CN103530505B - Human brain language cognition modeling method - Google Patents
Human brain language cognition modeling method Download PDFInfo
- Publication number
- CN103530505B CN103530505B CN201310454914.0A CN201310454914A CN103530505B CN 103530505 B CN103530505 B CN 103530505B CN 201310454914 A CN201310454914 A CN 201310454914A CN 103530505 B CN103530505 B CN 103530505B
- Authority
- CN
- China
- Prior art keywords
- cognitive
- state
- time
- implicit
- search
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000019771 cognition Effects 0.000 title claims abstract description 20
- 230000006998 cognitive state Effects 0.000 claims abstract description 67
- 230000001149 cognitive effect Effects 0.000 claims abstract description 56
- 230000004913 activation Effects 0.000 claims abstract description 18
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 238000013507 mapping Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 9
- 238000002474 experimental method Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 238000007476 Maximum Likelihood Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000013401 experimental design Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000009916 joint effect Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 2
- 238000002610 neuroimaging Methods 0.000 description 3
- 230000003920 cognitive function Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006385 cognitive dynamics Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000001550 time effect Effects 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种人脑语言认知技术,特别是一种人脑语言认知建模方法。The invention relates to a human brain language cognition technology, in particular to a human brain language cognition modeling method.
背景技术Background technique
认知在人脑中最直接的反映是脑区激活或抑制程度,从神经信息学的角度,对语言认知研究的关键是研究人脑语言认知过程中脑区状态以及这些状态迁移的过程,其最重要手段之一是按照神经信息学的要求设计实验,刺激受试者(多为特定群体的志愿者)的认知功能,并对其进行功能性采集数据,然后采用一定建模技术对这些数据进行分析。近些年发展起来的脑成像技术(正电子发射断层扫描、功能核磁共振)为人们直接观察和分析人脑功能活动提供了手段。当前认知研究所依赖的脑成像分析技术主要是通过统计参数图系统、功能神经成像分析系统等基于统计学的建模工具生成相应的t检验脑图来发现哪些脑区控制某项认知功能。这些以统计为基础的认知建模方法是基于一个基本假定对样本数据进行统计分析,这个假定认为:给定一定的认知刺激,在人脑认知中必定出现该刺激的认知状态。而事实上,所观测的认知激活特征具有事件相关性,认知状态具有叠加性和数据样本较小的特点,不具备严格的统计意义,也不满足统计认知建模方法的前提,因而容易导致错误的认知结果。The most direct reflection of cognition in the human brain is the degree of activation or inhibition of brain regions. From the perspective of neuroinformatics, the key to the study of language cognition is to study the state of brain regions in the process of language cognition in the human brain and the process of these state migrations. , one of the most important methods is to design experiments according to the requirements of neuroinformatics, stimulate the cognitive functions of the subjects (mostly volunteers from a specific group), and collect functional data, and then use certain modeling techniques Analyze these data. Brain imaging techniques developed in recent years (positron emission tomography, functional nuclear magnetic resonance) provide means for people to directly observe and analyze the functional activities of the human brain. The current brain imaging analysis technology that cognitive research relies on is mainly to generate corresponding t-test brain maps through statistics-based modeling tools such as statistical parametric map systems and functional neuroimaging analysis systems to discover which brain regions control a certain cognitive function. . These statistical-based cognitive modeling methods are based on a basic assumption for statistical analysis of sample data. This assumption holds that: given a certain cognitive stimulus, the cognitive state of the stimulus must appear in the human brain cognition. In fact, the observed cognitive activation features are event-related, and the cognitive state has the characteristics of superposition and small data samples, which do not have strict statistical significance and do not meet the prerequisites of statistical cognitive modeling methods. It is easy to lead to wrong cognitive results.
发明内容Contents of the invention
为解决现有技术存在的上述问题,本发明要设计一种适于小样本、具有动态时间特征的人脑语言认知建模方法。In order to solve the above-mentioned problems in the prior art, the present invention is to design a human brain language cognition modeling method suitable for small samples and having dynamic time characteristics.
为了实现上述目的,本发明的技术方案如下:一种人脑语言认知建模方法,包括以下步骤:In order to achieve the above object, the technical solution of the present invention is as follows: a method for modeling human brain language cognition, comprising the following steps:
A、认知状态实例初始化A. Cognitive state instance initialization
用h标识人脑中的认知状态,由于h并不能直接用仪器设备进行观测,因而将h称为隐性认知状态,将隐性认知状态h表示成四元组<W,d,Θ,Ω>,其中:d表示h在时间上的持续标量;W是时空维度为d×V的反映矩,其中V为h涉及的脑区维度,其空间维度分量为v;Θ为h的参数空间,Ω为参数空间的值域;认知观测过程中,一输入刺激Δ,脑认知状态的激活会存在一定的时滞;对处于激活态的认知状态,即是认知状态实例,用ξ标记,考虑隐性认知状态h的时间因素,认知状态实例是一个三元组<h,λ,o>,其中:h为相应的隐性认知状态,λ是实验刺激的输入时间点,o是认知状态的时间偏移,认知状态实例ξ的起始时间为λ+o,其持续时间d与对应的隐性认知状态h持续的时间相同,都用d(h)表示;Use h to identify the cognitive state in the human brain. Since h cannot be directly observed by instruments and equipment, h is called the implicit cognitive state, and the implicit cognitive state h is expressed as a quadruple <W,d, Θ,Ω>, where: d represents the continuous scalar of h in time; W is the reflection moment of space-time dimension d×V, where V is the dimension of the brain area involved in h, and its spatial dimension component is v; Θ is the In the parameter space, Ω is the value range of the parameter space; in the process of cognitive observation, when a stimulus Δ is input, there will be a certain time lag in the activation of the cognitive state of the brain; for the cognitive state in the activated state, it is an instance of the cognitive state , marked by ξ, considering the time factor of the implicit cognitive state h, a cognitive state instance is a triplet <h,λ,o>, where: h is the corresponding implicit cognitive state, λ is the experimental stimulus Input the time point, o is the time offset of the cognitive state, the starting time of the cognitive state instance ξ is λ+o, and its duration d is the same as the duration of the corresponding implicit cognitive state h, both use d( h) means;
B、映射激活特征与观测数据间的概率分布B. Mapping the probability distribution between activation features and observed data
假定在认知实验过程中,t时段通过成像设备观测受试者的脑激活特征bt是由L个认知状态实例共同作用的结果,用ξ1,ξ2,…,ξL标示这L个认知状态实例,那么记bt={ξ1,ξ2,…,ξL};bt与观测时间序列S中时段t、空间维度分量v的分量stv服从正态分布,即:Assume that in the course of the cognitive experiment, the observation of the subject’s brain activation characteristics b t through the imaging device during the t period is the result of the joint action of L cognitive state instances, and denote the L by ξ 1 , ξ 2 ,…,ξ L cognition state instance, then record b t ={ξ 1 ,ξ 2 ,…,ξ L }; b t and the component s tv of time period t and space dimension component v in the observed time series S follow normal distribution, namely:
stv~N(μtv(bt),σv) (1)s tv ~N(μ tv (b t ),σ v ) (1)
其中σv是标准方差,它反映与观测时间序列相关的噪声分布,具有时间独立性;μtv(bt)反映相应时段所有相关认知状态的叠加效果,即满足下式:Among them, σ v is the standard deviation, which reflects the noise distribution related to the observed time series and has time independence; μ tv (b t ) reflects the superposition effect of all relevant cognitive states in the corresponding period, that is, it satisfies the following formula:
其中δ(.)为指示函数,如果自变量为真,该函数结果为1,否则为0;h(ξ)标识认知状态实例ξ对应的隐性认知状态;wτv(h(ξ))则是标识时段t的第τ时间步上隐性认知状态反映矩W(h(ξ))的v分量。Where δ(.) is an indicator function, if the independent variable is true, the function result is 1, otherwise it is 0; h(ξ) identifies the implicit cognitive state corresponding to the cognitive state instance ξ; w τv (h(ξ) ) is the v component of the implicit cognitive state reflection moment W(h(ξ)) at the τth time step of the identification period t.
C、定义脑隐态认知模型C. Define the implicit cognitive model of the brain
定义脑隐态认知模型为一个六元组<H,Φ,I,S,Ξ,Γ>,用HCM标记,其中:H是隐性认知状态集合;Φ是隐态认知模型的参数矢量,它们依赖实验设计参数,即:刺激的类型、输入刺激的时间点;S是观测时间序列;Ξ是由输入刺激Δ组成的刺激序列;I是认知状态实例的时间序列,由于认知状态实例的激活时间点与观测时间序列相对应,因而将I中的元素bt简写为b;Γ为<σ1,σ2,…,σv>方差集,其中σv是公式(1)中的标准方差,反映时间序列的噪声分布;HCM定义了I与S、Ξ构成概率相关的三重时间序列,为I所定义的随机变量,则观测到的脑激活特征与隐性认知状态间的概率分布为:Define the brain implicit cognitive model as a six-tuple <H, Φ, I, S, Ξ, Γ>, marked by HCM, where: H is the set of implicit cognitive states; Φ is the parameter of the implicit cognitive model Vectors, they depend on the experimental design parameters, namely: the type of stimulus, the time point of the input stimulus; S is the observation time series; Ξ is the stimulus sequence composed of the input stimulus Δ; I is the time series of cognitive state instances, due to cognitive The activation time point of the state instance corresponds to the observation time series, so the element b t in I is abbreviated as b; Γ is the variance set <σ 1 ,σ 2 ,…,σ v >, where σ v is the formula (1) The standard deviation in , reflects the noise distribution of the time series; HCM defines a triple time series in which I, S, and Ξ constitute probability correlations, is a random variable defined by I, then the probability distribution between the observed brain activation features and the implicit cognitive state is:
其中,in,
式中,P(h(ξ)|HCM,Δ)是汉语认知实验过程中条件刺激为Δ激活隐性认知状态h及相应认知状态实例ξ的条件概率,P(o(ξ)|h(ξ),HCM,Δ)是相应的时滞条件概率;隐态认知模型的建模过程需要针对特定的认知过程确定其条件概率,同时还要确定隐态认知模型的参数矢量,对HCM各项参数进行最大似然估计;对于HCM,根据贝叶斯定理有:In the formula, P(h(ξ)|HCM,Δ) is the conditional probability that the conditional stimulus Δ activates the implicit cognitive state h and the corresponding cognitive state instance ξ in the process of Chinese cognitive experiment, P(o(ξ)| h(ξ), HCM, Δ) is the corresponding time-delay conditional probability; the modeling process of the hidden cognitive model needs to determine its conditional probability for a specific cognitive process, and at the same time determine the parameter vector of the hidden cognitive model , perform maximum likelihood estimation on the parameters of HCM; for HCM, according to Bayes' theorem:
D、隐态认知模型参数解析D. Analysis of implicit cognitive model parameters
隐态认知模型通过学习训练确定与观测时间序列相吻合的隐态认知状态概率及其参数,也就是最小化目标函数:The hidden cognitive model determines the hidden cognitive state probability and its parameters that match the observed time series through learning and training, that is, minimizes the objective function:
式中,Φ表示隐态认知模型中认知刺激任务时间序列、观测特征时间序列、隐性认知状态时间序列三重时间序列间的映射概率参数,T为隐态认知模型的总时间。In the formula, Φ represents the mapping probability parameter among the triple time series of cognitive stimulus task time series, observation feature time series, and implicit cognitive state time series in the hidden cognitive model, and T is the total time of the hidden cognitive model.
D1、初始化搜索群:D1. Initialize the search group:
利用n个搜索个体所形成的种群在Φ所确定的空间中进行并行搜索,令搜索个体的最大速度vmax=r;时间步t=0时,对n个搜索个体的进行随机初始化,即第i个搜索个体的第j维的位置pij=Rand(-r,r)和第i个搜索个体的第j维的速度vij=Rand(-vmax,vmax);r为定义域,t为时间步;The population formed by n search individuals is used to perform parallel search in the space determined by Φ, and the maximum speed of the search individual v max =r; when time step t=0, the n search individuals are randomly initialized, that is, The position p ij of the jth dimension of the i search individual =Rand(-r,r) and the velocity v ij of the jth dimension of the i search individual =Rand(-v max ,v max ); r is the domain of definition, t is the time step;
D2、若满足预定最大迭代次数或10次迭代结果无改善,则输出结果p*和f(p*)并结束计算;否则,转步骤D3;D2. If the predetermined maximum number of iterations is met or the result of 10 iterations is not improved, output the results p* and f(p*) and end the calculation; otherwise, go to step D3;
式中,p*为搜索个体所组成的群中最好的个体状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值。In the formula, p* is the best individual state in the group composed of search individuals, and f(p*) is the fitness value determined by the best individual state in the group composed of search individuals.
D3、计算搜索个体的适应值D3. Calculate the fitness value of the search individual
按照公式(6)计算搜索个体的适应值;Calculate the fitness value of the search individual according to formula (6);
D4、最优保存D4. Optimal preservation
令t=t+1,实施最优保存策略,即:Let t=t+1, implement the optimal preservation strategy, namely:
式中,p*为搜索个体所组成的群中最好的个体状态,pi #是第i个搜索个体从t=0开始迭代到当前最好的状态,f(p*)是搜索个体所组成的群中最好的个体状态所确定的适应值;In the formula, p* is the best individual state in the group composed of search individuals, p i # is the iterative state of the ith search individual from t=0 to the current best state, f(p*) is the best state of the search individual The fitness value determined by the best individual state in the formed group;
D5、状态转移联合操作D5. State transfer joint operation
引入搜索个体所组成的群体优势动态地搜索,针对每个搜索个体的每一维度根据公式(7)和(8)执行状态转移联合操作:Introduce the group advantages of search individuals to search dynamically, and perform state transition joint operations according to formulas (7) and (8) for each dimension of each search individual:
xij(t)=vij(t)+xij(t-1) (8)x ij (t) = v ij (t) + x ij (t-1) (8)
转步骤D2。Go to step D2.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明在认知建模过程中,将输入刺激、观测结果、隐态认知状态定义为动态事件相关的三重时间序列,即:认知刺激任务时间序列、观测特征时间序列、隐性认知状态时间序列,而且这三重时间序列通过一组概率分布相联系,不是将所采集的脑数据视为静态信息进行统计,因而本发明的认知建模方法无需满足基于统计的基本假定,在小样本数据条件下仍然成立,保证了认知分析结果的正确性,因而解决了小样本数据下的认知建模问题。1. In the process of cognitive modeling, the present invention defines input stimuli, observation results, and hidden cognitive states as triple time series related to dynamic events, namely: cognitive stimulation task time series, observation characteristic time series, recessive Cognitive state time series, and these triple time series are connected through a set of probability distributions, the collected brain data is not regarded as static information for statistics, so the cognitive modeling method of the present invention does not need to meet the basic assumptions based on statistics, It is still established under the condition of small sample data, which ensures the correctness of cognitive analysis results, thus solving the problem of cognitive modeling under small sample data.
