[go: up one dir, main page]

CN103474333A - Doping method for p-type zinc telluride single crystal thin-film material - Google Patents

Doping method for p-type zinc telluride single crystal thin-film material Download PDF

Info

Publication number
CN103474333A
CN103474333A CN2013104197758A CN201310419775A CN103474333A CN 103474333 A CN103474333 A CN 103474333A CN 2013104197758 A CN2013104197758 A CN 2013104197758A CN 201310419775 A CN201310419775 A CN 201310419775A CN 103474333 A CN103474333 A CN 103474333A
Authority
CN
China
Prior art keywords
single crystal
thin films
film
doping
type zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013104197758A
Other languages
Chinese (zh)
Inventor
刘超
张理嫩
杨秋旻
崔利杰
曾一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2013104197758A priority Critical patent/CN103474333A/en
Publication of CN103474333A publication Critical patent/CN103474333A/en
Pending legal-status Critical Current

Links

Images

Abstract

一种p型碲化锌单晶薄膜材料的掺杂方法,包括如下步骤:步骤1:取一单晶衬底;步骤2:在单晶衬底上,外延生长单晶薄膜;步骤3:在单晶薄膜的表面上沉积一层SiO2纳米薄膜;步骤4:利用双能态氮离子注入的方法,从SiO2纳米薄膜的表面向下注入氮元素,在SiO2纳米薄膜的下面形成p型掺杂层,形成样品;步骤5:对样品做快速热退火处理;步骤6:去除样品表面的SiO2纳米薄膜,完成制备。本发明与现有的微电子器件制造工艺相兼容,易于实施。此外,本方法还可适用于本征碲化锌体单晶表面的p型掺杂,以及供其它II-VI族化合物半导体薄膜材料做p型掺杂实验时参考。

A method for doping a p-type zinc telluride single crystal thin film material, comprising the following steps: Step 1: take a single crystal substrate; Step 2: on the single crystal substrate, epitaxially grow a single crystal thin film; Step 3: in Deposit a layer of SiO2nanofilm on the surface of the single crystal film; step 4: use the method of dual-energy nitrogen ion implantation to inject nitrogen from the surface of the SiO2nanofilm downward, and form a p-type under the SiO2nanofilm Doping the layer to form a sample; step 5: performing rapid thermal annealing on the sample; step 6: removing the SiO 2 nano film on the surface of the sample to complete the preparation. The invention is compatible with the existing manufacturing process of microelectronic devices and is easy to implement. In addition, the method can also be applied to the p-type doping on the surface of the intrinsic zinc telluride body single crystal, and can be used as a reference for p-type doping experiments of other II-VI group compound semiconductor thin film materials.

Description

p型碲化锌单晶薄膜材料的掺杂方法Doping method of p-type zinc telluride single crystal thin film material

技术领域technical field

本发明属于半导体材料制备技术领域,涉及一种p型碲化锌单晶薄膜材料的掺杂方法,特别是一种利用双能态氮离子注入法制备p型掺杂碲化锌单晶薄膜材料的方法。The invention belongs to the technical field of semiconductor material preparation, and relates to a doping method of a p-type zinc telluride single crystal thin film material, in particular to a p-type doped zinc telluride single crystal thin film material prepared by using a dual-energy state nitrogen ion implantation method Methods.

背景技术Background technique

碲化锌是一种重要的II-VI族化合物半导体材料,室温下的禁带宽度为2.26eV,属于直接带隙能带结构。碲化锌在制造绿光发光二级管(LED)、太阳能电池、太赫兹探测器、光波导等光电器件中有很好的应用前景。由于碲化锌体单晶材料生长困难、晶片尺寸小、价格昂贵,故常见的碲化锌器件大多数都是在异质外延生长的薄膜上制造的。目前制备碲化锌单晶薄膜的常用技术有分子束外延(MBE)、金属有机物化学气相沉积(MOCVD)和液相外延三种外延生长方法,常用的衬底材料有砷化镓(GaAs)、锑化镓(GaSb)和碲化锌(ZnTe)晶片等。本征碲化锌单晶体或非有意掺杂的碲化锌单晶薄膜一般呈现高阻或弱p型导电状态,在器件制造工艺中常常需要对它做特定载流子浓度的n型或p型掺杂,其中n型掺杂元素有氯(Cl)或铝(Al),p型掺杂元素最常用的是氮(N),具体工艺有原位掺杂(MBE、MOCVD)、离子注入和热扩散三种掺杂方法。原位掺杂法易制备出掺杂浓度均匀的高质量碲化锌单晶薄膜,但存在着工艺控制复杂的问题;离子注入法具有掺杂浓度精确可控、工艺简单、可实现选区掺杂的优势,但在薄膜晶体中特别是表面层中将产生一定程度的晶格缺陷,必须做快速热退火处理以修复晶体缺陷和激活掺杂元素的电活性;热扩散法的工艺很简单,但掺杂浓度不易精确控制,也很不均匀,高温工艺时间较长易破坏器件材料异质结构的陡峭界面,仅在个别情况下有运用。Zinc telluride is an important II-VI compound semiconductor material with a bandgap width of 2.26eV at room temperature, which belongs to the direct bandgap energy band structure. Zinc telluride has good application prospects in the manufacture of green light-emitting diodes (LEDs), solar cells, terahertz detectors, optical waveguides and other optoelectronic devices. Due to the difficulty in growing zinc telluride bulk single crystal materials, small wafer size and high price, most of the common zinc telluride devices are fabricated on heteroepitaxially grown thin films. At present, the commonly used techniques for preparing zinc telluride single crystal thin films include molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD) and liquid phase epitaxy. The commonly used substrate materials are gallium arsenide (GaAs), Gallium antimonide (GaSb) and zinc telluride (ZnTe) wafers, etc. Intrinsic zinc telluride single crystal or non-intentionally doped zinc telluride single crystal thin film generally exhibits high resistance or weak p-type conduction state, and it is often necessary to make it n-type or p-type with a specific carrier concentration in the device manufacturing process Doping, where the n-type doping elements are chlorine (Cl) or aluminum (Al), and the p-type doping elements are most commonly used nitrogen (N). The specific processes include in-situ doping (MBE, MOCVD), ion implantation and Thermal diffusion of three doping methods. The in-situ doping method is easy to prepare high-quality zinc telluride single crystal thin films with uniform doping concentration, but there is a problem of complicated process control; the ion implantation method has the advantages of precise controllable doping concentration, simple process, and can achieve selective doping However, a certain degree of lattice defects will be generated in the thin film crystal, especially in the surface layer, and rapid thermal annealing must be done to repair the crystal defects and activate the electrical activity of doping elements; the process of thermal diffusion method is very simple, but The doping concentration is not easy to control accurately, and it is also very uneven. Longer high-temperature process time is easy to damage the steep interface of the heterogeneous structure of the device material, and it is only used in individual cases.

发明内容Contents of the invention

本发明的目的在于,提供一种p型碲化锌单晶薄膜材料的掺杂方法,该方法与现有的微电子器件制造工艺相兼容,易于实施。此外,本方法还可适用于本征碲化锌体单晶表面的p型掺杂,以及供其它II-VI族化合物半导体薄膜材料做p型掺杂实验时参考。The purpose of the present invention is to provide a doping method of p-type zinc telluride single crystal thin film material, which is compatible with the existing microelectronic device manufacturing process and is easy to implement. In addition, the method can also be applied to the p-type doping on the surface of the intrinsic zinc telluride body single crystal, and can be used as a reference for p-type doping experiments of other II-VI group compound semiconductor thin film materials.

本发明提供一种p型碲化锌单晶薄膜材料的掺杂方法,包括如下步骤:The invention provides a method for doping a p-type zinc telluride single crystal thin film material, comprising the following steps:

步骤1:取一单晶衬底;Step 1: Take a single crystal substrate;

步骤2:在单晶衬底上,外延生长单晶薄膜;Step 2: epitaxially growing a single crystal thin film on a single crystal substrate;

步骤3:在单晶薄膜的表面上沉积一层SiO2纳米薄膜;Step 3: depositing a layer of SiO on the surface of the single crystal film Nano film;

步骤4:利用双能态氮离子注入的方法,从SiO2纳米薄膜的表面向下注入氮元素,在SiO2纳米薄膜的下面形成p型掺杂层,形成样品;Step 4: using the method of dual-energy nitrogen ion implantation, inject nitrogen element downward from the surface of the SiO2 nanometer film, and form a p-type doped layer under the SiO2 nanometer film to form a sample;

步骤5:对样品做快速热退火处理;Step 5: performing rapid thermal annealing on the sample;

步骤6:去除样品表面的SiO2纳米薄膜,完成制备。Step 6: remove the SiO 2 nano film on the surface of the sample to complete the preparation.

本发明的有益效果是与现有的微电子器件制造工艺相兼容,易于实施,实现了碲化锌e单晶薄膜材料的可控高浓度p型掺杂,并有效减少离子注入对材料表面晶格的损伤,抑制热退火时碲化锌分解形成碲元素挥发的问题。此外,本方法还可适用于本征碲化锌体单晶表面的p型掺杂,以及供其它II-VI族化合物半导体薄膜材料做p型掺杂实验时参考。The beneficial effect of the present invention is that it is compatible with the existing microelectronic device manufacturing process, is easy to implement, realizes the controllable high-concentration p-type doping of the zinc telluride e single crystal thin film material, and effectively reduces the impact of ion implantation on the surface crystal of the material. The damage of lattice, and the problem of volatilization of tellurium element formed by the decomposition of zinc telluride during thermal annealing is suppressed. In addition, the method can also be applied to the p-type doping on the surface of the intrinsic zinc telluride body single crystal, and can be used as a reference for p-type doping experiments of other II-VI group compound semiconductor thin film materials.

附图说明Description of drawings

为进一步说明本发明的特征和技术方案,以下结合实施例及附图详细说明如下,其中:In order to further illustrate the features and technical solutions of the present invention, the following detailed descriptions are as follows in conjunction with the embodiments and accompanying drawings, wherein:

图1本发明的工艺流程图;Process flow diagram of the present invention of Fig. 1;

图2是氮离子注入法制备p型掺杂碲化锌单晶薄膜材料的结构示意图;Fig. 2 is the structural representation of p-type doped zinc telluride single crystal thin film material prepared by nitrogen ion implantation method;

图3是碲化锌表面沉积80nm SiO2薄膜后用SRIM-2010软件模拟双能态氮离子注入的计算结果。Fig. 3 is the calculation result of simulating dual-energy nitrogen ion implantation with SRIM-2010 software after depositing 80nm SiO 2 film on the surface of zinc telluride.

具体实施方式Detailed ways

请参阅图1和图2所示,本发明提供一种p型碲化锌单晶薄膜材料的掺杂方法,包括如下步骤:Please refer to Fig. 1 and shown in Fig. 2, the present invention provides a kind of doping method of p-type zinc telluride single crystal thin film material, comprises the following steps:

步骤1:取一单晶衬底10,所述单晶衬底10的材料为ZnTe、GaSb、GaAs或Si晶片。例如:选用开盒即用的2英寸半绝缘GaAs(001)晶片为衬底材料。Step 1: Take a single crystal substrate 10, and the material of the single crystal substrate 10 is ZnTe, GaSb, GaAs or Si wafer. For example: choose the ready-to-use 2-inch semi-insulating GaAs (001) wafer as the substrate material.

步骤2:在单晶衬底10上,外延生长单晶薄膜11,该单晶薄膜11为非有意掺杂,其厚度大于100nm,所述外延生长单晶薄膜11是采用分子束外延或金属有机物化学气相沉积。例如:采用分子束外延生长设备异质外延生长碲化锌单晶薄膜材料。实验选用6N纯度(≥99.9999%)以上的Zn、Te为分子束源,在优于10-7Pa的背景真空度下,在衬底温度630-680℃下先除去GaAs衬底表面上的自然氧化层,然后在衬底温度320℃下外延生长30nm的碲化锌低温缓冲层,再在360-380℃下生长高质量的碲化锌单晶薄膜层。分子束源的VI/II比控制在4.0-6.4之间,外延生长2小时碲化锌薄膜的厚度约800nm左右。Step 2: On the single crystal substrate 10, epitaxially grow a single crystal thin film 11, the single crystal thin film 11 is not intentionally doped, and its thickness is greater than 100nm, and the epitaxial growth single crystal thin film 11 adopts molecular beam epitaxy or metal organic chemical vapor deposition. For example: use molecular beam epitaxy growth equipment to grow zinc telluride single crystal thin film materials heterogeneously. In the experiment, Zn and Te with a purity of 6N (≥99.9999%) were selected as the molecular beam source, and the natural oxidation on the surface of the GaAs substrate was first removed at a substrate temperature of 630-680°C under a background vacuum of better than 10-7Pa. layer, and then epitaxially grow a 30nm zinc telluride low-temperature buffer layer at a substrate temperature of 320°C, and then grow a high-quality zinc telluride single crystal thin film layer at a temperature of 360-380°C. The VI/II ratio of the molecular beam source is controlled between 4.0-6.4, and the thickness of the ZnTe thin film is about 800nm after epitaxial growth for 2 hours.

步骤3:在单晶薄膜11的表面上沉积一层SiO2纳米薄膜13,所述SiO2纳米薄膜13的厚度是50-100nm,沉积温度是室温或低于200℃;沉积SiO2纳米薄膜13的方法为磁控溅射、化学气相沉积或脉冲激光沉积。例如:用磁控溅射设备在碲化锌单晶薄膜表面上室温下沉积80nm的SiO2纳米薄膜。磁控溅射的输出功率为400W、背景真空度约10-5Torr、在富氧气氛下以Ar+离子溅射SiO2靶材、沉积速率0.2nm/s,样品温度为室温状态。本发明中SiO2纳米薄膜的采用既有效减少了氮离子注入工艺对碲化锌薄膜近表面层晶体质量的损伤、抑制了快速热退火处理对碲化锌表面层分解的影响,在去除SiO2纳米薄膜之后又提高了碲化锌薄膜表面层的p型掺杂空穴浓度。Step 3: Deposit a layer of SiO2nano - film 13 on the surface of the single crystal film 11, the thickness of the SiO2nano- film 13 is 50-100nm, the deposition temperature is room temperature or lower than 200°C; deposit SiO2nano- film 13 The most common methods are magnetron sputtering, chemical vapor deposition or pulsed laser deposition. For example: use magnetron sputtering equipment to deposit 80nm SiO 2 nanometer film on the surface of zinc telluride single crystal film at room temperature. The output power of magnetron sputtering is 400W, the background vacuum is about 10-5Torr, the SiO 2 target is sputtered with Ar+ ions in an oxygen-rich atmosphere, the deposition rate is 0.2nm/s, and the sample temperature is room temperature. In the present invention, the adoption of the SiO2 nanometer film has not only effectively reduced the damage of the nitrogen ion implantation process to the crystal quality of the zinc telluride film near the surface layer, but also suppressed the impact of the rapid thermal annealing treatment on the decomposition of the zinc telluride surface layer. The nanometer film then increases the p-type doped hole concentration in the surface layer of the zinc telluride film.

步骤4:利用双能态氮离子注入的方法,从SiO2纳米薄膜13的表面向下注入氮元素,在SiO2纳米薄膜13的下面形成p型掺杂层12,形成样品,所述氮离子注入的能量和剂量分别是低能态时为20-30keV、1.0×1014-5.0×1014cm-2;高能态时为60-80keV、1.0×1015-5.0×1015cm-2,所述p型掺杂层12的空穴浓度范围为1×1018-1×1020cm-3。例如:采用国产LC-4型离子注入机在室温下从SiO2纳米薄膜13的表面向下分别做低能态30keV、剂量4×1014cm-2和高能态70keV、剂量2×1015cm-2的氮离子注入p型掺杂实验。采用双能态氮离子注入法克服了以前用单能态注入时掺杂元素浓度常呈现高斯分布而不均匀的问题,明显改善了掺杂元素分布的均匀性,并增加了精确调控掺杂元素深度分布的灵活性,有利于研制高性能的光电器件。Step 4: Utilize the method of dual-energy nitrogen ion implantation, inject nitrogen element downward from the surface of SiO 2 nanometer film 13, form p-type doped layer 12 below SiO 2 nanometer film 13, form sample, described nitrogen ion The implanted energy and dose are 20-30keV, 1.0×10 14 -5.0×10 14 cm -2 in the low energy state, and 60-80keV, 1.0×10 15 -5.0×10 15 cm -2 in the high energy state. The hole concentration range of the p-type doped layer 12 is 1×10 18 -1×10 20 cm −3 . For example: using a domestic LC-4 ion implanter at room temperature from the surface of the SiO 2 nano film 13 to perform low-energy state 30keV, dose 4×10 14 cm -2 and high-energy state 70keV, dose 2×10 15 cm - 2 nitrogen ion implantation p-type doping experiment. The dual-energy nitrogen ion implantation method overcomes the problem that the dopant element concentration often presents Gaussian distribution and unevenness when the single-energy state implantation is used in the past, significantly improves the uniformity of the dopant element distribution, and increases the precision control of the dopant element The flexibility of depth distribution is conducive to the development of high-performance optoelectronic devices.

步骤5:对样品做快速热退火处理,所述快速热退火处理是在常压5-10sccm流量的氮气氛中退火,退火温度为350-500℃,退火时间为1-5min。例如:采用国产RTP-500型快速热退火炉、在常压氮气流量5-10sccm气氛保护下对p型掺杂样品做退火温度350-500℃,退火时间1-5min的快速热退火处理,既能修护氮离子注入产生的部分晶格缺陷,又能激活掺杂氮离子的电活性。Step 5: Perform rapid thermal annealing treatment on the sample, the rapid thermal annealing treatment is annealing in a nitrogen atmosphere with a flow rate of 5-10 sccm at normal pressure, the annealing temperature is 350-500° C., and the annealing time is 1-5 min. For example: use the domestic RTP-500 type rapid thermal annealing furnace, under the protection of atmospheric pressure nitrogen flow rate 5-10sccm atmosphere, do annealing temperature 350-500 ℃ for p-type doped samples, annealing time 1-5min rapid thermal annealing treatment, both It can repair some lattice defects caused by nitrogen ion implantation, and can also activate the electrical activity of doped nitrogen ions.

步骤6:去除样品表面的SiO2纳米薄膜13,完成制备。例如:用1:10稀释的氢氟酸水溶液漂洗上述样品1-2min,完全去除样品表面上的SiO2纳米薄膜13后即制备出了高质量的、具有设定掺杂浓度的p型掺杂碲化锌单晶薄膜材料。Step 6: removing the SiO 2 nanometer film 13 on the surface of the sample to complete the preparation. For example: rinse the above sample with 1:10 diluted hydrofluoric acid aqueous solution for 1-2min, after completely removing the SiO 2 nano film 13 on the sample surface, a high-quality p-type doped film with a set doping concentration is prepared. Zinc telluride single crystal thin film material.

p型掺杂碲化锌样品的空穴浓度可用经典的范德堡Hall测试方法来测量。将样品切割成8×8mm的正方形,在每个边上的中心点处做In电极后测试Hall效应,即可计算出样品的载流子浓度和迁移率,并判定载流子的类型是电子或空穴。The hole concentration of the p-type doped ZnTe sample can be measured by the classic Vanderbilt Hall test method. Cut the sample into a square of 8×8mm, test the Hall effect after making an In electrode at the center point of each side, and then calculate the carrier concentration and mobility of the sample, and determine that the type of carrier is electron or voids.

参阅图3所示,为了在碲化锌单晶薄膜材料中获得尽可能均匀的掺杂浓度分布和达到工艺设定的掺杂浓度,离子注入实验之前一般都需要用经典的SRIM-2010软件模拟离子注入的计算结果。图3是碲化锌表面沉积80nm SiO2薄膜后用SRIM-2010软件模拟双能态氮离子注入的计算结果。图中横坐标代表了从样品表面算起的深度分布,单位是纳米(nm),纵坐标表示注入氮元素的浓度,单位是cm-3。其中下边曲线对应于氮离子注入能量30keV、剂量4×1014cm-2时的氮元素浓度分布,中间曲线对应于氮离子注入能量70keV、剂量2×1015cm-2时的氮元素浓度分布;上边曲线是它们叠加后总的氮元素浓度分布结果,能够实现精确调控掺杂氮元素的深度分布和解决掺杂均匀性的问题。As shown in Figure 3, in order to obtain as uniform a doping concentration distribution as possible in the zinc telluride single crystal thin film material and to achieve the doping concentration set by the process, it is generally necessary to use the classic SRIM-2010 software simulation before the ion implantation experiment Calculation results for ion implantation. Fig. 3 is the calculation result of simulating dual-energy nitrogen ion implantation with SRIM-2010 software after depositing 80nm SiO 2 film on the surface of zinc telluride. The abscissa in the figure represents the depth distribution from the sample surface in nanometer (nm), and the ordinate represents the concentration of implanted nitrogen element in cm -3 . The lower curve corresponds to the nitrogen concentration distribution when the nitrogen ion implantation energy is 30keV and the dose is 4×10 14 cm -2 , and the middle curve corresponds to the nitrogen concentration distribution when the nitrogen ion implantation energy is 70keV and the dose is 2×10 15 cm -2 ; The upper curve is the result of the total nitrogen concentration distribution after they are superimposed, which can accurately control the depth distribution of doped nitrogen and solve the problem of doping uniformity.

在本发明中外延生长非有意掺杂的碲化锌单晶薄膜样品和离子注入后未经退火处理的样品都呈现高阻状态,空穴浓度仅有1010cm-3量级。退火处理后样品的空穴浓度可达到1×1018-1×1020cm-3,呈现低阻状态。根据氮离子注入的能量和剂量、以及快速热退火的温度和时间就可以精确调控p型掺杂碲化锌单晶薄膜层的厚度和空穴浓度,在碲化锌基光电器件研发中有广阔的应用前景。In the present invention, the non-intentionally doped ZnTe single-crystal thin film sample grown epitaxially and the sample without annealing treatment after ion implantation both present a high-resistance state, and the hole concentration is only on the order of 1010cm -3 . After annealing, the hole concentration of the sample can reach 1×10 18 -1×10 20 cm -3 , showing a low resistance state. According to the energy and dose of nitrogen ion implantation, as well as the temperature and time of rapid thermal annealing, the thickness and hole concentration of the p-type doped ZnTe single crystal thin film layer can be precisely regulated, which has broad application in the development of ZnTe-based optoelectronic devices. application prospects.

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can easily think of changes or replacements within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (8)

1. the doping method of a p-type zinc telluridse monocrystal thin films material, comprise the steps:
Step 1: get a single crystalline substrate;
Step 2: on single crystalline substrate, the epitaxial growth monocrystal thin films;
Step 3: deposition one deck SiO on the surface of monocrystal thin films 2nano thin-film;
Step 4: utilize the method for dual intensity state nitrogen Implantation, from SiO 2the nitrogen element is injected on the surface of nano thin-film downwards, at SiO 2the following formation p-type doped layer of nano thin-film, form sample;
Step 5: sample is done to quick thermal annealing process;
Step 6: the SiO that removes sample surfaces 2nano thin-film, complete preparation.
2. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, wherein the material of single crystalline substrate is ZnTe, GaSb, GaAs or Si.
3. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, wherein this monocrystal thin films is the non-doping of having a mind to, its thickness is greater than 100nm.
4. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 3, wherein the epitaxial growth monocrystal thin films is to adopt molecular beam epitaxy or metal-organic chemical vapor deposition equipment.
5. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, wherein SiO 2the thickness of nano thin-film is 50-100nm, and depositing temperature is room temperature or lower than 200 ℃; Deposition SiO 2the method of nano thin-film is magnetron sputtering, chemical vapour deposition (CVD) or pulsed laser deposition.
6. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, be 20-30keV, 1.0 * 10 when wherein the energy of nitrogen Implantation and dosage are lower state respectively 14-5.0 * 10 14cm -2; During upper state, be 60-80keV, 1.0 * 10 15-5.0 * 10 15cm -2.
7. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, wherein quick thermal annealing process is to anneal in the blanket of nitrogen of normal pressure 5-10sccm flow, and annealing temperature is 350-500 ℃, and annealing time is 1-5min.
8. the doping method of p-type zinc telluridse monocrystal thin films material according to claim 1, wherein the hole concentration scope of p-type doped layer is 1 * 10 18-1 * 10 20cm -3.
CN2013104197758A 2013-09-16 2013-09-16 Doping method for p-type zinc telluride single crystal thin-film material Pending CN103474333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013104197758A CN103474333A (en) 2013-09-16 2013-09-16 Doping method for p-type zinc telluride single crystal thin-film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013104197758A CN103474333A (en) 2013-09-16 2013-09-16 Doping method for p-type zinc telluride single crystal thin-film material

Publications (1)

Publication Number Publication Date
CN103474333A true CN103474333A (en) 2013-12-25

Family

ID=49799135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013104197758A Pending CN103474333A (en) 2013-09-16 2013-09-16 Doping method for p-type zinc telluride single crystal thin-film material

Country Status (1)

Country Link
CN (1) CN103474333A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904148A (en) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 Perovskite solar cell with zinc telluride serving as hole transporting layer and manufacturing method thereof
CN108717953A (en) * 2018-05-25 2018-10-30 河海大学 A kind of preparation method of P type substrate gallium antimonide thermophotovoltaic
CN108862252A (en) * 2018-07-06 2018-11-23 中国科学院上海微系统与信息技术研究所 A method of doped graphene is prepared using ion implanting
CN115295405A (en) * 2022-09-30 2022-11-04 北京大学 Method for improving carrier concentration of wide bandgap semiconductor
WO2025051182A1 (en) * 2023-09-06 2025-03-13 华为技术有限公司 Gate tube material, phase change storage chip, storage device, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407405B1 (en) * 1999-05-21 2002-06-18 Stanley Electric Co., Ltd. p-Type group II-VI compound semiconductor crystals growth method for such crystals, and semiconductor device made of such crystals
JP2003282601A (en) * 2002-03-27 2003-10-03 Sagaken Chiiki Sangyo Shien Center Method for producing p-type zinc telluride by metalorganic vapor phase epitaxy
CN1500160A (en) * 2001-04-04 2004-05-26 ��ʽ�������տ� Method for producing ZnTe-based compound semiconductor single crystal, ZnTe-based compound semiconductor single crystal, and semiconductor device
CN1655321A (en) * 2004-12-22 2005-08-17 上海新傲科技有限公司 Method for preparing silicon-germanium-on-insulator material based on silicon-germanium/silicon structure by implanting oxygen and isolating
CN103074677A (en) * 2013-01-17 2013-05-01 山东大学 Preparation method for zinc telluride homoepitaxy layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407405B1 (en) * 1999-05-21 2002-06-18 Stanley Electric Co., Ltd. p-Type group II-VI compound semiconductor crystals growth method for such crystals, and semiconductor device made of such crystals
CN1500160A (en) * 2001-04-04 2004-05-26 ��ʽ�������տ� Method for producing ZnTe-based compound semiconductor single crystal, ZnTe-based compound semiconductor single crystal, and semiconductor device
JP2003282601A (en) * 2002-03-27 2003-10-03 Sagaken Chiiki Sangyo Shien Center Method for producing p-type zinc telluride by metalorganic vapor phase epitaxy
CN1655321A (en) * 2004-12-22 2005-08-17 上海新傲科技有限公司 Method for preparing silicon-germanium-on-insulator material based on silicon-germanium/silicon structure by implanting oxygen and isolating
CN103074677A (en) * 2013-01-17 2013-05-01 山东大学 Preparation method for zinc telluride homoepitaxy layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. O. FERREIRA等: "Growth of highly doped p-type ZnTe layers on GaAs using a nitrogen DC plasma cell", 《JOURNAL OF CRYSTAL GROWTH》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904148A (en) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 Perovskite solar cell with zinc telluride serving as hole transporting layer and manufacturing method thereof
CN103904148B (en) * 2014-03-28 2016-03-30 中国科学院上海技术物理研究所 Take zinc telluridse as perovskite solar cell and the preparation method of hole transmission layer
CN108717953A (en) * 2018-05-25 2018-10-30 河海大学 A kind of preparation method of P type substrate gallium antimonide thermophotovoltaic
CN108862252A (en) * 2018-07-06 2018-11-23 中国科学院上海微系统与信息技术研究所 A method of doped graphene is prepared using ion implanting
CN115295405A (en) * 2022-09-30 2022-11-04 北京大学 Method for improving carrier concentration of wide bandgap semiconductor
WO2025051182A1 (en) * 2023-09-06 2025-03-13 华为技术有限公司 Gate tube material, phase change storage chip, storage device, and electronic device

Similar Documents

Publication Publication Date Title
TWI686498B (en) Epitaxial substrate for semiconductor element, semiconductor element and method for manufacturing epitaxial substrate for semiconductor element
CN102386246B (en) P-type conductive zinc oxide film material and preparation method thereof
JP5520496B2 (en) Manufacturing method of solar cell
US9870918B2 (en) InGaAs film grown on Si substrate and method for preparing the same
CN103077963B (en) A kind of Ohm contact electrode, its preparation method and comprise the semiconductor element of this Ohm contact electrode
CN103474333A (en) Doping method for p-type zinc telluride single crystal thin-film material
Zhao et al. Electroluminescence of the p-ZnO: As/n-ZnO LEDs grown on ITO glass coated with GaAs interlayer
EP3157068B1 (en) Semiconductor multilayer structure and method for producing same
WO2014026293A1 (en) Built-in vertical doping structures for the monolithic integration of tunnel junctions in photovoltaic structures
CN210778633U (en) Nitride multi-junction solar cell
Dingus et al. Low temperature growth and extrinsic doping of mono-crystalline and polycrystalline II-VI solar cells by MBE
US9985159B2 (en) Passivated contact formation using ion implantation
CN103367480B (en) Gaas tunnel junction and preparation method thereof
CN203026510U (en) Ohmic contact electrode and semiconductor element comprising same
CN1317749C (en) Three-dopant contained P-type zinc oxide film and method for making same
CN107910403B (en) A kind of preparation method of quantum well infrared detection device material
JP4846981B2 (en) Method of processing a silicon carbide substrate for improved epitaxial deposition and structure and device obtained by the method
CN101707215B (en) Ohmic contact electrode structure on aluminum nitride crystalloid and preparation method thereof
CN104332540B (en) A kind of method for preparing high luminescence energy p-type ZnO film
Kimball et al. Mg doping and alloying in Zn 3 P 2 heterojunction solar cells
CN109256437B (en) A low-temperature bonding photodetector and its preparation method
CN105047752B (en) The surface modifying method of silicon substrate
CN102738290B (en) Heterojunction solar battery and preparation method thereof
CN102691108A (en) Sb ion implantation doping and annealing activation method for ZnO single crystal
CN101691670B (en) Method for growing P-type zinc oxide film by using target doped with zinc phosphate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131225