CN103532372B - Multi-phase DC to DC power conversion device - Google Patents
Multi-phase DC to DC power conversion device Download PDFInfo
- Publication number
- CN103532372B CN103532372B CN201210230036.XA CN201210230036A CN103532372B CN 103532372 B CN103532372 B CN 103532372B CN 201210230036 A CN201210230036 A CN 201210230036A CN 103532372 B CN103532372 B CN 103532372B
- Authority
- CN
- China
- Prior art keywords
- resistance
- output inductor
- current
- electric capacity
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title abstract description 47
- 239000003990 capacitor Substances 0.000 claims abstract description 87
- 238000012545 processing Methods 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 238000007599 discharging Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 4
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 3
- 101100100119 Homo sapiens TNFRSF10C gene Proteins 0.000 description 3
- 101100121770 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GID8 gene Proteins 0.000 description 3
- 101100009020 Schizosaccharomyces pombe (strain 972 / ATCC 24843) dcr1 gene Proteins 0.000 description 3
- 102100040115 Tumor necrosis factor receptor superfamily member 10C Human genes 0.000 description 3
- 102100040110 Tumor necrosis factor receptor superfamily member 10D Human genes 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明是有关直流对直流电源转换装置,特别是有关多相直流对直流电源转换装置。The invention relates to a DC-to-DC power conversion device, in particular to a multi-phase DC-to-DC power conversion device.
背景技术 Background technique
随着科技的发展,各式各样的电子装置被广泛地应用在人们的生活当中。而不同的电子装置,或是同一电子装置下的不同电路,往往需要不同的直流供给电压。因此一个稳定可靠直流对直流电源转换装置也变得起来越重要。With the development of science and technology, various electronic devices are widely used in people's life. Different electronic devices, or different circuits under the same electronic device, often require different DC supply voltages. Therefore, a stable and reliable DC-to-DC power conversion device becomes more and more important.
一般来说,单相的电源转换装置的上限约为30安培,超过30安培后,其转换效率将迅速下降。因此如欲使用在需高电流驱动的装置,例如电脑或汽车,则必须选择使用多相的电源转换装置。然而多相的电源转换装置具有各相位电流不均的问题,当电流过度偏流于某一相时,可能导致转换效率不佳、电路不稳定、或零件过热而导致毁损。Generally speaking, the upper limit of a single-phase power conversion device is about 30 amperes, and its conversion efficiency will drop rapidly after exceeding 30 amperes. Therefore, if you want to use a device that needs high current drive, such as a computer or a car, you must choose to use a multi-phase power conversion device. However, the multi-phase power conversion device has the problem of uneven current in each phase. When the current is excessively biased in a certain phase, it may lead to poor conversion efficiency, unstable circuit, or overheating of parts and damage.
是以,一种各相电流平均输出的多相电源转换装置应被提出。Therefore, a multi-phase power conversion device with average output current of each phase should be proposed.
发明内容 Contents of the invention
本发明的一方面在于提出一种多相直流对直流电源转换装置,并使其中各相的电流均能平均输出。One aspect of the present invention is to provide a multi-phase DC-to-DC power conversion device, in which the current of each phase can be output on average.
根据本发明的一实施例,多相直流对直流电源转换装置包括脉波宽度调变模块、电流回授处理模块以及至少一个直流对直流电源转换模块。脉波宽度调变模块用以产生多组控制脉波。直流对直流电源转换模块包括第一输出电感器、第二输出电感器、第一开关器、第二开关器以及电流侦测器。第一开关器耦接第一输出电感器,且第一开关器接收控制脉波以控制第一输出电感器的电流。第二开关器耦接第二输出电感器,且第二开关器接收另一控制脉波以控制第二输出电感器的电流。电流侦测器并联于第一、第二输出电感器,用以感测通过第一输出电感器与第二输出电感器的电流,其中电流回授处理模块根据所感测到的电流,以即时调整控制脉波的工作周期。电流侦测器包括第一电阻、第一电容、第二电阻、第二电容以及第三电阻。第一电阻串联第一电容。第二电阻串联第二电容。第三电阻直接或间接耦接于第一电容与负载电路之间,且第三电阻直接或间接耦接于第二电容与负载电路之间,使得当第一电容在充电状态时,对第一电容充电的充电电流部分流经第二电容,并使得当第二电容在充电状态时,对第二电容充电的充电电流部分流经第一电容。According to an embodiment of the present invention, a multi-phase DC-to-DC power conversion device includes a pulse width modulation module, a current feedback processing module, and at least one DC-to-DC power conversion module. The pulse width modulation module is used to generate multiple sets of control pulses. The DC-DC power conversion module includes a first output inductor, a second output inductor, a first switch, a second switch and a current detector. The first switch is coupled to the first output inductor, and the first switch receives the control pulse to control the current of the first output inductor. The second switch is coupled to the second output inductor, and the second switch receives another control pulse to control the current of the second output inductor. The current detector is connected in parallel with the first and second output inductors to sense the current passing through the first output inductor and the second output inductor, wherein the current feedback processing module adjusts in real time according to the sensed current Control the duty cycle of the pulse. The current detector includes a first resistor, a first capacitor, a second resistor, a second capacitor and a third resistor. The first resistor is connected in series with the first capacitor. The second resistor is connected in series with the second capacitor. The third resistor is directly or indirectly coupled between the first capacitor and the load circuit, and the third resistor is directly or indirectly coupled between the second capacitor and the load circuit, so that when the first capacitor is in a charging state, the first capacitor is charged. Part of the charging current for charging the capacitor flows through the second capacitor, so that when the second capacitor is in a charging state, part of the charging current for charging the second capacitor flows through the first capacitor.
根据本发明的一实施例,其中第一电阻的第一端、第一输出电感器的第一端与第一开关器彼此耦接,第一电阻的第二端耦接第一电容的第一端,第一电容的第二端耦接第三电阻的第一端,且第三电阻的第二端、第一输出电感器的第二端、第二输出电感器的第二端与负载电路彼此耦接。According to an embodiment of the present invention, the first end of the first resistor, the first end of the first output inductor, and the first switch are coupled to each other, and the second end of the first resistor is coupled to the first end of the first capacitor. end, the second end of the first capacitor is coupled to the first end of the third resistor, and the second end of the third resistor, the second end of the first output inductor, the second end of the second output inductor and the load circuit coupled to each other.
根据本发明的一实施例,其中第二电阻的第一端、第二输出电感器的第一端与第二开关器彼此耦接,第二电阻的第二端耦接第二电容的第一端,第二电容的第二端耦接第三电阻的第一端,且第三电阻的第二端、第一输出电感器的第二端、第二输出电感器的第二端与负载电路彼此耦接。According to an embodiment of the present invention, the first end of the second resistor, the first end of the second output inductor, and the second switch are coupled to each other, and the second end of the second resistor is coupled to the first end of the second capacitor. end, the second end of the second capacitor is coupled to the first end of the third resistor, and the second end of the third resistor, the second end of the first output inductor, the second end of the second output inductor and the load circuit coupled to each other.
根据本发明的一实施例,用以控制第一开关器的控制脉波与用以控制第二开关器的控制脉波反相。According to an embodiment of the present invention, the control pulse used to control the first switch and the control pulse used to control the second switch are in opposite phases.
根据本发明的一实施例,当第一电容在充电状态时,第二电容为放电状态。当第二电容在充电状态时,第一电容为放电状态。According to an embodiment of the present invention, when the first capacitor is in a charging state, the second capacitor is in a discharging state. When the second capacitor is in the charging state, the first capacitor is in the discharging state.
根据本发明的一实施例,其中第三电阻的电阻值小于或等于第一电阻的电阻值,且第三电阻的电阻值小于或等于第二电阻的电阻值。According to an embodiment of the present invention, the resistance of the third resistor is less than or equal to the resistance of the first resistor, and the resistance of the third resistor is less than or equal to the resistance of the second resistor.
根据本发明的一实施例,该第一开关器包括第一高侧开关器,且该第二开关器包括第二高侧开关器。According to an embodiment of the present invention, the first switch includes a first high-side switch, and the second switch includes a second high-side switch.
根据本发明的一实施例,第一开关器还包括第一低侧开关器,耦接第一高侧开关器。第二开关器还包括第二低侧开关器,耦接第二高侧开关器。According to an embodiment of the present invention, the first switch further includes a first low-side switch coupled to the first high-side switch. The second switch further includes a second low-side switch coupled to the second high-side switch.
根据本发明的一实施例,第三电阻的电阻值是可调整该电流侦测器感测到的该第一、第二输出电感器的电流值为零点时与实际该第一、第二输出电感器的电流为零点时的时间差。According to an embodiment of the present invention, the resistance value of the third resistor can be adjusted when the current value of the first and second output inductors sensed by the current detector is zero and the actual value of the first and second output inductors The time difference when the inductor current is zero.
根据本发明的一实施例,多相直流对直流电源转换装置电压回授处理模块以及分压模块。分压模块用以分散直流对直流电源转换模块施予负载电路的输出电压,包括第一分压电阻以及第二分压电阻,其中第一分压电阻与第二分压电阻彼此串联,且电压回授处理模块依据第二分压电阻上的跨压以令脉波宽度调变模块调整控制脉波的工作周期。According to an embodiment of the present invention, a voltage feedback processing module and a voltage dividing module of a multi-phase DC-DC power conversion device. The voltage divider module is used to disperse the output voltage applied to the load circuit by the DC-to-DC power conversion module, including a first voltage divider resistor and a second voltage divider resistor, wherein the first voltage divider resistor and the second voltage divider resistor are connected in series, and the voltage The feedback processing module makes the pulse width modulation module adjust the duty cycle of the control pulse according to the voltage across the second voltage dividing resistor.
通过上述的实施例,多相直流对直流电源转换装置可被实现。其中,通过电流侦测器中各电容两端的跨压,可即时地反映通过第一、第二输出电感的电流,以使脉波宽度调变模块能即时调整控制脉波的工作周期,而避免流经各输出电感器的电流不均。而利用调整电流侦测器中的第三电阻,更可进一步调整实际上流经各输出电感器的电流下降至零点与电流侦测器所感测的电流下降至零点的时间差,并得以让多相直流对直流电源转换装置进行更精细的调整与控制。Through the above-mentioned embodiments, a multi-phase DC-to-DC power conversion device can be realized. Wherein, through the voltage across each capacitor in the current detector, the current passing through the first and second output inductors can be reflected in real time, so that the pulse width modulation module can adjust the duty cycle of the control pulse wave in real time, and avoid The current flowing through each output inductor is uneven. By adjusting the third resistor in the current detector, the time difference between the actual current flowing through each output inductor falling to zero and the current sensed by the current detector falling to zero can be further adjusted, and the multi-phase DC Finer adjustment and control of DC power conversion devices.