2、本发明将认知实验中被观测到的时间系列脑激活数据对应于汉语认知状态实例的反映矩集合,其中每个状态实例在某个时间间隔都依概率起作用,在其作用的时段每个状态实例影响着数据采集时所观测到的激活特征。如果多个状态实例几乎同时起作用,那么观测到的激活特征是所有相关状态实例产生的效果叠加,为认知状态细分提供了基础,进而提高了认知建模的精度,也为复杂认知分析提供了有效途径。2. The present invention corresponds the time series brain activation data observed in the cognitive experiment to the reflection moment set of the Chinese cognitive state instance, wherein each state instance plays a role according to the probability at a certain time interval. Each state instance during the time period influences the observed activation characteristics at the time of data collection. If multiple state instances act almost simultaneously, the observed activation features are the superposition of effects produced by all related state instances, which provides a basis for cognitive state subdivision, thereby improving the accuracy of cognitive modeling, and providing a basis for complex cognitive states. Knowledge analysis provides an effective way.
3、本发明所提出的脑隐态认知模型引入了模型认知状态总体T、模型认知状态观测时段t及其时间步τ、实验刺激的输入时间点λ、认知状态的时间偏移o时间量,从而使该模型具有认知状态时间效应,是以认知实验刺激系列为依据的一种事件相关的时间序列动态观测方法,在认知检测过程中将观测到的认知激活特征序列映射成一个或多个隐态认知在同一时段对脑激活的影响,而且观测序列与隐性认知状态序列并不是一一对应,而是与刺激相关并依一定概率激活不同的隐性认知状态,为认知动态分析提供了基础。3. The brain hidden state cognitive model proposed by the present invention introduces the overall T of the cognitive state of the model, the observation period t of the cognitive state of the model and its time step τ, the input time point λ of the experimental stimulus, and the time offset of the cognitive state oThe amount of time, so that the model has a cognitive state time effect, is an event-related time-series dynamic observation method based on the cognitive experimental stimulus series, and the observed cognitive activation characteristics are used during the cognitive detection process The sequence is mapped to the influence of one or more hidden cognitions on brain activation at the same time period, and the observation sequence is not in one-to-one correspondence with the hidden cognitive state sequence, but is related to the stimulus and activates different hidden cognitions with a certain probability. Cognitive state provides the basis for the analysis of cognitive dynamics.
附图说明Description of drawings
本发明共有附图2张,其中:The present invention has 2 accompanying drawings, wherein:
图1是本发明的流程图。Fig. 1 is a flow chart of the present invention.
图2是本发明的三重时间序列映射实例图。Fig. 2 is an example diagram of triple time series mapping in the present invention.
具体实施方式detailed description
下面结合附图对本发明进行进一步地描述。如图1-2所示,本发明的模型方法包含三重时间序列,即:上层刺激时间序列Ξ、中层隐态认知时间序列I、观测时间序列S,在观测序列中存在隐态认知叠加,即中层隐态认知序列I映射到观测序列S时存在多个箭头指向相同的映射区,但这种三重时间序列存在基本的映射关系,而且这种关系由概率参数Φ确定,通过步骤D1~D5根据公式(6)解析其概率参数所确定的概率映射关系。给出一个简单示例:输入刺激时间序列Ξ为{Δ1,Δ2,Δ3};观测时间序列S为{s1,s2,s3};隐态认知实例时间序列I为{b1,b2,b3},其中b1={ξ1 (1),ξ2 (1),ξL3 (1)},b2={ξ1 (2),ξ2 (2),ξ3 (2),ξ4 (2)},b3={ξ1 (3),ξ2 (3),ξ3 (3)},ξ带括号的数字上标标识它属于相应的认知实例;I对应的隐态认知状态集合H为{h1,h2,h3,h4}。通过步骤D1~D5根据公式(6)确定概率参数Φ,主要结果为:ξ1 (1)→s1(0.82),ξ2 (1)→s1(0.91),ξ3 (1)→s2(0.86);The present invention will be further described below in conjunction with the accompanying drawings. As shown in Figures 1-2, the model method of the present invention includes triple time series, namely: the upper layer stimulus time series Ξ, the middle layer hidden state cognition time series I, and the observation time series S, and there is a hidden state cognition superposition in the observation sequence , that is, when the middle-level implicit cognitive sequence I is mapped to the observation sequence S, there are multiple arrows pointing to the same mapping area, but this triple time series has a basic mapping relationship, and this relationship is determined by the probability parameter Φ, through step D1 ~D5 analyzes the probability mapping relationship determined by its probability parameters according to formula (6). Give a simple example: the input stimulus time series Ξ is {Δ 1 , Δ 2 , Δ 3 }; the observation time series S is {s 1 , s 2 , s 3 }; the hidden cognitive instance time series I is {b 1 ,b 2 ,b 3 }, where b 1 ={ξ 1 (1) ,ξ 2 (1) ,ξ L3 (1) },b 2 ={ξ 1 (2) ,ξ 2 (2) ,ξ 3 (2) , ξ 4 (2) }, b 3 = {ξ 1 (3) , ξ 2 (3) , ξ 3 (3) }, ξ with a parenthesized superscript indicates that it belongs to the corresponding cognitive instance ; The hidden cognitive state set H corresponding to I is {h 1 , h 2 , h 3 , h 4 }. Determine the probability parameter Φ according to formula (6) through steps D1~D5, the main results are: ξ 1 (1) →s 1 (0.82),ξ 2 (1) →s 1 (0.91),ξ 3 (1) →s 2 (0.86);
ξ1 (2)→s2(0.90),ξ2 (2)→s2(0.76),ξ3 (2)→s3(0.84),ξ4 (2)→s3(0.69);ξ 1 (2) → s 2 (0.90), ξ 2 (2) → s 2 (0.76), ξ 3 (2) → s 3 (0.84), ξ 4 (2) → s 3 (0.69);
ξ1 (3)→s3(0.78),ξ2 (3)→s3(0.85),ξ3 (3)→s3(0.80);ξ 1 (3) → s 3 (0.78), ξ 2 (3) → s 3 (0.85), ξ 3 (3) → s 3 (0.80);
ξ1 (1)→h1(0.90),ξ2 (1)→h2(0.74),ξ3 (1)→h3(0.92);ξ 1 (1) → h 1 (0.90), ξ 2 (1) → h 2 (0.74), ξ 3 (1) → h 3 (0.92);
ξ1 (2)→h1(0.97),ξ2 (2)→h2(0.88),ξ3 (2)→h3(0.79),ξ4 (2)→h4(0.85);ξ 1 (2) → h 1 (0.97), ξ 2 (2) → h 2 (0.88), ξ 3 (2) → h 3 (0.79), ξ 4 (2) → h 4 (0.85);
ξ1 (3)→h1(0.93),ξ2 (3)→h3(0.87),ξ3 (3)→h4(0.91)。ξ 1 (3) → h 1 (0.93), ξ 2 (3) → h 3 (0.87), ξ 3 (3) → h 4 (0.91).
式中:“→”表示存在映射关系,括号里的数字表示相应的映射概率。In the formula: "→" indicates that there is a mapping relationship, and the numbers in brackets indicate the corresponding mapping probability.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310454914.0A CN103530505B (en) | 2013-09-29 | 2013-09-29 | Human brain language cognition modeling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310454914.0A CN103530505B (en) | 2013-09-29 | 2013-09-29 | Human brain language cognition modeling method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103530505A CN103530505A (en) | 2014-01-22 |
| CN103530505B true CN103530505B (en) | 2017-02-08 |
Family
ID=49932510
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310454914.0A Expired - Fee Related CN103530505B (en) | 2013-09-29 | 2013-09-29 | Human brain language cognition modeling method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103530505B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104715134A (en) * | 2014-12-16 | 2015-06-17 | 苏州大学 | Brain cognitive injury model of rat and establishing method of brain cognitive injury model |
| CN108175424B (en) * | 2015-08-07 | 2020-12-11 | 北京智能阳光科技有限公司 | Test system for cognitive ability value test |
| CN106485039B (en) * | 2015-08-24 | 2019-05-10 | 复旦大学附属华山医院 | A method for constructing the distribution map of Chinese brain language areas |
| EP3796171A1 (en) | 2019-09-19 | 2021-03-24 | Nokia Technologies Oy | User interaction |
| CN113095502B (en) * | 2021-03-15 | 2024-07-05 | 北京工业大学 | Systematic cognitive experiment design method based on Data-Brain model driving |
| CN114068012B (en) * | 2021-11-15 | 2022-05-10 | 北京智精灵科技有限公司 | Cognitive decision-oriented multi-dimensional hierarchical drift diffusion model modeling method |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102663142A (en) * | 2012-05-18 | 2012-09-12 | 大连海事大学 | Knowledge extraction method |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6092058A (en) * | 1998-01-08 | 2000-07-18 | The United States Of America As Represented By The Secretary Of The Army | Automatic aiding of human cognitive functions with computerized displays |
| EP1955190B1 (en) * | 2005-11-10 | 2018-08-29 | In Silico Biosciences, Inc. | Method and apparatus for computer modeling the human brain for predicting drug effects |
| WO2007092795A2 (en) * | 2006-02-02 | 2007-08-16 | Neuric Technologies, Llc | Method for movie animation |
-
2013
- 2013-09-29 CN CN201310454914.0A patent/CN103530505B/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102663142A (en) * | 2012-05-18 | 2012-09-12 | 大连海事大学 | Knowledge extraction method |
Non-Patent Citations (2)
| Title |
|---|
| "汉语认知的脑内信息加工模式";唐一源;《中国博士学位论文全文数据库 基础科学辑 》;20040315(第1期);第A006-12页 * |
| "汉语认知脑数据挖掘相关算法及应用研究";刘洪波;《中国博士学位论文全文数据库 信息科技辑》;20060415(第4期);第 I138-10页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103530505A (en) | 2014-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103530505B (en) | Human brain language cognition modeling method | |
| Lodder | To impute or not impute: That’s the question | |
| Correa et al. | Performance of blind source separation algorithms for fMRI analysis using a group ICA method | |
| Kirch et al. | Detection of changes in multivariate time series with application to EEG data | |
| Hox | 14 Multilevel Regression and Multilevel Structural Equation Modeling | |
| Valdes-Sosa et al. | Effective connectivity: influence, causality and biophysical modeling | |
| Neckel et al. | Random differential equations in scientific computing | |
| Lindquist et al. | Estimating and testing variance components in a multi-level GLM | |
| Helwig | Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging | |
| CN109816630A (en) | A transfer learning-based method for constructing fMRI visual coding model | |
| Riera et al. | Nonlinear local electrovascular coupling. II: From data to neuronal masses | |
| CN114052668B (en) | Brain function analysis method based on magnetoencephalogram data | |
| CN117122303B (en) | A brain network prediction method, system, device and storage medium | |
| Song et al. | Effects of gender stereotypes on performance in mathematics: A serial multivariable mediation model | |
| Wischnewski et al. | Towards an efficient validation of dynamical whole-brain models | |
| Farahani et al. | Computational methods for analyzing functional and effective brain network connectivity using fMRI | |
| Soldati et al. | The use of a priori information in ICA-based techniques for real-time fMRI: an evaluation of static/dynamic and spatial/temporal characteristics | |
| CN104434109B (en) | Functional nuclear magnetic resonance time sequence matching method | |
| Ding et al. | Multivariate functional response low‐rank regression with an application to brain imaging data | |
| Carusi et al. | CHAPTER SIX MODEL SYSTEMS IN COMPUTATIONAL SYSTEMS BIOLOGY | |
| Tan et al. | Dynamic Inverse Reinforcement Learning for Feedback-driven Reward Estimation in Brain Machine Interface Tasks | |
| Kesteren | Structural equations with latent variables: computational solutions for modern data problems | |
| Bogunovic et al. | Processing and analyisis of biomedical nonlinear signals by data mining methods | |
| Heitzman-Breen et al. | A practical identifiability criterion leveraging weak-form parameter estimation | |
| Karamolegkos et al. | Cardiovascular system identification: Simulation study using arterial and central venous pressures |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170208 Termination date: 20170929 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |