CN103390646B - Semiconductor element and its manufacturing method - Google Patents
Semiconductor element and its manufacturing method Download PDFInfo
- Publication number
- CN103390646B CN103390646B CN201210141509.9A CN201210141509A CN103390646B CN 103390646 B CN103390646 B CN 103390646B CN 201210141509 A CN201210141509 A CN 201210141509A CN 103390646 B CN103390646 B CN 103390646B
- Authority
- CN
- China
- Prior art keywords
- semiconductor deposition
- semiconductor
- deposition layer
- injection region
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 130
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 230000008021 deposition Effects 0.000 claims abstract description 108
- 238000002347 injection Methods 0.000 claims abstract description 28
- 239000007924 injection Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 238000000151 deposition Methods 0.000 description 85
- 238000002513 implantation Methods 0.000 description 23
- 230000005669 field effect Effects 0.000 description 22
- 239000002019 doping agent Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 10
- 239000007943 implant Substances 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种半导体元件及其制造方法,该半导体元件包括:一半导体沉积层,形成在一绝缘结构上及一衬底之上;半导体元件更包括一栅极,形成在半导体沉积层的第一与第二注入区之间的一接触区上;第一注入区与第二注入区两者皆具有一第一导电型,且栅极具有一第二导电型;半导体元件更可包括一第二栅极,形成在半导体沉积层之下。
The present invention discloses a semiconductor element and a manufacturing method thereof, wherein the semiconductor element comprises: a semiconductor deposition layer formed on an insulating structure and a substrate; the semiconductor element further comprises a gate formed on a contact region between a first injection region and a second injection region of the semiconductor deposition layer; both the first injection region and the second injection region have a first conductivity type, and the gate has a second conductivity type; the semiconductor element may further comprise a second gate formed under the semiconductor deposition layer.
Description
技术领域 technical field
本发明关于一种半导体技术,特别是关于一种接面场效应晶体管(JunctionFieldEffectTransistor,JEFT)元件及其制造方法。The present invention relates to a semiconductor technology, in particular to a Junction Field Effect Transistor (JEFT) element and a manufacturing method thereof.
背景技术 Background technique
已知的接面场效应晶体管元件具有如图1所示的结构。图1所绘示的接面场效应晶体管元件100形成在例如是硅晶圆的一半导体衬底102之上。衬底102可通过例如是扩散掺杂(diffusiondoping)、离子注入(ionimplantation)或原位掺杂(in-situdoping)等注入工艺修饰,以引入P型掺杂物。一N阱104形成在衬底102中,提供使电荷在源极端与漏极端间流动的一通道。N阱104可通过已知的注入工艺引入N型掺杂物形成。接面场效应晶体管元件100更包括多个第一注入区106及多个第二注入区108。此些第一注入区各包括一高浓度之N型掺杂物,且各第一注入区可作为源极或漏极。此些第二注入区108各包括P型掺杂物,且各第二注入区可作为栅极。A known junction field effect transistor element has a structure as shown in FIG. 1 . The junction field effect transistor device 100 shown in FIG. 1 is formed on a semiconductor substrate 102 such as a silicon wafer. The substrate 102 can be modified by implantation processes such as diffusion doping, ion implantation or in-situ doping to introduce P-type dopants. An N-well 104 is formed in the substrate 102 to provide a channel for charge to flow between the source terminal and the drain terminal. The N well 104 can be formed by introducing N-type dopants through a known implantation process. The junction field effect transistor device 100 further includes a plurality of first injection regions 106 and a plurality of second injection regions 108 . Each of the first injection regions includes a high-concentration N-type dopant, and each first injection region can be used as a source or a drain. Each of the second implanted regions 108 includes P-type dopants, and each second implanted region can be used as a gate.
操作时,一正值的漏极至源极电压(drain-sourcevoltage,VDS)驱使N阱104内的电荷由源极流向漏极。N阱104的导电度可通过一负值的栅极至源极电压(gate-sourcevoltage,VGS)控制,此负值的VGS使每一PN接面感应形成空乏区(depletionregion)。栅极至源极电压VGS的值可调整至空乏区夹止(pinchoff)电荷流动的通道,以关闭接面场效应晶体管元件100。此达成夹止的电压称为夹止电压(pinchoffvoltage,VP)。当接面场效应晶体管元件整合于一集成电路中时,半导体衬底噪声的影响能改变VP,导致多个接面场效应晶体管元件的不一致与缺陷。因此,为容许更加精确的VP,有需要将接面场效应晶体管元件绝缘。During operation, a positive drain-source voltage (V DS ) drives charges in the N-well 104 to flow from the source to the drain. The conductivity of the N-well 104 can be controlled by a negative gate-source voltage (V GS ) , which induces the formation of a depletion region at each PN junction. The value of the gate-to-source voltage V GS can be adjusted to pinch off the path of charge flow in the depletion region to turn off the JFET device 100 . The pinch off voltage is called pinch off voltage (V P ). When JFET devices are integrated into an integrated circuit, the influence of semiconductor substrate noise can change V P , leading to inconsistencies and defects in multiple JFET devices. Therefore, to allow for a more accurate Vp , it is necessary to insulate the JFET element.
发明内容Contents of the invention
一第一示范性实施例揭露一种半导体元件,包含一衬底,一绝缘结构形成在衬底上;以及一半导体沉积层,形成在绝缘结构上与衬底之上,半导体沉积层具有一第一导电型。所揭露的半导体元件更包括一第一注入区,形成在半导体沉积层中,第一注入区具有第一导电型与较半导体沉积层高的掺杂浓度;以及一第二注入区,形成在半导体沉积层中,第二注入区具有第一导电型与较半导体沉积层高的掺杂浓度。所揭露的半导体元件更包括一金属接触层,形成在半导体沉积层的第一注入区与半导体沉积层的第二注入区间的一接触区上,藉以在金属接触层与半导体沉积层的接触区间形成一接面,其中此接面为一肖特基势垒(Schottkybarrier)。A first exemplary embodiment discloses a semiconductor element, including a substrate, an insulating structure formed on the substrate; and a semiconductor deposition layer formed on the insulating structure and the substrate, the semiconductor deposition layer has a first A conductivity type. The disclosed semiconductor device further includes a first implantation region formed in the semiconductor deposition layer, the first implantation region has a first conductivity type and a higher doping concentration than the semiconductor deposition layer; and a second implantation region is formed in the semiconductor deposition layer In the deposition layer, the second injection region has the first conductivity type and a higher doping concentration than the semiconductor deposition layer. The disclosed semiconductor device further includes a metal contact layer formed on a contact region between the first implantation region of the semiconductor deposition layer and the second implantation region of the semiconductor deposition layer, so as to form a contact region between the metal contact layer and the semiconductor deposition layer. A junction, wherein the junction is a Schottky barrier.
一第二示范性实施例揭露一种半导体元件,包含一衬底,一第一绝缘结构形成在衬底上,以及一第一半导体沉积层形成在第一绝缘结构上。所揭露的半导体元件更包括一第二绝缘结构形成在第一半导体沉积层上,一第二半导体沉积层形成在第二绝缘结构上,第二半导体沉积层具有一导电型。所揭露的半导体元件可包括一第一注入区形成在第二半导体沉积层中,第一注入区具有导电型与较第二半导体沉积层高的掺杂浓度;以及一第二注入区形成在第二半导体沉积层中,第二注入区具有导电型与较第二半导体沉积层高的掺杂浓度。一金属接触层形成在第二半导体沉积层的第一注入区与第二半导体沉积层的第二注入区间的一接触区上,藉以在金属层与第二半导体沉积层的接触区形成一接面,其中此接面为一肖特基势垒。A second exemplary embodiment discloses a semiconductor device including a substrate, a first insulating structure formed on the substrate, and a first semiconductor deposition layer formed on the first insulating structure. The disclosed semiconductor device further includes a second insulating structure formed on the first semiconductor deposition layer, a second semiconductor deposition layer formed on the second insulating structure, and the second semiconductor deposition layer has a conductivity type. The disclosed semiconductor device may include a first implantation region formed in the second semiconductor deposition layer, the first implantation region has a conductivity type and a higher doping concentration than the second semiconductor deposition layer; and a second implantation region is formed in the second semiconductor deposition layer In the second semiconductor deposition layer, the second injection region has a conductivity type and a higher doping concentration than the second semiconductor deposition layer. A metal contact layer is formed on a contact region between the first injection region of the second semiconductor deposition layer and the second injection region of the second semiconductor deposition layer, so as to form a junction at the contact region between the metal layer and the second semiconductor deposition layer , where this junction is a Schottky barrier.
本发明揭露的半导体元件的相关制造方法亦有所揭露。The related manufacturing method of the semiconductor device disclosed in the present invention is also disclosed.
附图说明 Description of drawings
图1绘示一种传统接面场效应晶体管元件的剖面图。FIG. 1 is a cross-sectional view of a conventional junction field effect transistor.
图2绘示根据本发明揭露的一种接面场效应晶体管元件的剖面图。FIG. 2 is a cross-sectional view of a junction field effect transistor disclosed in the present invention.
图3绘示图2的接面场效应晶体管元件的特定结构的局部视图。FIG. 3 is a partial view of a specific structure of the junction field effect transistor device of FIG. 2 .
图4绘示具三维栅极结构的接面场效应晶体管元件300的正视图。FIG. 4 shows a front view of a junction field effect transistor device 300 with a three-dimensional gate structure.
图5绘示图4的接面场效应晶体管元件的一实施例的局部视图。FIG. 5 is a partial view of an embodiment of the junction field effect transistor device of FIG. 4 .
图6绘示图4的接面场效应晶体管元件的另一实施例的局部视图。FIG. 6 is a partial view of another embodiment of the junction field effect transistor device of FIG. 4 .
图7绘示一包括电阻的传统电路。FIG. 7 shows a conventional circuit including resistors.
图8绘示包含本发明揭露的接面场效应晶体管元件的电路的一实施例。FIG. 8 illustrates an embodiment of a circuit including the junction field effect transistor device disclosed in the present invention.
图9绘示图8的一实施例中,接面场效应晶体管元件的源极至栅极电压与MOS元件的漏极电压的关系。FIG. 9 shows the relationship between the source-to-gate voltage of the JFET device and the drain voltage of the MOS device in an embodiment of FIG. 8 .
【主要元件符号说明】[Description of main component symbols]
100、200、300:接面场效应晶体管元件100, 200, 300: junction field effect transistor components
102、202、302:衬底102, 202, 302: substrate
104:N阱106:第一注入区104: N well 106: First implantation region
108:第二注入区108: Second injection area
204:绝缘结构204: Insulation structure
206、306:场氧化层206, 306: field oxide layer
208:高温氧化层208: high temperature oxide layer
210:第一阱区210: the first well area
212:半导体沉积层214、S:源极212: semiconductor deposition layer 214, S: source
216、D:漏极216, D: Drain
218、324:金属接触层218, 324: metal contact layer
220、326:接触区220, 326: contact area
304:第一绝缘结构304: first insulating structure
308:栅极氧化层308: Gate oxide layer
310:第一半导体沉积层310: first semiconductor deposition layer
312:第二绝缘结构312: second insulating structure
314:第二半导体沉积层314: Second semiconductor deposition layer
316:第一注入区,源极316: first injection region, source
318:第二注入区,漏极318: second injection region, drain
320:第一长轴320: first major axis
322:第二长轴322: second major axis
400、500:电路400, 500: circuit
410:电阻410: resistance
420、550:电容420, 550: capacitance
430、520:脉宽调变电路430, 520: pulse width modulation circuit
530:HVdepletionMOS530: HVdepletionMOS
540:二极管540: diode
ID:来自MOS的电流I D : Current from MOS
IIC:充电电流I IC : charging current
IAUX:辅助电流I AUX : auxiliary current
VZ:击穿电压V Z : breakdown voltage
VCC:供电电压V CC : supply voltage
VS:源极至栅极电压V S : Source to Gate Voltage
Vss:源极电压V ss : Source voltage
Vgg:栅极电压V gg : gate voltage
具体实施方式 detailed description
图2绘示一接面场效应晶体管元件200的剖面图,其能够降低噪声以及增加夹止的锐利度(sharpness)。接面场效应晶体管元件200包括一衬底202及一绝缘结构204,绝缘结构204形成在衬底202上。绝缘结构204可用以实质上保护其上的结构免于其下方衬底的噪声影响与干扰。绝缘结构204可包括一场氧化层206(fieldoxide,FOX),形成在衬底202上,在一些实施例中,更可包括一高温氧化层208(hightemperatureoxide,HTO)形成在场氧化层206之上。场氧化层206与高温氧化层208可以已知的标准掩模及热氧化技术形成。举例来说,可以局部硅氧化(1ocaloxidationofsilicon,LOCOS)工艺形成场氧化层206。可重复相同的工艺以形成高温氧化层208。LOCOS的示范性技术包括浅沟道隔离(shallowtrenchisolation,STI)或绝缘层上覆硅(silicononinsulator,SO1)。尽管数值可能变动,场氧化层可具有范围1000埃(angstrom)-10000埃间的厚度,最佳约为5000埃,而高温氧化层208可具有120埃-400埃间的厚度,最佳约为300埃。FIG. 2 shows a cross-sectional view of a JFET device 200 that can reduce noise and increase pinch-off sharpness. The JFET device 200 includes a substrate 202 and an insulating structure 204 formed on the substrate 202 . The insulating structure 204 can be used to substantially protect the structures thereon from noise influence and interference of the underlying substrate. The insulating structure 204 may include a field oxide layer 206 (field oxide, FOX) formed on the substrate 202 , and in some embodiments, may further include a high temperature oxide layer 208 (high temperature oxide, HTO) formed on the field oxide layer 206 . Field oxide layer 206 and high temperature oxide layer 208 can be formed by known standard masking and thermal oxidation techniques. For example, the field oxide layer 206 can be formed by a local oxidation of silicon (LOCOS) process. The same process can be repeated to form the high temperature oxide layer 208 . Exemplary technologies of LOCOS include shallow trench isolation (shallow trench isolation, STI) or silicon on insulator (silicon on insulator, SO1). Although the values may vary, the field oxide layer may have a thickness ranging from 1000 angstrom to 10000 angstrom, preferably about 5000 angstrom, and the high temperature oxide layer 208 may have a thickness between 120 angstrom to 400 angstrom, preferably about 300 Angstroms.
在绝缘结构204下方,一第一阱区210可形成于绝缘结构204下方的衬底210内。在图2绘示的实施例中,衬底202包括P型掺杂物,但在另一实施例中,衬底202可包括N型掺杂物。在任一实施例中,第一阱区210可为一P阱或一N阱。Under the insulating structure 204 , a first well region 210 may be formed in the substrate 210 under the insulating structure 204 . In the embodiment depicted in FIG. 2 , the substrate 202 includes P-type dopants, but in another embodiment, the substrate 202 may include N-type dopants. In any embodiment, the first well region 210 can be a P well or an N well.
在绝缘结构204上方,可通过一沉积工艺形成一半导体沉积层212于绝缘结构204上。半导体沉积层212可具有一第一导电型,使电荷由源极214流向漏极216。半导体沉积层212的导电度可通过栅极218控制。以下将以图3更加详细说明接面场效应晶体管元件200的结构。On the insulating structure 204, a semiconductor deposition layer 212 may be formed on the insulating structure 204 by a deposition process. The semiconductor deposition layer 212 can have a first conductivity type, allowing charges to flow from the source 214 to the drain 216 . The conductivity of the semiconductor deposition layer 212 can be controlled by the gate 218 . The structure of the junction field effect transistor device 200 will be described in detail below with reference to FIG. 3 .
图3为接面场效应晶体管元件200的局部视图。半导体沉积层212可为通过标准工艺制造的一多晶硅层,且如同上述讨论,半导体沉积层212可通过注入工艺修饰以具有一第一导电型,此第一导电型可为N型或P型。在一实施例中,半导体沉积层212可通过沉积多晶硅形成,例如是三氯氧磷(phosphorylchloride,POCl)的N型掺杂物可在多晶硅沉积时通过原位掺杂(in-situdoping)引入。在一实施例中,POCl3的浓度大约为1×1011/cm2。亦可使用例如是磷(phosphorous,P)等其他的N型掺杂物。在另一实施例中,可通过离子注入(ionimplantation)的扩散掺杂(diffusiondoping)或原位掺杂引入N型掺杂物。在又一实施例中,亦可以与引入N型掺杂物相同的工艺于半导体沉积层212中引入P型掺杂物。一P型掺杂物的例子为硼(boron,B)。FIG. 3 is a partial view of a junction field effect transistor device 200 . The semiconductor deposition layer 212 can be a polysilicon layer fabricated by standard processes, and as discussed above, the semiconductor deposition layer 212 can be modified by an implantation process to have a first conductivity type, which can be N-type or P-type. In one embodiment, the semiconductor deposition layer 212 can be formed by depositing polysilicon, and N-type dopant such as phosphorus oxychloride (POCl) can be introduced by in-situ doping during polysilicon deposition. In one embodiment, the concentration of POCl 3 is about 1×10 11 /cm 2 . Other N-type dopants such as phosphorous (P) can also be used. In another embodiment, the N-type dopant can be introduced by ion implantation diffusion doping or in-situ doping. In yet another embodiment, the P-type dopant can also be introduced into the semiconductor deposition layer 212 by the same process as that of introducing the N-type dopant. An example of a P-type dopant is boron (B).
一第一注入区214可形成在半导体沉积层212中,此第一注入区具有第一导电型且掺杂浓度较半导体沉积层212为高。第一注入区214可标示为源极214。一第二注入区216可形成在半导体沉积层212中,此第二注入区具有第一导电型且掺杂浓度较半导体沉积层212为高。第二注入区216可标示为漏极216。A first implantation region 214 can be formed in the semiconductor deposition layer 212 , the first implantation region has a first conductivity type and a doping concentration higher than that of the semiconductor deposition layer 212 . The first implanted region 214 can be labeled as source 214 . A second implantation region 216 can be formed in the semiconductor deposition layer 212 , the second implantation region has the first conductivity type and has a higher doping concentration than the semiconductor deposition layer 212 . The second implanted region 216 can be labeled as the drain 216 .
在图3所示的示范性实施例中,第一导电型为N型,而半导体沉积层212可运作提供一N通道使电荷在第一N+注入区214与第二N+注入区216间流动。在另一实施例中,第一导电型可为P型,而半导体沉积层212可运作提供一P通道使电荷在第一P+掺杂区214与第二P+掺杂区216间流动。In the exemplary embodiment shown in FIG. 3 , the first conductivity type is N type, and the semiconductor deposition layer 212 is operable to provide an N channel for charge to flow between the first N+ implantation region 214 and the second N+ implantation region 216 . In another embodiment, the first conductivity type may be P type, and the semiconductor deposition layer 212 may operate to provide a P channel for charge to flow between the first P+ doped region 214 and the second P+ doped region 216 .
除半导体沉积层212之外,接面场效应晶体管元件200更可包括一金属接触层218,形成在半导体沉积层212的一接触区220上,此接触区220位于第一注入区214与第二注入区216间。金属接触层218可包括一适合的金属,使金属接触层218与半导体沉积层212的接触区220间的接面作为肖特基势垒(Schottkybarrier)。依据半导体沉积层212是包括N型或P型掺杂物,肖特基势垒可分别当作P型栅极或N型栅极使用。如上所述的金属接触层218可标示为栅极218。为形成一P型栅极,金属接触层218可包括适当的金属如钛、钨、镍、铂、铝、金或钴。为形成一N型栅极,金属接触层218可包括适当的金属如铂(Pt)。In addition to the semiconductor deposition layer 212, the junction field effect transistor device 200 may further include a metal contact layer 218 formed on a contact region 220 of the semiconductor deposition layer 212, and the contact region 220 is located between the first implant region 214 and the second implant region. There are 216 injection areas. The metal contact layer 218 may include a suitable metal, so that the junction between the metal contact layer 218 and the contact region 220 of the semiconductor deposition layer 212 acts as a Schottky barrier. Depending on whether the semiconductor deposition layer 212 includes N-type or P-type dopants, the Schottky barrier can be used as a P-type gate or an N-type gate, respectively. The metal contact layer 218 as described above may be denoted as gate 218 . To form a P-type gate, the metal contact layer 218 may include a suitable metal such as titanium, tungsten, nickel, platinum, aluminum, gold or cobalt. To form an N-type gate, the metal contact layer 218 may include a suitable metal such as platinum (Pt).
可运作栅极218以控制半导体沉积层212的通道的导电度。操作时,正值的漏极至源极电压(drain-sourcevoltage,VDS)使电荷由半导体沉积层212的源极214流入漏极216。半导体沉积层212的导电度可通过负值的栅极至源极电压(gate-sourcevoltage,VGS)控制,此负值的VGS在接触区220内或其周围感应形成空乏区(depletionregion)。VGS的值可调整至空乏区夹止(pinchoff)电荷流动的通道,以关闭接面场效应晶体管元件200。根据半导体沉积层的厚度,此夹止电压(pinchoffvoltage,VP)可能变动。在一示范性实施例中,半导体沉积层厚度的范围可使VP在0.7-30伏特之间。在另一实施例中,半导体沉积层的厚度范围可在500埃-6000埃之间。The gate 218 is operable to control the conductivity of the channel of the semiconductor deposition layer 212 . During operation, a positive drain-source voltage (V DS ) causes charges to flow from the source 214 of the semiconductor deposition layer 212 to the drain 216 . The conductivity of the semiconductor deposition layer 212 can be controlled by a negative gate-source voltage (V GS ) , which induces a depletion region in or around the contact region 220 . The value of V GS can be adjusted to pinch off the path of charge flow in the depletion region to turn off the JFET device 200 . Depending on the thickness of the deposited semiconductor layer, the pinchoff voltage (V P ) may vary. In an exemplary embodiment, the thickness of the semiconductor deposition layer is in a range such that V P is between 0.7-30 volts. In another embodiment, the semiconductor deposition layer may have a thickness ranging from 500 angstroms to 6000 angstroms.
通过在绝缘结构204上形成金属接触层218与半导体沉积层212,实质上减少了源自衬底202的噪声与干扰,又能通过栅极218与更加精确的VP,增进对半导体沉积层212的导电度的控制。所揭露结构的另一优点是,位于绝缘结构204之下的第一阱区210可以用于容纳其他可能没有空间在接面场效应晶体管中形成PN接面的元件。By forming the metal contact layer 218 and the semiconductor deposition layer 212 on the insulating structure 204, the noise and interference from the substrate 202 are substantially reduced, and the control of the semiconductor deposition layer 212 can be improved through the gate 218 and a more precise V P . conductivity control. Another advantage of the disclosed structure is that the first well region 210 under the insulating structure 204 can be used to accommodate other components that may not have space to form a PN junction in a junction field effect transistor.
图4绘示具三维栅极结构的接面场效应晶体管元件300的正视图。接面场效应晶体管元件300包括一衬底302以及一第一绝缘结构304,第一绝缘结构304形成在衬底上。类似于图2及图3讨论的绝缘结构204,第一绝缘结构304可用以实质上保护其上的结构免于其下方衬底302的噪声影响与干扰。第一绝缘结构304可包括一场氧化层306,形成在衬底302上。在一些实施例中,第一绝缘结构304更可包括一栅极氧化层308,设置在场氧化层306上。场氧化层306与栅极氧化层308可以已知的标准掩模及热氧化技术形成。FIG. 4 shows a front view of a junction field effect transistor device 300 with a three-dimensional gate structure. The JFET device 300 includes a substrate 302 and a first insulating structure 304 formed on the substrate. Similar to the isolation structure 204 discussed in FIGS. 2 and 3 , the first isolation structure 304 can be used to substantially protect structures thereon from noise and interference from the underlying substrate 302 . The first insulating structure 304 may include a field oxide layer 306 formed on the substrate 302 . In some embodiments, the first insulating structure 304 may further include a gate oxide layer 308 disposed on the field oxide layer 306 . Field oxide layer 306 and gate oxide layer 308 can be formed by known standard masking and thermal oxidation techniques.
接面场效应晶体管元件300更包括形成在第一绝缘结构304上的一第一半导体沉积层310,形成在第一半导体沉积层310上的一第二绝缘结构312,以及形成在第二绝缘结构312上的一第二半导体沉积层314。图5为接面场效应晶体管元件300中,形成于第一绝缘结构304之上结构的部份视图。在一实施例中,第一半导体沉积层310与第二半导体沉积层314可如图5所示,分别向第一长轴320与第二长轴322延伸。在一示范性实施例中,第一长轴320实质上正交于第二长轴322,但在另一实施例中,第一长轴320与第二长轴可调准成一角度。第一半导体沉积层310可包括N型或P型掺杂物的任一种,以提供形成三维栅极结构时所需的导电度,以下将详加叙述。在一实施例中,第一半导体沉积层可用硅化钨WSi与硅化钴CoSi沉积,以形成可降低第一半导体沉积层310电阻的硅化物。绝缘结构312可为如图2及图3的实施例所述的一高温氧化层208。The junction field effect transistor device 300 further includes a first semiconductor deposition layer 310 formed on the first insulating structure 304, a second insulating structure 312 formed on the first semiconductor deposition layer 310, and a second insulating structure formed on the second insulating structure A second semiconductor deposition layer 314 on 312 . FIG. 5 is a partial view of the structure formed on the first insulating structure 304 in the JFET device 300 . In one embodiment, the first semiconductor deposition layer 310 and the second semiconductor deposition layer 314 may extend toward the first long axis 320 and the second long axis 322 respectively as shown in FIG. 5 . In an exemplary embodiment, the first major axis 320 is substantially orthogonal to the second major axis 322, but in another embodiment, the first major axis 320 and the second major axis may be aligned at an angle. The first semiconductor deposition layer 310 may include any one of N-type or P-type dopants to provide conductivity required for forming a three-dimensional gate structure, which will be described in detail below. In one embodiment, the first semiconductor deposition layer can be deposited with tungsten silicide WSi and cobalt silicide CoSi to form a silicide that can reduce the resistance of the first semiconductor deposition layer 310 . The insulating structure 312 can be a high temperature oxide layer 208 as described in the embodiments of FIGS. 2 and 3 .
此外,第二半导体沉积层314可实质上类似于图2及图3的实施例所述的半导体沉积层212。第二半导体沉积层314可为一通过标准工艺制造的多晶硅层,且可通过注入工艺修饰以具有一第一导电型,此第一导电型可为N型或P型。在图6所绘示的一示范性实施例中,第二半导体沉积层314可通过沉积多晶硅于第一绝缘结构304及第二绝缘结构312上形成,而N型掺杂物可在沉积多晶硅时,通过原位掺杂注入在第二半导体沉积层314中。在另一实施例中,可通过离子注入的扩散掺杂或原位掺杂引入N型掺杂物。在又一实施例中,可用P型掺杂物取代N型掺杂物,以相同的工艺引入第二半导体沉积层314中。In addition, the second semiconductor deposition layer 314 may be substantially similar to the semiconductor deposition layer 212 described in the embodiments of FIGS. 2 and 3 . The second semiconductor deposition layer 314 can be a polysilicon layer fabricated by a standard process, and can be modified by an implantation process to have a first conductivity type, and the first conductivity type can be N-type or P-type. In an exemplary embodiment shown in FIG. 6 , the second semiconductor deposition layer 314 can be formed on the first insulating structure 304 and the second insulating structure 312 by depositing polysilicon, and the N-type dopant can be formed when depositing the polysilicon. , implanted in the second semiconductor deposition layer 314 by in-situ doping. In another embodiment, the N-type dopant can be introduced by diffusion doping or in-situ doping by ion implantation. In yet another embodiment, the N-type dopant can be replaced by the P-type dopant, and introduced into the second semiconductor deposition layer 314 by the same process.
请参照图4至图6,一第一注入区316可形成在第二半导体沉积层314中,此第一注入区316具有与第二半导体沉积层314相同的导电型与较第二半导体沉积层314高的掺杂浓度。第一注入区316可标示为源极S。一第二注入区318可形成在第二半导体沉积层314中,此第二注入区318具有与第二半导体沉积层314相同的导电型与较第二半导体沉积层314高的掺杂浓度。第二注入区318可标示为漏极D。4 to 6, a first implantation region 316 can be formed in the second semiconductor deposition layer 314, and the first implantation region 316 has the same conductivity type as the second semiconductor deposition layer 314 and is higher than that of the second semiconductor deposition layer. 314 high doping concentration. The first implant region 316 can be labeled as source S. A second implantation region 318 can be formed in the second semiconductor deposition layer 314 . The second implantation region 318 has the same conductivity type as the second semiconductor deposition layer 314 and a higher doping concentration than the second semiconductor deposition layer 314 . The second implant region 318 can be labeled as drain D.
接面场效应晶体管元件300包括一金属接触层,形成在第二半导体沉积层314的一接触区326上,此接触区326位于第一注入区316与第二注入区318间。类似于金属接触层218,金属接触层324可包括一适当的金属,使金属接触层324与第二半导体沉积层314的接触区326间的接面作为一肖特基势垒。金属接触层324可围绕第二半导体沉积层314,且不与第一半导体沉积层接触。根据第二半导体沉积层314包括N型或P型掺杂物,肖特基势垒可分别当作P型栅极或N型栅极使用。如上所述的金属接触层324可标示为栅极324。The JFET device 300 includes a metal contact layer formed on a contact region 326 of the second semiconductor deposition layer 314 , and the contact region 326 is located between the first implant region 316 and the second implant region 318 . Similar to the metal contact layer 218 , the metal contact layer 324 may include a suitable metal such that the junction between the metal contact layer 324 and the contact region 326 of the second semiconductor deposition layer 314 acts as a Schottky barrier. The metal contact layer 324 may surround the second semiconductor deposition layer 314 and not be in contact with the first semiconductor deposition layer. Depending on whether the second semiconductor deposition layer 314 includes N-type or P-type dopants, the Schottky barrier can be used as a P-type gate or an N-type gate, respectively. The metal contact layer 324 as described above may be designated as gate 324 .
注入N型或P型掺杂物后,第二半导体沉积层314的导电度容许电荷自源极316流向漏极318。第二半导体沉积层314的导电度可通过栅极324与第一半导体沉积层310两者控制。独立执行时,栅极324可以一负值的第一栅极至源极电压VGS1控制第二半导体沉积层314的导电度,此VGS1在接触区326内或其周围感应一第一空乏区。VGS1的值可调整至空乏区夹止(pinchoff)电荷流动的通道,以关闭接面场效应晶体管元件300。不过,第一半导体沉积层300与第二绝缘结构312可作为一第二栅极,在第二半导体沉积层314中运作以形成一第二空乏区。第二空乏区可通过在与第一半导体沉积层310连接的电极(未绘示)上,另外施加一负值的第二栅极至源极电压VGS2形成。除了第一绝缘结构304所造成的改进,第一空乏区与第二空乏区可互相作用,不但可更佳的控制VP,更能增进夹止的精确度(precision)。After implanting N-type or P-type dopants, the conductivity of the second semiconductor deposition layer 314 allows charges to flow from the source 316 to the drain 318 . The conductivity of the second semiconductor deposition layer 314 can be controlled by both the gate 324 and the first semiconductor deposition layer 310 . When performed independently, the gate 324 can control the conductivity of the second semiconductor deposition layer 314 with a negative first gate-to-source voltage V GS1 that induces a first depletion region in or around the contact region 326 . The value of V GS1 can be adjusted to depletion region to pinch off the path of charge flow to turn off JFET device 300 . However, the first semiconductor deposition layer 300 and the second insulating structure 312 can function as a second gate to form a second depletion region in the second semiconductor deposition layer 314 . The second depletion region can be formed by additionally applying a negative second gate-to-source voltage V GS2 on the electrode (not shown) connected to the first semiconductor deposition layer 310 . In addition to the improvement caused by the first insulating structure 304, the first depletion region and the second depletion region can interact, not only to better control V P , but also to improve pinch-off precision.
通过增进夹止电压的控制性与精确度,本发明揭露的接面场效应晶体管元件可在集成电路(IC)上达成更多不同的改善。举例来说,近年来,考虑到本发明揭露的接面场效应晶体管元件的高转换效率以及低待机功耗,特别适用在绿色科技的发展。一切换式的电源IC包括一集成式启动电路以及一脉宽调变(PulseWidthMoldulation,PWM)电路。图7绘示一传统的高压启动电路400,其启动后电阻410仍持续产生功耗。电阻410可选自能提供充电电流(chargingcurremt,IIC)至电容420,且能使脉宽调变电路启动运作的种类。脉宽调变电路430持续运作直到其电压VCC低于最小运作电压,接着一辅助电流Iaux施加于脉宽调变电路上。脉宽调变电路430一般在10V-30V之间运作。为降低功耗,启动电路的电阻410可以HVdepletionMOS或HVJEFT元件取代。不过,一HVdepletionNMOS在阈值电压处(<-4V)具有大的漏电流(>100μA)。一HVJEFT需要大的漂浮区(driftregion)以形成降低表面场(reducedsurfacefield,RESURF),因此HVJEFT的夹止特征缺乏精确性。By improving the controllability and accuracy of the clamping voltage, the junction field effect transistor device disclosed in the present invention can achieve more and more various improvements on the integrated circuit (IC). For example, in recent years, considering the high conversion efficiency and low standby power consumption of the junction field effect transistor device disclosed by the present invention, it is especially suitable for the development of green technology. A switching power supply IC includes an integrated startup circuit and a pulse width modulation (PulseWidthMoldulation, PWM) circuit. FIG. 7 shows a traditional high voltage start-up circuit 400, and the resistor 410 continues to generate power consumption after start-up. The resistor 410 can be selected from a type that can provide a charging current (charging current (I IC ) to the capacitor 420 and enable the pulse width modulation circuit to start operating. The PWM circuit 430 continues to operate until the voltage V CC is lower than the minimum operating voltage, and then an auxiliary current I aux is applied to the PWM circuit. The PWM circuit 430 generally operates between 10V-30V. To reduce power consumption, the resistor 410 of the start-up circuit can be replaced by HVdepletionMOS or HVJEFT elements. However, a HVdepletion NMOS has a large leakage current (>100μA) at the threshold voltage (<-4V). A HVJEFT requires a large drift region (driftregion) to form a reduced surface field (reduced surfacefield, RESURF), so the pinch feature of the HVJEFT lacks precision.
图8绘示包括本发明揭露的接面场效应晶体管元件510的一示范性电路500。接面场效应晶体管元件510可为任何根据本发明揭露原理的接面场效应晶体管组态。除了接面场效应晶体管元件510之外,电路500更包括一脉宽调变电路520,HVdepletionMOS530,以及二极管540。操作时,启动期间的源极至栅极电压VS小于接面场效应晶体管元件的夹止电压VP,且接面场效应晶体管元件呈现低电阻。一示范性夹止电压VP约为15伏特。当接面场效应晶体管元件呈现低电阻时,具有一示范性阈值电压(thresholdvoltage,Vth)-3V的HVdepletionMOS530,可提供脉宽调变电路520运作以及电容450充电需要的电流,直到接面场效应晶体管元件510的VS达到夹止电压Vp。当VS高于夹止电压VP时,接面场效应晶体管元件510的电阻会大量的增高,同时漏极至源极电压仍保持与夹止电压VP相同。当VS高于夹止电压VP一阈值电压Vth时,MOS530将会关闭。例如在一示范性实施例中,夹止电压VP约为15V而阈值电压Vth为-3V。图9的图表绘示,在此实施例中,当VS高于夹止电压VP约15V时,因接面场效应晶体管元件510的电阻增加,来自MOS530的电流(ID)开始降低。当VS达到18V时,也就是高于夹止电压VP一阈值电压Vth,来自MOS530的电流ID将停止。请参照图8,在脉宽调变启动后,Iaux可用以充电电容550。因此,能精确控制夹止电压VP的接面场效应晶体管元件510,可降低HVdepletionMOS530的漏电流及增加效率。FIG. 8 illustrates an exemplary circuit 500 including a junction field effect transistor device 510 disclosed in the present invention. The JFET device 510 can be any JFET configuration according to the principles disclosed in the present invention. In addition to the JFET device 510 , the circuit 500 further includes a PWM circuit 520 , an HVdepletionMOS 530 , and a diode 540 . In operation, the source-to-gate voltage V S during start-up is less than the pinch-off voltage V P of the JFET device, and the JFET device exhibits low resistance. An exemplary pinch voltage V P is about 15 volts. When the junction field effect transistor device exhibits low resistance, the HVdepletionMOS 530 with an exemplary threshold voltage (threshold voltage, V th ) of -3V can provide the current required for the operation of the pulse width modulation circuit 520 and the charging of the capacitor 450 until the junction field The VS of the effect transistor element 510 reaches the pinch voltage Vp . When V S is higher than the pinch voltage VP , the resistance of the JFET device 510 increases substantially while the drain-to-source voltage remains the same as the pinch voltage VP . When V S is higher than the pinch-off voltage V P -threshold voltage V th , the MOS 530 will be turned off. For example, in an exemplary embodiment, the pinch voltage V P is about 15V and the threshold voltage V th is -3V. The graph of FIG. 9 shows that, in this embodiment, when V S is about 15V higher than the pinch voltage VP , the current (I D ) from MOS 530 starts to decrease due to the increased resistance of JFET device 510 . When V S reaches 18V , which is higher than the pinch voltage V P - threshold voltage V th , the current ID from the MOS 530 will stop. Please refer to FIG. 8 , after the PWM is started, I aux can be used to charge the capacitor 550 . Therefore, the junction FET device 510 that can precisely control the pinch-off voltage VP can reduce the leakage current of the HVdepletionMOS 530 and increase the efficiency.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明并不限于所揭露的特定实施例,且应包含在本发明的精神和范围内所做的更动与润饰,本发明的保护范围当视随附的权利要求范围所界定的为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention is not limited to the specific embodiments disclosed, and should include changes and modifications made within the spirit and scope of the present invention, and the protection scope of the present invention should be defined as defined by the appended claims. allow.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210141509.9A CN103390646B (en) | 2012-05-09 | 2012-05-09 | Semiconductor element and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210141509.9A CN103390646B (en) | 2012-05-09 | 2012-05-09 | Semiconductor element and its manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103390646A CN103390646A (en) | 2013-11-13 |
| CN103390646B true CN103390646B (en) | 2016-06-08 |
Family
ID=49534866
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210141509.9A Expired - Fee Related CN103390646B (en) | 2012-05-09 | 2012-05-09 | Semiconductor element and its manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103390646B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0623949A1 (en) * | 1993-01-25 | 1994-11-09 | Telefonaktiebolaget Lm Ericsson | A dielectrically isolated semiconductor device and a method for its manufacture |
| US5973341A (en) * | 1998-12-14 | 1999-10-26 | Philips Electronics North America Corporation | Lateral thin-film silicon-on-insulator (SOI) JFET device |
| TW201131759A (en) * | 2010-03-10 | 2011-09-16 | Macronix Int Co Ltd | Junction-field-effect-transistor devices and methods of manufacturing the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8120072B2 (en) * | 2008-07-24 | 2012-02-21 | Micron Technology, Inc. | JFET devices with increased barrier height and methods of making same |
-
2012
- 2012-05-09 CN CN201210141509.9A patent/CN103390646B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0623949A1 (en) * | 1993-01-25 | 1994-11-09 | Telefonaktiebolaget Lm Ericsson | A dielectrically isolated semiconductor device and a method for its manufacture |
| US5973341A (en) * | 1998-12-14 | 1999-10-26 | Philips Electronics North America Corporation | Lateral thin-film silicon-on-insulator (SOI) JFET device |
| TW201131759A (en) * | 2010-03-10 | 2011-09-16 | Macronix Int Co Ltd | Junction-field-effect-transistor devices and methods of manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103390646A (en) | 2013-11-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105226058B (en) | JFET and ldmos transistor are prepared in monolithic power integrated circuit using deep diffusion region | |
| CN100431154C (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
| US9105657B2 (en) | Methods for producing near zero channel length field drift LDMOS | |
| US9159795B2 (en) | High side DMOS and the method for forming thereof | |
| US9660020B2 (en) | Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same | |
| CN101740392B (en) | LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor, semiconductor device and manufacture method thereof | |
| CN103151268A (en) | Vertical double-diffused field-effect tube and manufacturing process thereof | |
| US10910493B2 (en) | Semiconductor device and method of manufacturing the same | |
| US20160099348A1 (en) | High voltage double-diffused mos (dmos) device and method of manufacture | |
| KR101781220B1 (en) | Semiconductor device having depression type mos transistor | |
| US7632732B2 (en) | Method of manufacturing MOS transistor | |
| CN101211980A (en) | High-voltage semiconductor device and manufacturing method thereof | |
| US20090170269A1 (en) | High voltage mosfet devices containing tip compensation implant | |
| KR20110078621A (en) | Semiconductor device and manufacturing method thereof | |
| US20070278570A1 (en) | High-Voltage Nmos-Transistor and Associated Production Method | |
| US9583564B2 (en) | Isolation structure | |
| US7863170B2 (en) | Semiconductor body comprising a transistor structure and method for producing a transistor structure | |
| CN103390646B (en) | Semiconductor element and its manufacturing method | |
| US7625787B2 (en) | Thin silicon-on-insulator high voltage transistor with body ground | |
| US8841709B2 (en) | JFET device and method of manufacturing the same | |
| CN114242776A (en) | LDMOS structure and preparation method thereof | |
| TWI596673B (en) | Semiconductor component and method of manufacturing same | |
| CN104662665A (en) | Extended source-drain mos transistors and method of formation | |
| US8008664B2 (en) | Component comprising a thin-film transistor and CMOS-transistors and methods for production | |
| US7462543B1 (en) | Flash memory cell transistor with threshold adjust implant and source-drain implant formed using a single mask |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160608 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |