[go: up one dir, main page]

CN103530505B - Human brain language cognition modeling method - Google Patents

Human brain language cognition modeling method Download PDF

Info

Publication number
CN103530505B
CN103530505B CN201310454914.0A CN201310454914A CN103530505B CN 103530505 B CN103530505 B CN 103530505B CN 201310454914 A CN201310454914 A CN 201310454914A CN 103530505 B CN103530505 B CN 103530505B
Authority
CN
China
Prior art keywords
cognitive
state
time
implicit
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310454914.0A
Other languages
Chinese (zh)
Other versions
CN103530505A (en
Inventor
刘洪波
冯士刚
鲁明羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201310454914.0A priority Critical patent/CN103530505B/en
Publication of CN103530505A publication Critical patent/CN103530505A/en
Application granted granted Critical
Publication of CN103530505B publication Critical patent/CN103530505B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a human brain language cognition modeling method, which comprises the following steps: initializing a cognitive state instance; mapping a probability distribution between the activation features and the observed data; defining a brain hidden state cognition model; and analyzing parameters of the implicit cognitive model. In the cognitive modeling process, input stimulation, observation results and a hidden state cognitive state are defined as a dynamic event related triple time sequence, namely: the cognitive stimulation task time sequence, the observation characteristic time sequence and the recessive cognitive state time sequence are connected through a group of probability distributions, and the collected brain data is not taken as static information to be counted, so that the cognitive modeling method provided by the invention does not need to meet basic assumption based on statistics, is still established under the condition of small sample data, ensures the correctness of a cognitive analysis result, and solves the cognitive modeling problem under the small sample data. The invention improves the accuracy of cognitive modeling and provides an effective way for complex cognitive analysis.

Description

一种人脑语言认知建模方法A method for modeling human brain language cognition

技术领域technical field

本发明涉及一种人脑语言认知技术,特别是一种人脑语言认知建模方法。The invention relates to a human brain language cognition technology, in particular to a human brain language cognition modeling method.

背景技术Background technique

认知在人脑中最直接的反映是脑区激活或抑制程度,从神经信息学的角度,对语言认知研究的关键是研究人脑语言认知过程中脑区状态以及这些状态迁移的过程,其最重要手段之一是按照神经信息学的要求设计实验,刺激受试者(多为特定群体的志愿者)的认知功能,并对其进行功能性采集数据,然后采用一定建模技术对这些数据进行分析。近些年发展起来的脑成像技术(正电子发射断层扫描、功能核磁共振)为人们直接观察和分析人脑功能活动提供了手段。当前认知研究所依赖的脑成像分析技术主要是通过统计参数图系统、功能神经成像分析系统等基于统计学的建模工具生成相应的t检验脑图来发现哪些脑区控制某项认知功能。这些以统计为基础的认知建模方法是基于一个基本假定对样本数据进行统计分析,这个假定认为:给定一定的认知刺激,在人脑认知中必定出现该刺激的认知状态。而事实上,所观测的认知激活特征具有事件相关性,认知状态具有叠加性和数据样本较小的特点,不具备严格的统计意义,也不满足统计认知建模方法的前提,因而容易导致错误的认知结果。The most direct reflection of cognition in the human brain is the degree of activation or inhibition of brain regions. From the perspective of neuroinformatics, the key to the study of language cognition is to study the state of brain regions in the process of language cognition in the human brain and the process of these state migrations. , one of the most important methods is to design experiments according to the requirements of neuroinformatics, stimulate the cognitive functions of the subjects (mostly volunteers from a specific group), and collect functional data, and then use certain modeling techniques Analyze these data. Brain imaging techniques developed in recent years (positron emission tomography, functional nuclear magnetic resonance) provide means for people to directly observe and analyze the functional activities of the human brain. The current brain imaging analysis technology that cognitive research relies on is mainly to generate corresponding t-test brain maps through statistics-based modeling tools such as statistical parametric map systems and functional neuroimaging analysis systems to discover which brain regions control a certain cognitive function. . These statistical-based cognitive modeling methods are based on a basic assumption for statistical analysis of sample data. This assumption holds that: given a certain cognitive stimulus, the cognitive state of the stimulus must appear in the human brain cognition. In fact, the observed cognitive activation features are event-related, and the cognitive state has the characteristics of superposition and small data samples, which do not have strict statistical significance and do not meet the prerequisites of statistical cognitive modeling methods. It is easy to lead to wrong cognitive results.

发明内容Contents of the invention

为解决现有技术存在的上述问题,本发明要设计一种适于小样本、具有动态时间特征的人脑语言认知建模方法。In order to solve the above-mentioned problems in the prior art, the present invention is to design a human brain language cognition modeling method suitable for small samples and having dynamic time characteristics.

为了实现上述目的,本发明的技术方案如下:一种人脑语言认知建模方法,包括以下步骤:In order to achieve the above object, the technical solution of the present invention is as follows: a method for modeling human brain language cognition, comprising the following steps:

A、认知状态实例初始化A. Cognitive state instance initialization

用h标识人脑中的认知状态,由于h并不能直接用仪器设备进行观测,因而将h称为隐性认知状态,将隐性认知状态h表示成四元组<W,d,Θ,Ω>,其中:d表示h在时间上的持续标量;W是时空维度为d×V的反映矩,其中V为h涉及的脑区维度,其空间维度分量为v;Θ为h的参数空间,Ω为参数空间的值域;认知观测过程中,一输入刺激Δ,脑认知状态的激活会存在一定的时滞;对处于激活态的认知状态,即是认知状态实例,用ξ标记,考虑隐性认知状态h的时间因素,认知状态实例是一个三元组<h,λ,o>,其中:h为相应的隐性认知状态,λ是实验刺激的输入时间点,o是认知状态的时间偏移,认知状态实例ξ的起始时间为λ+o,其持续时间d与对应的隐性认知状态h持续的时间相同,都用d(h)表示;Use h to identify the cognitive state in the human brain. Since h cannot be directly observed by instruments and equipment, h is called the implicit cognitive state, and the implicit cognitive state h is expressed as a quadruple <W,d, Θ,Ω>, where: d represents the continuous scalar of h in time; W is the reflection moment of space-time dimension d×V, where V is the dimension of the brain area involved in h, and its spatial dimension component is v; Θ is the In the parameter space, Ω is the value range of the parameter space; in the process of cognitive observation, when a stimulus Δ is input, there will be a certain time lag in the activation of the cognitive state of the brain; for the cognitive state in the activated state, it is an instance of the cognitive state , marked by ξ, considering the time factor of the implicit cognitive state h, a cognitive state instance is a triplet <h,λ,o>, where: h is the corresponding implicit cognitive state, λ is the experimental stimulus Input the time point, o is the time offset of the cognitive state, the starting time of the cognitive state instance ξ is λ+o, and its duration d is the same as the duration of the corresponding implicit cognitive state h, both use d( h) means;

B、映射激活特征与观测数据间的概率分布B. Mapping the probability distribution between activation features and observed data

假定在认知实验过程中,t时段通过成像设备观测受试者的脑激活特征bt是由L个认知状态实例共同作用的结果,用ξ12,…,ξL标示这L个认知状态实例,那么记bt={ξ12,…,ξL};bt与观测时间序列S中时段t、空间维度分量v的分量stv服从正态分布,即:Assume that in the course of the cognitive experiment, the observation of the subject’s brain activation characteristics b t through the imaging device during the t period is the result of the joint action of L cognitive state instances, and denote the L by ξ 1 , ξ 2 ,…,ξ L cognition state instance, then record b t ={ξ 12 ,…,ξ L }; b t and the component s tv of time period t and space dimension component v in the observed time series S follow normal distribution, namely:

stv~N(μtv(bt),σv) (1)s tv ~N(μ tv (b t ),σ v ) (1)

其中σv是标准方差,它反映与观测时间序列相关的噪声分布,具有时间独立性;μtv(bt)反映相应时段所有相关认知状态的叠加效果,即满足下式:Among them, σ v is the standard deviation, which reflects the noise distribution related to the observed time series and has time independence; μ tv (b t ) reflects the superposition effect of all relevant cognitive states in the corresponding period, that is, it satisfies the following formula:

&mu;&mu; tt vv (( bb tt )) == &Sigma;&Sigma; &xi;&xi; &Element;&Element; bb tt &Sigma;&Sigma; dd (( hh (( &xi;&xi; )) )) &delta;&delta; (( &lambda;&lambda; (( &xi;&xi; )) ++ oo (( &xi;&xi; )) == tt -- &tau;&tau; )) ww &tau;&tau; vv (( hh (( &xi;&xi; )) )) -- -- -- (( 22 ))

其中δ(.)为指示函数,如果自变量为真,该函数结果为1,否则为0;h(ξ)标识认知状态实例ξ对应的隐性认知状态;wτv(h(ξ))则是标识时段t的第τ时间步上隐性认知状态反映矩W(h(ξ))的v分量。Where δ(.) is an indicator function, if the independent variable is true, the function result is 1, otherwise it is 0; h(ξ) identifies the implicit cognitive state corresponding to the cognitive state instance ξ; w τv (h(ξ) ) is the v component of the implicit cognitive state reflection moment W(h(ξ)) at the τth time step of the identification period t.

C、定义脑隐态认知模型C. Define the implicit cognitive model of the brain

定义脑隐态认知模型为一个六元组<H,Φ,I,S,Ξ,Γ>,用HCM标记,其中:H是隐性认知状态集合;Φ是隐态认知模型的参数矢量,它们依赖实验设计参数,即:刺激的类型、输入刺激的时间点;S是观测时间序列;Ξ是由输入刺激Δ组成的刺激序列;I是认知状态实例的时间序列,由于认知状态实例的激活时间点与观测时间序列相对应,因而将I中的元素bt简写为b;Γ为<σ12,…,σv>方差集,其中σv是公式(1)中的标准方差,反映时间序列的噪声分布;HCM定义了I与S、Ξ构成概率相关的三重时间序列,为I所定义的随机变量,则观测到的脑激活特征与隐性认知状态间的概率分布为:Define the brain implicit cognitive model as a six-tuple <H, Φ, I, S, Ξ, Γ>, marked by HCM, where: H is the set of implicit cognitive states; Φ is the parameter of the implicit cognitive model Vectors, they depend on the experimental design parameters, namely: the type of stimulus, the time point of the input stimulus; S is the observation time series; Ξ is the stimulus sequence composed of the input stimulus Δ; I is the time series of cognitive state instances, due to cognitive The activation time point of the state instance corresponds to the observation time series, so the element b t in I is abbreviated as b; Γ is the variance set <σ 12 ,…,σ v >, where σ v is the formula (1) The standard deviation in , reflects the noise distribution of the time series; HCM defines a triple time series in which I, S, and Ξ constitute probability correlations, is a random variable defined by I, then the probability distribution between the observed brain activation features and the implicit cognitive state is:

PP (( SS || Hh CC Mm ,, &Delta;&Delta; )) == &Sigma;&Sigma; bb &Element;&Element; II PP (( SS || Hh CC Mm ,, II ^^ == bb )) PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 33 ))

其中,in,

PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) == &Pi;&Pi; &xi;&xi; &Element;&Element; bb PP (( hh (( &xi;&xi; )) || Hh CC Mm ,, &Delta;&Delta; )) PP (( oo (( &xi;&xi; )) || hh (( &xi;&xi; )) ,, Hh CC Mm ,, &Delta;&Delta; )) &Sigma;&Sigma; bb ,, &Element;&Element; II &Pi;&Pi; &xi;&xi; ,, &Element;&Element; bb ,, PP (( hh (( &xi;&xi; ,, )) || Hh CC Mm ,, &Delta;&Delta; )) PP (( oo (( &xi;&xi; ,, )) || hh (( &xi;&xi; ,, )) ,, Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 44 ))

式中,P(h(ξ)|HCM,Δ)是汉语认知实验过程中条件刺激为Δ激活隐性认知状态h及相应认知状态实例ξ的条件概率,P(o(ξ)|h(ξ),HCM,Δ)是相应的时滞条件概率;隐态认知模型的建模过程需要针对特定的认知过程确定其条件概率,同时还要确定隐态认知模型的参数矢量,对HCM各项参数进行最大似然估计;对于HCM,根据贝叶斯定理有:In the formula, P(h(ξ)|HCM,Δ) is the conditional probability that the conditional stimulus Δ activates the implicit cognitive state h and the corresponding cognitive state instance ξ in the process of Chinese cognitive experiment, P(o(ξ)| h(ξ), HCM, Δ) is the corresponding time-delay conditional probability; the modeling process of the hidden cognitive model needs to determine its conditional probability for a specific cognitive process, and at the same time determine the parameter vector of the hidden cognitive model , perform maximum likelihood estimation on the parameters of HCM; for HCM, according to Bayes' theorem:

PP (( II ^^ == bb || SS ,, Hh CC Mm ,, &Delta;&Delta; )) == PP (( SS || II ^^ == bb ,, Hh CC Mm )) PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) &Sigma;&Sigma; bb &prime;&prime; &Element;&Element; II PP (( SS || II ^^ == bb &prime;&prime; ,, Hh CC Mm )) PP (( II ^^ == bb &prime;&prime; || Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 55 ))

D、隐态认知模型参数解析D. Analysis of implicit cognitive model parameters

隐态认知模型通过学习训练确定与观测时间序列相吻合的隐态认知状态概率及其参数,也就是最小化目标函数:The hidden cognitive model determines the hidden cognitive state probability and its parameters that match the observed time series through learning and training, that is, minimizes the objective function:

ff (( &Phi;&Phi; )) == &Sigma;&Sigma; vv == 11 VV &Sigma;&Sigma; tt == 11 TT &Sigma;&Sigma; bb &Element;&Element; II PP (( II ^^ == bb || SS ,, &Phi;&Phi; )) 22 &sigma;&sigma; vv 22 (( sthe s tt vv -- &mu;&mu; tt vv (( bb )) )) 22 -- -- -- (( 66 ))

式中,Φ表示隐态认知模型中认知刺激任务时间序列、观测特征时间序列、隐性认知状态时间序列三重时间序列间的映射概率参数,T为隐态认知模型的总时间。In the formula, Φ represents the mapping probability parameter among the triple time series of cognitive stimulus task time series, observation feature time series, and implicit cognitive state time series in the hidden cognitive model, and T is the total time of the hidden cognitive model.

D1、初始化搜索群:D1. Initialize the search group:

利用n个搜索个体所形成的种群在Φ所确定的空间中进行并行搜索,令搜索个体的最大速度vmax=r;时间步t=0时,对n个搜索个体的进行随机初始化,即第i个搜索个体的第j维的位置pij=Rand(-r,r)和第i个搜索个体的第j维的速度vij=Rand(-vmax,vmax);r为定义域,t为时间步;The population formed by n search individuals is used to perform parallel search in the space determined by Φ, and the maximum speed of the search individual v max =r; when time step t=0, the n search individuals are randomly initialized, that is, The position p ij of the jth dimension of the i search individual =Rand(-r,r) and the velocity v ij of the jth dimension of the i search individual =Rand(-v max ,v max ); r is the domain of definition, t is the time step;

D2、若满足预定最大迭代次数或10次迭代结果无改善,则输出结果p*和f(p*)并结束计算;否则,转步骤D3;D2. If the predetermined maximum number of iterations is met or the result of 10 iterations is not improved, output the results p* and f(p*) and end the calculation; otherwise, go to step D3;

式中,p*为搜索个体所组成的群中最好的个体状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值。In the formula, p* is the best individual state in the group composed of search individuals, and f(p*) is the fitness value determined by the best individual state in the group composed of search individuals.

D3、计算搜索个体的适应值D3. Calculate the fitness value of the search individual

按照公式(6)计算搜索个体的适应值;Calculate the fitness value of the search individual according to formula (6);

D4、最优保存D4. Optimal preservation

令t=t+1,实施最优保存策略,即:Let t=t+1, implement the optimal preservation strategy, namely:

pp ii ## (( tt )) == argarg mm ii nno 11 &le;&le; ii &le;&le; nno (( ff (( pp ii ## (( tt -- 11 )) )) ,, ff (( pp ii (( tt )) )) ))

pp ** (( tt )) == argarg mm ii nno 11 &le;&le; ii &le;&le; nno (( ff (( pp ** (( tt -- 11 )) )) ,, ff (( pp 11 (( tt )) )) ,, ...... ,, ff (( pp nno (( tt )) )) ))

式中,p*为搜索个体所组成的群中最好的个体状态,pi #是第i个搜索个体从t=0开始迭代到当前最好的状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值;In the formula, p* is the best individual state in the group composed of search individuals, p i # is the iterative state of the ith search individual from t=0 to the current best state, f(p*) is the best state of the search individual The fitness value determined by the best individual state in the formed group;

D5、状态转移联合操作D5. State transfer joint operation

引入搜索个体所组成的群体优势动态地搜索,针对每个搜索个体的每一维度根据公式(7)和(8)执行状态转移联合操作:Introduce the group advantages of search individuals to search dynamically, and perform state transition joint operations according to formulas (7) and (8) for each dimension of each search individual:

vv ii jj (( tt )) == wvwv ii jj (( tt -- 11 )) ++ cc 11 rr 11 (( pp ii jj ## (( tt -- 11 )) -- pp ii jj (( tt -- 11 )) )) ++ cc 22 rr 22 (( pp ii jj ** (( tt -- 11 )) -- pp ii jj (( tt -- 11 )) )) -- -- -- (( 77 ))

xij(t)=vij(t)+xij(t-1) (8)x ij (t) = v ij (t) + x ij (t-1) (8)

转步骤D2。Go to step D2.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明在认知建模过程中,将输入刺激、观测结果、隐态认知状态定义为动态事件相关的三重时间序列,即:认知刺激任务时间序列、观测特征时间序列、隐性认知状态时间序列,而且这三重时间序列通过一组概率分布相联系,不是将所采集的脑数据视为静态信息进行统计,因而本发明的认知建模方法无需满足基于统计的基本假定,在小样本数据条件下仍然成立,保证了认知分析结果的正确性,因而解决了小样本数据下的认知建模问题。1. In the process of cognitive modeling, the present invention defines input stimuli, observation results, and hidden cognitive states as triple time series related to dynamic events, namely: cognitive stimulation task time series, observation characteristic time series, recessive Cognitive state time series, and these triple time series are connected through a set of probability distributions, the collected brain data is not regarded as static information for statistics, so the cognitive modeling method of the present invention does not need to meet the basic assumptions based on statistics, It is still established under the condition of small sample data, which ensures the correctness of cognitive analysis results, thus solving the problem of cognitive modeling under small sample data.

2、本发明将认知实验中被观测到的时间系列脑激活数据对应于汉语认知状态实例的反映矩集合,其中每个状态实例在某个时间间隔都依概率起作用,在其作用的时段每个状态实例影响着数据采集时所观测到的激活特征。如果多个状态实例几乎同时起作用,那么观测到的激活特征是所有相关状态实例产生的效果叠加,为认知状态细分提供了基础,进而提高了认知建模的精度,也为复杂认知分析提供了有效途径。2. The present invention corresponds the time series brain activation data observed in the cognitive experiment to the reflection moment set of the Chinese cognitive state instance, wherein each state instance plays a role according to the probability at a certain time interval. Each state instance during the time period influences the observed activation characteristics at the time of data collection. If multiple state instances act almost simultaneously, the observed activation features are the superposition of effects produced by all related state instances, which provides a basis for cognitive state subdivision, thereby improving the accuracy of cognitive modeling, and providing a basis for complex cognitive states. Knowledge analysis provides an effective way.

3、本发明所提出的脑隐态认知模型引入了模型认知状态总体T、模型认知状态观测时段t及其时间步τ、实验刺激的输入时间点λ、认知状态的时间偏移o时间量,从而使该模型具有认知状态时间效应,是以认知实验刺激系列为依据的一种事件相关的时间序列动态观测方法,在认知检测过程中将观测到的认知激活特征序列映射成一个或多个隐态认知在同一时段对脑激活的影响,而且观测序列与隐性认知状态序列并不是一一对应,而是与刺激相关并依一定概率激活不同的隐性认知状态,为认知动态分析提供了基础。3. The brain hidden state cognitive model proposed by the present invention introduces the overall T of the cognitive state of the model, the observation period t of the cognitive state of the model and its time step τ, the input time point λ of the experimental stimulus, and the time offset of the cognitive state oThe amount of time, so that the model has a cognitive state time effect, is an event-related time-series dynamic observation method based on the cognitive experimental stimulus series, and the observed cognitive activation characteristics are used during the cognitive detection process The sequence is mapped to the influence of one or more hidden cognitions on brain activation at the same time period, and the observation sequence is not in one-to-one correspondence with the hidden cognitive state sequence, but is related to the stimulus and activates different hidden cognitions with a certain probability. Cognitive state provides the basis for the analysis of cognitive dynamics.

附图说明Description of drawings

本发明共有附图2张,其中:The present invention has 2 accompanying drawings, wherein:

图1是本发明的流程图。Fig. 1 is a flow chart of the present invention.

图2是本发明的三重时间序列映射实例图。Fig. 2 is an example diagram of triple time series mapping in the present invention.

具体实施方式detailed description

下面结合附图对本发明进行进一步地描述。如图1-2所示,本发明的模型方法包含三重时间序列,即:上层刺激时间序列Ξ、中层隐态认知时间序列I、观测时间序列S,在观测序列中存在隐态认知叠加,即中层隐态认知序列I映射到观测序列S时存在多个箭头指向相同的映射区,但这种三重时间序列存在基本的映射关系,而且这种关系由概率参数Φ确定,通过步骤D1~D5根据公式(6)解析其概率参数所确定的概率映射关系。给出一个简单示例:输入刺激时间序列Ξ为{Δ123};观测时间序列S为{s1,s2,s3};隐态认知实例时间序列I为{b1,b2,b3},其中b1={ξ1 (1)2 (1)L3 (1)},b2={ξ1 (2)2 (2)3 (2)4 (2)},b3={ξ1 (3)2 (3)3 (3)},ξ带括号的数字上标标识它属于相应的认知实例;I对应的隐态认知状态集合H为{h1,h2,h3,h4}。通过步骤D1~D5根据公式(6)确定概率参数Φ,主要结果为:ξ1 (1)→s1(0.82),ξ2 (1)→s1(0.91),ξ3 (1)→s2(0.86);The present invention will be further described below in conjunction with the accompanying drawings. As shown in Figures 1-2, the model method of the present invention includes triple time series, namely: the upper layer stimulus time series Ξ, the middle layer hidden state cognition time series I, and the observation time series S, and there is a hidden state cognition superposition in the observation sequence , that is, when the middle-level implicit cognitive sequence I is mapped to the observation sequence S, there are multiple arrows pointing to the same mapping area, but this triple time series has a basic mapping relationship, and this relationship is determined by the probability parameter Φ, through step D1 ~D5 analyzes the probability mapping relationship determined by its probability parameters according to formula (6). Give a simple example: the input stimulus time series Ξ is {Δ 1 , Δ 2 , Δ 3 }; the observation time series S is {s 1 , s 2 , s 3 }; the hidden cognitive instance time series I is {b 1 ,b 2 ,b 3 }, where b 1 ={ξ 1 (1)2 (1)L3 (1) },b 2 ={ξ 1 (2)2 (2)3 (2) , ξ 4 (2) }, b 3 = {ξ 1 (3) , ξ 2 (3) , ξ 3 (3) }, ξ with a parenthesized superscript indicates that it belongs to the corresponding cognitive instance ; The hidden cognitive state set H corresponding to I is {h 1 , h 2 , h 3 , h 4 }. Determine the probability parameter Φ according to formula (6) through steps D1~D5, the main results are: ξ 1 (1) →s 1 (0.82),ξ 2 (1) →s 1 (0.91),ξ 3 (1) →s 2 (0.86);

ξ1 (2)→s2(0.90),ξ2 (2)→s2(0.76),ξ3 (2)→s3(0.84),ξ4 (2)→s3(0.69);ξ 1 (2) → s 2 (0.90), ξ 2 (2) → s 2 (0.76), ξ 3 (2) → s 3 (0.84), ξ 4 (2) → s 3 (0.69);

ξ1 (3)→s3(0.78),ξ2 (3)→s3(0.85),ξ3 (3)→s3(0.80);ξ 1 (3) → s 3 (0.78), ξ 2 (3) → s 3 (0.85), ξ 3 (3) → s 3 (0.80);

ξ1 (1)→h1(0.90),ξ2 (1)→h2(0.74),ξ3 (1)→h3(0.92);ξ 1 (1) → h 1 (0.90), ξ 2 (1) → h 2 (0.74), ξ 3 (1) → h 3 (0.92);

ξ1 (2)→h1(0.97),ξ2 (2)→h2(0.88),ξ3 (2)→h3(0.79),ξ4 (2)→h4(0.85);ξ 1 (2) → h 1 (0.97), ξ 2 (2) → h 2 (0.88), ξ 3 (2) → h 3 (0.79), ξ 4 (2) → h 4 (0.85);

ξ1 (3)→h1(0.93),ξ2 (3)→h3(0.87),ξ3 (3)→h4(0.91)。ξ 1 (3) → h 1 (0.93), ξ 2 (3) → h 3 (0.87), ξ 3 (3) → h 4 (0.91).

式中:“→”表示存在映射关系,括号里的数字表示相应的映射概率。In the formula: "→" indicates that there is a mapping relationship, and the numbers in brackets indicate the corresponding mapping probability.

Claims (1)

1.一种人脑语言认知建模方法,其特征在于:包括以下步骤:1. a human brain language cognition modeling method, is characterized in that: comprise the following steps: A、认知状态实例初始化A. Cognitive state instance initialization 用h标识人脑中的认知状态,由于h并不能直接用仪器设备进行观测,因而将h称为隐性认知状态,将隐性认知状态h表示成四元组<W,d,Θ,Ω>,其中:d表示h在时间上的持续标量;W是时空维度为d×V的反映矩,其中V为h涉及的脑区维度,其空间维度分量为v;Θ为h的参数空间,Ω为参数空间的值域;认知观测过程中,一输入刺激Δ,脑认知状态的激活会存在一定的时滞;对处于激活态的认知状态,即是认知状态实例,用ξ标记,考虑隐性认知状态h的时间因素,认知状态实例是一个三元组<h,λ,o>,其中:h为相应的隐性认知状态,λ是实验刺激的输入时间点,o是认知状态的时间偏移,认知状态实例ξ的起始时间为λ+o,其持续时间d与对应的隐性认知状态h持续的时间相同,都用d(h)表示;Use h to identify the cognitive state in the human brain. Since h cannot be directly observed by instruments and equipment, h is called the implicit cognitive state, and the implicit cognitive state h is expressed as a quadruple <W,d, Θ,Ω>, where: d represents the continuous scalar of h in time; W is the reflection moment of space-time dimension d×V, where V is the dimension of the brain area involved in h, and its spatial dimension component is v; Θ is the In the parameter space, Ω is the value range of the parameter space; in the process of cognitive observation, when a stimulus Δ is input, there will be a certain time lag in the activation of the cognitive state of the brain; for the cognitive state in the activated state, it is an instance of the cognitive state , marked by ξ, considering the time factor of the implicit cognitive state h, a cognitive state instance is a triplet <h,λ,o>, where: h is the corresponding implicit cognitive state, λ is the experimental stimulus Input the time point, o is the time offset of the cognitive state, the starting time of the cognitive state instance ξ is λ+o, and its duration d is the same as the duration of the corresponding implicit cognitive state h, both use d( h) means; B、映射激活特征与观测数据间的概率分布B. Mapping the probability distribution between activation features and observed data 假定在认知实验过程中,t时段通过成像设备观测受试者的脑激活特征bt是由L个认知状态实例共同作用的结果,用ξ12,…,ξL标示这L个认知状态实例,那么记bt={ξ12,…,ξL};bt与观测时间序列S中时段t、空间维度分量v的分量stv服从正态分布,即:Assume that in the course of the cognitive experiment, the observation of the subject’s brain activation characteristics b t through the imaging device during the t period is the result of the joint action of L cognitive state instances, and denote the L by ξ 1 , ξ 2 ,…,ξ L cognition state instance, then record b t ={ξ 12 ,…,ξ L }; b t and the component s tv of time period t and space dimension component v in the observed time series S follow normal distribution, namely: stv~N(μtv(bt),σv) (1)s tv ~N(μ tv (b t ),σ v ) (1) 其中σv是标准方差,它反映与观测时间序列相关的噪声分布,具有时间独立性;μtv(bt)反映相应时段所有相关认知状态的叠加效果,即满足下式:Among them, σ v is the standard deviation, which reflects the noise distribution related to the observed time series and has time independence; μ tv (b t ) reflects the superposition effect of all relevant cognitive states in the corresponding period, that is, it satisfies the following formula: &mu;&mu; tt vv (( bb tt )) == &Sigma;&Sigma; &xi;&xi; &Element;&Element; bb tt &Sigma;&Sigma; dd (( hh (( &xi;&xi; )) )) &delta;&delta; (( &lambda;&lambda; (( &xi;&xi; )) ++ oo (( &xi;&xi; )) == tt -- &tau;&tau; )) ww &tau;&tau; vv (( hh (( &xi;&xi; )) )) -- -- -- (( 22 )) 其中δ(.)为指示函数,如果自变量为真,该函数结果为1,否则为0;h(ξ)标识认知状态实例ξ对应的隐性认知状态;wτv(h(ξ))则是标识时段t的第τ时间步上隐性认知状态反映矩W(h(ξ))的v分量;Where δ(.) is an indicator function, if the independent variable is true, the function result is 1, otherwise it is 0; h(ξ) identifies the implicit cognitive state corresponding to the cognitive state instance ξ; w τv (h(ξ) ) is the v component of the implicit cognitive state reflection moment W(h(ξ)) on the τth time step of the identification period t; C、定义脑隐态认知模型C. Define the implicit cognitive model of the brain 定义脑隐态认知模型为一个六元组<H,Φ,I,S,Ξ,Γ>,用HCM标记,其中:H是隐性认知状态集合;Φ是隐态认知模型的参数矢量,它们依赖实验设计参数,即:刺激的类型、输入刺激的时间点;S是观测时间序列;Ξ是由输入刺激Δ组成的刺激序列;I是认知状态实例的时间序列,由于认知状态实例的激活时间点与观测时间序列相对应,因而将I中的元素bt简写为b;Γ为<σ12,…,σv>方差集,其中σv是公式(1)中的标准方差,反映时间序列的噪声分布;HCM定义了I与S、Ξ构成概率相关的三重时间序列,为I所定义的随机变量,则观测到的脑激活特征与隐性认知状态间的概率分布为:Define the brain implicit cognitive model as a six-tuple <H, Φ, I, S, Ξ, Γ>, marked by HCM, where: H is the set of implicit cognitive states; Φ is the parameter of the implicit cognitive model Vectors, they depend on the experimental design parameters, namely: the type of stimulus, the time point of the input stimulus; S is the observation time series; Ξ is the stimulus sequence composed of the input stimulus Δ; I is the time series of cognitive state instances, due to cognitive The activation time point of the state instance corresponds to the observation time series, so the element b t in I is abbreviated as b; Γ is the variance set <σ 12 ,…,σ v >, where σ v is the formula (1) The standard deviation in , reflects the noise distribution of the time series; HCM defines a triple time series in which I, S, and Ξ constitute probability correlations, is a random variable defined by I, then the probability distribution between the observed brain activation features and the implicit cognitive state is: PP (( SS || Hh CC Mm ,, &Delta;&Delta; )) == &Sigma;&Sigma; bb &Element;&Element; II PP (( SS || Hh CC Mm ,, II ^^ == bb )) PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 33 )) 其中,in, PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) == &Pi;&Pi; &xi;&xi; &Element;&Element; bb PP (( hh (( &xi;&xi; )) || Hh CC Mm ,, &Delta;&Delta; )) PP (( oo (( &xi;&xi; )) || hh (( &xi;&xi; )) ,, Hh CC Mm ,, &Delta;&Delta; )) &Sigma;&Sigma; bb ,, &Element;&Element; II &Pi;&Pi; &xi;&xi; ,, &Element;&Element; bb ,, PP (( hh (( &xi;&xi; ,, )) || Hh CC Mm ,, &Delta;&Delta; )) PP (( oo (( &xi;&xi; ,, )) || hh (( &xi;&xi; ,, )) ,, Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 44 )) 式中,P(h(ξ)|HCM,Δ)是汉语认知实验过程中条件刺激为Δ激活隐性认知状态h及相应认知状态实例ξ的条件概率,P(o(ξ)|h(ξ),HCM,Δ)是相应的时滞条件概率;隐态认知模型的建模过程需要针对特定的认知过程确定其条件概率,同时还要确定隐态认知模型的参数矢量,对HCM各项参数进行最大似然估计;对于HCM,根据贝叶斯定理有:In the formula, P(h(ξ)|HCM,Δ) is the conditional probability that the conditional stimulus Δ activates the implicit cognitive state h and the corresponding cognitive state instance ξ in the process of Chinese cognitive experiment, P(o(ξ)| h(ξ), HCM, Δ) is the corresponding time-delay conditional probability; the modeling process of the hidden cognitive model needs to determine its conditional probability for a specific cognitive process, and at the same time determine the parameter vector of the hidden cognitive model , perform maximum likelihood estimation on the parameters of HCM; for HCM, according to Bayes' theorem: PP (( II ^^ == bb || SS ,, Hh CC Mm ,, &Delta;&Delta; )) == PP (( SS || II ^^ == bb ,, Hh CC Mm )) PP (( II ^^ == bb || Hh CC Mm ,, &Delta;&Delta; )) &Sigma;&Sigma; bb &prime;&prime; &Element;&Element; II PP (( SS || II ^^ == bb &prime;&prime; ,, Hh CC Mm )) PP (( II ^^ == bb &prime;&prime; || Hh CC Mm ,, &Delta;&Delta; )) -- -- -- (( 55 )) D、隐态认知模型参数解析D. Analysis of implicit cognitive model parameters 隐态认知模型通过学习训练确定与观测时间序列相吻合的隐态认知状态概率及其参数,也就是最小化目标函数:The hidden cognitive model determines the hidden cognitive state probability and its parameters that match the observed time series through learning and training, that is, minimizes the objective function: ff (( &Phi;&Phi; )) == &Sigma;&Sigma; vv == 11 VV &Sigma;&Sigma; tt == 11 TT &Sigma;&Sigma; bb &Element;&Element; II PP (( II ^^ == bb || SS ,, &Phi;&Phi; )) 22 &sigma;&sigma; vv 22 (( sthe s tt vv -- &mu;&mu; tt vv (( bb )) )) 22 -- -- -- (( 66 )) 式中,Φ表示隐态认知模型中认知刺激任务时间序列、观测特征时间序列、隐性认知状态时间序列三重时间序列间的映射概率参数,T为隐态认知模型的总时间;In the formula, Φ represents the mapping probability parameter among the triple time series of cognitive stimulus task time series, observation feature time series, and implicit cognitive state time series in the implicit cognitive model, and T is the total time of the implicit cognitive model; D1、初始化搜索群:D1. Initialize the search group: 利用n个搜索个体所形成的种群在Φ所确定的空间中进行并行搜索,令搜索个体的最大速度vmax=r;时间步t=0时,对n个搜索个体的进行随机初始化,即第i个搜索个体的第j维的位置pij=Rand(-r,r)和第i个搜索个体的第j维的速度vij=Rand(-vmax,vmax);r为定义域,t为时间步;The population formed by n search individuals is used to perform parallel search in the space determined by Φ, and the maximum speed of the search individual v max =r; when time step t=0, the n search individuals are randomly initialized, that is, The position p ij of the jth dimension of the i search individual =Rand(-r,r) and the velocity v ij of the jth dimension of the i search individual =Rand(-v max ,v max ); r is the domain of definition, t is the time step; D2、若满足预定最大迭代次数或10次迭代结果无改善,则输出结果p*和f(p*)并结束计算;否则,转步骤D3;D2. If the predetermined maximum number of iterations is met or the result of 10 iterations is not improved, output the results p* and f(p*) and end the calculation; otherwise, go to step D3; 式中,p*为搜索个体所组成的群中最好的个体状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值;In the formula, p* is the best individual state in the group composed of searching individuals, and f(p*) is the fitness value determined by the best individual state in the group composed of searching individuals; D3、计算搜索个体的适应值D3. Calculate the fitness value of the search individual 按照公式(6)计算搜索个体的适应值;Calculate the fitness value of the search individual according to formula (6); D4、最优保存D4. Optimal preservation 令t=t+1,实施最优保存策略,即:Let t=t+1, implement the optimal preservation strategy, namely: pp ii ## (( tt )) == argarg mm ii nno 11 &le;&le; ii &le;&le; nno (( ff (( pp ii ## (( tt -- 11 )) )) ,, ff (( pp ii (( tt )) )) )) pp ** (( tt )) == argarg mm ii nno 11 &le;&le; ii &le;&le; nno (( ff (( pp ** (( tt -- 11 )) )) ,, ff (( pp 11 (( tt )) )) ,, ...... ,, ff (( pp nno (( tt )) )) )) 式中,p*为搜索个体所组成的群中最好的个体状态,pi #是第i个搜索个体从t=0开始迭代到当前最好的状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值;In the formula, p* is the best individual state in the group composed of search individuals, p i # is the iterative state of the ith search individual from t=0 to the current best state, f(p*) is the best state of the search individual The fitness value determined by the best individual state in the formed group; D5、状态转移联合操作D5. State transfer joint operation 引入搜索个体所组成的群体优势动态地搜索,针对每个搜索个体的每一维度根据公式(7)和(8)执行状态转移联合操作:Introduce the dynamic search of group advantages composed of search individuals, and perform state transition joint operations according to formulas (7) and (8) for each dimension of each search individual: vv ii jj (( tt )) == wvwv ii jj (( tt -- 11 )) ++ cc 11 rr 11 (( pp ii jj ## (( tt -- 11 )) -- pp ii jj (( tt -- 11 )) )) ++ cc 22 rr 22 (( pp ii jj ** (( tt -- 11 )) -- pp ii jj (( tt -- 11 )) )) -- -- -- (( 77 )) xij(t)=vij(t)+xij(t-1) (8)x ij (t) = v ij (t) + x ij (t-1) (8) 转步骤D2。Go to step D2.
CN201310454914.0A 2013-09-29 2013-09-29 Human brain language cognition modeling method Expired - Fee Related CN103530505B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310454914.0A CN103530505B (en) 2013-09-29 2013-09-29 Human brain language cognition modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310454914.0A CN103530505B (en) 2013-09-29 2013-09-29 Human brain language cognition modeling method

Publications (2)

Publication Number Publication Date
CN103530505A CN103530505A (en) 2014-01-22
CN103530505B true CN103530505B (en) 2017-02-08

Family

ID=49932510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310454914.0A Expired - Fee Related CN103530505B (en) 2013-09-29 2013-09-29 Human brain language cognition modeling method

Country Status (1)

Country Link
CN (1) CN103530505B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715134A (en) * 2014-12-16 2015-06-17 苏州大学 Brain cognitive injury model of rat and establishing method of brain cognitive injury model
CN108175424B (en) * 2015-08-07 2020-12-11 北京智能阳光科技有限公司 Test system for cognitive ability value test
CN106485039B (en) * 2015-08-24 2019-05-10 复旦大学附属华山医院 A method for constructing the distribution map of Chinese brain language areas
EP3796171A1 (en) 2019-09-19 2021-03-24 Nokia Technologies Oy User interaction
CN113095502B (en) * 2021-03-15 2024-07-05 北京工业大学 Systematic cognitive experiment design method based on Data-Brain model driving
CN114068012B (en) * 2021-11-15 2022-05-10 北京智精灵科技有限公司 Cognitive decision-oriented multi-dimensional hierarchical drift diffusion model modeling method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663142A (en) * 2012-05-18 2012-09-12 大连海事大学 Knowledge extraction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092058A (en) * 1998-01-08 2000-07-18 The United States Of America As Represented By The Secretary Of The Army Automatic aiding of human cognitive functions with computerized displays
EP1955190B1 (en) * 2005-11-10 2018-08-29 In Silico Biosciences, Inc. Method and apparatus for computer modeling the human brain for predicting drug effects
WO2007092795A2 (en) * 2006-02-02 2007-08-16 Neuric Technologies, Llc Method for movie animation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663142A (en) * 2012-05-18 2012-09-12 大连海事大学 Knowledge extraction method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"汉语认知的脑内信息加工模式";唐一源;《中国博士学位论文全文数据库 基础科学辑 》;20040315(第1期);第A006-12页 *
"汉语认知脑数据挖掘相关算法及应用研究";刘洪波;《中国博士学位论文全文数据库 信息科技辑》;20060415(第4期);第 I138-10页 *

Also Published As

Publication number Publication date
CN103530505A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
CN103530505B (en) Human brain language cognition modeling method
Lodder To impute or not impute: That’s the question
Correa et al. Performance of blind source separation algorithms for fMRI analysis using a group ICA method
Kirch et al. Detection of changes in multivariate time series with application to EEG data
Hox 14 Multilevel Regression and Multilevel Structural Equation Modeling
Valdes-Sosa et al. Effective connectivity: influence, causality and biophysical modeling
Neckel et al. Random differential equations in scientific computing
Lindquist et al. Estimating and testing variance components in a multi-level GLM
Helwig Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging
CN109816630A (en) A transfer learning-based method for constructing fMRI visual coding model
Riera et al. Nonlinear local electrovascular coupling. II: From data to neuronal masses
CN114052668B (en) Brain function analysis method based on magnetoencephalogram data
CN117122303B (en) A brain network prediction method, system, device and storage medium
Song et al. Effects of gender stereotypes on performance in mathematics: A serial multivariable mediation model
Wischnewski et al. Towards an efficient validation of dynamical whole-brain models
Farahani et al. Computational methods for analyzing functional and effective brain network connectivity using fMRI
Soldati et al. The use of a priori information in ICA-based techniques for real-time fMRI: an evaluation of static/dynamic and spatial/temporal characteristics
CN104434109B (en) Functional nuclear magnetic resonance time sequence matching method
Ding et al. Multivariate functional response low‐rank regression with an application to brain imaging data
Carusi et al. CHAPTER SIX MODEL SYSTEMS IN COMPUTATIONAL SYSTEMS BIOLOGY
Tan et al. Dynamic Inverse Reinforcement Learning for Feedback-driven Reward Estimation in Brain Machine Interface Tasks
Kesteren Structural equations with latent variables: computational solutions for modern data problems
Bogunovic et al. Processing and analyisis of biomedical nonlinear signals by data mining methods
Heitzman-Breen et al. A practical identifiability criterion leveraging weak-form parameter estimation
Karamolegkos et al. Cardiovascular system identification: Simulation study using arterial and central venous pressures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170208

Termination date: 20170929

CF01 Termination of patent right due to non-payment of annual fee