附图说明 Description of drawings
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1为根据本发明的一实施例所绘示的多相直流对直流电源转换装置电路图;FIG. 1 is a circuit diagram of a multi-phase DC-DC power conversion device according to an embodiment of the present invention;
图2为根据本发明的一实施例所绘示的多相直流对直流电源转换装置电路图;2 is a circuit diagram of a multi-phase DC-DC power conversion device according to an embodiment of the present invention;
图3为根据图1中的电流侦测器所绘示的等效电路图;FIG. 3 is an equivalent circuit diagram drawn according to the current detector in FIG. 1;
图4为根据图1的多相直流对直流电源转换装置所绘示的流经第一、第二输出电感器的电流、第一、第二电容两端的跨压、流经第一、第二电容的电流以及流经第三电阻的电流的模拟图;FIG. 4 shows the current flowing through the first and second output inductors, the voltage across the first and second capacitors, and the current flowing through the first and second output inductors according to the multi-phase DC-to-DC power conversion device shown in FIG. 1. A simulation diagram of the current of the capacitor and the current flowing through the third resistor;
图5为绘示图1的多相直流对直流电源转换装置,当流经第一输出电感器的电流不连续、且第三电阻为2kΩ时,流经第一输出电感器的电流与第一电容上的跨压的模拟图;FIG. 5 is a diagram illustrating the multi-phase DC-to-DC power conversion device in FIG. 1. When the current flowing through the first output inductor is discontinuous and the third resistance is 2kΩ, the current flowing through the first output inductor is the same as that of the first output inductor. Simulation diagram of the voltage across the capacitor;
图6为绘示图1的多相直流对直流电源转换装置,当流经第一输出电感器的电流不连续、且第三电阻为0k时,流经第一输出电感器的电流与第一电容上的跨压的模拟图。FIG. 6 is a diagram illustrating the multi-phase DC-to-DC power conversion device shown in FIG. 1. When the current flowing through the first output inductor is discontinuous and the third resistor is 0k, the current flowing through the first output inductor is the same as that of the first output inductor. A simulated plot of the voltage across a capacitor.
【主要元件符号说明】[Description of main component symbols]
10:负载电路100:多相直流对直流电源转换装置10: Load circuit 100: Multi-phase DC to DC power conversion device
110:时脉产生模块120:脉波宽度调变模块110: clock generation module 120: pulse width modulation module
130:电流回授处理模块140:直流对直流电源转换模块130: Current feedback processing module 140: DC to DC power conversion module
142:第一开关器144:第二开关器142: first switcher 144: second switcher
146:电流侦测器150:电压回授处理模块146: Current detector 150: Voltage feedback processing module
R1:第一电阻R2:第二电阻R1: first resistor R2: second resistor
R3:第三电阻C1:第一电容R3: the third resistor C1: the first capacitor
C2:第二电容L1:第一输出电感器C2: second capacitor L1: first output inductor
L2:第二输出电感器Q1:第一高侧开关器L2: Second output inductor Q1: First high-side switcher
Q2:第一低侧开关器Q3:第二高侧开关器Q2: First low-side switcher Q3: Second high-side switcher
Q4:第二低侧开关器D1-D4:二极管Q4: second low-side switcher D1-D4: diode
RF1:第一分压电阻RF2:第二分压电阻R F1 : the first voltage divider resistor R F2 : the second voltage divider resistor
CO:输出电容VO:输出电压C O : output capacitance V O : output voltage
DCR1:电阻DCR2:电阻DCR1: Resistor DCR2: Resistor
VL1:电压VL2:电压V L1 : Voltage V L2 : Voltage
VC1:电压VC1:电压V C1 : Voltage V C1 : Voltage
IL1:电流IL2:电流I L1 : current I L2 : current
IC1:电流IC1:电流I C1 : Current I C1 : Current
IR3:电流t0,IL1:时间点I R3 : current t 0 , IL1 : time point
t0,VC1:时间点IC1,R3:电流t 0,VC1 : time point I C1,R3 : current
IC2,R3:电流IC1,C2:电流I C2,R3 : Current I C1,C2 : Current
IC2,C1:电流I C2,C1 : Current
具体实施方式 detailed description
以下将以附图及详细叙述清楚说明本发明的精神,任何所属技术领域中具有通常知识者在了解本发明的较佳实施例后,当可由本发明所教示的技术,加以改变及修饰,其并不脱离本发明的精神与范围。The following will clearly illustrate the spirit of the present invention with the accompanying drawings and detailed descriptions. After any person with ordinary knowledge in the technical field understands the preferred embodiments of the present invention, he can change and modify it by the technology taught by the present invention. without departing from the spirit and scope of the present invention.
本发明的一方面在于提出一种多相直流对直流电源转换装置,并使其中各相的电流均能平均输出。One aspect of the present invention is to provide a multi-phase DC-to-DC power conversion device, in which the current of each phase can be output on average.
图1为根据本发明的一实施例所绘示的多相直流对直流电源转换装置100电路图。多相直流对直流电源转换装置100包括时脉产生模块110、脉波宽度调变模块120、电流回授处理模块130以及至少一个直流对直流电源转换模块140。在本实施例中,上述的各个模块皆可以硬体电路实现。此外,本实施例的多相直流对直流电源转换装置100仅包括一个直流对直流电源转换模块140,是以其相数为2相,然而在其它实施例中,多相直流对直流电源转换装置100可包括二个、三个或多个直流对直流电源转换模块140,是以其相数可为4相、6相或多相。FIG. 1 is a circuit diagram of a multi-phase DC-DC power conversion device 100 according to an embodiment of the present invention. The multi-phase DC-DC power conversion device 100 includes a clock generation module 110 , a pulse width modulation module 120 , a current feedback processing module 130 and at least one DC-DC power conversion module 140 . In this embodiment, each of the above-mentioned modules can be realized by hardware circuits. In addition, the multi-phase DC-to-DC power conversion device 100 of this embodiment only includes one DC-to-DC power conversion module 140, and the number of phases is 2 phases. However, in other embodiments, the multi-phase DC-to-DC power conversion device The 100 may include two, three or more DC-DC power conversion modules 140, so the number of phases may be 4, 6 or more.
时脉产生模块110用以产生驱动时脉以驱动脉波宽度调变模块120。脉波宽度调变模块120用以根据驱动时脉产生多组控制脉波。而控制脉波的工作周期(dutycycle)的大小,可决定多相直流对直流电源转换装置100的输出电压VO。电流回授处理模块130用以接收直流对直流电源转换模块140的回馈信号,以便使脉波宽度调变模块120在直流对直流电源转换模块140的输出电流过大或过小时,调整控制脉波的工作周期。The clock generating module 110 is used for generating a driving clock to drive the PWM module 120 . The pulse width modulation module 120 is used for generating multiple sets of control pulses according to the driving clock. The output voltage V O of the multi-phase DC-DC power conversion device 100 can be determined by controlling the duty cycle of the pulse wave. The current feedback processing module 130 is used to receive the feedback signal from the DC-to-DC power conversion module 140, so that the pulse width modulation module 120 can adjust the control pulse when the output current of the DC-to-DC power conversion module 140 is too large or too small. working cycle.
直流对直流电源转换模块140可包括第一输出电感器L1、第二输出电感器L2、第一开关器142、第二开关器144、二极管D1、二极管D2以及电流侦测器146。The DC-DC power conversion module 140 may include a first output inductor L1 , a second output inductor L2 , a first switch 142 , a second switch 144 , a diode D1 , a diode D2 and a current detector 146 .
在结构上,第一开关器142的耦接输入电源VIN、脉波宽度调变模块120与第一输出电感器L1,第二开关器144耦接输入电源VIN、脉波宽度调变模块120与第二输出电感器L2,第一输出电感器L1耦接二极管D1与负载电路10,第二输出电感器L2耦接二极管D1与负载电路10。电流侦测器146并联于第一、第二输出电感器L1、L2之上,并耦接电流回授处理模块130。Structurally, the first switch 142 is coupled to the input power V IN , the PWM module 120 and the first output inductor L1, and the second switch 144 is coupled to the input power V IN and the PWM module. 120 and the second output inductor L2 , the first output inductor L1 is coupled to the diode D1 and the load circuit 10 , and the second output inductor L2 is coupled to the diode D1 and the load circuit 10 . The current detector 146 is connected in parallel to the first and second output inductors L1 and L2 and coupled to the current feedback processing module 130 .
在操作上,脉波宽度调变模块120分别提供反相的控制脉波予第一开关器142及第二开关器144。当第一开关器142处于第一操作状态时,输入电源VIN耦接于第一输出电感器L1,而电流从输入电源VIN流经第一开关器142、第一输出电感器L1至负载电路10,并储存电荷于负载电路10的输出电容CO中。此时第一输出电感器L1因电流通过而储存能量。而当第一开关器142处于第二操作状态时,输入电源VIN与第一输出电感器L1断路,第一输出电感器L1的一端开始释放储存能量至负载电路10,并经由二极管D1回到第一输出电感器L1的另一端。同理,第二开关器144的运作亦是如此,但其运作与第一开关器142反相。因此,流经第一、第二输出电感器L1、L2的电流IL1、IL2可轮流对负载电路10的输出电容CO充电,并且通过输出电容CO提供稳定的输出电压VO,以达成直流对直流的电源转换。另外,电流侦测器146分别感测通过第一、第二输出电感器L1、L2的电流IL1、IL2,而电流回授处理模块130根据电流侦测器146所感测到的电流IL1、IL2,以即时调整传送给第一、第二开关器142、144的控制脉波的工作周期,而避免电路元件因过载而损毁。值得注意的是,本实施例中提供给第一、第二开关器142、144的控制脉波互为反相,是为了使流经第一、第二输出电感器L1、L2的电流IL1、IL2在时间上均匀对输出电容CO充电。然而熟悉本领域者当可随不同的应用设计提供给第一、第二开关器142、144的控制脉波的相位差,而并不以本实施例中的相位差为限。In operation, the pulse width modulation module 120 provides anti-phase control pulses to the first switch 142 and the second switch 144 respectively. When the first switch 142 is in the first operating state, the input power V IN is coupled to the first output inductor L1, and the current flows from the input power V IN through the first switch 142, the first output inductor L1 to the load circuit 10 and store charges in the output capacitor C O of the load circuit 10 . At this time, the first output inductor L1 stores energy due to the current passing through. When the first switch 142 is in the second operating state, the input power V IN and the first output inductor L1 are disconnected, and one end of the first output inductor L1 starts to release the stored energy to the load circuit 10, and returns to the load circuit 10 through the diode D1. the other end of the first output inductor L1. Similarly, the operation of the second switch 144 is also the same, but its operation is opposite to that of the first switch 142 . Therefore, the currents I L1 and I L2 flowing through the first and second output inductors L1 and L2 can charge the output capacitor C O of the load circuit 10 in turn, and provide a stable output voltage V O through the output capacitor C O to Achieve DC to DC power conversion. In addition, the current detector 146 senses the currents I L1 and I L2 passing through the first and second output inductors L1 and L2 respectively, and the current feedback processing module 130 senses the current I L1 according to the current detector 146 , I L2 , to adjust the duty cycles of the control pulses sent to the first and second switches 142 and 144 in real time, so as to avoid circuit components being damaged due to overload. It should be noted that, in this embodiment, the control pulses provided to the first and second switches 142 and 144 are opposite to each other, in order to make the current I L1 flowing through the first and second output inductors L1 and L2 , I L2 evenly charges the output capacitor C O in time. However, those skilled in the art can design the phase difference of the control pulses provided to the first and second switches 142 and 144 according to different applications, and are not limited to the phase difference in this embodiment.
在本实施例中,第一开关器142可包括彼此串联的第一高侧开关器Q1与第一低侧开关器Q2,而第二开关器144可包括彼此串联的第二高侧开关器Q3与第二低侧开关器Q4,且开关器Q1、Q2、Q3及Q4的导通或截止皆由控制脉波所控制。第一低侧开关器Q2与二极管D1并联,且第二低侧开关器Q4与二极管D2并联。第一、第二低侧开关器Q2、Q4可在第一、第二开关器142、144处于第二操作状态时导通,以较低的顺向偏压取代二极管D1、D2做为电流路径。而熟悉本领域者当可清楚明白,第一、第二低侧开关器Q2、Q4可包括一内接二极管(bodydiode),是以二极管D1、D2在一些实施例中可被省略。然而内接二极管的在顺向偏压下的能量损耗通常较一般二极管大,是以在本实施例中仍并联二极管D1、D2于第一、第二低侧开关器Q2、Q4上。In this embodiment, the first switch 142 may include a first high-side switch Q1 and a first low-side switch Q2 connected in series, and the second switch 144 may include a second high-side switch Q3 connected in series. and the second low-side switch Q4, and the on or off of the switches Q1, Q2, Q3 and Q4 are all controlled by the control pulse. The first low-side switch Q2 is connected in parallel with the diode D1, and the second low-side switch Q4 is connected in parallel with the diode D2. The first and second low-side switches Q2 and Q4 can be turned on when the first and second switches 142 and 144 are in the second operating state, replacing the diodes D1 and D2 with a lower forward bias voltage as the current path . Those skilled in the art should clearly understand that the first and second low-side switches Q2 and Q4 may include a body diode, so the diodes D1 and D2 may be omitted in some embodiments. However, the energy loss of the internally connected diodes under forward bias is generally greater than that of ordinary diodes, so in this embodiment, the diodes D1 and D2 are still connected in parallel on the first and second low-side switches Q2 and Q4.
电流侦测器146可为一个电路结构,其可包括第一电阻R1、第一电容C1、第二电阻R2、第二电容C2以及第三电阻R3。第一电阻R1的第一端、第一输出电感器L1的第一端以及第一高侧开关器Q1连接第一低侧开关器Q2的节点彼此耦接,第一电阻R1的第二端耦接第一电容C1的第一端,第一电容C1的第二端耦接第三电阻R3的第一端,第二电阻R2的第一端、第二输出电感器L2的第一端以及第二高侧开关器Q3连接第二低侧开关器Q4的节点彼此耦接,第二电阻R2的第二端耦接第二电容C2的第一端,第二电容C2的第二端耦接第三电阻R3的第一端,且第三电阻R3的第二端、第一输出电感器L1的第二端、第二输出电感器L2的第二端与负载电路10彼此耦接。熟悉本领域者当可清楚明白,其中彼此串联的第一电容C1与第一电阻R1的位置可彼此对调而不构成电路实质上的变化,且彼此串联的第二电容C2与第二电阻R2的位置亦可彼此对调。是以第三电阻R3可能直接或间接耦接于第一电容C1与负载电路10之间,且第三电阻R3亦可能直接或间接耦接于第二电容C2与负载电路10之间。The current detector 146 can be a circuit structure, which can include a first resistor R1, a first capacitor C1, a second resistor R2, a second capacitor C2 and a third resistor R3. The first end of the first resistor R1, the first end of the first output inductor L1, and the node connecting the first high-side switch Q1 to the first low-side switch Q2 are coupled to each other, and the second end of the first resistor R1 is coupled to each other. connected to the first terminal of the first capacitor C1, the second terminal of the first capacitor C1 is coupled to the first terminal of the third resistor R3, the first terminal of the second resistor R2, the first terminal of the second output inductor L2 and the first terminal of the second output inductor L2 Nodes of the two high-side switch Q3 connected to the second low-side switch Q4 are coupled to each other, the second terminal of the second resistor R2 is coupled to the first terminal of the second capacitor C2, and the second terminal of the second capacitor C2 is coupled to the first terminal of the second capacitor C2. The first end of the three resistors R3 , the second end of the third resistor R3 , the second end of the first output inductor L1 , the second end of the second output inductor L2 and the load circuit 10 are coupled to each other. Those skilled in the art will clearly understand that the positions of the first capacitor C1 and the first resistor R1 connected in series can be reversed without substantially changing the circuit, and that the positions of the second capacitor C2 and the second resistor R2 connected in series The positions can also be reversed. Therefore, the third resistor R3 may be directly or indirectly coupled between the first capacitor C1 and the load circuit 10 , and the third resistor R3 may also be directly or indirectly coupled between the second capacitor C2 and the load circuit 10 .
图2为依据本发明一实施例所绘示的多相直流对直流电源转换装置100电路图。本实施例与图1所绘示的实施例大致相仿,故不赘述。两者不同之处在于,本实施例中第一、第二低侧开关器Q2、Q4可用二极管D3、D4取代。如此一来,则脉波宽度调变模块120不须额外提供控制脉波以导通第一、第二低侧开关器Q2、Q4,因此可降低脉波宽度调变模块120设计上的复杂度。FIG. 2 is a circuit diagram of a multi-phase DC-DC power conversion device 100 according to an embodiment of the present invention. This embodiment is substantially similar to the embodiment shown in FIG. 1 , so details are not repeated here. The difference between the two is that, in this embodiment, the first and second low-side switches Q2 and Q4 can be replaced by diodes D3 and D4. In this way, the PWM module 120 does not need to additionally provide control pulses to turn on the first and second low-side switches Q2 and Q4, thus reducing the complexity of the design of the PWM module 120 .
此外,在其它一些实施例中,多相直流对直流电源转换装置100可还包括电压回授处理模块150与分压模块RF1、RF2。分压模块RF1、RF2用以分散直流对直流电源转换模块140施予负载电路10的输出电压VO,包括第一分压电阻RF1以及第二分压电阻RF2,其中第一分压电阻RF1与第二分压电阻RF2彼此串联,且电压回授处理模块150依据第二分压电阻RF2上的跨压以令脉波宽度调变模块120调整控制脉波的工作周期。通过电压回授处理模块150与分压模块RF1、RF2的设置,脉波宽度调变模块120可同时通过输出电流与输出电压,以调整控制脉波的工作周期,而避免此电路中的电子元件因过载而损毁。In addition, in some other embodiments, the multi-phase DC-DC power conversion device 100 may further include a voltage feedback processing module 150 and voltage dividing modules R F1 , R F2 . The voltage-dividing modules R F1 and R F2 are used to disperse the output voltage V O supplied to the load circuit 10 by the DC-DC power conversion module 140, including a first voltage-dividing resistor R F1 and a second voltage-dividing resistor R F2 . The piezoelectric resistor R F1 and the second voltage dividing resistor R F2 are connected in series, and the voltage feedback processing module 150 makes the pulse width modulation module 120 adjust the duty cycle of the control pulse according to the voltage across the second voltage dividing resistor R F2 . Through the settings of the voltage feedback processing module 150 and the voltage divider modules R F1 and R F2 , the pulse width modulation module 120 can pass the output current and the output voltage at the same time to adjust the duty cycle of the control pulse and avoid the Electronic components are destroyed due to overload.
为使本发明更易于被了解,以下通过图3以进一步说明电流侦测器146的运作。图3为根据图1中的电流侦测器146所绘示的等效电路图。其中VL1、VL2为第一、第二输出电感器L1、L2两端的跨压,而第一、第二输出电感器L1、L2除了自身电感值L1L与L2L外,还包括第一、第二输出电感器L1、L2的缠绕阻抗(woundresistance)DCR1与DCR2。是以通过设计使第一电阻R1的电阻值、第一电容C1的电容值与电阻DCR1的电阻值的乘积为第一输出电感器L1的电感值,则第一电容C1两端的跨压VC1可大致正比于流经第一输出电感器L1的电流IL1。且第二电阻R2的电阻值、第二电容C2的电容值与电阻DCR2的电阻值的乘积为第二输出电感器L2的电感值,则第二电容C2两端的跨压VC2可大致正比于流经第二输出电感器L2的电流IL2。因此,根据第一、第二电容C1、C2两端的跨压VC1、VC2,电流侦测器146可测得流经第一、第二输出电感器L1、L2的电流IL1、IL2。In order to make the present invention easier to understand, the operation of the current detector 146 is further described below through FIG. 3 . FIG. 3 is an equivalent circuit diagram based on the current detector 146 shown in FIG. 1 . Among them, V L1 and V L2 are the voltage across the first and second output inductors L1 and L2, and the first and second output inductors L1 and L2 include the first and second Wound resistances DCR1 and DCR2 of the two output inductors L1 and L2. Therefore, by design, the product of the resistance value of the first resistor R1, the capacitance value of the first capacitor C1 and the resistance value of the resistor DCR1 is the inductance value of the first output inductor L1, then the voltage V C1 across both ends of the first capacitor C1 may be roughly proportional to the current I L1 flowing through the first output inductor L1 . And the product of the resistance value of the second resistor R2, the capacitance value of the second capacitor C2 and the resistance value of the resistor DCR2 is the inductance value of the second output inductor L2, then the voltage across the second capacitor C2 V C2 can be roughly proportional to The current I L2 flowing through the second output inductor L2 . Therefore, according to the voltages V C1 and V C2 across the first and second capacitors C1 and C2 , the current detector 146 can measure the currents I L1 and I L2 flowing through the first and second output inductors L1 and L2 .
另外,第三电阻R3阻隔于第一电容C1与负载电路10之间,且阻隔于第二电容C2与负载电路10之间,是以当VL1为高电位且VL2为低电位,使得第一电容C1处于充电状态且第二电容C2处于放电状态时,而为第一电容C1充电的电流IC1部分流向第二电容C2及第二电阻R2,如电流IC1,C2(IC1其余的电流流向第三电阻R3,如电流IC1,R3)。当VL1为低电位VL2为高电位,使得第二电容C2处于充电状态且第一电容C1处于放电状态时,为第二电容C2充电的电流IC2部分流向第一电容C1及第一电阻R1,如电流IC2,C1(IC2其余的电流流向第三电阻R3,如电流IC2,R3)。In addition, the third resistor R3 is blocked between the first capacitor C1 and the load circuit 10, and between the second capacitor C2 and the load circuit 10, so that when V L1 is at a high potential and V L2 is at a low potential, the first When a capacitor C1 is in a charging state and the second capacitor C2 is in a discharging state, part of the current I C1 that charges the first capacitor C1 flows to the second capacitor C2 and the second resistor R2, such as the current I C1, C2 (the rest of I C1 The current flows to the third resistor R3, such as the current I C1,R3 ). When V L1 is a low potential and V L2 is a high potential, so that the second capacitor C2 is in a charging state and the first capacitor C1 is in a discharging state, part of the current I C2 charging the second capacitor C2 flows to the first capacitor C1 and the first resistor R1, such as the current I C2,C1 (the remaining current of I C2 flows to the third resistor R3, such as the current I C2,R3 ).
此外,若在流经第一、第二输出电感器L1、L2的电流IL1、IL2为不连续的状况下,通过上述第一电容C1与第二电容C2的彼此充放电,可使第一电容C1两端的跨压VC1降至零点的时间落后于流经第一输出电感器L1的电流IL1降至零点的时间,且第二电容C2两端的跨压电压VC2降至零点的时间落后于流经第二输出电感器L2的电流IL2降至零点的时间。当第三电阻R3的电阻值越大,则电压VC1、VC2降至零点的时间落后电流IL1、IL2降至零点的时间越多。是以第三电阻R3的电阻值可调整由电流侦测器146感测到的第一、第二输出电感器IL1、IL2的电流为零点(亦即电压VC1、VC2为零点)与实际流经该第一、第二输出电感器L1、L2的电流IL1、IL2为零点时的时间差。In addition, if the currents I L1 and I L2 flowing through the first and second output inductors L1 and L2 are discontinuous, the first capacitor C1 and the second capacitor C2 are charged and discharged to each other, so that the first The time for the voltage V C1 across the two ends of the capacitor C1 to drop to zero lags behind the time for the current I L1 flowing through the first output inductor L1 to drop to zero, and the time for the voltage V C2 across the two ends of the second capacitor C2 to drop to zero The time lags behind the time when the current I L2 flowing through the second output inductor L2 drops to zero. When the resistance value of the third resistor R3 is larger, the time for the voltages V C1 and V C2 to drop to zero is longer than the time for the currents I L1 and I L2 to drop to zero. The resistance value of the third resistor R3 can adjust the currents of the first and second output inductors I L1 and I L2 sensed by the current detector 146 to be zero (that is, the voltages V C1 and V C2 are zero) The time difference from when the currents I L1 and I L2 actually flowing through the first and second output inductors L1 and L2 are zero.
图4为根据图1的多相直流对直流电源转换装置100所绘示的流经第一、第二输出电感器L1、L2的电流IL1、IL2、第一、第二电容C1、C2两端的跨压VC1、VC2、流经第一、第二电容C1、C2的电流IC1、IC2以及流经第三电阻R3的电流IR3的模拟图。如图4所示,第一、第二电容C1、C2两端的跨压VC1、VC2大致正比于流经第一、第二输出电感器L1、L2的电流IL1、IL2。在期间T1中,输入电源VIN耦接于第一输出电感器L1,第一电容C1为充电状态,流经第一电容C1的电流IC1与流经第三电阻R3的电流IR3为正电流,且流经第二电容C2的电流IC2为负电流。在期间T2中,输入电源VIN与第一输出电感器L1断路,第一电容C1为放电状态,流经第一电容C1的电流IC1与流经第三电阻R3的电流IR3为负电流。同理,在期间T3中,输入电源VIN耦接于第二输出电感器L2,第二电容C2为充电状态,流经第二电容C2的电流IC2与流经第三电阻R3的电流IR3为正电流,且流经第一电容C1的电流IC1为负电流。在期间T4中,输入电源VIN与第二输出电感器L2断路,第二电容C2为放电状态,流经第二电容C2的电流IC2与流经第三电阻R3的电流IR3为负电流。FIG. 4 shows currents I L1 , I L2 , first and second capacitors C1 and C2 flowing through the first and second output inductors L1 and L2 according to the multi-phase DC-DC power conversion device 100 shown in FIG. 1 A simulation diagram of the transvoltages V C1 and V C2 at both ends, the currents I C1 and I C2 flowing through the first and second capacitors C1 and C2 , and the current I R3 flowing through the third resistor R3 . As shown in FIG. 4 , the voltages V C1 and V C2 across the first and second capacitors C1 and C2 are roughly proportional to the currents I L1 and I L2 flowing through the first and second output inductors L1 and L2 . During the period T1, the input power supply V IN is coupled to the first output inductor L1, the first capacitor C1 is in a charging state, and the current I C1 flowing through the first capacitor C1 and the current I R3 flowing through the third resistor R3 are positive. current, and the current I C2 flowing through the second capacitor C2 is a negative current. During the period T2, the input power supply V IN and the first output inductor L1 are disconnected, the first capacitor C1 is in a discharging state, the current I C1 flowing through the first capacitor C1 and the current I R3 flowing through the third resistor R3 are negative currents . Similarly, during the period T3, the input power supply V IN is coupled to the second output inductor L2, the second capacitor C2 is in the charging state, the current I C2 flowing through the second capacitor C2 and the current I flowing through the third resistor R3 R3 is a positive current, and the current IC1 flowing through the first capacitor C1 is a negative current. During the period T4, the input power supply V IN and the second output inductor L2 are disconnected, the second capacitor C2 is in a discharging state, the current I C2 flowing through the second capacitor C2 and the current I R3 flowing through the third resistor R3 are negative currents .
图5为绘示图1的多相直流对直流电源转换装置100,当流经第一输出电感器L1的电流不连续、且第三电阻R3为2kΩ时,流经第一输出电感器L1的电流IL1与第一电容C1上的跨压VC1的模拟图。如图5所示,流经第一输出电感器L1的电流IL1抵达零点时的时间点为t0,IL1,于第一电容C1上的跨压VC1抵达零点时的时间点为t0,VC1。时间点t0,IL1与t0VC1的时间差可用以微调多相直流对直流电源转换装置100,举例而言,可调整控制脉波关闭第一、第二低侧开关器Q2、Q4的时机。当第三电阻R3越大,则时间点t0,IL1与t0,VC1间的时间差越大,反之亦然。而为避免使于第一电容C1上的跨压VC1与流经第一输出电感器L1的电流IL1差异过大,第三电阻R3的电阻值小于或等于第一电阻R1的电阻值,且第三电阻R3的电阻值小于或等于第二电阻R2的电阻值。当第三电阻R3为0Ω时,则时间点t0,IL1与t0,VC1一样,且电压VC1正比于电流IL1,如图6所示。FIG. 5 shows the multi-phase DC-to-DC power conversion device 100 shown in FIG. 1. When the current flowing through the first output inductor L1 is discontinuous and the third resistor R3 is 2kΩ, the current flowing through the first output inductor L1 A simulation diagram of the current I L1 and the voltage V C1 across the first capacitor C1 . As shown in FIG. 5 , the time point when the current I L1 flowing through the first output inductor L1 reaches zero is t 0,IL1 , and the time point when the voltage across the first capacitor C1 V C1 reaches zero is t 0 , VC1 . The time difference between the time points t 0 , IL1 and t 0VC1 can be used to fine-tune the multi-phase DC-DC power conversion device 100 , for example, the timing of turning off the first and second low-side switches Q2 and Q4 by the control pulse can be adjusted. When the third resistor R3 is larger, the time difference between the time point t 0,IL1 and t 0,VC1 is larger, and vice versa. In order to prevent the difference between the voltage V C1 across the first capacitor C1 and the current I L1 flowing through the first output inductor L1 from being too large, the resistance of the third resistor R3 is less than or equal to the resistance of the first resistor R1, And the resistance value of the third resistor R3 is less than or equal to the resistance value of the second resistor R2. When the third resistor R3 is 0Ω, the time point t 0,IL1 is the same as t 0,VC1 , and the voltage V C1 is proportional to the current I L1 , as shown in FIG. 6 .
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何熟悉此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any skilled person can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be based on the scope defined by the appended claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210230036.XA CN103532372B (en) | 2012-07-04 | 2012-07-04 | Multi-phase DC to DC power conversion device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210230036.XA CN103532372B (en) | 2012-07-04 | 2012-07-04 | Multi-phase DC to DC power conversion device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103532372A CN103532372A (en) | 2014-01-22 |
| CN103532372B true CN103532372B (en) | 2016-01-20 |
Family
ID=49934137
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210230036.XA Active CN103532372B (en) | 2012-07-04 | 2012-07-04 | Multi-phase DC to DC power conversion device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103532372B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102016216086A1 (en) * | 2016-08-26 | 2018-03-01 | Continental Automotive Gmbh | Method for operating two DC-DC converters in a vehicle electrical system and voltage converter circuit |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1265479A (en) * | 1998-12-24 | 2000-09-06 | 英特赛尔公司 | DC-DC inverter having inductive current test and related method |
| CN1609742A (en) * | 2003-10-20 | 2005-04-27 | 英特赛尔美国股份有限公司 | Timer Mode Cascode Current Mode Regulator with High Noise Immunity and Arbitrary Phase Count |
| CN101030728A (en) * | 2005-09-16 | 2007-09-05 | 国际整流器公司 | Multi-phase converter with improved load step-up transient response |
| CN101159413A (en) * | 2006-06-19 | 2008-04-09 | 国际整流器公司 | Multi-phase converter with frequency and phase timing control |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7339361B2 (en) * | 2006-06-26 | 2008-03-04 | Intersil Americas Inc. | Multi-phase DC-DC converter using auxiliary resistor network to feed back multiple single-ended sensed currents to supervisory controller for balanced current-sharing among plural channels |
-
2012
- 2012-07-04 CN CN201210230036.XA patent/CN103532372B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1265479A (en) * | 1998-12-24 | 2000-09-06 | 英特赛尔公司 | DC-DC inverter having inductive current test and related method |
| CN1609742A (en) * | 2003-10-20 | 2005-04-27 | 英特赛尔美国股份有限公司 | Timer Mode Cascode Current Mode Regulator with High Noise Immunity and Arbitrary Phase Count |
| CN101030728A (en) * | 2005-09-16 | 2007-09-05 | 国际整流器公司 | Multi-phase converter with improved load step-up transient response |
| CN101159413A (en) * | 2006-06-19 | 2008-04-09 | 国际整流器公司 | Multi-phase converter with frequency and phase timing control |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103532372A (en) | 2014-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8988053B2 (en) | Multiphase DC-to-DC converter | |
| US11418119B2 (en) | Wide switching frequency range switched mode power supply control topology | |
| US6696825B2 (en) | DC-to-DC converter with fast override feedback control and associated methods | |
| EP3425784B1 (en) | Dc-dc converter with modular stages | |
| CN102594137B (en) | For the system and method for control switch formula power supply | |
| CN100521473C (en) | Stepped inductor for fast transient response of switching converter | |
| CN105099188B (en) | Dc-dc converter | |
| CN101488713B (en) | Voltage converter | |
| EP2309629B1 (en) | VDD/5 or VDD/6 fractional charge-pump | |
| WO2014192726A1 (en) | Charger-discharger with equalization function using both convertor and multi-stage voltage doubler rectifier circuit | |
| EP3111543B1 (en) | Burst mode control | |
| JPS6359764A (en) | Dc-dc converter and method of dc-dc conversion | |
| JPH0327772A (en) | Dc-dc converter and electronic computer using the same | |
| US10284089B2 (en) | Integrated bi-directional driver with modulated signals | |
| CN110165888A (en) | Three level Boost circuits, multiple-channel output parallel system | |
| CN101295927B (en) | Modified oscillator and decompression power converter | |
| WO2018091997A1 (en) | Switching regulator synchronous node snubber circuit | |
| CN116896146A (en) | Battery surge reduction using transient auxiliary converter | |
| CN103532372B (en) | Multi-phase DC to DC power conversion device | |
| CN112688540B (en) | Switching power converter and boost turn-off time adaptive adjusting unit | |
| US7265527B1 (en) | Direct current multiplier | |
| CN118900034A (en) | One-shot circuit with current compensation | |
| TWM653794U (en) | Power converter circuit and control circuit thereof | |
| CN112054679B (en) | Positive and negative voltage conversion direct-current power supply and control method thereof | |
| CN112187049B (en) | Circuit, corresponding multiphase converter device and method of operation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |