CN103456510B - A kind of electrode material of ultracapacitor - Google Patents
A kind of electrode material of ultracapacitor Download PDFInfo
- Publication number
- CN103456510B CN103456510B CN201210179883.8A CN201210179883A CN103456510B CN 103456510 B CN103456510 B CN 103456510B CN 201210179883 A CN201210179883 A CN 201210179883A CN 103456510 B CN103456510 B CN 103456510B
- Authority
- CN
- China
- Prior art keywords
- electrode material
- material according
- electrode
- supercapacitor
- aromatic nitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 107
- -1 aromatic nitrile compound Chemical class 0.000 claims abstract description 23
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000178 monomer Substances 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 239000011592 zinc chloride Substances 0.000 claims description 11
- 235000005074 zinc chloride Nutrition 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 5
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 4
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 4
- 239000011565 manganese chloride Substances 0.000 claims description 4
- 235000002867 manganese chloride Nutrition 0.000 claims description 4
- 229940099607 manganese chloride Drugs 0.000 claims description 4
- 229910001510 metal chloride Inorganic materials 0.000 claims description 4
- 229920006391 phthalonitrile polymer Polymers 0.000 claims description 4
- SGLGUTWNGVJXPP-UHFFFAOYSA-N benzene-1,3,5-tricarbonitrile Chemical compound N#CC1=CC(C#N)=CC(C#N)=C1 SGLGUTWNGVJXPP-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- LAQPNDIUHRHNCV-UHFFFAOYSA-N isophthalonitrile Chemical compound N#CC1=CC=CC(C#N)=C1 LAQPNDIUHRHNCV-UHFFFAOYSA-N 0.000 claims description 3
- 229910001507 metal halide Inorganic materials 0.000 claims description 3
- 150000005309 metal halides Chemical group 0.000 claims description 3
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 claims description 3
- HLAGQMFURMNTLW-UHFFFAOYSA-N pyridine-2,4-dicarbonitrile Chemical compound N#CC1=CC=NC(C#N)=C1 HLAGQMFURMNTLW-UHFFFAOYSA-N 0.000 claims description 3
- XNPMXMIWHVZGMJ-UHFFFAOYSA-N pyridine-2,6-dicarbonitrile Chemical class N#CC1=CC=CC(C#N)=N1 XNPMXMIWHVZGMJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 239000003513 alkali Substances 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 21
- 239000011148 porous material Substances 0.000 description 17
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 238000003775 Density Functional Theory Methods 0.000 description 12
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 3
- HFZWRUODUSTPEG-UHFFFAOYSA-N 2,4-dichlorophenol Chemical compound OC1=CC=C(Cl)C=C1Cl HFZWRUODUSTPEG-UHFFFAOYSA-N 0.000 description 3
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000006615 aromatic heterocyclic group Chemical class 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229940079721 copper chloride Drugs 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229960002089 ferrous chloride Drugs 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000006462 rearrangement reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WLPATYNQCGVFFH-UHFFFAOYSA-N 2-phenylbenzonitrile Chemical group N#CC1=CC=CC=C1C1=CC=CC=C1 WLPATYNQCGVFFH-UHFFFAOYSA-N 0.000 description 1
- KAXYYLCSSXFXKR-UHFFFAOYSA-N 4-(4-cyanophenyl)benzonitrile Chemical group C1=CC(C#N)=CC=C1C1=CC=C(C#N)C=C1 KAXYYLCSSXFXKR-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种超级电容器的电极材料,其中,该电极材料为由芳香腈化合物单体聚合得到的聚合产物。本发明提供的电极材料具有高比表面积、丰富的氮含量以及多孔网状结构,该电极材料组装成的超级电容器表现出高比电容、快速充放电和良好的循环稳定性等优点。另外,本发明提供的电极材料可适用于酸体系、碱体系和有机溶液体系等各种类型的超级电容器中,适用面广。与现有商用活性碳电极材料或其他电极材料相比,本发明提供的电极材料具有制备简单高效环保,成本低廉,性能优异等特点。
The invention discloses an electrode material for a supercapacitor, wherein the electrode material is a polymerization product obtained by polymerization of aromatic nitrile compound monomers. The electrode material provided by the invention has high specific surface area, rich nitrogen content and porous network structure, and the supercapacitor assembled from the electrode material shows the advantages of high specific capacitance, fast charging and discharging, good cycle stability and the like. In addition, the electrode material provided by the invention can be applied to various types of supercapacitors such as acid systems, alkali systems and organic solution systems, and has a wide range of applications. Compared with the existing commercial activated carbon electrode materials or other electrode materials, the electrode material provided by the invention has the characteristics of simple preparation, high efficiency, environmental protection, low cost, excellent performance and the like.
Description
技术领域 technical field
本发明涉及一种电极材料,具体地,涉及一种超级电容器的电极材料。The invention relates to an electrode material, in particular to an electrode material for a supercapacitor.
背景技术 Background technique
超级电容器作为一种能源存储器件,具有相对简单的工作原理、高的充放电速率(功率密度)、良好的稳定性和使用寿命,从而成为人们广泛关注和研究的对象(Nat.Mater.,2008.7(11):p.845-854;Chem.Soc.Rev.,2009.38(9):p.2520-2531.)。但是与锂电池相比,超级电容器的能量密度仍然相对较小(Science,2008.321(5889):p.651-652.),其能量密度可通过E=0.5CU2计算(C:比电容,单位F/g;U:电压,单位V),所以当电压相同时,可以通过提高比电容来提高其能量密度。因此,研究具有高比电容特性的物质作为超级电容器的电极材料显得非常重要。目前,研究主要集中于提高材料的比表面积,调节孔径分布,加入金属氧化物提高赝比电容,或引入杂原子(包括氮原子、氧原子、磷原子、硼原子)改变材料电子分布状态等。其中含氮基团的引入不仅有利于改变材料的导电性、浸润性,增加具有电子活性的表面积,而且可以增加赝比电容(EnergyEnviron.Sci.,2010.3(9):p.1238-1251.)。因此引入含氮基团是一种较理想的提高材料比电容特性的方法。As an energy storage device, supercapacitor has relatively simple working principle, high charge and discharge rate (power density), good stability and service life, so it has become the object of extensive attention and research (Nat.Mater.,2008.7 (11): p.845-854; Chem.Soc.Rev., 2009.38(9):p.2520-2531.). However, compared with lithium batteries, the energy density of supercapacitors is still relatively small (Science, 2008.321(5889): p.651-652.), and its energy density can be calculated by E=0.5CU 2 (C: specific capacitance, unit F/g; U: voltage, unit V), so when the voltage is the same, the energy density can be increased by increasing the specific capacitance. Therefore, it is very important to study substances with high specific capacitance characteristics as electrode materials for supercapacitors. At present, the research mainly focuses on increasing the specific surface area of the material, adjusting the pore size distribution, adding metal oxides to improve the pseudo-specific capacitance, or introducing heteroatoms (including nitrogen atoms, oxygen atoms, phosphorus atoms, boron atoms) to change the electron distribution state of the material, etc. The introduction of nitrogen-containing groups is not only conducive to changing the conductivity and wettability of the material, increasing the surface area with electronic activity, but also increasing the pseudospecific capacitance (EnergyEnviron.Sci., 2010.3(9):p.1238-1251.) . Therefore, the introduction of nitrogen-containing groups is an ideal method to improve the specific capacitance characteristics of materials.
一般商用的超级电容器活性材料为活化改性后的活性碳材料,它们一般采用的原料为椰壳、沥青、石油焦等,由其组装的超级电容器的比电容一般小于200F/g。而且由于此类活性碳的杂质含量高,因此漏电流大,电压保持性能差(Carbon,2007.45(7):p.1439-1445;JournalofPowerSources,2008.175(1):p.675-679.)。所以,开发结构可控且性能稳定的材料对于超级电容器的发展非常重要。The general commercial supercapacitor active material is activated carbon material after activation and modification. The raw materials they generally use are coconut shell, pitch, petroleum coke, etc. The specific capacitance of the supercapacitor assembled from it is generally less than 200F/g. Moreover, due to the high impurity content of this type of activated carbon, the leakage current is large and the voltage retention performance is poor (Carbon, 2007.45(7): p.1439-1445; Journal of Power Sources, 2008.175(1): p.675-679.). Therefore, the development of materials with controllable structure and stable performance is very important for the development of supercapacitors.
发明内容 Contents of the invention
本发明的目的是提供一种具有良好比电容特性、结构可控且性能稳定的超级电容器电极材料。The purpose of the present invention is to provide a supercapacitor electrode material with good specific capacitance characteristics, controllable structure and stable performance.
为了实现上述目的,本发明提供了一种超级电容器的电极材料,其中,该电极材料为由芳香腈化合物单体聚合得到的聚合产物。In order to achieve the above object, the present invention provides an electrode material for a supercapacitor, wherein the electrode material is a polymerization product obtained by polymerization of aromatic nitrile compound monomers.
本发明提供的超级电容器电极材料的比表面积大、具有网状结构、氮含量丰富且导电性良好。另外,本发明提供的电极材料采用小分子(芳香腈化合物单体)聚合而成,因此,可以通过控制小分子的类型以及反应条件来控制得到的材料的比表面积、孔径分布、氮含量,进而调节其比电容特性。此外,本发明提供的电极材料的制备过程简单且高效环保。The supercapacitor electrode material provided by the invention has a large specific surface area, a network structure, rich nitrogen content and good conductivity. In addition, the electrode material provided by the present invention is formed by polymerizing small molecules (aromatic nitrile compound monomers). Therefore, the specific surface area, pore size distribution, and nitrogen content of the obtained material can be controlled by controlling the type of small molecules and reaction conditions, and then Adjust its specific capacitance characteristics. In addition, the preparation process of the electrode material provided by the invention is simple, efficient and environmentally friendly.
将本发明的电极材料进行不同体系的超级电容器的组装测试及应用。测试结果表明此类材料具有优异的超级电容器性能,且本发明提供的电极材料可适用于酸体系、碱体系和有机溶液体系等各种类型的超级电容器中,适用面广。The electrode material of the present invention is subjected to assembly tests and applications of supercapacitors of different systems. The test results show that this type of material has excellent supercapacitor performance, and the electrode material provided by the invention can be applied to various types of supercapacitors such as acid system, alkali system and organic solution system, and has a wide range of applications.
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the following detailed description.
附图说明 Description of drawings
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention. In the attached picture:
图1是由实施例1的方法(以对苯二甲腈(p-DCB)为原料,聚合温度为550℃)制备的电极材料的透射电子显微镜(TEM)图;Figure 1 is a transmission electron microscope (TEM) image of the electrode material prepared by the method of Example 1 (using terephthalonitrile (p-DCB) as a raw material, and the polymerization temperature is 550°C);
图2是由实施例1的方法(以对苯二甲腈(p-DCB)为原料,聚合温度为550℃)制备的电极材料的等温吸脱附曲线以及孔径分布图;Figure 2 is the isothermal adsorption-desorption curve and pore size distribution diagram of the electrode material prepared by the method of Example 1 (using terephthalonitrile (p-DCB) as the raw material, the polymerization temperature is 550°C);
图3是通过恒流充放电测试测定由实施例1的方法(以对苯二甲腈(p-DCB)为原料,聚合温度为550℃)制备的电极材料组装的超级电容器的比电容-电流密度曲线图;Figure 3 is the specific capacitance-current of the supercapacitor assembled with the electrode material prepared by the method of Example 1 (using terephthalonitrile (p-DCB) as the raw material and the polymerization temperature at 550°C) by constant current charge and discharge test Density graph;
图4是在电流密度为10A/g时测得的由实施例1的方法(以对苯二甲腈(p-DCB)为原料,聚合温度为550℃)制备的电极材料组装的超级电容器的比电容-循环次数曲线图。Figure 4 is the measured current density of the supercapacitor assembled from the electrode material prepared by the method of Example 1 (using terephthalonitrile (p-DCB) as the raw material and the polymerization temperature at 550°C) when the current density is 10A/g. Specific capacitance-cycle number curve.
具体实施方式 detailed description
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
本发明提供了一种超级电容器的电极材料,其中,该电极材料为由芳香腈化合物单体聚合得到的聚合产物。The invention provides an electrode material for a supercapacitor, wherein the electrode material is a polymerization product obtained by polymerization of aromatic nitrile compound monomers.
本发明的发明人发现,目前为止,在现有技术中,没有公开将由芳香腈化合物单体作为原料聚合得到的聚合产物应用于超级电容器的电极材料。The inventors of the present invention found that, so far, in the prior art, there is no disclosure that the polymerization product obtained by polymerization of aromatic nitrile compound monomer as a raw material is applied to the electrode material of a supercapacitor.
在本发明提供的电极材料中,所述芳香腈化合物的种类可选择的范围较宽,所述芳香腈化合物可以包括氰基取代的芳环化合物和/或氰基取代的芳杂环化合物。因为含有氰基,所以所述芳香腈化合物容易发生聚合以及重排反应;又因其含有芳香环或芳杂环,所以聚合、重排后的产物结构是连续的大π体系结构,有利于电子的传输。优选情况下,所述氰基取代的芳环化合物为氰基苯和/或氰基联苯,氰基取代基的个数至少为2个,优选为2-4个;所述氰基取代的芳杂环化合物为氰基取代的六元芳杂环化合物,杂原子为N,更优选为氰基取代的吡啶,氰基取代基的个数至少为2个,优选为2-4个。进一步优选,所述芳香腈化合物选自对苯二甲腈(p-DCB)、间苯二甲腈(m-DCB)、邻苯二甲腈(o-DCB)、1,3,5-三氰基苯(TCB)、2,6-二氰基吡啶(2,6-DCP)、2,4-二氰基吡啶(2,4-DCP)和4,4’-二氰基联苯(DCBP)中的一种或多种,但不限于此。In the electrode material provided by the present invention, the types of aromatic nitrile compounds can be selected in a wide range, and the aromatic nitrile compounds may include cyano-substituted aromatic ring compounds and/or cyano-substituted aromatic heterocyclic compounds. Because of containing cyano groups, the aromatic nitrile compound is prone to polymerization and rearrangement reactions; and because it contains aromatic rings or aromatic heterocycles, the product structure after polymerization and rearrangement is a continuous large π system structure, which is beneficial to electronic transmission. Preferably, the cyano-substituted aromatic ring compound is cyanobenzene and/or cyanobiphenyl, and the number of cyano substituents is at least 2, preferably 2-4; the cyano-substituted The aromatic heterocyclic compound is a cyano-substituted six-membered aromatic heterocyclic compound, the heteroatom is N, more preferably cyano-substituted pyridine, and the number of cyano substituents is at least 2, preferably 2-4. Further preferably, the aromatic nitrile compound is selected from terephthalonitrile (p-DCB), isophthalonitrile (m-DCB), phthalonitrile (o-DCB), 1,3,5-tri Cyanobenzene (TCB), 2,6-dicyanopyridine (2,6-DCP), 2,4-dicyanopyridine (2,4-DCP) and 4,4'-dicyanopyridine ( DCBP), but not limited to.
本发明提供的电极材料中,所述聚合产物优选具有多孔网状结构,所述多孔网状结构可增加聚合产物的比表面积,从而改善聚合产物的比电容特性,使其作为超级电容器的电极材料具有更佳的性能。进一步优选,所述聚合产物的比表面积为300-3000m2/g,优选为1000-2800m2/g,孔径分布为0.5-10nm。本发明中,所述聚合产物的比表面以及孔径分布采用77K下氮气的等温吸脱附方法测定,通过BET方法计算其比表面积,通过DFT方法计算其孔径分布。In the electrode material provided by the present invention, the polymer product preferably has a porous network structure, and the porous network structure can increase the specific surface area of the polymer product, thereby improving the specific capacitance characteristics of the polymer product, so that it can be used as an electrode material for a supercapacitor with better performance. Further preferably, the polymer product has a specific surface area of 300-3000m 2 /g, preferably 1000-2800m 2 /g, and a pore size distribution of 0.5-10nm. In the present invention, the specific surface and pore size distribution of the polymerized product are measured by the isothermal adsorption-desorption method of nitrogen at 77K, the specific surface area is calculated by the BET method, and the pore size distribution is calculated by the DFT method.
本发明提供的电极材料中,所述制备方法包括在聚合反应条件下,将所述芳香腈化合物与熔融的金属盐接触。In the electrode material provided by the present invention, the preparation method includes contacting the aromatic nitrile compound with a molten metal salt under polymerization reaction conditions.
在本发明提供的电极材料中,所述制备方法中的所述熔融的金属盐的作用是在反应中作为溶剂和催化剂,只要其在熔融状态下能够保持稳定不分解即可,因此所述金属盐的种类的可选择范围较宽,优选,所述金属盐为金属卤化物,进一步优选,所述金属卤化物为金属氯化物,更进一步优选,所述金属氯化物选自氯化锌、氯化铜、氯化亚铁和氯化锰中的一种或多种。所述金属盐的用量的可选择范围较宽,优选,所述金属盐与所述芳香腈化合物单体的摩尔比为1-10:1,进一步优选为2-8:1。In the electrode material provided by the present invention, the role of the molten metal salt in the preparation method is as a solvent and a catalyst in the reaction, as long as it can remain stable and not decompose in a molten state, so the metal The type of salt can be selected in a wide range. Preferably, the metal salt is a metal halide, more preferably, the metal halide is a metal chloride, and even more preferably, the metal chloride is selected from zinc chloride, chlorine One or more of copper chloride, ferrous chloride and manganese chloride. The amount of the metal salt can be selected in a wide range, preferably, the molar ratio of the metal salt to the aromatic nitrile compound monomer is 1-10:1, more preferably 2-8:1.
在本发明所述电极材料的制备方法中,所述聚合反应条件一般包括接触的温度和接触的时间,所述接触的温度只需保证所述金属盐处于熔融状态即可,因此所述接触的温度可以为所述金属盐的熔点至低于金属盐的沸点,优选,所述温度为400-700℃;所述接触的时间的可选择范围较宽,为了聚合反应进行的更完全,所述接触的时间可以为20小时以上,优选,所述接触时间为20-80小时,进一步优选,所述接触时间为40-50小时。In the preparation method of the electrode material of the present invention, the polymerization reaction conditions generally include the temperature of contact and the time of contact, and the temperature of the contact only needs to ensure that the metal salt is in a molten state, so the contact The temperature can be from the melting point of the metal salt to lower than the boiling point of the metal salt, preferably, the temperature is 400-700° C.; the optional range of the contact time is wide, and in order to carry out the polymerization reaction more completely, the The contact time may be more than 20 hours, preferably, the contact time is 20-80 hours, more preferably, the contact time is 40-50 hours.
由于保持金属盐为熔融状态所需温度一般较高,在开放的体系下反应可能会因为所在环境的不同而产生一些不稳定的因素。优选情况下,所述接触在惰性气氛下进行,从而更好的避免因温度高而带来的不稳定因素,所述惰性气氛可以为不与所述芳香腈化合物单体、熔融的金属盐以及聚合产物反应的气体,优选,所述惰性气氛选自氮气、元素周期表第零族气体中的至少一种,进一步优选,所述接触在密闭环境中进行,所述密闭体系不仅可以避免温度高带来的不稳定因素,还可以避免在开放体系中因温度高使原料挥发造成的损失,并且能保持一定压力,有利于反应的进行。Since the temperature required to keep the metal salt in a molten state is generally high, the reaction in an open system may cause some unstable factors due to the difference in the environment. Preferably, the contact is carried out under an inert atmosphere, so as to better avoid unstable factors caused by high temperature, and the inert atmosphere can be separated from the aromatic nitrile compound monomer, molten metal salt and The gas for the polymerization product reaction, preferably, the inert atmosphere is at least one selected from nitrogen, the zero-group gas of the periodic table, more preferably, the contact is carried out in a closed environment, and the closed system can not only avoid high temperature The unstable factors brought about can also avoid the loss caused by volatilization of raw materials due to high temperature in the open system, and can maintain a certain pressure, which is conducive to the progress of the reaction.
在本发明提供的电极材料中,所述制备方法还可以包括对所述聚合产物进行一系列后处理步骤,这些步骤可对聚合产物进一步除杂提纯,有利于所述聚合产物作为超级电容器电极材料的应用。优选,所述制备方法还包括冷却得到的聚合产物,然后洗涤、干燥经冷却的聚合产物。所述冷却可采用本领域技术人员能够想到的常规方法,所述冷却可以为冷却至室温(如20-30℃)。所述洗涤的目的是除去所述金属盐和聚合反应过程中发生的重排反应和/或者分解反应产生的易溶于常规溶剂的小分子,所述洗涤可使用水、盐酸或四氢呋喃等本领域常规试剂。所述干燥目的是除去洗涤用的试剂,因此可采用本领域技术人员能够想到的常规方法,如自然干燥、烘干等,干燥温度可以为20-200℃。In the electrode material provided by the present invention, the preparation method may also include a series of post-treatment steps on the polymer product, these steps can further remove impurities and purify the polymer product, which is beneficial for the polymer product to be used as a supercapacitor electrode material Applications. Preferably, the preparation method further includes cooling the obtained polymer product, and then washing and drying the cooled polymer product. The cooling can adopt a conventional method conceivable by those skilled in the art, and the cooling can be to room temperature (such as 20-30° C.). The purpose of the washing is to remove small molecules that are easily soluble in conventional solvents produced by the metal salt and the rearrangement reaction and/or decomposition reaction that occur during the polymerization reaction. The washing can use water, hydrochloric acid or tetrahydrofuran, etc. conventional reagents. The purpose of the drying is to remove the reagents used for washing, so conventional methods conceivable by those skilled in the art can be used, such as natural drying, drying, etc., and the drying temperature can be 20-200°C.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific details in the above embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be described separately.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
以下将通过实施例对本发明进行详细描述。The present invention will be described in detail below by way of examples.
实施例中所用p-DCB、m-DCB、o-DCB、DCBP、无水氯化锌(ZnCl2)、无水氯化铜(CuCl2)、无水氯化亚铁(FeCl2)、无水氯化锰(MnCl2)均购自阿法埃莎公司;TCB购自南京康满林化工实业有限公司;2,4-DCP、2,6-DCP购自百灵威科技公司。p-DCB, m-DCB, o-DCB, DCBP, anhydrous zinc chloride (ZnCl 2 ), anhydrous copper chloride (CuCl 2 ), anhydrous ferrous chloride (FeCl 2 ), anhydrous Manganese chloride (MnCl 2 ) was purchased from Alfa Aisha; TCB was purchased from Nanjing Kangmanlin Chemical Industry Co., Ltd.; 2,4-DCP and 2,6-DCP were purchased from Bailingwei Technology Company.
实施例中采用透射电子显微镜(TEM)观察制备的电极材料的结构;In the embodiment, the structure of the prepared electrode material is observed with a transmission electron microscope (TEM);
采用77K下氮气的等温吸脱附测试,然后通过BET方法计算得到电极材料的比表面积,通过DFT方法计算得到电极材料的孔径分布;The isothermal adsorption-desorption test of nitrogen at 77K is used, and then the specific surface area of the electrode material is calculated by the BET method, and the pore size distribution of the electrode material is calculated by the DFT method;
采用恒流充放电测试法测定电极材料组装的超级电容器的比电容。The specific capacitance of the supercapacitor assembled with electrode materials was determined by galvanostatic charge-discharge test method.
实施例1Example 1
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
将对苯二甲腈(p-DCB)1g(7.81mmol)、无水氯化锌5.32g(39.04mmol)混合均匀,并转移至10ml玻璃管中,用氩气置换掉玻璃管中的空气,将其密封后放入马弗炉中,在550℃下反应40小时,自然冷却至室温(25℃)后,打开玻璃管,将聚合产物取出,并依次用5重量%盐酸、纯净水、四氢呋喃洗涤,然后放入烘箱中,在120℃下干燥10小时,得到电极材料。Mix 1g (7.81mmol) of terephthalonitrile (p-DCB) and 5.32g (39.04mmol) of anhydrous zinc chloride, and transfer to a 10ml glass tube, replace the air in the glass tube with argon, After sealing it, put it in a muffle furnace, react at 550°C for 40 hours, cool it down to room temperature (25°C) naturally, open the glass tube, take out the polymerized product, and wash it with 5% by weight hydrochloric acid, purified water, tetrahydrofuran After washing, put it into an oven, and dry it at 120° C. for 10 hours to obtain an electrode material.
从图1中可知,由该实施例制备的电极材料具有疏松、多孔的网状结构。It can be seen from Figure 1 that the electrode material prepared by this embodiment has a loose and porous network structure.
由图2的数据计算得出制备的电极材料的BET比表面积为1724.74m2/g,通过DFT方法计算得到电极材料的孔径分布在0.7-10nm之间。Calculated from the data in Figure 2, the BET specific surface area of the prepared electrode material is 1724.74m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.7-10nm.
实施例2Example 2
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,原料使用间苯二甲腈(m-DCB)1g(7.81mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol)。制备得到的电极材料的BET比表面积为1622m2/g,通过DFT方法计算得到电极材料的孔径分布在0.6-9nm之间。The electrode material was prepared according to the method of Example 1, except that 1 g (7.81 mmol) of isophthalonitrile (m-DCB) was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB). The BET specific surface area of the prepared electrode material is 1622m 2 /g, and the pore size distribution of the electrode material is calculated by DFT method to be between 0.6-9nm.
实施例3Example 3
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,原料使用邻苯二甲腈(o-DCB)1g(7.81mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol)。制备得到的电极材料的BET比表面积为1512m2/g,通过DFT方法计算得到电极材料的孔径分布在0.5-8.5nm之间。The electrode material was prepared according to the method of Example 1, except that 1 g (7.81 mmol) of phthalonitrile (o-DCB) was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB). The BET specific surface area of the prepared electrode material is 1512m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.5-8.5nm.
实施例4Example 4
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,原料使用1,3,5-三氰基苯(TCB)1g(6.53mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol),无水氯化锌的用量为4.45g(32.65mmol)。制备得到的电极材料的BET比表面积为1223m2/g,通过DFT方法计算得到电极材料的孔径分布在0.5-7nm之间。The electrode material was prepared according to the method of Example 1, except that 1 g (6.53 mmol) of 1,3,5-tricyanobenzene (TCB) was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB) , the amount of anhydrous zinc chloride is 4.45g (32.65mmol). The BET specific surface area of the prepared electrode material is 1223m 2 /g, and the pore size distribution of the electrode material is calculated by DFT method to be between 0.5-7nm.
实施例5Example 5
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,原料使用2,6-二氰基吡啶(2,6-DCP)1g(7.75mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol),无水氯化锌的用量为5.28g(38.74mmol)。制备得到的电极材料的BET比表面积为1315m2/g,通过DFT方法计算得到电极材料的孔径分布在0.6-8nm之间。The electrode material was prepared according to the method of Example 1, except that 1 g (7.75 mmol) of 2,6-dicyanopyridine (2,6-DCP) was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB). mmol), the dosage of anhydrous zinc chloride is 5.28g (38.74mmol). The BET specific surface area of the prepared electrode material is 1315m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.6-8nm.
实施例6Example 6
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备材料,不同的是,原料使用2,4-二氰基吡啶(2,4-DCP)1g(7.75mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol),无水氯化锌的用量为5.28g(38.74mmol)。制备得到的电极材料的BET比表面积为1392m2/g,通过DFT方法计算得到电极材料的孔径分布在0.6-8nm之间。The material was prepared according to the method of Example 1, except that 1 g (7.75 mmol) of 2,4-dicyanopyridine (2,4-DCP) was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB) ), the dosage of anhydrous zinc chloride is 5.28g (38.74mmol). The BET specific surface area of the prepared electrode material is 1392m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.6-8nm.
实施例7Example 7
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备材料,不同的是,原料使用4,4’-二氰基联苯1g(4.9mmol)替代对苯二甲腈(p-DCB)1g(7.81mmol),无水氯化锌的用量为3.34g(24.5mmol)。制备得到的电极材料的BET比表面积为1583m2/g,通过DFT方法计算得到电极材料的孔径分布在0.9-10nm之间。The material was prepared according to the method of Example 1, except that 1 g (4.9 mmol) of 4,4'-dicyanobiphenyl was used as the raw material instead of 1 g (7.81 mmol) of terephthalonitrile (p-DCB), anhydrous chlorine The amount of zinc chloride is 3.34g (24.5mmol). The BET specific surface area of the prepared electrode material is 1583m 2 /g, and the pore size distribution of the electrode material is calculated by DFT method to be between 0.9-10nm.
实施例8Example 8
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,用无水氯化铜替代无水氯化锌,无水氯化铜的用量为2.10g(15.62mmol),反应温度为600℃,反应时间为20小时。制备得到的电极材料的BET比表面积为1860m2/g,通过DFT方法计算得到电极材料的孔径分布在0.7-10nm之间。Prepare the electrode material according to the method of Example 1, the difference is that anhydrous copper chloride is used instead of anhydrous zinc chloride, the amount of anhydrous copper chloride is 2.10g (15.62mmol), the reaction temperature is 600°C, and the reaction time for 20 hours. The BET specific surface area of the prepared electrode material is 1860m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.7-10nm.
实施例9Example 9
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,用氯化锰替代无水氯化锌,用量为3.93g(31.24mmol),反应温度为650℃,反应时间为60小时。制备得到的电极材料的BET比表面积为2183m2/g,通过DFT方法计算得到电极材料的孔径分布在0.7-10nm之间。The electrode material was prepared according to the method of Example 1, except that manganese chloride was used instead of anhydrous zinc chloride, the dosage was 3.93g (31.24mmol), the reaction temperature was 650°C, and the reaction time was 60 hours. The BET specific surface area of the prepared electrode material is 2183m 2 /g, and the pore size distribution of the electrode material is calculated by DFT method to be between 0.7-10nm.
实施例10Example 10
本实施例用于说明本发明提供的超级电容器电极材料的制备。This example is used to illustrate the preparation of the supercapacitor electrode material provided by the present invention.
按照实施例1的方法制备电极材料,不同的是,用氯化亚铁替代无水氯化锌,用量为6.93g(54.67mmol),反应温度为700℃,反应时间为80小时。制备得到的电极材料的BET比表面积为2790m2/g,通过DFT方法计算得到电极材料的孔径分布在0.7-10nm之间。The electrode material was prepared according to the method of Example 1, except that ferrous chloride was used instead of anhydrous zinc chloride, the dosage was 6.93g (54.67mmol), the reaction temperature was 700°C, and the reaction time was 80 hours. The BET specific surface area of the prepared electrode material is 2790m 2 /g, and the pore size distribution of the electrode material is calculated by the DFT method to be between 0.7-10nm.
性能测试:Performance Testing:
1、恒流充放电测试由上述电极材料组装的超级电容器的比电容。1. Constant current charge and discharge test the specific capacitance of the supercapacitor assembled from the above electrode materials.
分别将实施例1-10中制备的电极材料与导电炭黑及粘结剂(聚四氟乙烯水溶液)按照质量比8:1.5:0.5的比例混合均匀,通过轧辊机将其轧成薄片,在120℃下干燥10小时,然后切割成直径1cm,质量约2.5mg的圆片,再将其压在不锈钢网集流体上,制得超级电容器。The electrode materials prepared in Examples 1-10 were mixed uniformly with conductive carbon black and binder (polytetrafluoroethylene aqueous solution) according to the ratio of mass ratio 8:1.5:0.5, rolled into thin sheets by a roller machine, and then Dry at 120°C for 10 hours, then cut into discs with a diameter of 1 cm and a mass of about 2.5 mg, and then press them on the stainless steel mesh current collector to obtain a supercapacitor.
测试使用三电极体系:工作电极为不锈钢网支撑的电极材料,对电极为铂片电极,参比电极为Ag/AgCl电极,电解液为1mol/L的硫酸溶液。组装好之后进行恒流充放电测试,测试的电压范围(相对于Ag/AgCl电极)是-0.2V至0.8V,记录电流密度为0.2A/g和10A/g时电容器的比电容(如下表1所示)。The test uses a three-electrode system: the working electrode is an electrode material supported by a stainless steel mesh, the counter electrode is a platinum sheet electrode, the reference electrode is an Ag/AgCl electrode, and the electrolyte is a 1mol/L sulfuric acid solution. After assembly, carry out the constant current charge and discharge test. The voltage range of the test (relative to the Ag/AgCl electrode) is -0.2V to 0.8V. Record the specific capacitance of the capacitor when the current density is 0.2A/g and 10A/g (as shown in the table below 1).
表1Table 1
以实施例1为例,从图3中可知,电流密度为0.2A/g时,电极材料组装的超级电容器的比电容为300F/g,电流密度为10A/g时,电极材料组装的超级电容器的比电容为220F/g,可见由该电极材料具有良好的比电容特性。Taking Example 1 as an example, as can be seen from Figure 3, when the current density is 0.2A/g, the specific capacitance of the supercapacitor assembled by the electrode material is 300F/g, and when the current density is 10A/g, the supercapacitor assembled by the electrode material The specific capacitance is 220F/g, it can be seen that the electrode material has good specific capacitance characteristics.
从图4中可知,在电流密度为10A/g下恒流充放电循环5000次后,电极材料组装的超级电容器的比电容稳定在220F/g左右并无明显衰减,说明该超级电容器的循环稳定性良好。It can be seen from Figure 4 that after 5000 constant current charge and discharge cycles at a current density of 10A/g, the specific capacitance of the supercapacitor assembled with electrode materials is stable at about 220F/g without significant attenuation, indicating that the cycle of the supercapacitor is stable. sex is good.
2、碱体系下恒流充放电测试电极材料组装的超级电容器的比电容2. Constant current charging and discharging in alkaline system to test the specific capacitance of supercapacitors assembled with electrode materials
按照上述恒流充放电测试的方法测试由实施例1制备的电极材料制得的超级电容器的性能,不同的是,将电解液更换为6mol/L的NaOH溶液,将集流体更换为泡沫镍,将参比电极更换为Hg/HgO电极,测试的电压范围是:-0.9V至0V。Test the performance of the supercapacitor made by the electrode material prepared in Example 1 according to the method of the above-mentioned constant current charge and discharge test, the difference is that the electrolyte is replaced with a 6mol/L NaOH solution, and the current collector is replaced with nickel foam. Replace the reference electrode with a Hg/HgO electrode, and the test voltage range is: -0.9V to 0V.
测试结果:电流密度为0.2A/g时,电极材料组装的超级电容器的比电容为280F/g;电流密度为10A/g时,电极材料组装的超级电容器的比电容为200F/g。Test results: when the current density is 0.2A/g, the specific capacitance of the supercapacitor assembled with electrode materials is 280F/g; when the current density is 10A/g, the specific capacitance of the supercapacitor assembled with electrode materials is 200F/g.
3、有机溶液体系下恒流充放电测试电极材料组装的超级电容器的比电容3. Constant current charging and discharging in organic solution system to test the specific capacitance of supercapacitors assembled with electrode materials
将实施例1中制备的电极材料与导电炭黑及粘结剂(聚四氟乙烯水溶液)按照质量比8:1.5:0.5比例混合均匀,通过轧辊机将其轧成薄片,在120℃下干燥10小时,然后切成直径1cm的圆片,再将其压在铝箔上。测试使用两电极体系:两个电极为两片质量相同的铝箔支撑的材料,电解液为1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)与乙腈按照1:1的体积比均匀混合得到的溶液。组装好之后进行恒流充放电测试,测试的电压范围是:0V至3.5V。Mix the electrode material prepared in Example 1 with conductive carbon black and binder (polytetrafluoroethylene aqueous solution) according to the mass ratio of 8:1.5:0.5, roll it into thin sheets through a roller machine, and dry at 120°C 10 hours, then cut into 1 cm diameter discs, which were pressed onto aluminum foil. The test uses a two-electrode system: the two electrodes are materials supported by two pieces of aluminum foil with the same quality, and the electrolyte is 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and acetonitrile in a volume ratio of 1:1 The resulting solution was mixed uniformly. After assembly, carry out the constant current charge and discharge test, the voltage range of the test is: 0V to 3.5V.
测试结果:电流密度为0.2A/g时,电极材料组装的超级电容器的比电容为140F/g;电流密度为5A/g时,电极材料组装的超级电容器的比电容为110F/g。Test results: when the current density is 0.2A/g, the specific capacitance of the supercapacitor assembled with electrode materials is 140F/g; when the current density is 5A/g, the specific capacitance of the supercapacitor assembled with electrode materials is 110F/g.
由实施例1-10和表1所示的测试结果可知本发明提供的电极材料具有高的比表面积,丰富的多孔网状结构,其组装成的超级电容器表现出高比电容、快速充放电和良好的循环稳定性等优点。由碱体系和有机溶液体系下恒流充放电测试结果可知本发明提供的电极材料不仅可适用于酸体系的超级电容器还可适用于碱体系和有机溶液体系等各种类型的超级电容器中,适用面广。From the test results shown in Examples 1-10 and Table 1, it can be seen that the electrode material provided by the present invention has a high specific surface area, a rich porous network structure, and the assembled supercapacitor shows high specific capacitance, fast charge and discharge and Good cycle stability and other advantages. From the test results of constant current charge and discharge in alkali system and organic solution system, it can be seen that the electrode material provided by the present invention is not only applicable to supercapacitors in acid systems, but also in various types of supercapacitors such as alkali systems and organic solution systems. Wide range.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210179883.8A CN103456510B (en) | 2012-06-01 | 2012-06-01 | A kind of electrode material of ultracapacitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210179883.8A CN103456510B (en) | 2012-06-01 | 2012-06-01 | A kind of electrode material of ultracapacitor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103456510A CN103456510A (en) | 2013-12-18 |
| CN103456510B true CN103456510B (en) | 2016-04-13 |
Family
ID=49738771
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210179883.8A Expired - Fee Related CN103456510B (en) | 2012-06-01 | 2012-06-01 | A kind of electrode material of ultracapacitor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103456510B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103996861B (en) * | 2014-06-05 | 2018-01-09 | 国家纳米科学中心 | A kind of purposes of the polymerizate that aromatic nitrile compounds polymerize to obtain as oxygen reduction catalyst |
| CN104014367B (en) * | 2014-06-11 | 2016-08-17 | 国家纳米科学中心 | A kind of carbon back Nonmetal oxygen reduction catalyst, preparation method and its usage |
| CN105406027A (en) * | 2014-09-10 | 2016-03-16 | 国家纳米科学中心 | Complex formed from aromatic nitrile compound polymerization product and sulfur, preparation method and uses thereof |
| CN104538549A (en) * | 2014-12-30 | 2015-04-22 | 厦门大学 | Preparation method of SrTiO3 single crystal resistive switch device |
| CN107240506A (en) * | 2016-03-28 | 2017-10-10 | 国家纳米科学中心 | A kind of nitrogen-doped carbon nano composite material and its production and use |
| CN110451477A (en) * | 2019-08-06 | 2019-11-15 | 大连理工大学 | A kind of one-step method prepares the method and its application of phthalonitrile base porous carbon materials |
| CN112466675B (en) * | 2019-09-09 | 2022-06-03 | 国家纳米科学中心 | Supercapacitor electrolyte additive, supercapacitor electrolyte and application of supercapacitor electrolyte additive |
| CN114725379B (en) * | 2022-05-06 | 2024-04-09 | 上海大学 | Electrode active material, lithium ion battery composite positive plate and lithium ion battery |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1926647A (en) * | 2004-02-06 | 2007-03-07 | 国立大学法人山口大学 | Electrode for energy storage device and process for producing the same |
| CN102408547A (en) * | 2011-10-24 | 2012-04-11 | 中国科学院化学研究所 | Benzodifuran conjugated polymer material and preparation method and application thereof |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8367798B2 (en) * | 2008-09-29 | 2013-02-05 | The Regents Of The University Of California | Active materials for photoelectric devices and devices that use the materials |
-
2012
- 2012-06-01 CN CN201210179883.8A patent/CN103456510B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1926647A (en) * | 2004-02-06 | 2007-03-07 | 国立大学法人山口大学 | Electrode for energy storage device and process for producing the same |
| CN102408547A (en) * | 2011-10-24 | 2012-04-11 | 中国科学院化学研究所 | Benzodifuran conjugated polymer material and preparation method and application thereof |
Non-Patent Citations (1)
| Title |
|---|
| From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area Dynamic Reorganization of Porous Polymer Networks;Pierre Kuhn等;《J.AM.CHEM.SOC.》;20080913;第130卷(第40期);第13333-13337页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103456510A (en) | 2013-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103456510B (en) | A kind of electrode material of ultracapacitor | |
| Russell et al. | High-performance organic pseudocapacitors via molecular contortion | |
| Weeraratne et al. | Redox-active porous organic polymers as novel electrode materials for green rechargeable sodium-ion batteries | |
| Zeng et al. | An ultrastable and high‐performance flexible fiber‐shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode | |
| Chen et al. | Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte | |
| Liew et al. | Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes | |
| JP5604588B2 (en) | Carbon dioxide adsorption and release device | |
| Ma et al. | Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group | |
| CN104014367B (en) | A kind of carbon back Nonmetal oxygen reduction catalyst, preparation method and its usage | |
| JP5999367B2 (en) | High electron conductive polymer and high dose / high output electric energy storage device using the same | |
| CN108439395A (en) | A kind of preparation method and applications of nitrogen boron codope porous active Carbon Materials | |
| CN107640757A (en) | A kind of preparation method of compound carbosphere and compound carbosphere and its lithium-ion capacitor being prepared | |
| CN105406027A (en) | Complex formed from aromatic nitrile compound polymerization product and sulfur, preparation method and uses thereof | |
| CN104576077A (en) | Graphene/ lignin-based activated carbon preparation method and application in supercapacitors | |
| Sai et al. | Steric effect on Li+ coordination and transport properties in polyoxetane-based polymer electrolytes bearing nitrile groups | |
| CN111710530A (en) | Preparation method of low-order coal-based porous carbon and application of low-order coal-based porous carbon in supercapacitor | |
| CN101393800B (en) | Electrode material for supercapacitor and preparation method of the electrode material | |
| JP7321432B2 (en) | Aqueous secondary battery | |
| TWI478415B (en) | Lithium ion battery | |
| CN105719846A (en) | Preparation method for cobalt sulfide/carbon composite material and product and application therefor | |
| CN115911369A (en) | Organic positive electrode of aluminum ion battery and aluminum ion battery | |
| CN113140410A (en) | Nitrogen-doped carbon nanosheet/MXene composite nanomaterial, and preparation method and application thereof | |
| CN103996861B (en) | A kind of purposes of the polymerizate that aromatic nitrile compounds polymerize to obtain as oxygen reduction catalyst | |
| Mishra et al. | Polymer derived carbon nanostructure electrodes for solid-state supercapacitor | |
| KR101861356B1 (en) | Graphene-Conductive Polymer Composite for Supercapacitor electrodes and preparing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160413 Termination date: 20210601 |