, however, whether it is mixed acid hydrofluoric acid or pure hydrofluoric acid, when it is used as hydrofluoric acid waste liquid, the hydrofluoric acid contained in it is highly corrosive and highly fat-soluble. Not only will it cause serious burns to the skin of the human body, but it can also easily pass through the human body and combine with calcium and magnesium ions in the body to erode bones and muscles. It will be fatal. In addition, the discharge of hydrofluoric acid waste liquid into the nature will also destroy the balance of the ecosystem. Therefore, hydrofluoric acid waste liquid must be treated before it can be discharged to avoid harming the human body and polluting the environment. the
现有技术对于氢氟酸废液的处理方式,都是将氢氟酸废液中的氟取出来制成各类氟化学品,主要处理方法有三种如下: In the prior art, the treatment methods for hydrofluoric acid waste liquid are to extract the fluorine in the hydrofluoric acid waste liquid to make various fluorine chemicals. There are three main treatment methods as follows:
一、第一种方法如中国台湾发明第I233158号所揭露,其是添加氯化钙于氢氟酸废液中,使钙离子将氟离子转成氟化钙,并让氟离子与钙离子作用生成氟化钙污泥,来达成去除氢氟酸废液中的氟成分,其反应式为: 1. The first method, as disclosed in China Taiwan Invention No. I233158, is to add calcium chloride to hydrofluoric acid waste liquid, so that calcium ions convert fluorine ions into calcium fluoride, and let fluoride ions interact with calcium ions Calcium fluoride sludge is generated to achieve the removal of fluorine in hydrofluoric acid waste liquid. The reaction formula is:
2HF(aq)+CaCl2(aq)→CaF2(s)+2HCl(aq) 2HF(aq)+CaCl 2 (aq)→CaF 2 (s)+2HCl(aq)
接着,再添加液碱(氢氧化钠水溶液)将废液酸碱值调至中性(PH值介于6~9),其反应式为: Then, add liquid caustic soda (sodium hydroxide aqueous solution) to adjust the pH value of the waste liquid to neutrality (PH value is between 6 and 9), and its reaction formula is:
NaOH+HCl→NaCl+H2O NaOH+HCl→NaCl+ H2O
另外则是使用氢氧化钙或碳酸钙添加入氢氟酸废液内的方式,来达成中和氢氟酸废液内的酸及去除氟离子。 In addition, calcium hydroxide or calcium carbonate is added into the hydrofluoric acid waste liquid to neutralize the acid in the hydrofluoric acid waste liquid and remove fluorine ions. the
然而,不论是氢氟酸废液内加入氯化钙,再以液碱将废液酸碱值调至中性的方式,或是氢氟酸废液内加入氢氧化钙或碳酸钙的方式,都会产生大量的污泥,以l公斤浓度49%的氢氟酸废液为例,若使用氯化钙处理,将产生约5公斤的氟化钙污泥;若使用氢氧化钙处理,将产生约10公斤的氟化钙污泥,而伴随产生的废水量极大且都必须经处理才能排放,同时沉积的氟化钙污泥量也极多,使得整体处理成本极高,且氯化钙、氢氧化钙或碳酸钙等购买费用支出亦多,因此并不是很好的处理方法,也非常不利于产业界采用。 However, whether it is adding calcium chloride to the hydrofluoric acid waste liquid, and then using liquid caustic soda to adjust the pH value of the waste liquid to neutral, or adding calcium hydroxide or calcium carbonate to the hydrofluoric acid waste liquid, All can produce a large amount of sludge, take the hydrofluoric acid waste liquid of 1 kilogram concentration 49% as example, if use calcium chloride to process, will produce the calcium fluoride sludge of about 5 kilograms; If use calcium hydroxide process, will produce About 10 kg of calcium fluoride sludge, and the accompanying waste water is huge and must be treated before it can be discharged. At the same time, the amount of calcium fluoride sludge deposited is also very large, making the overall treatment cost extremely high, and calcium chloride , Calcium Hydroxide or Calcium Carbonate and other purchase expenses are also many, so it is not a good processing method, and it is also very unfavorable for the industry to adopt. the
二、第二种方法为添加铝酸钠于氢氟酸废液内,将氟离子转成氟铝酸钠,透过添加含铝化合物及含钠化合物(一般是添加铝酸钠)于氢氟酸废液中,以生成非溶解的氟铝酸钠结晶体(Na3AlF6),其反应式为: 2. The second method is to add sodium aluminate to hydrofluoric acid waste liquid to convert fluoride ions into sodium fluoroaluminate, by adding aluminum-containing compounds and sodium-containing compounds (usually adding sodium aluminate) to hydrofluoric acid In acid waste liquid, to generate non-dissolved sodium fluoroaluminate crystals (Na 3 AlF 6 ), the reaction formula is:
3Na++Al3++6F-→Na3AlF6 3Na + +Al 3+ +6F - →Na 3 AlF 6
但伴随产生的废水量相当多,且须经处理才能排放,氟铝酸钠商品名为冰晶石,主要用作电解法提炼金属铝的高温助熔剂,铝具有良好延展性,但铝掺杂过量的硅化合物时延展性则会大幅降低,所以此方法虽可从氢氟酸废液产出冰晶石,然其用途受限且价值偏低,此外,提炼出冰晶石后产生的废液因具有酸性,仍需加入液碱进行酸碱中和,由于酸碱中和为放热反应,对操作人员具有一定的危险性,另也需使用热交换器才得以提升处理速度,再者,氟铝酸钠(冰晶石)属结晶 体,其结晶速率慢,也会导致无法快速处理废液,故也非好的处理方法。 However, the amount of waste water produced is quite large, and it must be treated before it can be discharged. The trade name of sodium fluoroaluminate is cryolite, which is mainly used as a high-temperature flux for electrolytic extraction of metal aluminum. Aluminum has good ductility, but excessive aluminum doping When the silicon compound is used, the ductility will be greatly reduced, so although this method can produce cryolite from hydrofluoric acid waste liquid, its use is limited and its value is low. In addition, the waste liquid produced after extracting cryolite has Acidic, still need to add liquid caustic soda for acid-base neutralization, because acid-base neutralization is an exothermic reaction, it is dangerous to the operator, and also need to use a heat exchanger to improve the processing speed, moreover, fluoroaluminum Sodium acid (cryolite) is a crystal, and its crystallization rate is slow, which will also lead to the inability to quickly process the waste liquid, so it is not a good treatment method. the
三、第三种方法如中华民国发明公开编号第200930663号所揭露,其是先在氢氟酸废液中加入氢氟酸,使氢氟酸废液调整至一浓度后,再添加硅及钠于所述具有调整浓度后的氢氟酸废液内,而将氟离子转成氟硅酸钠,透过添加过量的含硅化合物及含钠化合物(一般是添加硅酸钠;商品名为水玻璃)于氢氟酸废液中,以生成非溶解性的氟硅酸钠结晶体(Na2SiF6),最后再将所述氟硅酸钠结晶体干燥来达成回收氟;因此,其化学药剂的花费大,且产生的废水量也极多导致废水处理费用居高不下,同时处理过程中会产生胶状物的缺点,致使延缓氟硅酸钠的生成速度,且受胶状物的影响也导致后续的脱水处理极为困难,因水玻璃为碱性物质但氢氟酸为酸性物质,故会形成有放热的酸碱中和反应,反而需要使用热交换器才得以提升处理速度,但又因为氢氟酸具金属腐蚀性,仅能使用热传导性能差的塑料材质热交换器,也使得其处理速度缓慢,而不是一个很好的处理方法。 3. The third method is as disclosed in the Republic of China Invention Publication No. 200930663. It is to add hydrofluoric acid to the hydrofluoric acid waste liquid to adjust the hydrofluoric acid waste liquid to a certain concentration, and then add silicon and sodium. In the hydrofluoric acid waste liquid after adjusting the concentration, the fluorine ion is converted into sodium fluorosilicate, by adding excessive silicon-containing compound and sodium-containing compound (generally adding sodium silicate; trade name is water Glass) in hydrofluoric acid waste liquid to generate insoluble sodium fluorosilicate crystals (Na 2 SiF 6 ), and finally dry the sodium fluorosilicate crystals to achieve recovery of fluorine; therefore, its chemical agent The cost is high, and the amount of waste water produced is also extremely high, resulting in high waste water treatment costs. At the same time, the disadvantage of gelatinous substances will be produced during the treatment process, which will delay the formation of sodium fluorosilicate, and the influence of the gelatinous substances will also lead to Subsequent dehydration treatment is extremely difficult. Because water glass is an alkaline substance but hydrofluoric acid is an acidic substance, an exothermic acid-base neutralization reaction will be formed. Instead, a heat exchanger is needed to increase the processing speed, but because Hydrofluoric acid is corrosive to metals and can only be used with plastic heat exchangers with poor thermal conductivity, making it slow and not a good treatment.
上述三种现有的氢氟酸废液处理方法,又存在一共同缺点,其均局限于将废液中的氟取出制成廉价的氟化学品,反而浪费氢氟酸的回收再利用,发明人针对上述不足之处,通过大量理论分析及实验,最终设计出本发明的方法。 The above three existing hydrofluoric acid waste liquid treatment methods also have a common shortcoming, which is limited to taking out the fluorine in the waste liquid to make cheap fluorine chemicals, which wastes the recovery and reuse of hydrofluoric acid. People aim at above-mentioned weak point, through a large amount of theoretical analysis and experiment, finally design the method of the present invention. the
发明内容 Contents of the invention
本发明的主要目的在于提供一种氢氟酸废液回收再使用的处理方法,该方法首先分析氢氟酸(HF)废液中硅(Si)的含量,再将大于硅含量数值一倍以上的钠、钾或钡的化合物,添加入处理槽中的氢氟酸废液内,使氢氟酸废液中的氟及硅与钠、钾或钡相结合反应生成氟硅酸钠(Na2SiF6(s))、氟硅酸钾(K2SiF6(s))或氟硅酸钡(BaSiF6(s))的氟硅酸盐固体物,待氟硅酸盐固体物沉降后,再抽取上层液并检测所述上层液的氢氟酸含量是否高于原制程使用的氢氟酸浓度值,若是高于原制程使用的氢氟酸浓度值,即直接输送回原制程使用;反之,则再添加高浓度氢氟酸,使其达到原制程使用的氢氟酸浓度值后,再输送回原制程使用。 The main purpose of the present invention is to provide a treatment method for reclaiming and reusing hydrofluoric acid waste liquid. The method first analyzes the content of silicon (Si) in the hydrofluoric acid (HF) waste liquid, and then more than double the value of the silicon content. The compound of sodium, potassium or barium is added into the hydrofluoric acid waste liquid in the treatment tank, and the fluorine and silicon in the hydrofluoric acid waste liquid are combined with sodium, potassium or barium to form sodium fluorosilicate (Na 2 SiF 6 (s)), potassium fluorosilicate (K 2 SiF 6 (s)) or barium fluorosilicate (BaSiF 6 (s)) fluorosilicate solids, after the fluorosilicate solids settle, Then extract the supernatant and detect whether the hydrofluoric acid content of the supernatant is higher than the hydrofluoric acid concentration value used in the original process, if it is higher than the hydrofluoric acid concentration value used in the original process, it will be directly transported back to the original process for use; otherwise , then add high-concentration hydrofluoric acid to make it reach the concentration value of hydrofluoric acid used in the original process, and then transport it back to the original process for use.
同时,将所述处理槽底部沉降后的所述氟硅酸盐浆料,经过脱水、清洗而得到氟硅酸盐固体物。 At the same time, the fluorosilicate slurry settled at the bottom of the treatment tank is dehydrated and washed to obtain a fluorosilicate solid. the
上述步骤c中所添加的钠化合物是氟化钠或氯化钠。 The sodium compound added in the above step c is sodium fluoride or sodium chloride. the
上述步骤c中所添加的钠化合物中的钠离子的数值为硅含量值的1.64质量 倍。 The numerical value of the sodium ion in the sodium compound added in the above-mentioned steps c is 1.64 mass times of silicon content value. the
上述步骤c中所添加的钾化合物是氟化钾或氯化钾。 The potassium compound added in the above step c is potassium fluoride or potassium chloride. the
上述步骤c中所添加的钾化合物中的钾离子的数值为硅含量值的2.787质量倍。 The value of the potassium ion in the potassium compound added in the above step c is 2.787 mass times of the silicon content value. the
上述步骤c中所添加的钡化合物是氟化钡或氯化钡。 The barium compound added in the above step c is barium fluoride or barium chloride. the
上述步骤c中所添加的钡化合物中的钡离子的数值为硅含量值的4.889质量倍。 The value of barium ions in the barium compound added in the above step c is 4.889 times by mass of the silicon content. the
由于氢氟酸废液中仅需添加少量钠、钾或钡离子,即可制得可重复使用的氢氟酸,不需耗用大量的化学药剂,也大幅降低废水排放量,并可节省原制程的氢氟酸使用量及其额外购买成本的支出,进而达到简化处理步骤、降低处理成本并兼具环保效益。 Since only a small amount of sodium, potassium or barium ions need to be added to the hydrofluoric acid waste liquid, reusable hydrofluoric acid can be produced without consuming a large amount of chemicals, greatly reducing the amount of waste water discharge, and saving raw materials. The amount of hydrofluoric acid used in the manufacturing process and the expenditure of additional purchase costs can simplify the processing steps, reduce processing costs, and have environmental protection benefits. the
本发明所提供的一种氢氟酸废液回收再使用的处理方法,其处理氢氟酸废液过程中,因无酸碱中和放热反应而不会有热量放出,故只需使用塑料材质制成的处理槽即可,同时又可避免高热导致火灾而产生伤害人体的氢氟酸浓烟,不仅可达到降低设备成本的目的,更可达到提升工作环境安全性的功能。 A treatment method for recovering and reusing hydrofluoric acid waste liquid provided by the present invention, in the process of treating hydrofluoric acid waste liquid, no heat will be released due to no acid-base neutralization exothermic reaction, so only plastic The treatment tank made of high-quality materials is enough, and at the same time, it can avoid the high heat causing fire and the generation of hydrofluoric acid smoke that is harmful to the human body. It can not only achieve the purpose of reducing equipment costs, but also achieve the function of improving the safety of the working environment. the
本发明所提供一种氢氟酸废液回收再使用的处理方法,由于氢氟酸废液处理过程中反应产生的氟硅酸盐,其等待沉降过程中不会受到胶状物干扰,故沉降速度快而有利于达到大量处理氢氟酸废液的功效。 The present invention provides a treatment method for recovering and reusing hydrofluoric acid waste liquid. Since the fluorosilicate produced in the process of hydrofluoric acid waste liquid treatment will not be disturbed by colloidal substances during the settlement process, the sedimentation The speed is fast and it is beneficial to achieve the effect of treating a large amount of hydrofluoric acid waste liquid. the
本发明经实际大量操作测试后,确实具有诸多优点如下: The present invention really has many advantages as follows after a large number of actual operation tests:
1.本发明仅需添加少量钠、钾或钡离子,即可制得可重复使用的氢氟酸,不需耗用大量的化学药剂,也无废水排放的问题,除减少化学药剂成本支出外,更可节省原制程的氢氟酸使用量。 1. The present invention only needs to add a small amount of sodium, potassium or barium ions to produce reusable hydrofluoric acid, without consuming a large amount of chemicals, and without the problem of waste water discharge. In addition to reducing the cost of chemicals , and save the amount of hydrofluoric acid used in the original process. the
2.本发明在处理过程中,因为不会放出热量,仅需使用塑料材质制成的处理桶槽即可进行处理,又可避免高热导致火灾产生氢氟酸浓烟来伤害人体。 2. During the treatment process of the present invention, because no heat is released, only a treatment tank made of plastic material can be used for treatment, and it can avoid high heat to cause fire and produce thick smoke of hydrofluoric acid to harm the human body. the
3.本发明在处理过程中,氟硅酸钠(Na2SiF6(s))、氟硅酸钾(K2SiF6(s))或氟硅酸钡(BaSiF6(s))的氟硅酸盐固体物产生后仅需等待氟硅酸盐固体物沉降,由于氟硅酸盐颗粒沉降速率约为150~180公分/小时,且氟硅酸盐沉降时又不会受到胶状物干扰,一般约4公尺高液位的处理桶槽,约需耗时3小时便可沉降完毕,其处理速度快。 3. In the process of the present invention, the fluorine of sodium fluorosilicate (Na 2 SiF 6 (s)), potassium fluorosilicate (K 2 SiF 6 (s)) or barium fluorosilicate (BaSiF 6 (s)) After the silicate solids are generated, it is only necessary to wait for the fluorosilicate solids to settle, because the fluorosilicate particles settle at a rate of about 150-180 cm/hour, and the fluorosilicates will not be disturbed by colloids when they settle , Generally, it takes about 3 hours for the processing tank with a high liquid level of about 4 meters to complete the settlement, and the processing speed is fast.
附图说明 Description of drawings
有关所述实施例的附图为: The accompanying drawings about the described embodiment are:
图1是本发明氢氟酸废液回收再使用的处理方法的流程方块图。 Fig. 1 is the flow block diagram of the processing method of hydrofluoric acid waste liquid recovery reuse of the present invention. the
图2是本发明氢氟酸废液回收再使用的处理方法的操作示意图。 Fig. 2 is a schematic diagram of the operation of the treatment method for recovering and reusing hydrofluoric acid waste liquid of the present invention. the
附图标识: Reference logo:
1-氢氟酸废液;2-钠、钾或钡化合物;3-氟硅酸盐固体物;4-上层液;10-处理槽;20-回收槽。 1- hydrofluoric acid waste liquid; 2- sodium, potassium or barium compound; 3- fluorosilicate solid; 4- supernatant; 10- treatment tank; 20- recovery tank. the
具体实施方式 Detailed ways
以下结合附图及实施例详述本发明,将可进一步了解本发明的技术内容及其目的功效; Describe the present invention in detail below in conjunction with accompanying drawing and embodiment, will further understand technical content of the present invention and purpose effect thereof;
实施例1 Example 1
请参阅图1及图2所示,本发明氢氟酸废液回收再使用的处理方法,其步骤包含: Please refer to Fig. 1 and shown in Fig. 2, the processing method of hydrofluoric acid waste liquid recovery reuse of the present invention, its step comprises:
a、将氢氟酸(HF)废液l导流入处理槽10;
A, hydrofluoric acid (HF) waste liquid 1 is diverted into
b、分析处理槽10内氢氟酸废液l中硅(Si)的含量,并得出所述硅含量数值;
B, analyze the content of silicon (Si) in the hydrofluoric acid waste liquid 1 in the
c、将大于硅含量数值一倍以上的钠化合物2,添加入处理槽10中的氢氟酸废液l内,使氢氟酸废液l中的氟及硅与钠相结合反应生成氟硅酸钠固体物(Na2SiF6(s))3;
c. Add sodium compound 2 which is more than twice the value of silicon content into the hydrofluoric acid waste liquid 1 in the
d、等待氟硅酸钠固体物3沉降于处理槽10的底部;
d, waiting for the sodium fluorosilicate solid 3 to settle at the bottom of the
e、抽取处理槽10中的上层液4至回收槽20;
e, extract the supernatant 4 in the
f、检测回收槽20内上层液4的氢氟酸含量是否高于原制程使用的氢氟酸浓度值,若是高于原制程使用的氢氟酸浓度值,即直接将所述上层液4输送回原制程使用;若是低于原制程使用的氢氟酸浓度值,则再添加高浓度氢氟酸,使所述所述上层液4达到原制程使用的氢氟酸浓度值后,再将其输送回原制程使用;
f. Check whether the hydrofluoric acid content of the supernatant 4 in the
g、将处理槽10底部沉降后的氟硅酸钠浆料,经过脱水、清洗而得到氟硅酸钠固体物3。
g. The sodium fluorosilicate slurry settled at the bottom of the
其中,步骤b中由于氢氟酸废液l的硅含量并非固定,所以需先分析氢氟酸 废液l的硅含量,目前产业界蚀刻制程使用后的氢氟酸废液l内的硅含量介于1~2%之间。 Wherein, in step b, because the silicon content of hydrofluoric acid waste liquid 1 is not fixed, so need to analyze the silicon content of hydrofluoric acid waste liquid 1 first, the silicon content in the hydrofluoric acid waste liquid 1 after the current industry etching process uses Between 1 and 2%. the
而步骤c中所添加的钠化合物2是为氟化钠或氯化钠,且其钠离子的最佳数值为硅含量值的1.64质量倍;若是添加氟化钠(NaF),会反应产生氟硅酸钠沉淀物及氢氟酸,其反应式为: The sodium compound 2 added in step c is sodium fluoride or sodium chloride, and the optimal value of its sodium ion is 1.64 mass times of the silicon content value; if adding sodium fluoride (NaF), it will react to produce fluorine Sodium silicate precipitate and hydrofluoric acid, its reaction formula is:
2NaF+H2SiF6→Na2SiF6+2HF 2NaF+H 2 SiF 6 →Na 2 SiF 6 +2HF
经上述反应产出的氢氟酸与氢氟酸废液l中原存在的氢氟酸相同,故不会改变其成分而能被送回原制程使用。 The hydrofluoric acid of above-mentioned reaction output is identical with the hydrofluoric acid that originally existed in the hydrofluoric acid waste liquid 1, so can not change its composition and can be sent back to the original process for use. the
若是添加氯化钠(NaCl),则反应产生氟硅酸钠沉淀物及盐酸,其反应式为: If sodium chloride (NaCl) is added, the reaction will produce sodium fluorosilicate precipitate and hydrochloric acid, the reaction formula is:
2NaCl(aq)+H2SiF6(aq)→Na2SiF6(s)+2HCl(aq) 2NaCl(aq)+H 2 SiF 6 (aq)→Na 2 SiF 6 (s)+2HCl(aq)
经上述反应产出的盐酸,会与氢氟酸废液l中原存在的氢氟酸相互混合而形成混合酸,由于不同产业蚀刻制程使用的氢氟酸种类包含纯氢氟酸或氢氟酸混酸,故所述含有盐酸的混合酸仍能完全被适用于不同产业蚀刻制程,而可输送回原制程来使用。 The hydrochloric acid produced by the above reaction will mix with the hydrofluoric acid originally present in the hydrofluoric acid waste liquid 1 to form a mixed acid. Because the types of hydrofluoric acid used in different industrial etching processes include pure hydrofluoric acid or hydrofluoric acid mixed acid , so the mixed acid containing hydrochloric acid can still be completely applied to different industrial etching processes, and can be transported back to the original process for use. the
目前产业界蚀刻制程中是使用浓度49%的氢氟酸或氢氟酸混合酸,本发明于步骤c中所添加的钠化合物2;会与氢氟酸废液l中的氟及硅(以氟硅酸形式存在)相结合生成析出微溶于酸的氟硅酸钠固体3,所述氟硅酸钠在水中溶解度约为0.652%(于17℃时),此时,溶液中的硅饱和溶解度为0.0097%,依照勒撒特列原理(LeChatelier′s Principle),当一个处在平衡的系统,受到外力干扰时,系统会朝向降低外力干扰的方向调整,而达成新的平衡,故在氟硅酸钠系统中,提高氟浓度会降低硅的溶解度,一般氢氟酸废液中,氟浓度约介于20000~200000ppm之间,硅浓度约为10000ppm,氟浓度高于硅浓度,添加钠离子后,硅在废酸中的溶解度会比在水中溶解度更低,其溶解度可降至0.42ppm以下(以溶度积方式估算,在氟浓度为5%时,硅的溶解度为6.7ppm),因此,本发明的方式可去除氢氟酸废液1中99%以上的硅,经本发明人实际操作得知钠离子最适添加量为硅含量的1.64质量倍。 At present, in the etching process of the industry, hydrofluoric acid or hydrofluoric acid mixed acid with a concentration of 49% is used. The sodium compound 2 added in step c of the present invention; Fluorosilicic acid form) combined to generate sodium fluosilicate solid 3 which is slightly soluble in acid, the solubility of sodium fluosilicate in water is about 0.652% (at 17°C), at this time, the silicon in the solution is saturated The solubility is 0.0097%. According to LeChatelier's Principle, when a system in equilibrium is disturbed by external force, the system will adjust towards the direction of reducing the disturbance of external force and reach a new balance. Therefore, in fluorine In the sodium silicate system, increasing the fluorine concentration will reduce the solubility of silicon. In general hydrofluoric acid waste liquid, the fluorine concentration is between 20,000 and 200,000ppm, and the silicon concentration is about 10,000ppm. The fluorine concentration is higher than the silicon concentration. Add sodium ions Finally, the solubility of silicon in waste acid will be lower than that in water, and its solubility can be reduced to below 0.42ppm (estimated by solubility product, when the fluorine concentration is 5%, the solubility of silicon is 6.7ppm), so , the method of the present invention can remove more than 99% of the silicon in the hydrofluoric acid waste liquid 1, and the inventors have learned that the optimum amount of sodium ions added is 1.64 times by mass of the silicon content through the actual operation of the inventor. the
而步骤d中的氟硅酸钠颗粒沉降速率约为150公分/小时(cm/hour),一般处理槽10中约4公尺(m)高液位,约需耗时3小时才能沉降完毕,故只要设置一个容纳20公吨的处理槽10,便可每3小时达成处理20吨氢氟酸废液l的功效,其处 理速度较所有现行的处理方法更快。
And the sodium fluorosilicate particle settling rate in the step d is about 150 centimeters/hour (cm/hour), and about 4 meters (m) high liquid level in the
又步骤e及f中处理槽10内的上层液4,即是不含硅的干净氢氟酸,若其氢氟酸含量偏低,经添加高浓度氢氟酸补足浓度后,便可重新输送回到原制程使用,进而减少另外购买氢氟酸的费用,相对地也同步大幅减少氢氟酸废液l的产生量,并兼具环保效益。
The supernatant 4 in the
再者,步骤g中处理槽10底部的浆料经脱水清洗后,便可得氟硅酸钠,且没有现行的处理方法中需外加的大量水玻璃,故也不会有大量的氟硅酸钠产出以及胶状物的产生,因此,所述氟硅酸钠的沉降速度也会比现有方法更快,同时其脱水、清洗等接续的处理也更简易快速,使得整体处理成本随之大幅降低。
Furthermore, after the slurry at the bottom of the
此外,本发明的各步骤中因无任何酸碱中和作用,故处理过程中不会放出热量,其处理槽10仅需使用塑料材质制成即可,不需使用高价金属桶槽而能降低设备成本支出,也可避免因过程疏失、设备老旧或设备损坏所导致高热而产生火灾,甚至发生氢氟酸随着浓烟飘散让工作人员吸入,造成人体伤害或致命的危险,进而可提升整体工作环境的安全性。
In addition, because there is no acid-base neutralization effect in each step of the present invention, no heat will be released during the treatment process, and the
实施例2 Example 2
请参阅图1及图2所示,本发明氢氟酸废液回收再使用的处理方法,其步骤包含: Please refer to Fig. 1 and shown in Fig. 2, the processing method of hydrofluoric acid waste liquid recovery reuse of the present invention, its step comprises:
a、将氢氟酸(HF)废液l导流入处理槽10;
A, hydrofluoric acid (HF) waste liquid 1 is diverted into
b、分析处理槽10内氢氟酸废液l中硅(Si)的含量,并得出所述硅含量数值;
B, analyze the content of silicon (Si) in the hydrofluoric acid waste liquid 1 in the
c、将大于硅含量数值一倍以上的钾化合物2,添加入处理槽10中的氢氟酸废液l内,使氢氟酸废液l中的氟及硅与钾相结合反应生成氟硅酸钾固体物(K2SiF6(s))3;
c. Add potassium compound 2, which is more than twice the value of silicon content, into the hydrofluoric acid waste liquid 1 in the
d、等待氟硅酸钾固体物3沉降于处理槽10的底部;
d, waiting for the potassium fluorosilicate solid 3 to settle at the bottom of the
e、抽取处理槽10中的上层液4至回收槽20;
e, extract the supernatant 4 in the
f、检测回收槽20内上层液4的氢氟酸含量是否高于原制程使用的氢氟酸浓度值,若是高于原制程使用的氢氟酸浓度值,即直接将所述上层液4输送回原制程使用;若是低于原制程使用的氢氟酸浓度值,则再添加高浓度氢氟酸,使所述上层液4达到原制程使用的氢氟酸浓度值后,再将其输送回原制程使用;
f. Check whether the hydrofluoric acid content of the supernatant 4 in the
g、将处理槽10底部沉降后的氟硅酸钾浆料,经过脱水、清洗而得到氟硅酸钾固 体物3。
G, the Potassium Fluosilicate slurry after the bottom of
其中,步骤b中由于氢氟酸废液l的硅含量并非固定,所以需先分析氢氟酸废液l的硅含量,目前产业界蚀刻制程使用后的氢氟酸废液l内的硅含量介于1~2%之间。 Wherein, in the step b, because the silicon content of the hydrofluoric acid waste liquid 1 is not fixed, so the silicon content of the hydrofluoric acid waste liquid 1 needs to be analyzed first, and the silicon content in the hydrofluoric acid waste liquid 1 after the current industrial etching process is used Between 1 and 2%. the
而步骤c中所添加的钾化合物2是为氟化钾或氯化钾,且其钾离子的最佳数值为硅含量值的2.787质量倍;若是添加氟化钾(KF),会反应产生氟硅酸钾沉淀物及氢氟酸,其反应式为: The potassium compound 2 added in step c is potassium fluoride or potassium chloride, and the optimal value of its potassium ion is 2.787 mass times of the silicon content value; if adding potassium fluoride (KF), it will react to produce fluorine Potassium silicate precipitate and hydrofluoric acid, the reaction formula is:
2KF+H2SiF6→K2SiF6+2HF 2KF+H 2 SiF 6 →K 2 SiF 6 +2HF
经上述反应产出的氢氟酸与氢氟酸废液l中原存在的氢氟酸相同,故不会改变其成分而能被送回原制程使用。 The hydrofluoric acid of above-mentioned reaction output is identical with the hydrofluoric acid that originally existed in the hydrofluoric acid waste liquid 1, so can not change its composition and can be sent back to the original process for use. the
若是添加氯化钾(KCl),则反应产生氟硅酸钾沉淀物及盐酸,其反应式为: If potassium chloride (KCl) is added, the reaction will produce potassium fluorosilicate precipitate and hydrochloric acid, the reaction formula is:
2KCl(aq)+H2SiF6(aq)→K2SiF6(s)+2HCl(aq) 2KCl(aq)+H 2 SiF 6 (aq)→K 2 SiF 6 (s)+2HCl(aq)
经上述反应产出的盐酸,会与氢氟酸废液l中原存在的氢氟酸相互混合而形成混合酸,由于不同产业蚀刻制程使用的氢氟酸种类包含纯氢氟酸或氢氟酸混酸,故所述含有盐酸的混合酸仍能完全被适用于不同产业蚀刻制程,而可输送回原制程来使用。 The hydrochloric acid produced by the above reaction will mix with the hydrofluoric acid originally present in the hydrofluoric acid waste liquid 1 to form a mixed acid. Because the types of hydrofluoric acid used in different industrial etching processes include pure hydrofluoric acid or hydrofluoric acid mixed acid , so the mixed acid containing hydrochloric acid can still be completely applied to different industrial etching processes, and can be transported back to the original process for use. the
目前产业界蚀刻制程中是使用浓度49%的氢氟酸或氢氟酸混合酸,本发明于步骤c中所添加的钾化合物2,会与氢氟酸废液l中的氟及硅(以氟硅酸形式存在)相结合生成析出微溶于酸的氟硅酸钾固体物3,所述氟硅酸钾在水中溶解度约为0.177gm/100ml(于25℃时),此时,溶液中的硅饱和溶解度为0.022%,依照勒撒特列原理(LeChatelier′s Principle),当一个处在平衡的系统,受到外力干扰时,系统会朝向降低外力干扰的方向调整,而达成新的平衡,故在氟硅酸钾系统中,提高氟浓度会降低硅的溶解度,一般氢氟酸废液中,氟浓度约介于20000~200000ppm之间,硅浓度约为10000ppm,氟浓度高于硅浓度,添加钾离子后,硅在废酸中的溶解度会比在水中溶解度更低,其溶解度可降至0.0016ppm以下(以溶度积方式估算,在氟浓度为5%时,硅的溶解度为0.026ppm),因此,本发明的方式可去除氢氟酸废液1中99%以上的硅,经本发明人实际操作得知钾离子最适添加量为硅含量的2.787质量倍。 At present, in the etching process of the industry, hydrofluoric acid or hydrofluoric acid mixed acid with a concentration of 49% is used. The potassium compound 2 added in the step c of the present invention will interact with the fluorine and silicon in the hydrofluoric acid waste liquid 1 (based on Fluorosilicic acid form) combined to generate and precipitate slightly acid-soluble potassium fluosilicate solid 3, the solubility of potassium fluosilicate in water is about 0.177gm/100ml (at 25°C), at this time, in the solution The saturation solubility of silicon is 0.022%. According to LeChatelier's Principle, when a system in equilibrium is disturbed by external force, the system will adjust towards the direction of reducing the external force disturbance, and reach a new balance. Therefore, in the potassium fluorosilicate system, increasing the fluorine concentration will reduce the solubility of silicon. Generally, in hydrofluoric acid waste liquid, the fluorine concentration is between 20,000 and 200,000 ppm, and the silicon concentration is about 10,000 ppm. The fluorine concentration is higher than the silicon concentration. After adding potassium ions, the solubility of silicon in waste acid will be lower than that in water, and its solubility can be reduced to below 0.0016ppm (estimated by solubility product, when the concentration of fluorine is 5%, the solubility of silicon is 0.026ppm ), therefore, the method of the present invention can remove more than 99% of the silicon in the hydrofluoric acid waste liquid 1, and know that the optimum addition amount of potassium ions is 2.787 mass times of the silicon content through the inventor's practical operation. the
而步骤d中的氟硅酸钾颗粒沉降速率约为155公分/小时(cm/hour),一般处理 槽10中约4公尺(m)高液位,约需耗时3小时才能沉降完毕,故只要设置一个容纳20公吨的处理槽10,便可每3小时达成处理20吨氢氟酸废液l的功效,其处理速度较所有现行的处理方法更快。
And the sedimentation rate of potassium fluorosilicate particles in the step d is about 155 centimeters/hour (cm/hour), and the about 4 meters (m) high liquid level in the
又步骤e及f中处理槽10内的上层液4,即是不含硅的干净氢氟酸,若其氢氟酸含量偏低,经添加高浓度氢氟酸补足浓度后,便可重新输送回到原制程使用,进而减少另外购买氢氟酸的费用,相对地也同步大幅减少氢氟酸废液l的产生量,并兼具环保效益。
The supernatant 4 in the
再者,步骤g中处理槽10底部的浆料经脱水清洗后,便可得氟硅酸钾,且没有现行的处理方法中需外加的大量水玻璃,故也不会有大量的氟硅酸钾产出以及胶状物的产生,因此,所述氟硅酸钾的沉降速度也会比现有方法更快,同时其脱水、清洗等接续的处理也更简易快速,使得整体处理成本随的大幅降低。
Furthermore, after the slurry at the bottom of the
此外,本发明的各步骤中因无任何酸碱中和作用,故处理过程中不会放出热量,其处理槽10仅需使用塑料材质制成即可,不需使用高价金属桶槽而能降低设备成本支出,也可避免因过程疏失、设备老旧或设备损坏所导致高热而产生火灾,甚至发生氢氟酸随着浓烟飘散让工作人员吸入,造成人体伤害或致命的危险,进而可提升整体工作环境的安全性。
In addition, because there is no acid-base neutralization effect in each step of the present invention, no heat will be released during the treatment process, and the
实施例3 Example 3
请参阅图1及图2所示,本发明氢氟酸废液回收再使用的处理方法,其步骤包含: Please refer to Fig. 1 and shown in Fig. 2, the processing method of hydrofluoric acid waste liquid recovery reuse of the present invention, its step comprises:
a、将氢氟酸(HF)废液l导流入处理槽10;
A, hydrofluoric acid (HF) waste liquid 1 is diverted into
b、分析处理槽10内氢氟酸废液l中硅(Si)的含量,并得出所述硅含量数值;
B, analyze the content of silicon (Si) in the hydrofluoric acid waste liquid 1 in the
c、将大于硅含量数值一倍以上的钡化合物2,添加入处理槽10中的氢氟酸废液l内,使氢氟酸废液l中的氟及硅与钡相结合反应生成氟硅酸钡固体物(BaSiF6(s))3;
c. Add the barium compound 2 which is more than twice the silicon content value into the hydrofluoric acid waste liquid 1 in the
d、等待氟硅酸钡固体物3沉降于处理槽10的底部;
d, waiting for the barium fluorosilicate solid 3 to settle at the bottom of the
e、抽取处理槽10中的上层液4至回收槽20;
e, extract the supernatant 4 in the
f、检测回收槽20内上层液4的氢氟酸含量是否高于原制程使用的氢氟酸浓度值,若是高于原制程使用的氢氟酸浓度值,即直接将所述上层液4输送回原制程使用;若是低于原制程使用的氢氟酸浓度值,则再添加高浓度氢氟酸,使所述上层液4达到原制程使用的氢氟酸浓度值后,再将其输送回原制程使用;
f. Check whether the hydrofluoric acid content of the supernatant 4 in the
g、将处理槽10底部沉降后的氟硅酸钡浆料,经过脱水、清洗而得到氟硅酸钡固体物3。
g. The barium fluorosilicate slurry settled at the bottom of the
其中,步骤b中由于氢氟酸废液l的硅含量并非固定,所以需先分析氢氟酸废液l的硅含量,目前产业界蚀刻制程使用后的氢氟酸废液l内的硅含量介于1~2%之间。 Wherein, in the step b, because the silicon content of the hydrofluoric acid waste liquid 1 is not fixed, so the silicon content of the hydrofluoric acid waste liquid 1 needs to be analyzed first, and the silicon content in the hydrofluoric acid waste liquid 1 after the current industrial etching process is used Between 1 and 2%. the
而步骤c中所添加的钡化合物2是为氟化钡或氯化钡,且其钡离子的最佳数值为硅含量值的4.889质量倍;若是添加氟化钡(BaF2),会反应产生氟硅酸钡沉淀物及氢氟酸,其反应式为: The barium compound 2 added in step c is barium fluoride or barium chloride, and the optimum value of its barium ion is 4.889 mass times of the silicon content value; if barium fluoride (BaF 2 ) is added, the reaction will produce Barium fluorosilicate precipitate and hydrofluoric acid, its reaction formula is:
BaF2+H2SiF6→BaSiF6+2HF BaF 2 +H 2 SiF 6 →BaSiF 6 +2HF
经上述反应产出的氢氟酸与氢氟酸废液l中原存在的氢氟酸相同,故不会改变其成分而能被送回原制程使用。 The hydrofluoric acid of above-mentioned reaction output is identical with the hydrofluoric acid that originally existed in the hydrofluoric acid waste liquid 1, so can not change its composition and can be sent back to the original process for use. the
若是添加氯化钡(BaCl2),则反应产生氟硅酸钡沉淀物及盐酸,其反应式为: If barium chloride (BaCl 2 ) is added, the reaction produces barium fluorosilicate precipitate and hydrochloric acid, the reaction formula is:
2BaCl2(aq)+H2SiF6(aq)→BaSiF6(s)+2HCl(aq) 2BaCl 2 (aq)+H 2 SiF 6 (aq)→BaSiF 6 (s)+2HCl(aq)
经上述反应产出的盐酸,会与氢氟酸废液l中原存在的氢氟酸相互混合而形成混合酸,由于不同产业蚀刻制程使用的氢氟酸种类包含纯氢氟酸或氢氟酸混酸,故所述含有盐酸的混合酸仍能完全被适用于不同产业蚀刻制程,而可输送回原制程来使用。 The hydrochloric acid produced by the above reaction will mix with the hydrofluoric acid originally present in the hydrofluoric acid waste liquid 1 to form a mixed acid. Because the types of hydrofluoric acid used in different industrial etching processes include pure hydrofluoric acid or hydrofluoric acid mixed acid , so the mixed acid containing hydrochloric acid can still be completely applied to different industrial etching processes, and can be transported back to the original process for use. the
目前产业界蚀刻制程中是使用浓度49%的氢氟酸或氢氟酸混合酸,本发明于步骤c中所添加的钡化合物2;会与氢氟酸废液l中的氟及硅(以氟硅酸形式存在)相结合生成析出微溶于酸的氟硅酸钡固体物3,所述氟硅酸钡在水中溶解度约为0.177gm/100ml(于25℃时),此时,溶液中的硅饱和溶解度为0.022%,依照勒撒特列原理(LeChatelier′s Principle),当一个处在平衡的系统,受到外力干扰时,系统会朝向降低外力干扰的方向调整,而达成新的平衡,故在氟硅酸钾系统中,提高氟浓度会降低硅的溶解度,一般氢氟酸废液中,氟浓度约介于20000~200000ppm之间,硅浓度约为10000ppm,氟浓度高于硅浓度,添加钡离子后,硅在废酸中的溶解度会比在水中溶解度更低,其溶解度可降至3.62×10-8ppm以下(以溶度积方式估算,在氟浓度为5%时,硅的溶解度为2.9×10-7ppm),因此,本发明的方式可去除氢氟酸废液1中99%以上的硅,经本发明人实际操作得知钡离子最适添加量为硅含量的4.889质量倍。 At present, in the etching process of the industry, hydrofluoric acid or hydrofluoric acid mixed acid with a concentration of 49% is used. The barium compound 2 added in the step c of the present invention; Fluorosilicic acid form) combined to generate barium fluorosilicate solid 3 which is slightly soluble in acid, and the solubility of barium fluorosilicate in water is about 0.177gm/100ml (at 25°C). The saturated solubility of silicon is 0.022%. According to LeChatelier's Principle, when a system in equilibrium is disturbed by external force, the system will adjust towards the direction of reducing the external force disturbance, and reach a new balance. Therefore, in the potassium fluorosilicate system, increasing the fluorine concentration will reduce the solubility of silicon. Generally, in hydrofluoric acid waste liquid, the fluorine concentration is between 20,000 and 200,000 ppm, and the silicon concentration is about 10,000 ppm. The fluorine concentration is higher than the silicon concentration. After adding barium ions, the solubility of silicon in waste acid will be lower than that in water, and its solubility can be reduced to below 3.62×10 -8 ppm (estimated by solubility product, when the concentration of fluorine is 5%, the solubility of silicon Solubility is 2.9 * 10 -7 ppm), therefore, the mode of the present invention can remove the silicon of more than 99% in the hydrofluoric acid waste liquid 1, know that barium ion optimal addition amount is 4.889% of silicon content through actual operation of the inventor Quality times.
而步骤d中的氟硅酸钡颗粒沉降速率约为180公分/小时(cm/hour),一般处理槽10中约4公尺(m)高液位,约需耗时3小时才能沉降完毕,故只要设置一个容纳20公吨的处理槽10,便可每3小时达成处理20吨氢氟酸废液l的功效,其处理速度较所有现行的处理方法更快。
And the sedimentation rate of the barium fluorosilicate particle in the step d is about 180 centimeters/hour (cm/hour), and about 4 meters (m) high liquid level in the
又步骤e及f中处理槽10内的上层液4,即是不含硅的干净氢氟酸,若其氢氟酸含量偏低,经添加高浓度氢氟酸补足浓度后,便可重新输送回到原制程使用,进而减少另外购买氢氟酸的费用,相对地也同步大幅减少氢氟酸废液l的产生量,并兼具环保效益。
The supernatant 4 in the
再者,步骤g中处理槽10底部的浆料经脱水清洗后,便可得氟硅酸钡,且没有现行的处理方法中需外加的大量水玻璃,故也不会有大量的氟硅酸钡产出以及胶状物的产生,因此,所述氟硅酸钡的沉降速度也会比现有方法更快,同时其脱水、清洗等接续的处理也更简易快速,使得整体处理成本随之大幅降低。
Furthermore, after the slurry at the bottom of the
此外,本发明的各步骤中因无任何酸碱中和作用,故处理过程中不会放出热量,其处理槽10仅需使用塑料材质制成即可,不需使用高价金属桶槽而能降低设备成本支出,也可避免因过程疏失、设备老旧或设备损坏所导致高热而产生火灾,甚至发生氢氟酸随着浓烟飘散让工作人员吸入,造成人体伤害或致命的危险,进而可提升整体工作环境的安全性。
In addition, because there is no acid-base neutralization effect in each step of the present invention, no heat will be released during the treatment process, and the
综上所述,本发明因可回收氢氟酸废液来重复使用氢氟酸,其化学药剂用量及废水排放量等均较现有方法减少百分之九十,且处理速度快并在过程中不会放出热量导致发生危险,确具有高度产业利用性而符合专利要件,爰依法提出申请。 In summary, the present invention reuses hydrofluoric acid due to the recyclable hydrofluoric acid waste liquid, and its chemical dosage and waste water discharge are all reduced by 90% compared with the existing method, and the processing speed is fast and in the process It will not release heat and cause danger, and it is indeed highly industrially applicable and meets the patent requirements, so please file an application in accordance with the law. the
上列详细说明是针对本发明的一可行实施例的具体说明,惟所述实施例并非用以限制本发明的专利范围,凡未脱离本发明技艺精神所为的等效实施或变更,均应包含于本案的专利范围中。 The above detailed description is a specific description of a feasible embodiment of the present invention, but the embodiment is not intended to limit the patent scope of the present invention, and any equivalent implementation or change that does not depart from the technical spirit of the present invention shall be Included in the patent scope of this case. the
综上所述,为本发明的较佳实施例,其非局限本发明的专利保护范围,故本发明说明书及图式内容所为的合理变化,均皆包含于本发明的权利保护范围内,合予陈明。 To sum up, it is a preferred embodiment of the present invention, and it does not limit the scope of patent protection of the present invention. Therefore, reasonable changes made in the description and drawings of the present invention are all included in the scope of protection of the present invention. Together with Chen Ming. the
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012101225728A CN103373708A (en) | 2012-04-23 | 2012-04-23 | Treatment method for recovery and reuse of hydrofluoric acid waste liquid |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012101225728A CN103373708A (en) | 2012-04-23 | 2012-04-23 | Treatment method for recovery and reuse of hydrofluoric acid waste liquid |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103373708A true CN103373708A (en) | 2013-10-30 |
Family
ID=49459609
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012101225728A Pending CN103373708A (en) | 2012-04-23 | 2012-04-23 | Treatment method for recovery and reuse of hydrofluoric acid waste liquid |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103373708A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104591189A (en) * | 2015-02-10 | 2015-05-06 | 湖南有色氟化学科技发展有限公司 | Recycling method for purifying cryolite waste acid |
| CN105439108A (en) * | 2016-01-06 | 2016-03-30 | 昆明理工大学 | Method and device for resource recycling of silicon core corrosion waste liquor |
| CN105583058A (en) * | 2016-01-07 | 2016-05-18 | 阮正华 | Magnetic separation method for electrolytic aluminum solid waste |
| CN105951102A (en) * | 2016-05-13 | 2016-09-21 | 巫协森 | Method for recycling waste acid in hydrofluoric acid etching process |
| CN107614434A (en) * | 2016-04-01 | 2018-01-19 | 佐佐木化学药品株式会社 | Molded body containing alkali metal salt and regeneration treatment method of acidic aqueous solution using the molded body |
| CN108950690A (en) * | 2017-05-19 | 2018-12-07 | 浙江昱辉阳光能源有限公司 | A kind of silicon material recycling acid washing method and device |
| CN108975468A (en) * | 2017-05-31 | 2018-12-11 | 广铭化工股份有限公司 | Method and system for treating fluorine-containing liquid, liquid product and solid product thereof |
| CN112794333A (en) * | 2021-01-13 | 2021-05-14 | 赣州帝晶光电科技有限公司 | Preparation method of fluosilicic acid byproduct of fluorine-containing waste liquid |
| CN114985365A (en) * | 2022-04-18 | 2022-09-02 | 江苏鑫华半导体科技股份有限公司 | Polycrystalline silicon sample core cleaning analysis method and system |
| CN115793580A (en) * | 2022-11-17 | 2023-03-14 | 浙江中控技术股份有限公司 | A method and system for controlling the water content of pre-washing acid in the production of hydrofluoric acid |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1287543A (en) * | 1998-08-26 | 2001-03-14 | 松下电子工业株式会社 | Method and unit for regeneration of solution for cleaning glass, method and unit for cleaning silicate glass, and cathode-ray tube |
| KR100831060B1 (en) * | 2006-12-29 | 2008-05-20 | 대일개발 주식회사 | Recycling Method of Semiconductor Etching Waste Containing Silicon |
| CN102373474A (en) * | 2011-10-31 | 2012-03-14 | 合肥晶澳太阳能科技有限公司 | Method for recycling wool making/etching solution |
-
2012
- 2012-04-23 CN CN2012101225728A patent/CN103373708A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1287543A (en) * | 1998-08-26 | 2001-03-14 | 松下电子工业株式会社 | Method and unit for regeneration of solution for cleaning glass, method and unit for cleaning silicate glass, and cathode-ray tube |
| KR100831060B1 (en) * | 2006-12-29 | 2008-05-20 | 대일개발 주식회사 | Recycling Method of Semiconductor Etching Waste Containing Silicon |
| CN102373474A (en) * | 2011-10-31 | 2012-03-14 | 合肥晶澳太阳能科技有限公司 | Method for recycling wool making/etching solution |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104591189A (en) * | 2015-02-10 | 2015-05-06 | 湖南有色氟化学科技发展有限公司 | Recycling method for purifying cryolite waste acid |
| CN105439108A (en) * | 2016-01-06 | 2016-03-30 | 昆明理工大学 | Method and device for resource recycling of silicon core corrosion waste liquor |
| CN105583058A (en) * | 2016-01-07 | 2016-05-18 | 阮正华 | Magnetic separation method for electrolytic aluminum solid waste |
| CN107614434A (en) * | 2016-04-01 | 2018-01-19 | 佐佐木化学药品株式会社 | Molded body containing alkali metal salt and regeneration treatment method of acidic aqueous solution using the molded body |
| CN105951102A (en) * | 2016-05-13 | 2016-09-21 | 巫协森 | Method for recycling waste acid in hydrofluoric acid etching process |
| CN108950690A (en) * | 2017-05-19 | 2018-12-07 | 浙江昱辉阳光能源有限公司 | A kind of silicon material recycling acid washing method and device |
| CN108975468A (en) * | 2017-05-31 | 2018-12-11 | 广铭化工股份有限公司 | Method and system for treating fluorine-containing liquid, liquid product and solid product thereof |
| CN112794333A (en) * | 2021-01-13 | 2021-05-14 | 赣州帝晶光电科技有限公司 | Preparation method of fluosilicic acid byproduct of fluorine-containing waste liquid |
| CN114985365A (en) * | 2022-04-18 | 2022-09-02 | 江苏鑫华半导体科技股份有限公司 | Polycrystalline silicon sample core cleaning analysis method and system |
| CN115793580A (en) * | 2022-11-17 | 2023-03-14 | 浙江中控技术股份有限公司 | A method and system for controlling the water content of pre-washing acid in the production of hydrofluoric acid |
| CN115793580B (en) * | 2022-11-17 | 2025-03-25 | 中控技术股份有限公司 | A method and system for controlling pre-wash acid water content in hydrofluoric acid production |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103373708A (en) | Treatment method for recovery and reuse of hydrofluoric acid waste liquid | |
| CN112897562B (en) | Method for purifying calcium fluoride from calcium fluoride sludge | |
| CN102745837A (en) | Method for treating and recycling glass thinning and etching waste liquor | |
| CN104071820A (en) | Method for producing calcium fluoride by waste LCD panel glass etching liquid | |
| TW201311574A (en) | Treatment method for recycling and reusing hydrofluoric acid waste liquid (I) | |
| CN101555017B (en) | Multi-grade comprehensive utilization technology of fluoride-contained waste acid in phosphating industry | |
| TWI529141B (en) | Recovery and treatment of hydrofluoric acid and fluorosilicic acid waste | |
| CN105593182A (en) | Methods of treating glass surfaces | |
| TWI674245B (en) | Glass honing liquid regeneration method and glass honing device | |
| CN107117753A (en) | A kind of method that silicon solar cell making herbs into wool devil liquor recovery is utilized | |
| KR101674129B1 (en) | Method for preparing sodium fluoride from fluorine-containing waste slurry | |
| CN101531386A (en) | Method for recovering cryolite from electrolytic aluminum waste residues by using fluorine-containing hydrochloric acid | |
| CN115888975B (en) | Preparation method and equipment for quartz purification from secondary tungsten tailings | |
| CN108975468A (en) | Method and system for treating fluorine-containing liquid, liquid product and solid product thereof | |
| CN100551817C (en) | Method for producing hydrofluoric acid | |
| JP5779934B2 (en) | Calcium fluoride recovery method | |
| CN113860257B (en) | Method and system for regenerating and recycling glass thinning waste acid liquor | |
| CN107188129B (en) | Method for preparing hydrogen fluoride and silicon tetrafluoride from calcium fluoride-containing waste | |
| CN106906364B (en) | The process of Ti recovery from germanic fluorine containing corrosion liquid | |
| CN108975368A (en) | A method of reducing calcium content in recycling ice crystal | |
| CN117049582A (en) | Impurity removing method for barium fluoride | |
| US20150136736A1 (en) | Method for Sludge Control in Wet Acid Etching | |
| KR101028447B1 (en) | A method for separating hydrofluoric acid from a mixed waste acid through selective precipitation and a separating device therefor | |
| CN107540234A (en) | A kind of method that glass thinning system is discharged without spent acid without glass dregs | |
| TW201311576A (en) | Process method for recycling and reusing hydrofluoric acid waste liquid (III) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131030 |