CN103441529A - Variable-speed wind turbine generator inertia response simulating control method - Google Patents
Variable-speed wind turbine generator inertia response simulating control method Download PDFInfo
- Publication number
- CN103441529A CN103441529A CN2013103680375A CN201310368037A CN103441529A CN 103441529 A CN103441529 A CN 103441529A CN 2013103680375 A CN2013103680375 A CN 2013103680375A CN 201310368037 A CN201310368037 A CN 201310368037A CN 103441529 A CN103441529 A CN 103441529A
- Authority
- CN
- China
- Prior art keywords
- wind
- power
- wind turbine
- speed
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及风力发电技术领域,具体地,涉及一种变速风电机组模拟惯量响应控制方法。 The invention relates to the technical field of wind power generation, in particular to a control method for simulated inertia response of variable-speed wind turbines.
背景技术 Background technique
风力发电是清洁、可再生的新能源发电方式,对于保护环境、节约化石能源具有十分重要的意义。但是风力发电由于其波动性、不确定性以及风电机组的对电网的支撑能力较弱,对于电力系统而言是一种“不友好”的发电技术。电网公司和调度机构需要风电机组在电网频率发生扰动时,通过电力变频器等控制装置,使得风电机组能够对电网频率扰动产生有益的响应,维持电网频率的稳定。尤其是在电网频率降低时,能够实现模拟惯量响应和暂态有功功率支撑。 Wind power generation is a clean and renewable new energy generation method, which is of great significance for protecting the environment and saving fossil energy. However, wind power generation is an "unfriendly" power generation technology for the power system due to its volatility, uncertainty and weak support ability of wind turbines to the grid. Power grid companies and dispatching agencies need wind turbines to respond to grid frequency disturbances and maintain grid frequency stability through power converters and other control devices when wind turbines are disturbed. Especially when the frequency of the power grid decreases, it can realize simulated inertia response and transient active power support.
传统的采用最大风能功率跟踪等控制策略的变速风电机组,由于电力电子装置的快速响应特性,能够有效的跟踪风速变化,但不能对电网频率和有功功率的变化产生响应,除非对原有的控制策略进行修改。 Traditional variable-speed wind turbines using control strategies such as maximum wind energy power tracking can effectively track changes in wind speed due to the fast response characteristics of power electronic devices, but cannot respond to changes in grid frequency and active power unless the original control The strategy is modified.
在2010年7月9日申请的名称为“异常频率条件期间的可变速风轮机的继电器式控制器和控制方法”的PCT申请号为WO2011/008637 EN的专利中描述了一种方法。该方法配置变速风轮机在电网频率下降到阈值以下时,在实际风轮机允许的能力范围内,提供固定的补充电力增量,直至电网频率恢复到适当的预定值,且无需评估电网频率偏差的改变速率、偏差的积分和/或偏差的幅值中的任何一项。该方法没有考虑当风电机组转速下降后,风轮机捕获的功率下降对风电机组控制的影响;没有给出如何针对不同运行工况下风电机组惯量响应、暂态功率支撑能力的不同,合理的设定控制参数。 PCT Application No. WO2011/008637 entitled "Relay Controller and Control Method for Variable Speed Wind Turbines During Abnormal Frequency Conditions" filed on July 9, 2010 One method is described in the EN patent. This method configures the variable-speed wind turbine to provide a fixed supplementary power increment within the allowable capacity of the actual wind turbine when the grid frequency drops below the threshold, until the grid frequency returns to an appropriate predetermined value, and there is no need to evaluate the grid frequency deviation. Any of the rate of change, the integral of the deviation, and/or the magnitude of the deviation. This method does not consider the impact of the power captured by the wind turbine on the control of the wind turbine when the speed of the wind turbine decreases; it does not give a reasonable design for the inertia response and transient power support capability of the wind turbine under different operating conditions. Set control parameters.
文献(Germán Claudio Tarnowski, Philip Carne Kjær, Poul E. Sørensen. Variable Speed Wind Turbines Capability for Temporary Over-Production [C]. IEEE Power & Energy Society General Meeting, 2009 (PES '09), 1-7)提出的模拟惯量响应控制方法,考虑了风轮机转速下降对捕获的风能机械功率的影响,并在转速的恢复过程中采用恒定功率的控制方法,可以有效实现风电机组的模拟惯量响应控制,充分利用风电机组转子动能。但是,该方法没有考虑风电机组转矩的限制,而且恢复过程采用恒定功率控制导致恢复时间很长。该方法也没有给出如何针对不同运行工况下的风电机组合理设定控制参数的方法。 Literature (Germán Claudio Tarnowski, Philip Carne Kjær, Poul E. Sørensen. Variable Speed Wind Turbines Capability for Temporary Over-Production [C]. IEEE Power & Energy Society General Meeting, 2009 (PES '09), 1-7) proposed a simulated inertia response control method, which considered the influence of wind turbine speed reduction on the captured wind energy mechanical power, and adopted constant power control during the speed recovery process The method can effectively realize the simulated inertia response control of the wind turbine and make full use of the rotor kinetic energy of the wind turbine. However, this method does not consider the limitation of wind turbine torque, and the recovery process uses constant power control, which leads to a long recovery time. This method also does not provide a method for how to reasonably set control parameters for wind turbine combinations under different operating conditions.
在实现本发明的过程中,发明人发现现有技术中至少存在风电机组惯量响应能力利用不充分、转矩、电流等物理量难以控制在合理范围内、对电力系统的频率稳定支撑特性不够优化、灵活性差、响应时间长等缺陷。 In the process of realizing the present invention, the inventors found that in the prior art, there are at least insufficient utilization of the wind turbine inertia response capability, difficulty in controlling physical quantities such as torque and current within a reasonable range, insufficient optimization of the frequency stability support characteristics of the power system, Poor flexibility, long response time and other defects.
发明内容 Contents of the invention
本发明的目的在于,针对上述问题,提出一种变速风电机组模拟惯量响应控制方法,以实现电网降低频率大扰动事件发生后的频率偏差幅值和变化速率,提升电力系统的频率稳定性。 The object of the present invention is to solve the above problems and propose a variable-speed wind turbine simulation inertia response control method to reduce the frequency deviation amplitude and change rate after a large frequency disturbance event occurs in the power grid, and improve the frequency stability of the power system.
为实现上述目的,本发明采用的技术方案是:一种变速风电机组模拟惯量响应控制方法,包括: In order to achieve the above object, the technical solution adopted in the present invention is: a variable speed wind turbine simulated inertia response control method, comprising:
a1、基于最大风能功率跟踪控制策略,依据风电机组轮毂处风速vw和风电机组转速ωr,获得风轮机最大可能捕获的风能功率; a1. Based on the maximum wind energy power tracking control strategy, according to the wind speed vw at the hub of the wind turbine and the speed ωr of the wind turbine, the maximum possible wind power captured by the wind turbine is obtained;
a2、将所得风轮机最大可能捕获的风能功,设定为风电机组有功控制的参考值P0; a2. Set the maximum possible wind energy capture of the obtained wind turbine as the reference value P0 for active power control of the wind turbine;
a3、通过锁相环等电网频率测量设备,获得电网频率f; a3. Obtain the grid frequency f through the grid frequency measurement equipment such as phase-locked loop;
a4、基于电网频率f,通过附加控制环节,生成有功功率附加控制的参考值ΔP,并叠加到风电机组最大风能跟踪控制参考值P0上,叠加后风电机组的有功功率控制参考值为P0+ΔP。 a4. Based on the grid frequency f, through additional control links, the reference value ΔP for additional control of active power is generated, and superimposed on the reference value P0 of the maximum wind energy tracking control of the wind turbine. After the superposition, the active power control reference value of the wind turbine is P0+ΔP .
进一步地,所述附加控制环节,采用类似继电器式的控制策略: Further, the additional control link adopts a relay-like control strategy:
当电网频率f变化幅值Δf大于预定的阈值时,附加控制环节发生作用; When the grid frequency f change amplitude Δf is greater than a predetermined threshold, the additional control link takes effect;
当电网频率f变化幅值Δf在预定的阈值的范围内时,附加控制环节不发生作用。 When the variation amplitude Δf of the grid frequency f is within the predetermined threshold range, the additional control link does not take effect.
进一步地,所述电网频率f变化幅值Δf的阈值的设定,需要参考电力系统稳态运行允许的频率波动范围。 Further, the setting of the threshold value of the grid frequency f change amplitude Δf needs to refer to the allowable frequency fluctuation range of the steady-state operation of the power system.
进一步地,所述当电网频率f变化幅值Δf大于预定的阈值时,附加控制环节发生作用的操作,具体包括: Further, when the change amplitude Δf of the grid frequency f is greater than a predetermined threshold, the operation that the additional control link takes effect specifically includes:
当电网频率f降低的幅值Δf超过预设的阈值时,附加控制环节产生时长为tdcc的正值控制信号ΔP1,促使风电机组在最大功率跟踪控制策略对应的有功功率P0的基础上,有功功率即电磁功率暂时维持P0+ΔP1; When the magnitude Δf of grid frequency f reduction exceeds the preset threshold, the additional control link generates a positive control signal ΔP1 with a duration of tdcc, which prompts the wind turbine to increase the active power on the basis of the active power P0 corresponding to the maximum power tracking control strategy. That is, the electromagnetic power temporarily maintains P0+ΔP1;
在模拟惯量响应和暂态有功功率支撑之后,附加控制环节产生负值的控制信号ΔP2,使得有功功率即电磁功率P0+ΔP2暂时小于风轮机捕获的机械功率; After simulating the inertia response and transient active power support, the additional control link generates a negative control signal ΔP2, so that the active power, that is, the electromagnetic power P0+ΔP2, is temporarily smaller than the mechanical power captured by the wind turbine;
在恢复的过程中,风电机组输出的有功功率取决于P0+ΔP2,小于风电机组正常运行时输出的有功功率;通过合理设定附加控制的作用时间tdcc,能够避开电网频率f的下降过程,获得良好的电网频率响应特性。 In the recovery process, the active power output by the wind turbine depends on P0+ΔP2, which is smaller than the active power output by the wind turbine in normal operation; by setting the action time tdcc of the additional control reasonably, the decline process of the grid frequency f can be avoided, Obtain good grid frequency response characteristics.
进一步地,在所述当电网频率f变化幅值Δf大于预定的阈值时,附加控制环节发生作用的操作中,附加控制环节的控制参数ΔP1、ΔP2、tdcc受到风电机组物理参数的限制;具体如下: Further, in the operation in which the additional control link takes effect when the change amplitude Δf of the grid frequency f is greater than a predetermined threshold, the control parameters ΔP1, ΔP2, and tdcc of the additional control link are limited by the physical parameters of the wind turbine; the details are as follows :
风电机组的功率变化量ΔP1的选择根据风电机组从目前转速下降到最低允许转速所能提供的动能决定,典型选取值为风电机组额定功率的5-10%; The selection of the power variation ΔP1 of the wind turbine is determined by the kinetic energy that the wind turbine can provide from the current speed down to the minimum allowable speed. The typical selection value is 5-10% of the rated power of the wind turbine;
附加控制的作用时间tdcc的选择,需要根据风电机组的转速和功率确定; The selection of the action time tdcc of the additional control needs to be determined according to the speed and power of the wind turbine;
由于机械功率下降,风电机组的功率变化量ΔP2的幅值,要大于或等于机械功率下降的幅值,才能保持风电机组稳定运行; Due to the decrease in mechanical power, the magnitude of the power change ΔP2 of the wind turbine must be greater than or equal to the amplitude of the decrease in mechanical power in order to maintain the stable operation of the wind turbine;
受转矩的限制,风电机组的功率变化量ΔP1和ΔP2幅值之和,应当不超过预设值。 Limited by the torque, the sum of the magnitudes of the power variation ΔP1 and ΔP2 of the wind turbine should not exceed the preset value.
进一步地,在步骤a1中,风电机组通过安装在机舱上的风能策略装置,获得风电机组轮毂处的风速vw的数值和方向。 Further, in step a1, the wind turbine obtains the value and direction of the wind speed vw at the hub of the wind turbine through the wind energy strategy device installed on the nacelle.
进一步地,在步骤a1中,通过安装在转子上的转速测量装置,或者通过测量电压、电流的数值估算,得到风电机组转速ωr。 Further, in step a1, the speed ωr of the wind turbine is obtained through the speed measuring device installed on the rotor, or through numerical estimation of measured voltage and current.
本发明各实施例的变速风电机组模拟惯量响应控制方法,由于包括:基于最大风能功率跟踪控制策略,依据风电机组轮毂处风速vw和风电机组转速ωr,获得风轮机最大可能捕获的风能功率;将所得风轮机最大可能捕获的风能功率,设定为风电机组有功控制的参考值P0;在最大风能功率跟踪控制的基础上,利用电网频率数值增设附加控制,根据风电机组运行工况,通过查表或在线整定的方法进行短时恒定功率支撑,实现模拟惯量响应,同时实现按照一定功率曲线的风电机组有功功率恢复过程;可以利用风电机组转子的固有转动惯量,实现风电机组的模拟惯量控制,为电网提供暂态有功功率支撑;从而可以克服现有技术中风电机组惯量响应能力利用不充分、转矩、电流等物理量难以控制在合理范围内、对电力系统的频率稳定支撑特性不够优化、灵活性差、响应时间长等缺陷,以实现对电网频率稳定的更好支撑。 The variable-speed wind turbine simulation inertia response control method of each embodiment of the present invention includes: based on the maximum wind energy power tracking control strategy, according to the wind speed vw at the hub of the wind turbine and the wind turbine speed ωr, the maximum possible wind power captured by the wind turbine is obtained; The maximum wind energy power that can be captured by the wind turbine is set as the reference value P0 of the active power control of the wind turbine; on the basis of the maximum wind energy power tracking control, additional control is added by using the grid frequency value, and according to the operating conditions of the wind turbine, through the look-up table Or on-line tuning method for short-term constant power support, to realize the simulated inertia response, and at the same time realize the recovery process of the active power of the wind turbine according to a certain power curve; the inherent moment of inertia of the rotor of the wind turbine can be used to realize the simulated inertia control of the wind turbine, for The power grid provides transient active power support; thus it can overcome the insufficient utilization of the inertia response capability of wind turbines in the prior art, the difficulty in controlling physical quantities such as torque and current within a reasonable range, the insufficient optimization of the frequency stability support characteristics of the power system, and poor flexibility , Long response time and other defects, in order to achieve better support for grid frequency stability.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。 Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明 Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中: The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:
图1为本发明变速风电机组模拟惯量响应控制方法中风电机组模拟惯量响应控制框图; Fig. 1 is the control block diagram of the simulated inertia response control of the wind turbine in the variable speed wind turbine simulated inertia response control method of the present invention;
图2为本发明变速风电机组模拟惯量响应控制方法中风电机组风轮机捕获的机械功率和转子转速的关系曲线图;在图2中同时标示了模拟惯量响应控制方法的转速、功率变化情况; Fig. 2 is a graph showing the relationship between the mechanical power captured by the wind turbine of the wind turbine and the rotor speed in the control method for the simulated inertia response of the variable speed wind turbine according to the present invention; Fig. 2 also indicates the changes in the speed and power of the simulated inertia response control method;
图3为本发明变速风电机组模拟惯量响应控制方法中风电机组模拟惯量响应控制过程中电磁功率、机械功率随时间变化的曲线图; Fig. 3 is a curve diagram of electromagnetic power and mechanical power changing with time in the wind turbine simulated inertia response control method of the present invention;
图4为本发明变速风电机组模拟惯量响应控制方法中另一种参数设定方法下的风电机组模拟惯量响应控制过程中电磁功率、机械功率随时间变化的曲线图。 Fig. 4 is a graph showing the variation of electromagnetic power and mechanical power with time during the simulated inertia response control process of the wind turbine under another parameter setting method in the variable-speed wind turbine simulated inertia response control method of the present invention.
具体实施方式 Detailed ways
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。 The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
为了克服现有控制方法中存在的问题,实现有效的变速风电机组惯量响应控制和暂态有功功率支撑,同时有效避免风电机组转速过低、恢复转矩过大等问题的发生;根据本发明实施例,如图1-图4所示,提供了一种变速风电机组模拟惯量响应控制方法,涉及利用风电机组的转子惯量和动能实现模拟惯量响应或暂态有功功率支撑的控制技术。 In order to overcome the problems existing in the existing control methods, realize effective variable-speed wind turbine inertia response control and transient active power support, and effectively avoid the occurrence of problems such as too low wind turbine speed and excessive recovery torque; according to the present invention For example, as shown in Figures 1-4, a variable-speed wind turbine simulation inertia response control method is provided, which involves using the rotor inertia and kinetic energy of the wind turbine to realize the control technology of simulated inertia response or transient active power support.
本实施例的变速风电机组模拟惯量响应控制方法,针对具有变速控制功能的双馈异步或者全功率变流器类型的风电机组,通过变速控制调节储存在风电机组转动部件中的动能,利用风电机组转子的固有转动惯量,实现风电机组并网的模拟惯量控制,为电网提供暂态有功功率支撑。 The variable-speed wind turbine simulated inertia response control method of this embodiment is aimed at double-fed asynchronous or full-power converter type wind turbines with variable speed control functions, and adjusts the kinetic energy stored in the rotating parts of the wind turbine through variable speed control. The inherent moment of inertia of the rotor realizes the analog inertia control of wind turbine grid-connected and provides transient active power support for the grid.
本实施例的变速风电机组模拟惯量响应控制方法,是在风电机组最大功率跟踪控制策略的基础上,根据电网频率变化,通过附加控制环节,相应的调整风电机组有功功率控制参考值,实现风电机组对电网的模拟惯量响应。 The variable-speed wind turbine simulation inertia response control method in this embodiment is based on the maximum power tracking control strategy of the wind turbine, and according to the frequency change of the power grid, through additional control links, the active power control reference value of the wind turbine is correspondingly adjusted to realize the wind turbine. Simulated inertial response to the grid.
参考图1-图4,关于本实施例的变速风电机组模拟惯量响应控制方法,具体说明如下: Referring to Fig. 1-Fig. 4, the method for controlling the simulated inertia response of the variable-speed wind turbine in this embodiment is specifically described as follows:
风电机组是一种将风能转化为电能的发电设备。其通过风轮机将风能转化为机械能,通过传动装置将机械能从风轮机传导到发电机,发电机将机械能转化为电能,然后输送到电力系统中。变速风电机组一般是指安装有电力电子变换器的能够通过变换器控制实现转子转速在一定范围内连续可调,从而针对不同的风速,控制相应的转速和风轮机桨距角,使得风轮机运行于最大风能功率跟踪状态或者额定功率状态,从而最大限度的利用风能资源。 A wind turbine is a power generation device that converts wind energy into electrical energy. It converts wind energy into mechanical energy through the wind turbine, and transmits the mechanical energy from the wind turbine to the generator through the transmission device, and the generator converts the mechanical energy into electrical energy, and then transmits it to the power system. Variable-speed wind turbines generally refer to those equipped with power electronic converters that can continuously adjust the rotor speed within a certain range through the control of the converter, so as to control the corresponding speed and pitch angle of the wind turbine for different wind speeds, so that the wind turbine operates at Maximum wind energy power tracking state or rated power state, so as to maximize the use of wind energy resources.
风电机组的有功功率控制示意图如图1所示。风电机组通过安装在机舱上的风能策略装置获得风电机组轮毂处的风速vw的数值和方向。风电机组转速ωr可以通过安装在转子上的转速测量装置,或者通过测量电压、电流的数值估算得到。最大风能功率跟踪控制策略依据风速vw和转速ωr可以获得风轮机最大可能捕获的风能功率,并以此设定风电机组有功控制的参考值P0。 The schematic diagram of active power control of wind turbine is shown in Fig.1. The wind turbine obtains the value and direction of the wind speed vw at the hub of the wind turbine through the wind energy strategy device installed on the nacelle. The wind turbine speed ωr can be estimated by the speed measuring device installed on the rotor, or by measuring the voltage and current values. The maximum wind energy power tracking control strategy can obtain the maximum wind energy power captured by the wind turbine according to the wind speed vw and the speed ωr, and set the reference value P0 of the active power control of the wind turbine.
为实现风电机组的模拟惯量响应,通过锁相环等电网频率测量设备可以获得电网频率f,通过附加控制环节生成有功功率附加控制的参考值ΔP,并叠加到风电机组最大风能跟踪控制参考值P0之上。此时风电机组的有功功率控制参考值为P0+ΔP。暂时的附加控制环节将通过释放和恢复转子的动能实现模拟惯量响应。 In order to realize the simulated inertia response of wind turbines, the grid frequency f can be obtained through grid frequency measurement equipment such as phase-locked loops, and the reference value ΔP for additional control of active power is generated through additional control links, and superimposed on the maximum wind energy tracking control reference value P0 of wind turbines above. At this time, the active power control reference value of the wind turbine is P0+ΔP. A temporary additional control link will simulate the inertial response by releasing and recovering the kinetic energy of the rotor.
附加控制环节采用类似继电器式的控制策略。当电网频率f变化幅值Δf大于预定的阈值时,附加控制环节发生作用。当电网频率f变化幅值Δf在预定的阈值的范围之内时,附加控制环节不发生作用。频率变化Δf的阈值的设定使得模拟惯量响应控制只对电网频率大扰动发生响应,对于稳态调频等电网频率小干扰不产生响应。阈值可以参考电力系统稳态运行允许的频率波动范围进行设定。 The additional control link adopts a control strategy similar to a relay. When the variation amplitude Δf of the grid frequency f is greater than a predetermined threshold, the additional control link takes effect. When the variation amplitude Δf of the grid frequency f is within the range of the predetermined threshold, the additional control link does not take effect. The threshold of frequency change Δf is set so that the analog inertia response control only responds to large grid frequency disturbances, and does not respond to small grid frequency disturbances such as steady-state frequency modulation. The threshold can be set with reference to the frequency fluctuation range allowed by the steady state operation of the power system.
以电网大扰动导致频率降低为例,当电网频率降低的幅值超过一定的阈值后,附加控制环节产生一定时间tdcc的正值的控制信号ΔP1,促使风电机组在最大功率跟踪控制策略对应的有功功率P0的基础上,有功功率(电磁功率)暂时维持P0+ΔP1,实现模拟惯性响应和暂态有功功率支撑,同时转子释放动能,转速下降,偏离风电机组正常运行状态。在模拟惯量响应和暂态有功功率支撑之后,附加控制环节将产生负值的控制信号ΔP2,使得有功功率(电磁功率)P0+ΔP2暂时小于风轮机捕获的机械功率,从而转子转速升高、动能增加,风电机组逐步恢复到正常运行状态。ΔP2作用的时间为tacc。在恢复的过程中,风电机组输出的有功功率取决于P0+ΔP2,小于风电机组正常运行时输出的有功功率,但是通过合理的设定附加控制的作用时间tdcc,可以避开电网频率的下降过程,从而获得良好的电网频率响应特性。ΔP1、ΔP2可以是固定数值,也可以是随时间变化的变量。 Taking the frequency reduction caused by the large disturbance of the power grid as an example, when the magnitude of the power grid frequency reduction exceeds a certain threshold, the additional control link generates a control signal ΔP1 with a positive value of tdcc for a certain period of time, prompting the wind turbine to follow the active power corresponding to the maximum power tracking control strategy. On the basis of power P0, the active power (electromagnetic power) is temporarily maintained at P0+ΔP1 to realize simulated inertial response and transient active power support. At the same time, the rotor releases kinetic energy, the speed drops, and deviates from the normal operating state of the wind turbine. After simulating the inertia response and transient active power support, the additional control link will generate a negative control signal ΔP2, so that the active power (electromagnetic power) P0+ΔP2 is temporarily smaller than the mechanical power captured by the wind turbine, so that the rotor speed increases and the kinetic energy increase, the wind turbines will gradually return to normal operation. The time of action of ΔP2 is tacc. In the recovery process, the active power output by the wind turbine depends on P0+ΔP2, which is smaller than the active power output by the wind turbine during normal operation, but by setting the action time tdcc of the additional control reasonably, the grid frequency can be avoided. , so as to obtain good grid frequency response characteristics. ΔP1 and ΔP2 can be fixed values or variables that change with time.
附加控制环节的控制参数ΔP1、ΔP2、tdcc受到风电机组物理参数的限制。风电机组的转速需要控制在最大运行转速和最小运行转速之间。风电机组的转矩需要控制在一定范围内,避免产生造成风轮机等部件损坏的机械载荷。其他限制条件还包括功率、转子电流、变流器各项参数等。 The control parameters ΔP1, ΔP2, and tdcc of the additional control link are limited by the physical parameters of the wind turbine. The speed of the wind turbine needs to be controlled between the maximum operating speed and the minimum operating speed. The torque of the wind turbine needs to be controlled within a certain range to avoid mechanical loads that cause damage to wind turbines and other components. Other limiting conditions include power, rotor current, and various parameters of the converter.
双馈异步电机的附加控制的作用机制如图2所示。图中曲线106是在一定的风速下风轮机捕获的机械功率与转速的关系曲线,对于不同的风速,通过控制转速,可以使得风轮机实现最大风能功率跟踪,各种风速下最大风能捕获功率和转速的关系如曲线105所示。
The action mechanism of the additional control of the doubly-fed asynchronous motor is shown in Figure 2.
如图2所示,假设在电网频率发生大扰动事件前,风电机组工作于点101,点101是通过转速控制得到的风轮机捕获功率曲线106上的功率最大的点。大扰动发生后,频率变化超出阈值,附加控制环节根据风电机组转子能够释放的最大动能情况得到附加功率控制参考值ΔP1,风电机组工作于点102,tdcc时间后,风电机组转速下降,风轮机机械功率下降,风电机组工作于点103。ΔP1的选择根据风电机组从目前转速下降到最低允许转速所能提供的动能决定,典型选取值为风电机组额定功率的5-10%。时间tdcc的选择根据风电机组的转速和功率确定。风电机组的转速必须在最低转速之上。由于机械功率下降,ΔP2的幅值要大于等于机械功率下降的幅值才能保持风电机组稳定运行。而受转矩的限制,风电机组的功率变化量ΔP1和ΔP2幅值之和应当不超过一定数值。
As shown in FIG. 2 , it is assumed that before a large disturbance event occurs in the grid frequency, the wind turbine works at
如图2所示,当辅助控制环节(即附加控制环节)的输出由ΔP1变为ΔP2时,风电机组运行点由点103变为点104。ΔP2的选择可以采取多种方式,可以保持常数沿曲线108恢复到正常运行状态点101;也可以保持小于机械功率一定数值按照恒定加速功率Pacc恢复到正常运行状态点101;还可以采用其他合理的曲线和数值。
As shown in Figure 2, when the output of the auxiliary control link (that is, the additional control link) changes from ΔP1 to ΔP2, the operating point of the wind turbine changes from
图3所示为风电机组按照图2所示的模拟惯量响应控制过程中电磁功率、机械功率随时间变化的情况。曲线207表示风电机组有功功率控制参考值,曲线208表示风轮机输出的机械功率。大扰动发生前,风电机组运行于功率P0。扰动发生时,风电机组运行点由点201变为点202。按照有功功率参考值P0+ΔP1,风电机组从点202运行状态逐渐变化到点203。此时,附加控制环节的输出由ΔP1变为ΔP2,风电机组运行点由点203变为点204。随后,ΔP2可以保持常数沿从点204到点206的曲线恢复到正常运行状态,也可以按照恒定加速功率Pacc沿从点205到点205的曲线恢复到正常运行状态点。
Figure 3 shows the change of electromagnetic power and mechanical power with time during the control process of the wind turbine according to the simulated inertia response shown in Figure 2.
图4所示为当采用一定数值的ΔP1实现模拟惯量响应时,受转速、转矩等参数的限制,时间tdcc未达到预计的数值,为提供良好的惯量响应特性,有效避开电网频率的下降和恢复的初期过程,将参数ΔP2的数值选择为机械功率下降的数值,并维持一段时间,这个过程由图中点304到点305的直线表示。然后再采用更大的ΔP2数值按照一定的取值方法使得风电机组恢复到正常运行状态。
Figure 4 shows that when a certain value of ΔP1 is used to realize the simulated inertia response, limited by parameters such as speed and torque, the time tdcc does not reach the expected value, in order to provide good inertia response characteristics and effectively avoid the drop of grid frequency In the initial process of recovery, the value of the parameter ΔP2 is selected as the value of the mechanical power drop and maintained for a period of time. This process is represented by the straight line from
控制参数ΔP1的确定也可以按照惯量响应的需要,选择分段曲线、渐变曲线等各种形式的参数设定,从而可以根据需要获得前期数值较大从而有效在扰动发生时快速实现惯量响应特性;也可以逐渐增大至一定数值,从而避免暂态转矩较大的过调量。 The control parameter ΔP1 can also be determined according to the needs of the inertia response, and various forms of parameter settings such as segmented curves and gradual curves can be selected, so that a larger value in the previous period can be obtained according to the needs, so that the inertia response characteristics can be quickly realized when the disturbance occurs; It can also be gradually increased to a certain value, so as to avoid the large overshoot of the transient torque.
控制参数ΔP1、ΔP2、tdcc的确定取决于风电机组运行工况,可以采用查表法或者在线整定的方法。在线整定方法是根据风电机组的实时运行状态和风速等气象测量参数,通过上述的控制策略计算确定附加控制环节的控制参数。查表法是通过仿真计算和实验测试得到与风速、转速等参数相对应的ΔP1、ΔP2、tdcc参数表,利用风速、转速等参数的数值查表获得附加控制环节的控制参数。 The determination of the control parameters ΔP1, ΔP2, and tdcc depends on the operating conditions of the wind turbine, and the table look-up method or online setting method can be used. The online tuning method is to calculate and determine the control parameters of the additional control link through the above-mentioned control strategy according to the meteorological measurement parameters such as the real-time operation status of the wind turbine and wind speed. The look-up table method is to obtain the ΔP1, ΔP2, tdcc parameter tables corresponding to the wind speed, speed and other parameters through simulation calculation and experimental test, and use the numerical look-up table of the wind speed, speed and other parameters to obtain the control parameters of the additional control link.
上述实施例的变速风电机组模拟惯量响应控制方法,采用类似继电器式的控制策略,当电网频率变化超过预定的阈值时,附加控制环节发生作用。以电网频率降低为例,当电网频率降低的幅值超过一定的阈值后,附加控制环节产生一定时间tdcc的电磁功率功率增大的控制信号ΔP1,促使风电机组在最大功率跟踪控制策略对应的有功功率P0的基础上,有功功率(电磁功率)暂时维持P0+ΔP1,实现模拟惯性响应和暂态有功功率支撑,同时转子释放动能,转速下降,偏离风电机组正常运行状态。在模拟惯量响应和暂态有功功率支撑之后,附加控制环节将产生负值的控制信号ΔP2,使得有功功率(电磁功率)P0+ΔP2暂时小于风轮机捕获的机械功率,从而转子转速升高,动能增加,风电机组逐步恢复到正常运行状态。在恢复的过程中,风电机组输出的有功功率取决于P0+ΔP2,小于风电机组正常运行时输出的有功功率,但是通过合理的设定附加控制的作用时间tdcc,可以避开电网频率的下降过程,从而获得良好的电网频率响应特性。ΔP1、ΔP2可以是固定数值,也可以是随时间变化的变量。 The simulated inertia response control method for variable-speed wind turbines in the above embodiments adopts a relay-like control strategy, and when the grid frequency changes beyond a predetermined threshold, an additional control link takes effect. Taking the reduction of the grid frequency as an example, when the amplitude of the grid frequency reduction exceeds a certain threshold, the additional control link generates a control signal ΔP1 to increase the electromagnetic power of tdcc for a certain period of time, so as to prompt the wind turbine to follow the active power corresponding to the maximum power tracking control strategy. On the basis of power P0, the active power (electromagnetic power) is temporarily maintained at P0+ΔP1 to realize simulated inertial response and transient active power support. At the same time, the rotor releases kinetic energy, the speed drops, and deviates from the normal operating state of the wind turbine. After simulating the inertia response and transient active power support, the additional control link will generate a negative control signal ΔP2, so that the active power (electromagnetic power) P0+ΔP2 is temporarily smaller than the mechanical power captured by the wind turbine, so that the rotor speed increases and the kinetic energy increase, the wind turbines will gradually return to normal operation. In the recovery process, the active power output by the wind turbine depends on P0+ΔP2, which is smaller than the active power output by the wind turbine during normal operation, but by setting the action time tdcc of the additional control reasonably, the grid frequency can be avoided. , so as to obtain good grid frequency response characteristics. ΔP1 and ΔP2 can be fixed values or variables that change with time.
综上所述,本发明上述各实施例的变速风电机组模拟惯量响应控制方法,至少可以达到以下有益效果: In summary, the variable-speed wind turbine simulation inertia response control methods of the above-mentioned embodiments of the present invention can at least achieve the following beneficial effects:
⑴频率变化阈值的设定使得模拟惯量响应控制只对电网频率大扰动发生响应,对于稳态调频等电网频率小干扰不产生响应。 (1) The setting of the frequency change threshold makes the analog inertia response control only respond to large grid frequency disturbances, and does not respond to small grid frequency disturbances such as steady-state frequency modulation.
⑵控制参数ΔP1、ΔP2、tdcc的确定不需要获取频率变化速率、频率偏差变化速率、频率偏差幅值、频率偏差的积分等参数中的任何一项。 (2) The determination of the control parameters ΔP1, ΔP2, and tdcc does not need to obtain any one of the parameters such as the frequency change rate, the frequency deviation change rate, the frequency deviation amplitude, and the integral of the frequency deviation.
⑶附加控制环节的控制参数ΔP1、ΔP2、tdcc受到风电机组物理参数的限制。风电机组能够释放的动能Ek=0.5×J×ω2,取决于转动惯量J和转速ω的变化范围。风电机组的转速需要控制在最大运行转速和最小运行转速之间。风电机组的转矩需要控制在一定范围内,避免产生造成风轮机等部件损坏的机械载荷。其他限制条件还包括功率、转子电流、变流器各项参数等。 (3) The control parameters ΔP1, ΔP2, and tdcc of the additional control link are limited by the physical parameters of the wind turbine. The kinetic energy Ek=0.5×J×ω2 that the wind turbine can release depends on the variation range of the moment of inertia J and the rotational speed ω. The speed of the wind turbine needs to be controlled between the maximum operating speed and the minimum operating speed. The torque of the wind turbine needs to be controlled within a certain range to avoid mechanical loads that cause damage to wind turbines and other components. Other limiting conditions include power, rotor current, and various parameters of the converter.
⑷控制参数ΔP1、ΔP2、tdcc的确定取决于风电机组运行工况,可以采用查表法或者在线整定的方法。查表法是通过预先设定的参数表,利用风速、风电机组转子转速信息查表获得附加控制环节的控制参数。在线整定方法是根据风电机组的实时运行状态和风速等气象测量参数,通过计算确定附加控制环节的控制参数。 (4) The determination of the control parameters ΔP1, ΔP2, and tdcc depends on the operating conditions of the wind turbine, and the method of looking up the table or online setting can be used. The table look-up method is to use the wind speed and wind turbine rotor speed information to look up the table to obtain the control parameters of the additional control link through the preset parameter table. The online tuning method is to determine the control parameters of the additional control link through calculation according to the real-time operation status of the wind turbine and meteorological measurement parameters such as wind speed.
⑸可以充分利用风电机组的转动惯量,为电网频率扰动提供惯量响应,同时保证风电机组的各项参数处于合理的运行范围之内,重点考虑避免风电机组转速过低、转矩过大、转子电流过大等问题。该变速风电机组模拟惯量响应控制方法,可以有效降低频率大扰动事件发生后的频率偏差幅值和变化速率,提升电力系统的频率稳定性。 (5) It can make full use of the moment of inertia of the wind turbine to provide an inertia response for the frequency disturbance of the grid, and at the same time ensure that the parameters of the wind turbine are within a reasonable operating range. Too big and so on. The variable-speed wind turbine simulation inertia response control method can effectively reduce the frequency deviation amplitude and change rate after a large frequency disturbance event occurs, and improve the frequency stability of the power system.
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 Finally, it should be noted that: the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it still The technical solutions recorded in the foregoing embodiments may be modified, or some technical features thereof may be equivalently replaced. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013103680375A CN103441529A (en) | 2013-08-22 | 2013-08-22 | Variable-speed wind turbine generator inertia response simulating control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013103680375A CN103441529A (en) | 2013-08-22 | 2013-08-22 | Variable-speed wind turbine generator inertia response simulating control method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103441529A true CN103441529A (en) | 2013-12-11 |
Family
ID=49695211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2013103680375A Pending CN103441529A (en) | 2013-08-22 | 2013-08-22 | Variable-speed wind turbine generator inertia response simulating control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103441529A (en) |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103915859A (en) * | 2014-03-26 | 2014-07-09 | 华北电力大学(保定) | Method for controlling double-fed wind power plant capable of improving transient stability of power grid |
| CN105041569A (en) * | 2014-03-11 | 2015-11-11 | 歌美飒创新技术公司 | Wind turbine inertia control system |
| CN105048519A (en) * | 2015-07-27 | 2015-11-11 | 新疆金风科技股份有限公司 | Frequency crossover method and device of direct-driven wind power generator |
| CN105098830A (en) * | 2015-06-29 | 2015-11-25 | 新疆金风科技股份有限公司 | Method and device for controlling high voltage ride through of permanent-magnet direct-driven wind generator set |
| CN105226723A (en) * | 2015-11-19 | 2016-01-06 | 国家电网公司 | A kind of double-fed fan motor unit is based on the virtual inertia control method of wind power tracking Automatic adjusument |
| CN105281623A (en) * | 2015-11-20 | 2016-01-27 | 上海电力学院 | Method for controlling virtual inertia of doubly fed induction wind turbine |
| CN105317632A (en) * | 2015-10-12 | 2016-02-10 | 国家电网公司 | Measuring method for rotational inertia of wind turbine generator unit |
| US20160160839A1 (en) * | 2014-12-09 | 2016-06-09 | State Grid Corporation Of China | Method for controlling inertia response of variable-speed wind turbine generator |
| CN105790297A (en) * | 2014-12-23 | 2016-07-20 | 华中科技大学 | Internal potential response-based inertia control method and device for full-power wind generator |
| CN106286128A (en) * | 2016-09-21 | 2017-01-04 | 华北电力大学 | The system frequency control method of a kind of off-load variable-speed wind-power unit and device |
| CN107656436A (en) * | 2017-08-11 | 2018-02-02 | 中国电力科学研究院 | The simulated inertia control method for coordinating and device of a kind of virtual plant |
| CN107742903A (en) * | 2017-11-29 | 2018-02-27 | 西南交通大学 | The speed recovery method when the wind turbine unit participates in a frequency regulation and exits the frequency regulation |
| CN107991576A (en) * | 2016-10-27 | 2018-05-04 | 中国电力科学研究院 | Virtual the inertia test method and its measuring device of a kind of virtual synchronous generator |
| CN108767907A (en) * | 2018-05-04 | 2018-11-06 | 南京理工大学 | A kind of wind power plant participates in the active distribution method of Automatic Generation Control |
| CN109936150A (en) * | 2017-12-15 | 2019-06-25 | 国家电网公司 | Optimal control method, device and controller for virtual inertia control |
| CN111049359A (en) * | 2019-12-27 | 2020-04-21 | 深圳市越疆科技有限公司 | A power control method and system |
| CN111164846A (en) * | 2017-10-10 | 2020-05-15 | 维斯塔斯风力系统集团公司 | Method for increasing power in an electric power installation |
| CN111262256A (en) * | 2018-11-30 | 2020-06-09 | 北京金风科创风电设备有限公司 | Control method and device for primary frequency modulation of wind generating set |
| CN111509764A (en) * | 2019-01-30 | 2020-08-07 | 中国电力科学研究院有限公司 | A control method, controller and system for wind farm inertia response |
| CN111987742A (en) * | 2020-07-29 | 2020-11-24 | 明阳智慧能源集团股份公司 | Wind turbine generator virtual inertia control method and system, storage medium and computing device |
| CN112332440A (en) * | 2020-08-18 | 2021-02-05 | 华北电力大学(保定) | Doubly-fed wind turbine generator inertia supporting frequency control method based on rotor kinetic energy |
| CN112886638A (en) * | 2021-01-29 | 2021-06-01 | 国网上海市电力公司 | Generator inertia online identification method and system |
| CN113193576A (en) * | 2021-06-10 | 2021-07-30 | 荣信汇科电气股份有限公司 | Method for restraining subsynchronous transient oscillation of generator set |
| CN113489028A (en) * | 2021-08-17 | 2021-10-08 | 中国华能集团清洁能源技术研究院有限公司 | Wind power plant primary frequency modulation control method and control system |
| CN113574270A (en) * | 2019-03-22 | 2021-10-29 | 西门子歌美飒可再生能源公司 | Estimation of inertial response power for wind turbines |
| CN113852095A (en) * | 2021-08-27 | 2021-12-28 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine inertia response control method and system |
| CN114142490A (en) * | 2021-11-17 | 2022-03-04 | 山东大学 | Wind and water cooperative frequency modulation control method, controller and system considering water hammer effect |
| CN114301088A (en) * | 2021-12-13 | 2022-04-08 | 三一重能股份有限公司 | Inertia control method, device, equipment, medium and wind turbine for wind turbine |
| CN115238933A (en) * | 2022-09-23 | 2022-10-25 | 西安德纳检验检测有限公司 | Wind turbine generator inertia response detection method, device and system based on multipoint measurement |
| CN116505556A (en) * | 2023-05-26 | 2023-07-28 | 华能东营河口风力发电有限公司 | Wind farm power control system and method based on primary frequency modulation |
| CN110323789B (en) * | 2019-05-17 | 2024-03-19 | 中国电力科学研究院有限公司 | A wind turbine power control method and system based on virtual inertia simulation |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011099142A1 (en) * | 2010-02-12 | 2011-08-18 | 日本風力開発株式会社 | Wind turbine generator system |
| CN102624026A (en) * | 2012-03-23 | 2012-08-01 | 广东工业大学 | Variable speed wind power system based on variable frequency transformer and its control method |
| CN102709928A (en) * | 2012-05-14 | 2012-10-03 | 南方电网科学研究院有限责任公司 | Emergency frequency modulation control method for micro-grid energy storage system |
-
2013
- 2013-08-22 CN CN2013103680375A patent/CN103441529A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011099142A1 (en) * | 2010-02-12 | 2011-08-18 | 日本風力開発株式会社 | Wind turbine generator system |
| CN102624026A (en) * | 2012-03-23 | 2012-08-01 | 广东工业大学 | Variable speed wind power system based on variable frequency transformer and its control method |
| CN102709928A (en) * | 2012-05-14 | 2012-10-03 | 南方电网科学研究院有限责任公司 | Emergency frequency modulation control method for micro-grid energy storage system |
Non-Patent Citations (2)
| Title |
|---|
| GERMAN CLAUDIO TARNOWSKI等: "Variable Speed Wind Turbines Capability for Temporary Over-Production", 《POWER ENERGY SOCIETY GENERAL MEETING,2009,PES’09,IEEE》 * |
| 王生铁等: "小型风力发电系统的能量优化管理集成控制", 《高电压技术》 * |
Cited By (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105041569A (en) * | 2014-03-11 | 2015-11-11 | 歌美飒创新技术公司 | Wind turbine inertia control system |
| CN105041569B (en) * | 2014-03-11 | 2019-06-21 | 歌美飒创新技术公司 | Wind turbine inertia control system |
| CN103915859B (en) * | 2014-03-26 | 2016-04-27 | 华北电力大学(保定) | The double-fed fan motor field control method of Power Network Transient Stability can be improved |
| CN103915859A (en) * | 2014-03-26 | 2014-07-09 | 华北电力大学(保定) | Method for controlling double-fed wind power plant capable of improving transient stability of power grid |
| US20160160839A1 (en) * | 2014-12-09 | 2016-06-09 | State Grid Corporation Of China | Method for controlling inertia response of variable-speed wind turbine generator |
| CN105790297B (en) * | 2014-12-23 | 2018-03-27 | 华中科技大学 | The inertia control method and device of total power wind-driven generator based on built-in potential response |
| CN105790297A (en) * | 2014-12-23 | 2016-07-20 | 华中科技大学 | Internal potential response-based inertia control method and device for full-power wind generator |
| CN105098830A (en) * | 2015-06-29 | 2015-11-25 | 新疆金风科技股份有限公司 | Method and device for controlling high voltage ride through of permanent-magnet direct-driven wind generator set |
| CN105048519A (en) * | 2015-07-27 | 2015-11-11 | 新疆金风科技股份有限公司 | Frequency crossover method and device of direct-driven wind power generator |
| CN105048519B (en) * | 2015-07-27 | 2018-03-16 | 新疆金风科技股份有限公司 | Direct wind-driven generator frequency traversing method and device |
| CN105317632B (en) * | 2015-10-12 | 2020-04-24 | 国家电网公司 | Method for measuring rotational inertia of wind turbine generator |
| CN105317632A (en) * | 2015-10-12 | 2016-02-10 | 国家电网公司 | Measuring method for rotational inertia of wind turbine generator unit |
| CN105226723A (en) * | 2015-11-19 | 2016-01-06 | 国家电网公司 | A kind of double-fed fan motor unit is based on the virtual inertia control method of wind power tracking Automatic adjusument |
| CN105226723B (en) * | 2015-11-19 | 2018-02-09 | 国家电网公司 | A kind of virtual inertia control method of double-fed fan motor unit based on wind power tracking automatic adjusument |
| CN105281623A (en) * | 2015-11-20 | 2016-01-27 | 上海电力学院 | Method for controlling virtual inertia of doubly fed induction wind turbine |
| CN106286128A (en) * | 2016-09-21 | 2017-01-04 | 华北电力大学 | The system frequency control method of a kind of off-load variable-speed wind-power unit and device |
| CN106286128B (en) * | 2016-09-21 | 2019-03-26 | 华北电力大学 | A kind of system frequency control method and device of off-load variable-speed wind-power unit |
| CN107991576A (en) * | 2016-10-27 | 2018-05-04 | 中国电力科学研究院 | Virtual the inertia test method and its measuring device of a kind of virtual synchronous generator |
| CN107656436A (en) * | 2017-08-11 | 2018-02-02 | 中国电力科学研究院 | The simulated inertia control method for coordinating and device of a kind of virtual plant |
| CN107656436B (en) * | 2017-08-11 | 2021-02-23 | 中国电力科学研究院 | Virtual power plant simulated inertia coordination control method and device |
| CN111164846B (en) * | 2017-10-10 | 2023-08-11 | 维斯塔斯风力系统集团公司 | Method for increasing power in an electrical installation |
| CN111164846A (en) * | 2017-10-10 | 2020-05-15 | 维斯塔斯风力系统集团公司 | Method for increasing power in an electric power installation |
| CN107742903A (en) * | 2017-11-29 | 2018-02-27 | 西南交通大学 | The speed recovery method when the wind turbine unit participates in a frequency regulation and exits the frequency regulation |
| CN109936150A (en) * | 2017-12-15 | 2019-06-25 | 国家电网公司 | Optimal control method, device and controller for virtual inertia control |
| CN109936150B (en) * | 2017-12-15 | 2024-02-02 | 国家电网公司 | Optimal control method and device for virtual inertia control and controller of optimal control method and device |
| CN108767907A (en) * | 2018-05-04 | 2018-11-06 | 南京理工大学 | A kind of wind power plant participates in the active distribution method of Automatic Generation Control |
| CN111262256B (en) * | 2018-11-30 | 2024-06-14 | 北京金风科创风电设备有限公司 | Control method and equipment for primary frequency modulation of wind generating set |
| CN111262256A (en) * | 2018-11-30 | 2020-06-09 | 北京金风科创风电设备有限公司 | Control method and device for primary frequency modulation of wind generating set |
| CN111509764A (en) * | 2019-01-30 | 2020-08-07 | 中国电力科学研究院有限公司 | A control method, controller and system for wind farm inertia response |
| CN111509764B (en) * | 2019-01-30 | 2023-09-22 | 中国电力科学研究院有限公司 | Control method, controller and system for wind farm inertia response |
| CN113574270A (en) * | 2019-03-22 | 2021-10-29 | 西门子歌美飒可再生能源公司 | Estimation of inertial response power for wind turbines |
| CN110323789B (en) * | 2019-05-17 | 2024-03-19 | 中国电力科学研究院有限公司 | A wind turbine power control method and system based on virtual inertia simulation |
| CN111049359A (en) * | 2019-12-27 | 2020-04-21 | 深圳市越疆科技有限公司 | A power control method and system |
| CN111987742A (en) * | 2020-07-29 | 2020-11-24 | 明阳智慧能源集团股份公司 | Wind turbine generator virtual inertia control method and system, storage medium and computing device |
| CN111987742B (en) * | 2020-07-29 | 2021-12-28 | 明阳智慧能源集团股份公司 | Wind turbine virtual inertia control method, system, storage medium and computing device |
| CN112332440A (en) * | 2020-08-18 | 2021-02-05 | 华北电力大学(保定) | Doubly-fed wind turbine generator inertia supporting frequency control method based on rotor kinetic energy |
| CN112332440B (en) * | 2020-08-18 | 2023-01-24 | 华北电力大学(保定) | Doubly-fed wind turbine generator inertia supporting frequency control method based on rotor kinetic energy |
| CN112886638B (en) * | 2021-01-29 | 2024-04-02 | 国网上海市电力公司 | A method and system for online identification of generator inertia |
| CN112886638A (en) * | 2021-01-29 | 2021-06-01 | 国网上海市电力公司 | Generator inertia online identification method and system |
| CN113193576A (en) * | 2021-06-10 | 2021-07-30 | 荣信汇科电气股份有限公司 | Method for restraining subsynchronous transient oscillation of generator set |
| CN113489028A (en) * | 2021-08-17 | 2021-10-08 | 中国华能集团清洁能源技术研究院有限公司 | Wind power plant primary frequency modulation control method and control system |
| CN113489028B (en) * | 2021-08-17 | 2024-06-04 | 中国华能集团清洁能源技术研究院有限公司 | A wind farm primary frequency modulation control method and control system |
| CN113852095A (en) * | 2021-08-27 | 2021-12-28 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine inertia response control method and system |
| CN113852095B (en) * | 2021-08-27 | 2023-09-29 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine inertia response control method and system |
| CN114142490B (en) * | 2021-11-17 | 2024-04-09 | 山东大学 | Wind-water cooperative frequency modulation control method, controller and system considering water hammer effect |
| CN114142490A (en) * | 2021-11-17 | 2022-03-04 | 山东大学 | Wind and water cooperative frequency modulation control method, controller and system considering water hammer effect |
| CN114301088A (en) * | 2021-12-13 | 2022-04-08 | 三一重能股份有限公司 | Inertia control method, device, equipment, medium and wind turbine for wind turbine |
| CN114301088B (en) * | 2021-12-13 | 2024-11-29 | 三一重能股份有限公司 | Inertia control method, device, equipment and medium of wind turbine generator and wind turbine generator |
| CN115238933B (en) * | 2022-09-23 | 2022-12-09 | 西安德纳检验检测有限公司 | Wind turbine generator inertia response detection method, device and system based on multipoint measurement |
| CN115238933A (en) * | 2022-09-23 | 2022-10-25 | 西安德纳检验检测有限公司 | Wind turbine generator inertia response detection method, device and system based on multipoint measurement |
| CN116505556A (en) * | 2023-05-26 | 2023-07-28 | 华能东营河口风力发电有限公司 | Wind farm power control system and method based on primary frequency modulation |
| CN116505556B (en) * | 2023-05-26 | 2024-01-26 | 华能东营河口风力发电有限公司 | Wind farm power control system and method based on primary frequency modulation |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103441529A (en) | Variable-speed wind turbine generator inertia response simulating control method | |
| Zhou et al. | Adaptive temporary frequency support for DFIG-based wind turbines | |
| Conroy et al. | Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: transient stability studies | |
| EP2532888B1 (en) | Arrangement for generating a control signal for controlling a power output of a power generation system | |
| CN103441524B (en) | Variable speed wind turbine generator frequency control method based on dynamic standby power | |
| US20160160839A1 (en) | Method for controlling inertia response of variable-speed wind turbine generator | |
| Wang et al. | Utilisation of kinetic energy from wind turbine for grid connections: a review paper | |
| CN105515022A (en) | Virtual double-fed induction generator inertia control method coordinated with secondary frequency regulation | |
| CN103955572A (en) | Modeling method for electromechanical transient model of doubly-fed wind power generator set | |
| US20120139350A1 (en) | System and method of integrating wind power and tidal energy | |
| CN103441722B (en) | A kind of real power control method of double-fed fan motor unit | |
| CN103762919A (en) | Power control device and method used for low voltage ride through of direct-drive wind driven generator | |
| US11411519B2 (en) | Method for handling sub-synchronous resonances | |
| CN110601257B (en) | An active photovoltaic inverter inertia compensation control method based on photovoltaic over-allocation | |
| CN111725848A (en) | A fan controllable frequency droop control method suitable for various wind power penetration rates | |
| CN107134814B (en) | Double-fed fan cooperative active standby control method | |
| CN107425542B (en) | Control method of DFIG reactive power compensation during low voltage fault ride-through | |
| CN108512251A (en) | A kind of rotation speed of fan restoration methods and system | |
| CN104659801A (en) | Method for acquiring motor with smooth power | |
| CN108506163A (en) | A kind of double-fed fan motor virtual synchronous machine rotating speed restoration methods, apparatus and system | |
| Lešić et al. | Fault-tolerant control of a blade-pitch wind turbine with inverter-fed generator | |
| Han et al. | Supplementary power control of PMSG-based wind farms for system dynamic stability | |
| CN109667713B (en) | Power increasing control method and device for wind generating set | |
| Iranmanesh et al. | Using Flywheel Energy Storage System to mitigate voltage and power fluctuations due to aeroelastic aspects of wind turbines | |
| Lyu et al. | An active power regulation strategy for wind farm considering wake effect |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131211 |