[go: up one dir, main page]

CN103562622A - Color conversion cavity for LED-based lighting modules - Google Patents

Color conversion cavity for LED-based lighting modules Download PDF

Info

Publication number
CN103562622A
CN103562622A CN201280026612.7A CN201280026612A CN103562622A CN 103562622 A CN103562622 A CN 103562622A CN 201280026612 A CN201280026612 A CN 201280026612A CN 103562622 A CN103562622 A CN 103562622A
Authority
CN
China
Prior art keywords
led
color conversion
based lighting
light
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280026612.7A
Other languages
Chinese (zh)
Inventor
杰勒德·哈伯斯
格雷戈里·W·恩格
彼特·K·曾
约翰·S·日贝里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XICATO Inc
Original Assignee
XICATO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XICATO Inc filed Critical XICATO Inc
Publication of CN103562622A publication Critical patent/CN103562622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The lighting module (100) comprises a plurality of Light Emitting Diodes (LEDs) (102a, 102b, 102 c). There are a plurality of color conversion cavities (160a, 160b, 160c), each having sidewalls coated with a wavelength converting material (162, 16, 165). One or more LEDs are located within each color conversion cavity. A transmissive layer (134) may be disposed over the color conversion cavity and may include additional wavelength converting material. The wavelength converting material may be selected to produce output light having a target color point. Additionally, there may be a second light mixing cavity (170) above the plurality of color conversion cavities.

Description

用于基于LED照明模块的颜色转换腔Color conversion cavity for LED-based lighting modules

相关申请的交叉引用Cross References to Related Applications

本申请要求2012年3月27日递交的美国专利申请No.13/431,796的优先权,进而所述专利申请根据35USC119要求2011年3月31日递交的美国临时专利申请No.61/470,389的优先权,将这两个专利申请的全部内容一并在此作为参考。This application claims priority to U.S. Patent Application No. 13/431,796, filed March 27, 2012, which in turn claims priority under 35USC119 to U.S. Provisional Patent Application No. 61/470,389, filed March 31, 2011 rights, the entire contents of these two patent applications are hereby incorporated by reference.

技术领域technical field

所述实施例涉及包括发光二极管(LED)的照明模块。The described embodiments relate to lighting modules comprising light emitting diodes (LEDs).

背景技术Background technique

由于在所述照明设备产生的光输出电平或者通量(flux)中的限制,发光二极管在普通照明中的使用仍然受到限制。使用LED的照明设备通常还遭受以颜色点(color point)不稳定性为特征的较差的颜色质量。所述颜色点不稳定性随着时间变化并且在部分之间变化。较差的颜色质量还以较差的显色性(poor color rendering)为特征,所述较差的显色性是由于不具有功率或者具有很小功率的频带的LED光源产生的光谱。此外,使用LED的照明设备通常在所述颜色中具有空间和/或角度变化。另外,除了其他方面,由于所需颜色控制电子学和/或传感器来维持所述光源的颜色点或者只使用一小部分生产的LED以满足所述应用的颜色和/或通量要求的必要性,使用LED的照明设备是昂贵的。The use of light emitting diodes in general lighting remains limited due to limitations in the level of light output, or flux, produced by such lighting devices. Lighting devices using LEDs also generally suffer from poor color quality characterized by color point instability. The color point instability varies over time and between sections. Poor color quality is also characterized by poor color rendering due to the spectrum produced by LED light sources in frequency bands with no or very little power. Furthermore, lighting devices using LEDs often have spatial and/or angular variations in the color. Also, due to the need, among other things, for color control electronics and/or sensors to maintain the color point of the light source or to use only a fraction of the LEDs produced to meet the color and/or flux requirements of the application , Lighting equipment using LEDs is expensive.

因此,需要对利用发光二极管作为光源的照明设备进行改进。Therefore, there is a need for improvements to lighting devices utilizing light emitting diodes as light sources.

发明内容Contents of the invention

照明模块包括多个发光二极管(LED)。存在多个颜色转换腔,每一个颜色转换腔都具有涂覆有波长转换材料的侧壁。一个或者多个LED位于每一个颜色转换腔内。透射层可以沉积在所述颜色转换腔的上方并且可以包括另外的波长转换材料。可以选择所述波长转换材料以产生具有目标颜色点的输出光。另外,在所述多个颜色转换腔的上方可以存在第二光混合腔(light mixing cavity)。The lighting module includes a plurality of light emitting diodes (LEDs). There are a plurality of color converting cavities each having sidewalls coated with a wavelength converting material. One or more LEDs are located within each color converting cavity. A transmissive layer may be deposited over the color converting cavity and may include additional wavelength converting material. The wavelength converting material can be selected to produce output light with a target color point. Additionally, there may be a second light mixing cavity above the plurality of color conversion cavities.

在下面的详细描述中描述了其他细节以及实施例和技术。本概要不限定本发明。本发明由所述权利要求限定。Additional details are described in the detailed description below, along with embodiments and techniques. This summary does not limit the invention. The invention is defined by the following claims.

附图说明Description of drawings

图1、2和3阐释了三个示例性光源,所述光源包括照明设备、反射体反射体和固定装置。Figures 1, 2, and 3 illustrate three exemplary light sources comprising lighting fixtures, reflector reflectors, and fixtures.

图4示出了分解图,阐释了如图1所述的基于LED的照明设备的组件。FIG. 4 shows an exploded view illustrating the components of the LED-based lighting device as described in FIG. 1 .

图5A和5B阐释了如图1所述的基于LED的照明设备的透视图和横截面图。5A and 5B illustrate perspective and cross-sectional views of an LED-based lighting device as described in FIG. 1 .

图6阐释了基于LED的照明模块的横截面图,所述基于LED的照明模块包括涂覆有荧光层(layer of phosphor)的反射和透射颜色转换元件。Figure 6 illustrates a cross-sectional view of an LED-based lighting module including reflective and transmissive color conversion elements coated with a layer of phosphor.

图7阐释了具有透射颜色转换元件的LED照明模块的一部分的横截面图,所述透射颜色转换元件具有带有荧光颗粒的颜色转换层。7 illustrates a cross-sectional view of a portion of an LED lighting module with a transmissive color converting element having a color converting layer with phosphor particles.

图8阐释了具有反射颜色转换元件的LED照明模块的一部分的横截面图,所述反射颜色转换元件具有荧光颗粒。8 illustrates a cross-sectional view of a portion of an LED lighting module having a reflective color converting element with fluorescent particles.

图9-13描述了包括多个颜色转换腔的基于LED的照明模块100的各种实施例的横截面侧视图。9-13 depict cross-sectional side views of various embodiments of LED-based lighting modules 100 including multiple color converting cavities.

图14A-14E描述了基于LED的照明模块的各种实施例的横截面顶视图,所述基于LED的照明模块包括多个颜色转换腔。14A-14E depict cross-sectional top views of various embodiments of LED-based lighting modules that include multiple color converting cavities.

图15、16和17描述了基于LED的照明模块的各种实施例的横截面侧视图,所述基于LED的照明模块具有安装至透射层的网格结构。15, 16 and 17 depict cross-sectional side views of various embodiments of LED-based lighting modules having a grid structure mounted to a transmissive layer.

图18描述了基于LED的照明模块的横截面顶视图,所述基于LED的照明模块具有安装至透射层的网格结构。18 depicts a cross-sectional top view of an LED-based lighting module having a grid structure mounted to a transmissive layer.

图19描述了基于LED的照明模块的另一实施例的横截面侧视图,所述基于LED的照明模块具有安装至透射层的网格结构。19 depicts a cross-sectional side view of another embodiment of an LED-based lighting module having a grid structure mounted to a transmissive layer.

图20阐释了包括颜色转换腔的基于LED的照明模块的横截面图,所述颜色转换腔配置用于在较宽区域上方对从LED发射的光进行色散和颜色转换。20 illustrates a cross-sectional view of an LED-based lighting module including a color conversion cavity configured to disperse and color convert light emitted from an LED over a wide area.

图21阐释了具有颜色转换腔的基于LED的照明模块的横截面图。21 illustrates a cross-sectional view of an LED-based lighting module with a color converting cavity.

图22、23和24阐释了基于LED的照明模块的横截面侧视图,所述基于LED的照明模块包括设置在LED上方并且与LED间隔开的半透明非平面的非平面形状的窗口。22, 23 and 24 illustrate cross-sectional side views of an LED-based lighting module including a translucent non-planar non-planar shaped window disposed over and spaced from the LEDs.

具体实施方式Detailed ways

现在将详细参考在附图中所阐释的本发明的背景技术示例和一些实施例。Reference will now be made in detail to background examples and some embodiments of the invention that are illustrated in the accompanying drawings.

图1、2和3阐释了三个示例性光源,全都标记为150。图1所阐释的光源包括具有矩形形状因子的照明模块100。图2所阐释的光源包括具有圆形形状因子的照明模块100。图3所阐释的光源包括集成在改造灯装置中的照明模块100。这些示例是出于阐释的目的。还可以构想一般多边形和椭圆形的照明模块的示例。光源150包括照明模块100、反射体125和固定装置120。如图所示,固定装置120包括热沉能力,并且因此有时可以称作热沉120。然而,固定装置120可以包括其他结构的和装饰的元件(未示出)。反射体125安装至照明模块100来对从照明模块100发射的光进行校准或者偏转(deflect)。所述反射体125可以由导热材料制成,诸如包括铝或者铜的材料并且可以热耦合至照明模块100。热量由传导通过照明模块100和导热反射体125流动。热量还流经所述反射体125上方的热对流。反射体125可以是复合抛物面聚光器,其中所述聚光器由高反射材料构成或者涂覆有高反射材料。光学元件(诸如漫射器或者反射体125)可以可拆卸地耦合至照明模块100,例如利用线、夹子、扭转锁定机构或者其他适当的结构。如图3所示,所述反射体125可以包括侧壁126和窗口127,所述侧壁和窗口可选地用例如波长转换材料、扩散材料或者任何其他所需材料涂覆。1 , 2 and 3 illustrate three exemplary light sources, all labeled 150 . The light source illustrated in FIG. 1 includes a lighting module 100 having a rectangular form factor. The light source illustrated in FIG. 2 includes a lighting module 100 having a circular form factor. The light source illustrated in Fig. 3 comprises a lighting module 100 integrated in a retrofit light installation. These examples are for illustration purposes. Examples of generally polygonal and elliptical lighting modules are also conceivable. The light source 150 includes a lighting module 100 , a reflector 125 and a fixing device 120 . As shown, fixture 120 includes heat sink capability, and may therefore sometimes be referred to as heat sink 120 . However, the fixture 120 may include other structural and decorative elements (not shown). The reflector 125 is installed to the lighting module 100 to collimate or deflect light emitted from the lighting module 100 . The reflector 125 may be made of thermally conductive material, such as a material including aluminum or copper, and may be thermally coupled to the lighting module 100 . Heat flows through the lighting module 100 and the heat-conducting reflector 125 by conduction. Heat also flows through thermal convection above the reflector 125 . Reflector 125 may be a compound parabolic concentrator, wherein the concentrator is constructed of or coated with a highly reflective material. Optical elements, such as diffusers or reflectors 125, may be removably coupled to lighting module 100, such as with wires, clips, twist-and-lock mechanisms, or other suitable structures. As shown in FIG. 3, the reflector 125 may include sidewalls 126 and windows 127, optionally coated with, for example, a wavelength converting material, diffusing material, or any other desired material.

如图1、2和3所示,照明模块100安装至热沉120。热沉120可以由导热材料制成,诸如包括铝或者铜的材料,并且可以热耦合至照明模块100。热量由传导通过照明模块100和所述导热热沉120流动。热量还流经热沉120上方的热对流。照明模块100可以利用螺纹连接至热沉120,以将所述照明模块100夹紧至所述热沉120。为了方便照明模块100的拆卸和更换,照明模块100可以可拆卸地耦合至热沉120,例如利用夹紧机构、扭转锁定机构或者其他适当的结构。照明模块100包括至少一个导热表面,所述导热表面例如直接地或者利用导热膏、导热胶带、导热垫片或者热环氧树脂热耦合至热沉120。为了LED的足够冷却,每瓦特流入板上LED的电能应当使用至少50平方毫米但是优选地100平方毫米的热接触面积。例如,在使用20个LED的情况下,应当使用1000至2000平方毫米的热沉接触面积。使用较大的热沉120可以允许在较高功率下驱动所述LED102,并且还允许不同的热沉设计。例如,一些设计可以呈现较少依赖于所述热沉方向的冷却性能。此外,风扇或者用于强制冷却的其他解决办法可以用于从所述设备去除热量。所述底部热沉可以包括一个孔,使得可以完成至所述照明模块100的电连接。As shown in FIGS. 1 , 2 and 3 , the lighting module 100 is mounted to a heat sink 120 . The heat sink 120 may be made of a thermally conductive material, such as a material including aluminum or copper, and may be thermally coupled to the lighting module 100 . Heat flows through the lighting module 100 and the heat conducting heat sink 120 by conduction. Heat also flows through thermal convection over the heat sink 120 . The lighting module 100 may be screwed to the heat sink 120 to clamp the lighting module 100 to the heat sink 120 . In order to facilitate the disassembly and replacement of the lighting module 100, the lighting module 100 may be detachably coupled to the heat sink 120, for example, by using a clamping mechanism, a twist locking mechanism, or other suitable structures. The lighting module 100 includes at least one thermally conductive surface that is thermally coupled to the heat sink 120 , eg, directly or using thermally conductive paste, thermally conductive tape, thermally conductive spacer, or thermal epoxy. For adequate cooling of the LEDs, a thermal contact area of at least 50 mm2 but preferably 100 mm2 should be used per watt of electrical power flowing into the LEDs on the board. For example, where 20 LEDs are used, a heat sink contact area of 1000 to 2000 square millimeters should be used. Using a larger heat sink 120 may allow the LED 102 to be driven at higher power and also allow for different heat sink designs. For example, some designs may exhibit cooling performance that is less dependent on the orientation of the heat sink. Furthermore, fans or other solutions for forced cooling can be used to remove heat from the device. The bottom heat sink may include a hole so that an electrical connection to the lighting module 100 can be made.

图4示出了分解图,以示例的形式阐释了如图1所述的基于LED的照明设备的组件。应当理解,如在此所限定的,基于LED的照明模块不是LED,而是LED光源或固定装置或者LED光源或固定装置的组成部分。例如,基于LED的照明模块可以是如图3所示的基于LED的替换灯泡。基于LED的照明模块100包括一个或者多个LED管芯或者封装LED以及安装板,LED管芯或者封装LED连接至所述安装板。在一个实施例中,所述LED102是封装LED,诸如由Philips Lumileds Lighting公司制造的Luxeon Rebel。也可以使用其他类型的封装LED,诸如由OSRAM公司(欧司朗封装,Oslonpackage)、朗明纳斯设备(Luminus Devices)公司(美国)、科锐(Cree)公司(美国)、日亚(Nichia)公司(日本)或者锐高(Tridonic)公司(奥地利)制造的那些。如在此所限定的,封装LED是一个或者多个LED管芯的组装,所述管芯包含电气连接,诸如引线键合连接或者柱形凸起,并且可能包括光学元件和热、机械和电气接口。所述LED芯片典型地具有大约1mm×1mm×0.5mm的大小,但是这些尺寸可以变化。在一些实施例中,所述LED102可以包括多个芯片。所述多个芯片可以发射类似或者不同颜色(例如,红色、绿色和蓝色)的光。安装板104连接至安装基座101并且通过安装板定位环103固定在适当的位置。同时,由LED102填充的安装板104和安装板定位环103包括光源子组件115。光源子组件115可用于利用LED102将电能转换为光。将从光源子组件115发射的光指向光转换子组件116用于颜色混合和颜色转换。光转换子组件116包括腔体105和输出端口,所述输出端口被表示为输出窗口108但是不限于此。光转换子组件116可选地包括底部反射体插入件106和侧壁插入件107的任一个或者两个。如果用作所述输出端口,用胶黏剂(adhesive)将输出窗口108固定至腔体105。为了促进从所述输出窗口至腔体105的热耗散,导热的胶黏剂是期望的。所述胶黏剂应当可靠地经受在所述输出窗口108和腔体105的界面处出现的温度。此外,优选的是,所述胶黏剂反射或者透射尽可能多的入射光,而不是吸收从输出窗口108发射的光。在一个示例中,由道康宁(Dow Corning)公司(美国)制造的若干胶黏剂(例如Dow Corning公司型号SE4420、SE4422、SE4486、1-4173或SE9210)的其中之一的耐热性、导热性和光学属性的组合提供了合适的性能。然而,也可以考虑其他导热胶黏剂。Fig. 4 shows an exploded view illustrating by way of example the components of the LED-based lighting device as described in Fig. 1 . It should be understood that an LED-based lighting module, as defined herein, is not an LED, but an LED light source or fixture or an integral part of an LED light source or fixture. For example, the LED-based lighting module may be an LED-based replacement light bulb as shown in FIG. 3 . The LED-based lighting module 100 includes one or more LED dies or packaged LEDs and a mounting board to which the LED dies or packaged LEDs are attached. In one embodiment, the LED 102 is a packaged LED, such as a Luxeon Rebel manufactured by Philips Lumileds Lighting. Other types of packaged LEDs can also be used, such as those produced by OSRAM (Oslonpackage), Luminus Devices (USA), Cree (USA), Nichia (Japan) or those manufactured by the company Tridonic (Austria). As defined herein, a packaged LED is an assembly of one or more LED dies that contain electrical connections, such as wire bond connections or stud bumps, and may include optical elements and thermal, mechanical, and electrical interface. The LED chips typically have dimensions of about 1 mm x 1 mm x 0.5 mm, although these dimensions may vary. In some embodiments, the LED 102 may include multiple chips. The plurality of chips may emit light of similar or different colors (eg, red, green, and blue). Mounting plate 104 is attached to mounting base 101 and is held in place by mounting plate retaining ring 103 . Meanwhile, the mounting plate 104 populated by LEDs 102 and the mounting plate positioning ring 103 include the light source subassembly 115 . Light source subassembly 115 may be used to convert electrical energy to light using LED 102 . Light emitted from light source subassembly 115 is directed to light conversion subassembly 116 for color mixing and color conversion. The light conversion subassembly 116 includes a cavity 105 and an output port, denoted as but not limited to an output window 108 . Light conversion subassembly 116 optionally includes either or both of bottom reflector insert 106 and sidewall insert 107 . If used as the output port, the output window 108 is fixed to the cavity 105 with an adhesive. To facilitate heat dissipation from the output window to cavity 105, a thermally conductive adhesive is desirable. The adhesive should reliably withstand the temperatures occurring at the interface of the output window 108 and cavity 105 . Furthermore, it is preferred that the adhesive reflect or transmit as much incident light as possible, rather than absorbing light emitted from the output window 108 . In one example, the heat resistance, thermal conductivity, and A combination of optical and optical properties provides suitable performance. However, other thermally conductive adhesives are also contemplated.

当可选地放置在腔体105内时,腔体105的内侧壁或者侧壁插入件107是反射性的,使得来自LED102的光以及任何波长的转换光在透射通过所述输出端口(例如输出窗口108)之前在所述腔160内反射,所述输出端口安装在光源子组件115的上方。底部反射体插入件106可以可选地放置在安装板104的上方。底部反射体插入件106包括孔,使得每一个LED102的发光部分不被底部反射体插入件106阻挡。侧壁插入件107可以可选地放置在腔体105内,使得当腔体105安装在光源子组件115的上方时,侧壁插入件107的内表面将光从所述LED102指向所述输出窗口。尽管如图所示,从照明模块100的顶部看,腔体105的内侧壁是矩形的,但是可以构想其他形状(例如三叶形或者多边形)。此外,腔体105的内侧壁可以从安装板104至输出窗口108逐渐变细或者向外弯曲,而不是如图所示与输出窗口108垂直。When optionally placed within cavity 105, the inner sidewall or sidewall insert 107 of cavity 105 is reflective such that light from LED 102, as well as converted light of any wavelength, is transmitted through the output port (e.g., output Window 108 ) is previously reflected in the cavity 160 , and the output port is mounted above the light source subassembly 115 . A bottom reflector insert 106 may optionally be placed above the mounting plate 104 . Bottom reflector insert 106 includes holes such that the light emitting portion of each LED 102 is not blocked by bottom reflector insert 106 . Sidewall insert 107 may optionally be placed within cavity 105 such that when cavity 105 is mounted above light source subassembly 115, the inner surface of sidewall insert 107 directs light from the LED 102 toward the output window. . Although as shown, the inner side walls of the cavity 105 are rectangular as viewed from the top of the lighting module 100, other shapes (eg, trilobal or polygonal) are contemplated. In addition, the inner side walls of the cavity 105 may taper or curve outward from the mounting plate 104 to the output window 108 rather than being perpendicular to the output window 108 as shown.

底部反射体插入件106和侧壁插入件107可以是高反射的,使得在所述腔160中向下反射的光通常发射回至所述输出段阔,例如输出窗口108。另外,插入件106和107可以具有高的导热性,使得它用作附加的散热器。作为示例,所述插入件106和107可以由高导热材料制成,诸如基于铝的材料,所述基于铝的材料能够处理成高反射性和耐用的材料。作为示例,可以使用由德国Alanod公司制造的被称作

Figure BDA0000426725990000061
的材料。可以通过对铝进行抛光或者通过用一种或者多种反射性涂层覆盖插入件106和107的内表面实现高的反射性。插入件106和107可以替代地由高反射薄材料制成,诸如由3M公司(美国)出售的VikuitiTMESR、由东丽(Toray)公司(日本)制造的LumirrorTME60L或者微晶聚对苯二甲酸乙二醇酯(MCPET),诸如由古河电气(Furukawa Electric)有限公司(日本)制造的。在其他示例中,插入件106和107可以由聚四氟乙烯(PTFE)材料制成。在一些示例中,插入件106和107可以由1至2毫米厚的PTFE材料制成,如由W.L.Gore公司(美国)和Berghof公司(德国)出售的。在另外一些实施例中,插入件106和107可以由PTFE材料构成,背后是薄的反射层,诸如金属层或者非金属层,诸如ESR、E60L或者MCPET。同样,可以将高漫反射涂层施加至侧壁插入件107、底部反射体插入件106、输出窗口108、腔体105和安装板104的任一个。这种涂层可以包括二氧化钛(TiO2)、氧化锌(ZnO)和硫酸钡(BaSO4)粒子,或者这些材料的组合。The bottom reflector insert 106 and the sidewall inserts 107 may be highly reflective such that light reflected downward in the cavity 160 is generally emitted back to the output section, such as the output window 108 . Additionally, inserts 106 and 107 may have high thermal conductivity such that it acts as an additional heat sink. As an example, the inserts 106 and 107 may be made of a highly thermally conductive material, such as an aluminum-based material that can be processed into a highly reflective and durable material. As an example, the so-called
Figure BDA0000426725990000061
s material. High reflectivity can be achieved by polishing the aluminum or by covering the inner surfaces of inserts 106 and 107 with one or more reflective coatings. Inserts 106 and 107 may alternatively be made of highly reflective thin material such as Vikuiti ESR sold by 3M Company (USA), Lumirror E60L manufactured by Toray Company (Japan), or microcrystalline polyparaphenylene Ethylene glycol dicarboxylate (MCPET), such as that manufactured by Furukawa Electric Co., Ltd. (Japan). In other examples, inserts 106 and 107 may be made of polytetrafluoroethylene (PTFE) material. In some examples, inserts 106 and 107 may be made of 1 to 2 mm thick PTFE material, as sold by WL Gore (USA) and Berghof (Germany). In other embodiments, inserts 106 and 107 may be constructed of PTFE material behind a thin reflective layer such as a metal layer or a non-metal layer such as ESR, E60L or MCPET. Likewise, a highly diffuse reflective coating may be applied to any of sidewall insert 107 , bottom reflector insert 106 , output window 108 , cavity 105 , and mounting plate 104 . Such coatings may include titanium dioxide (TiO2), zinc oxide (ZnO), and barium sulfate (BaSO4) particles, or combinations of these materials.

图5A和5B阐释了如图1所述的基于LED的照明模块100的透视图和横截面图。在这个实施例中,所述侧壁插入物107、输出窗口108和设置在安装板104上的底部反射体插入件106限定了在所述基于LED的照明模块100中的光混合腔160(如图5A所示)。来自所述LED102的一部分光在通过输出窗口108离开之前在光混合腔160内反射。在离开所述输出窗口108之前在所述腔160内反射具有对光进行混合并且提供从所述基于LED的照明模块100发射的光的更均匀分布的效果。此外,由于在离开所述输出窗口108之前光在所述腔160内反射,一部分光通过与包括在所述腔160中的波长转换材料相互作用进行颜色转换。5A and 5B illustrate perspective and cross-sectional views of the LED-based lighting module 100 as described in FIG. 1 . In this embodiment, the sidewall insert 107, output window 108, and bottom reflector insert 106 disposed on the mounting plate 104 define a light mixing cavity 160 in the LED-based lighting module 100 (eg, Figure 5A). A portion of the light from the LEDs 102 is reflected within the light mixing cavity 160 before exiting through the output window 108 . Reflecting within the cavity 160 before exiting the output window 108 has the effect of mixing the light and providing a more even distribution of the light emitted from the LED-based lighting module 100 . Furthermore, due to the reflection of the light within the cavity 160 before exiting the output window 108 , a portion of the light undergoes color conversion by interacting with the wavelength converting material included in the cavity 160 .

尽管如图1-5B所示,基于LED的照明模块100包括单个颜色转换腔160,但是在此可以介绍其他实施例。在一方面中,输出窗口108可以是三维形状的壳体结构,以促进光的提取、颜色转换和对输出光束剖面的成形。在另一方面中,形成多个袋状结构的网格结构可以连接至所述基于LED的照明模块100的窗口。通过用不同波长转换材料涂覆不同的袋状结构,可以调谐从照明模块100发射的光的颜色点并且可以提高输出光束均匀性。在另外一个方面中,基于LED的照明模块100可以包括多个颜色转换腔160,每一个腔都围绕着不同的LED或者LED组。通过变化不同颜色转换腔160的颜色转换属性,可以调谐从照明模块100发射的光的颜色点并且可以提高输出光束均匀性。此外,可以安置第二混合腔以收集从每一个颜色转换腔发射的光并且在离开照明模块100之前对所述光进一步进行混合。在另一方面中,通过在所述颜色转换腔内一系列反射对光进行横向透射并且远离LED,颜色转换腔可以配置用于在较宽区域上方对从LED102发射的光进行色散和颜色转换。在一些示例中,可以通过嵌入在所述颜色转换腔内的波长转换材料对从所述LED发射的光进行颜色转换。在一些示例中,可以通过位于所述颜色转换腔输出处的波长转换材料对从所述LED发射的光进行颜色转换。Although the LED-based lighting module 100 includes a single color conversion cavity 160 as shown in FIGS. 1-5B , other embodiments may be described herein. In an aspect, the output window 108 may be a three-dimensionally shaped housing structure to facilitate light extraction, color conversion, and shaping of the output beam profile. In another aspect, a grid structure forming a plurality of pocket structures may be connected to the window of the LED-based lighting module 100 . By coating different pocket structures with different wavelength conversion materials, the color point of light emitted from the lighting module 100 can be tuned and output beam uniformity can be improved. In another aspect, LED-based lighting module 100 may include multiple color conversion cavities 160, each cavity surrounding a different LED or group of LEDs. By varying the color conversion properties of different color conversion cavities 160, the color point of the light emitted from the lighting module 100 can be tuned and the output beam uniformity can be improved. Furthermore, a second mixing cavity may be arranged to collect the light emitted from each color conversion cavity and further mix the light before exiting the lighting module 100 . In another aspect, the color conversion cavity may be configured to disperse and color convert light emitted from the LED 102 over a wider area by transmitting light laterally and away from the LED by a series of reflections within the color conversion cavity. In some examples, light emitted from the LED can be color converted by a wavelength converting material embedded within the color converting cavity. In some examples, light emitted from the LED can be color converted by a wavelength converting material located at the output of the color converting cavity.

LED102可以通过直接发光或者通过荧光粉转换发射不同或者相同的颜色,其中将荧光层施加至所述LED作为所述LED封装的一部分。所述照明设备100可以使用颜色LED102(诸如红色、绿色、蓝色、琥珀色或者青色)的任何组合,或者所述LED102可以全都产生相同颜色的光。一些或者全部LED102可以产生白光。此外,所述LED102可以发射偏振光或者非偏振光,并且基于LED的照明设备100可以利用偏振或者非偏振LED的任何组合。在一些实施例中,由于LED在这些波长范围内的发光效率,LED102发射蓝光或者紫外光。当LED102与包括在颜色转换腔160中的波长转换材料组合使用时,从所述照明设备100发射的光具有所需的颜色。与所述腔160内的光混合组合的所述波长转换材料的照片(感觉有误,是不是应该是photon)转换属性导致进行了颜色转换的光输出。通过调谐所述波长转换材料的化学和/或物理(诸如厚度和浓度)属性以及在腔160内表面上涂层的几何属性,可以指定由输出窗口108输出的光的具体颜色属性,例如颜色点、色温和显色指数(CRI)。LEDs 102 may emit different or the same color by direct emission or by phosphor conversion where a phosphor layer is applied to the LED as part of the LED package. The lighting device 100 may use any combination of colored LEDs 102, such as red, green, blue, amber or cyan, or the LEDs 102 may all produce the same color of light. Some or all of LEDs 102 may produce white light. Furthermore, the LEDs 102 can emit polarized or non-polarized light, and the LED-based lighting device 100 can utilize any combination of polarized or non-polarized LEDs. In some embodiments, LED 102 emits blue or ultraviolet light due to the LED's luminous efficiency in these wavelength ranges. When the LEDs 102 are used in combination with the wavelength converting material included in the color converting cavity 160, the light emitted from the lighting device 100 has a desired color. The photon conversion properties of the wavelength conversion material combined with light mixing within the cavity 160 result in a color converted light output. By tuning the chemical and/or physical (such as thickness and concentration) properties of the wavelength converting material and the geometric properties of the coating on the inner surface of the cavity 160, specific color properties, such as a color point, of the light output by the output window 108 can be specified. , color temperature and color rendering index (CRI).

为了本专利文件,波长转换材料是任何单一的化学化合物或者不同化学化合物的混合物,所述化学化合物执行颜色转换功能,例如吸收一个峰值波长的一些光,并且作为回应,发射处在另一峰值波长处的一些光。For the purposes of this patent document, a wavelength conversion material is any single chemical compound or mixture of different chemical compounds that performs a color conversion function such as absorbing some light at one peak wavelength and, in response, emitting at another peak wavelength some light here.

腔160的某些部分,诸如所述底部反射体插入件106、侧壁插入件107、腔体105、输出窗口108和放置在所述腔内的其他组件(未示出)可以涂覆或者包括波长转换材料。图5B阐释了涂覆有波长转换材料的所述侧壁插入物107的部分。此外,腔160的不同组件可以涂覆相同或者不同的波长转换材料。Portions of cavity 160, such as the bottom reflector insert 106, sidewall inserts 107, cavity body 105, output window 108, and other components (not shown) placed within the cavity may be coated or include wavelength conversion material. Figure 5B illustrates the portion of the sidewall insert 107 coated with wavelength converting material. Furthermore, different components of cavity 160 may be coated with the same or different wavelength converting materials.

作为示例,荧光粉可以从以下化学式表示的组中选择:Y3Al5O12:Ce,(又称YAG:Ce,或者简单地YAG)、(Y,Gd)3Al5O12:Ce、CaS:Eu、SrS:Eu、SrGa2S4:Eu、Ca3(Sc,Mg)2Si3O12:Ce、Ca3Sc2Si3O12:Ce、Ca3Sc2O4:Ce、Ba3Si6O12N2:Eu、(Sr,Ca)AlSiN3:Eu、CaAlSiN3:Eu、CaAlSi(ON)3:Eu、Ba2SiO4:Eu、Sr2SiO4:Eu、Ca2SiO4:Eu、CaSc2O4:Ce、CaSi2O2N2:Eu、SrSi2O2N2:Eu、BaSi2O2N2:Eu、Ca5(PO4)3Cl:Eu,Ba5(PO4)3Cl:Eu、Cs2CaP2O7、Cs2SrP2O7、Lu3Al5O12:Ce、Ca8Mg(SiO4)4Cl2:Eu、Sr8Mg(SiO4)4Cl2:Eu、La3Si6N11:Ce、Y3Ga5O12:Ce、Gd3Ga5O12:Ce、Tb3Al5O12:Ce、Tb3Ga5O12:Ce、and Lu3Ga5O12:Ce。As an example, phosphors may be selected from the group represented by the following chemical formulas: Y 3 Al 5 O 12 :Ce, (also known as YAG:Ce, or simply YAG), (Y,Gd) 3 Al 5 O 12 :Ce, CaS: Eu, SrS: Eu, SrGa 2 S 4 : Eu, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 Sc 2 O 4 : Ce, Ba 3 Si 6 O 12 N 2 : Eu, (Sr, Ca)AlSiN 3 : Eu, CaAlSiN 3 : Eu, CaAlSi(ON) 3 : Eu, Ba 2 SiO 4 : Eu, Sr 2 SiO 4 : Eu, Ca 2 SiO 4 : Eu, CaSc 2 O 4 : Ce, CaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, BaSi 2 O 2 N 2 : Eu, Ca 5( PO 4 ) 3 Cl: Eu, Ba 5( PO 4 ) 3 Cl: Eu, Cs 2 CaP 2 O 7 , Cs 2 SrP 2 O 7 , Lu 3 Al 5 O 12 : Ce, Ca 8 Mg(SiO 4 ) 4 Cl 2 : Eu, Sr 8 Mg (SiO 4 ) 4 Cl 2 : Eu, La 3 Si 6 N 11 : Ce, Y 3 Ga 5 O 12 : Ce, Gd 3 Ga 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, Tb 3 Ga 5 O 12 : Ce, and Lu 3 Ga 5 O 12 : Ce.

在一个示例中,可以通过更换侧壁插入物107和/或所述输出窗口108实现所述照明设备的颜色点的调节,类似地可以涂覆或者浸渍一种或者多种波长转换材料。在一个示例中,红色发光荧光粉(诸如铕激活碱土金属氮化硅,例如(Sr,Ca)AlSiN3:Eu)覆盖在所述腔160底部的侧壁插入物107和底部反射体插入物106的一部分,并且YAG荧光粉覆盖所述输出窗口108的一部分。在另一个实施例中,红色发光荧光粉(诸如碱土金属氧氮化硅)覆盖在所述腔160底部的侧壁插入物107和底部反射体插入物106的一部分,并且红色发光碱土金属氧氮化硅和黄色发光YAG荧光粉的混合物覆盖所述输出窗口108的一部分。In one example, adjustment of the color point of the lighting device can be achieved by replacing the sidewall insert 107 and/or the output window 108, similarly by coating or impregnating one or more wavelength conversion materials. In one example, a red emitting phosphor (such as europium activated alkaline earth metal silicon nitride, eg (Sr,Ca)AlSiN 3 :Eu) covers the sidewall insert 107 and the bottom reflector insert 106 at the bottom of the cavity 160 part of the output window 108, and the YAG phosphor covers a part of the output window 108. In another embodiment, a red emitting phosphor such as alkaline earth silicon oxynitride covers a portion of the sidewall insert 107 and the bottom reflector insert 106 at the bottom of the cavity 160, and a red emitting alkaline earth metal oxynitride A mixture of silicon carbide and yellow-emitting YAG phosphor covers a portion of the output window 108 .

在一些实施例中,在合适的溶液介质中将所述荧光粉与粘合剂(binder)以及可选地表面活性剂和增塑剂进行混合。所述结果混合物通过喷涂、丝网印刷、刮涂或者其他合适手段的任一种沉积。通过选择限定所述腔的侧壁的形状和高度,以及选择在所述腔中的哪些部分将由荧光粉覆盖或者不覆盖,并且通过所述光混合腔160表面上的荧光层的层厚和浓度的最优化,可以按照需要调谐从所述模块发射的光的颜色点。In some embodiments, the phosphor is mixed with a binder and optionally a surfactant and a plasticizer in a suitable solution medium. The resulting mixture is deposited by any of spray coating, screen printing, doctor blade coating, or other suitable means. By selecting the shape and height of the side walls defining the cavity, and selecting which parts in the cavity will be covered or not covered by phosphor, and by the layer thickness and concentration of the phosphor layer on the surface of the light mixing cavity 160 For optimization, the color point of the light emitted from the module can be tuned as desired.

在一个示例中,可以将单一类型的波长转换材料图案化在所述侧壁上,例如可以是如图5B所示的侧壁插入物107。作为示例,可以将红色荧光粉图案化在所述侧壁插入物107的不同区域上并且黄色荧光粉可以覆盖所述输出窗口108。可以变化所述荧光粉的覆盖区域和/或浓度以产生不同的色温。应该理解,如果由所述LED102产生的光发生变化,那么将需要变化所述红色的覆盖区域和/或所述红色和黄色荧光粉的浓度以产生所需的色温。可以在组装之前测量并且根据性能选择所述LED102的颜色性能、所述侧壁插入物107上的红色荧光粉和所述输出窗口108上的黄色荧光粉,使得所述组装件产生所需的色温。In one example, a single type of wavelength conversion material can be patterned on the sidewall, such as sidewall insert 107 as shown in FIG. 5B . As an example, red phosphor may be patterned on different areas of the sidewall insert 107 and yellow phosphor may cover the output window 108 . The phosphor coverage area and/or concentration can be varied to produce different color temperatures. It should be understood that if the light produced by the LEDs 102 is varied, then the red coverage area and/or the red and yellow phosphor concentrations will need to be varied to produce the desired color temperature. The color performance of the LEDs 102, the red phosphor on the sidewall insert 107 and the yellow phosphor on the output window 108 can be measured prior to assembly and selected based on performance such that the assembly produces the desired color temperature .

在许多应用中,期望的是产生具有小于3100开尔文度相关色温(CCT)的白光输出。例如,在许多应用中,需要具有2700开尔文度CCT的白光。通常需要一些红色发光,以将从所述光谱的蓝色或者紫外部分发光的LED产生的光转换成具有小于3100开尔文度CCT的白光输出。正在努力将黄色荧光粉与红色发光荧光粉,诸如CaS:Eu,SrS:Eu,SrGa2S4:Eu,Ba3Si6O12N2:Eu,(Sr,Ca)AlSiN3:Eu,CaAlSiN3:Eu,CaAlSi(ON)3:Eu,Ba2SiO4:Eu,Sr2SiO4:Eu,Ca2SiO4:Eu,CaSi2O2N2:Eu,SrSi2O2N2:Eu,BaSi2O2N2:Eu,Sr8Mg(SiO4)4Cl2:Eu,Li2NbF7:Mn4+,Li3ScF6:Mn4+,La2O2S:Eu3+and MgO.MgF2.GeO2:Mn4+,进行混合以达到所需的CCT。然而,由于所述输出光的CCT对混合中的红色荧光粉组分敏感,所述输出光的颜色一致性通常较差。较差的颜色分布在混合荧光粉的情况中更为显著,特别是在照明应用中。通过用不包括任何红色发光荧光粉的荧光粉或者荧光粉混合物涂覆输出窗口108,可以避免颜色一致性的问题。为了产生具有小于3100开尔文度CCT的白光输出,在基于LED的照明模块100的侧壁和底部反射体的任一个上沉积红色发光荧光粉或者荧光粉混合物。选择指定的红色发光荧光粉或者荧光粉混合物(例如峰值发射波长从600纳米至700纳米)以及所述红色发光荧光粉或者荧光粉混合物的浓度,以产生具有小于3100开尔文度CCT的白光输出。按照这种方式,基于LED的照明模块可以用不包括红色发光荧光粉组分的输出窗口产生具有小于3100K CCT的白光。In many applications, it is desirable to produce a white light output with a correlated color temperature (CCT) of less than 3100 degrees Kelvin. For example, in many applications white light with a CCT of 2700 degrees Kelvin is desired. Some red emission is generally required to convert light produced from LEDs emitting in the blue or ultraviolet portion of the spectrum to a white light output with a CCT of less than 3100 degrees Kelvin. Efforts are underway to combine yellow phosphors with red-emitting phosphors, such as CaS:Eu, SrS:Eu, SrGa 2 S 4 :Eu, Ba 3 Si 6 O 12 N 2 :Eu, (Sr,Ca)AlSiN 3 :Eu, CaAlSiN 3 : Eu, CaAlSi(ON) 3 : Eu, Ba 2 SiO 4 : Eu, Sr 2 SiO 4 : Eu, Ca 2 SiO 4 : Eu, CaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu , BaSi 2 O 2 N 2 : Eu, Sr 8 Mg(SiO 4 ) 4 Cl 2 : Eu, Li 2 NbF 7 : Mn 4+ , Li 3 ScF 6 : Mn 4+ , La 2 O 2 S: Eu 3+ and MgO.MgF 2 .GeO 2 :Mn 4+ , mixed to achieve the desired CCT. However, since the CCT of the output light is sensitive to the red phosphor component in the mixture, the color consistency of the output light is generally poor. Poor color distribution is more pronounced in the case of mixed phosphors, especially in lighting applications. By coating the output window 108 with a phosphor or phosphor mixture that does not include any red emitting phosphor, color consistency problems can be avoided. To produce a white light output with a CCT of less than 3100 degrees Kelvin, a red emitting phosphor or phosphor mixture is deposited on either the sidewalls and the bottom reflector of the LED-based lighting module 100 . The specified red emitting phosphor or phosphor blend (eg, peak emission wavelength from 600 nm to 700 nm) and the concentration of the red emitting phosphor or phosphor blend are selected to produce a white light output with a CCT of less than 3100 degrees Kelvin. In this way, an LED-based lighting module can produce white light with a CCT of less than 3100K with an output window that does not include a red-emitting phosphor component.

对于基于LED的照明模块,期望的是在使光子损失降至最低的同时,在至少一个光混合腔160中将所述LED发射的光的一部分转换成更长波长的光。密集堆积的荧光粉薄层适用于对入射光的重要部分进行有效地颜色转换,同时使与相邻荧光颗粒的再吸收、全内反射(TLR)和菲涅耳效应(Fresnel effects)相关的损失降至最低。For LED-based lighting modules, it is desirable to convert a portion of the light emitted by the LEDs to longer wavelength light in at least one light mixing cavity 160 while minimizing photon losses. Thin layers of densely packed phosphors are suitable for efficient color conversion of a significant fraction of incident light while minimizing losses associated with reabsorption, total internal reflection (TLR) and Fresnel effects of adjacent phosphor particles minimized.

图6阐释了颜色转换腔160的横截面图,重点在于LED102发射的光与腔160的组件的相互作用。如图所示,颜色转换腔160包括反射颜色转换元件130和透射颜色转换元件133。透射颜色转换元件133包括固定至光学透射层134的颜色转换层135。反射颜色转换元件130包括固定至反射层131的颜色转换层132。FIG. 6 illustrates a cross-sectional view of color conversion cavity 160 with emphasis on the interaction of light emitted by LED 102 with the components of cavity 160 . As shown, the color conversion cavity 160 includes a reflective color conversion element 130 and a transmissive color conversion element 133 . The transmissive color conversion element 133 comprises a color conversion layer 135 secured to an optically transmissive layer 134 . The reflective color conversion element 130 includes a color conversion layer 132 fixed to a reflective layer 131 .

透射颜色转换元件133按照透射模式提供高效的颜色转换。颜色转换层135包括稀疏的荧光粉薄层。在由紫外或者子紫外辐射泵送的照明设备中,未转换光的透射是不期望的,因为暴露在这些波长下的辐射中对人体有健康风险。然而,对于由紫外以上发射波长的LED泵送的基于LED的照明模块,期望的是,显著比例的未转换光(例如从LED102发射的蓝光)穿过光混合腔160,而无颜色转换。这提升了高的效率,因为避免了所述颜色转换过程所固有的损失。稀疏堆积的荧光粉薄层适用于对入射光的一部分进行颜色转换。例如,期望的是,允许至少10%的入射光透射通过所述层,而无转换。The transmissive color conversion element 133 provides efficient color conversion in transmissive mode. The color conversion layer 135 includes a sparse phosphor thin layer. In lighting devices pumped by UV or sub-UV radiation, the transmission of unconverted light is undesirable because of the health risks to humans from exposure to radiation at these wavelengths. However, for LED-based lighting modules pumped by LEDs emitting wavelengths above the ultraviolet, it is expected that a significant proportion of unconverted light (eg, blue light emitted from LED 102 ) passes through light mixing cavity 160 without color conversion. This promotes high efficiency because losses inherent in the color conversion process are avoided. Thin layers of sparsely packed phosphors are suitable for color conversion of a fraction of the incident light. For example, it is desirable to allow at least 10% of incident light to be transmitted through the layer without conversion.

反射颜色转换元件130按照反射模式提供高效的颜色转换。将在高密度下具有所需厚度的颜色转换层132沉积在反射层131上。在一些实施例中,需要具有堆积密度大于90%的是所述荧光颗粒平均直径两倍的厚度。在这些实施例中,所述平均荧光颗粒直径在6至8微米之间。The reflective color conversion element 130 provides efficient color conversion in reflective mode. A color conversion layer 132 having a desired thickness at high density is deposited on the reflective layer 131 . In some embodiments, it is desirable to have a thickness greater than 90% of the average diameter of the fluorescent particles. In these embodiments, the average fluorescent particle diameter is between 6 and 8 microns.

图7阐释了LED照明模块100横截面图,重点在于LED102发射的光子与透射颜色转换元件133的相互作用。透射层134可以由光学透明介质(例如玻璃、蓝宝石、聚碳酸酯、塑料)构成。透射层134也可以由半透明材料(例如PTFE薄层或者已经刻蚀的光学透明介质)构成。透射颜色转换元件133可以包括附加层(未示出),以提高光学系统性能。在一个示例中,透射颜色转换元件133可以包括光学薄膜(诸如双色向滤光镜)、低折射率涂层、附加层(诸如散射粒子层)或者包括荧光颗粒的附加颜色转换层。在一些实施例中,半透明的颜色转换层135包括嵌入在高分子粘合剂142中的荧光颗粒141。荧光颗粒141设置用于使得部分光能够透射通过透射颜色转换元件133,而无颜色转换。FIG. 7 illustrates a cross-sectional view of the LED lighting module 100 focusing on the interaction of photons emitted by the LED 102 with the transmitted color conversion element 133 . Transmissive layer 134 may be composed of an optically transparent medium (eg, glass, sapphire, polycarbonate, plastic). The transmissive layer 134 can also be made of a translucent material (such as a thin layer of PTFE or an etched optically transparent medium). Transmissive color conversion element 133 may include additional layers (not shown) to enhance optical system performance. In one example, the transmissive color converting element 133 may include an optical film such as a dichroic filter, a low index coating, an additional layer such as a layer of scattering particles, or an additional color converting layer including fluorescent particles. In some embodiments, the translucent color conversion layer 135 includes fluorescent particles 141 embedded in a polymeric binder 142 . Phosphor particles 141 are provided to enable a portion of the light to be transmitted through the transmissive color conversion element 133 without color conversion.

在一个实施例中,沉积在光学透射层134上的半透明的颜色转换层135具有厚度T135,所述厚度是具有堆积密度大约80%的是所述荧光颗粒平均直径的三倍。在这个实施例中,所述平均荧光颗粒直径是10微米。In one embodiment, the translucent color conversion layer 135 deposited on the optically transmissive layer 134 has a thickness T 135 that is three times the average diameter of the phosphor particles with a packing density of about 80%. In this example, the average fluorescent particle diameter is 10 microns.

如图7所示,LED102发射的蓝色光子139通过透射颜色转换元件133而无颜色转换,并且有助于组合光140作为蓝色光子。然而,LED102发射的蓝色光子138被嵌入在颜色转换层135中的荧光颗粒吸收。作为由蓝色光子138提供的激励的响应,所述荧光颗粒按照各向同性发射图案发射更长波长的光。在所阐释的示例中,所述荧光颗粒发射黄光。如图7所示,所述发射黄光的一部分通过透射颜色转换元件133并且有助于组合光140作为黄色光子。所述发射黄光的另一部分由相邻的荧光颗粒吸收并且被重新发射或者丢失。所述发射黄光的另一部分被散射回至光混合腔160,其中它被反射回至透射颜色转换元件133或者在光混合腔160内被吸收和丢失。As shown in FIG. 7, blue photons 139 emitted by LED 102 pass through transmission color conversion element 133 without color conversion and contribute to combining light 140 as blue photons. However, blue photons 138 emitted by LED 102 are absorbed by phosphor particles embedded in color conversion layer 135 . In response to the excitation provided by blue photons 138, the phosphor particles emit longer wavelength light in an isotropic emission pattern. In the illustrated example, the fluorescent particles emit yellow light. As shown in FIG. 7, a portion of the emitted yellow light passes through the transmission color conversion element 133 and contributes to combined light 140 as yellow photons. Another part of the emitted yellow light is absorbed by adjacent fluorescent particles and is re-emitted or lost. Another part of the emitted yellow light is scattered back to the light mixing cavity 160 where it is reflected back to the transmissive color converting element 133 or absorbed and lost within the light mixing cavity 160 .

图8阐释了颜色转换腔160的横截面图,重点在于LED102发射的光子与反射颜色转换元件130的相互作用。在一些实施例中,颜色转换层132具有厚度T132小于荧光颗粒141平均直径的五倍。荧光颗粒141的平均直径可以在1微米至25微米。在一些实施例中,荧光颗粒141的平均直径在5至10微米。荧光颗粒141设置为大于80%的堆积密度,来增加入射光子与荧光颗粒相互作用以产生已转换光的概率。例如,LED102发射的蓝色光子137入射至反射颜色转换元件130并且由颜色转换层132的荧光颗粒吸收。作为由蓝色光子137提供的激励的响应,所述荧光颗粒按照各向同性发射图案发射更长波长的光。在所阐释的示例中,所述荧光颗粒发射红光。如图8所示,所述发射红光的一部分进入光混合腔160。所述发射红光的另一部分由相邻的荧光颗粒吸收并且被重新发射或者丢失。所述发射红光的另一部分被反射离开反射层131并且被透射通过颜色转换层132至光混合腔160或者被相邻的荧光颗粒吸收并且被重新发射或者丢失。FIG. 8 illustrates a cross-sectional view of color conversion cavity 160 focusing on the interaction of photons emitted by LED 102 with reflective color conversion element 130 . In some embodiments, the color conversion layer 132 has a thickness T 132 that is less than five times the average diameter of the fluorescent particles 141 . The average diameter of the fluorescent particles 141 can be 1 micron to 25 microns. In some embodiments, the average diameter of the fluorescent particles 141 is 5-10 microns. The fluorescent particles 141 are set to a packing density greater than 80% to increase the probability of incident photons interacting with the fluorescent particles to generate converted light. For example, blue photons 137 emitted by LED 102 are incident on reflective color converting element 130 and are absorbed by fluorescent particles of color converting layer 132 . In response to the excitation provided by blue photons 137, the phosphor particles emit longer wavelength light in an isotropic emission pattern. In the illustrated example, the fluorescent particles emit red light. As shown in FIG. 8 , a portion of the emitted red light enters the light mixing cavity 160 . Another portion of the red-emitting light is absorbed by adjacent phosphor particles and either re-emitted or lost. Another part of the emitted red light is reflected off the reflective layer 131 and transmitted through the color conversion layer 132 to the light mixing cavity 160 or absorbed by adjacent phosphor particles and re-emitted or lost.

图9-13描述了基于LED的照明模块100的各种实施例的横截面侧视图。图9阐释了包括多个颜色转换腔160的基于LED的照明模块100的一个方面。每一个颜色转换腔(例如160a、160b和160c)都配置用于在来自每一个颜色转换腔的光组合之前分别对每一个LED(例如102a、102b、102c)发射的光进行颜色转换。通过变化一个或者多个颜色转换腔的任何化学组成、一个或者多个颜色转换腔中波长转换涂层的几何属性、提供给发射进入任何颜色转换腔的任何LED的电流以及一个或者多个颜色转换腔的形状,可以控制从基于LED的照明模块100发射的光的颜色并且可以提高输出光束均匀性。9-13 depict cross-sectional side views of various embodiments of LED-based lighting modules 100 . FIG. 9 illustrates one aspect of an LED-based lighting module 100 including a plurality of color conversion cavities 160 . Each color conversion cavity (eg, 160a, 160b, and 160c) is configured to color convert the light emitted by each LED (eg, 102a, 102b, 102c), respectively, prior to combining the light from each color conversion cavity. By varying any chemical composition of one or more color conversion cavities, the geometric properties of the wavelength conversion coating in one or more color conversion cavities, the current supplied to any LED emitting into any color conversion cavities and one or more color conversion The shape of the cavity can control the color of light emitted from the LED-based lighting module 100 and can improve output beam uniformity.

如图9所示,LED102a只将光直接发射进入颜色转换腔160a。类似地,LED102b只将光直接发射进入颜色转换腔160b并且LED102c只将光直接发射进入颜色转换腔160c。每一个LED都通过反射侧壁彼此隔离。例如,如图所示,反射侧壁161将LED102a与102b隔离。As shown in FIG. 9, LED 102a only emits light directly into color conversion cavity 160a. Similarly, LED 102b only emits light directly into color conversion cavity 160b and LED 102c only emits light directly into color conversion cavity 160c. Each LED is isolated from each other by reflective side walls. For example, as shown, reflective sidewall 161 isolates LEDs 102a from 102b.

反射侧壁161是高反射的,使得例如将从LED102b发射的光向上指向到颜色转换腔160b中,通常朝向照明模块100的输出窗口108。此外,反射侧壁161可以具有高的导热性,使得它用作附加的散热器。作为示例,所述反射侧壁161可以由高导热材料制成,诸如基于铝的材料,所述基于铝的材料能够处理成高反射性和耐用的材料。作为示例,可以使用由德国Alanod公司制造的被称作

Figure BDA0000426725990000121
的材料。可以通过对铝进行抛光或者通过用一种或者多种反射性涂层覆盖反射侧壁161的内表面实现高的反射性。反射侧壁161可以替代地由高反射薄材料制成,诸如由3M公司(美国)出售的VikuitiTMESR、由Toray公司(日本)制造的LumirrorTME60L或者微晶聚对苯二甲酸乙二醇酯(MCPET),诸如由Furukawa Electric有限公司(日本)制造的。在其他示例中,反射侧壁161可以由PTFE材料制成。在一些示例中,反射侧壁161可以由1至2毫米厚的PTFE材料制成,如由W.L.Gore公司(美国)和Berghof公司(德国)出售的。在另外一些实施例中,反射侧壁161可以由PTFE材料构成,背后是薄的反射层,诸如金属层或者非金属层,诸如ESR、E60L或者MCPET。同样,可以将高漫反射涂层施加至反射侧壁161。这种涂层可以包括二氧化钛(TiO2)、氧化锌(ZnO)和硫酸钡(BaSO4)粒子,或者这些材料的组合。The reflective sidewalls 161 are highly reflective such that, for example, light emitted from the LED 102b is directed upwards into the color conversion cavity 160b , generally towards the output window 108 of the lighting module 100 . Furthermore, reflective sidewall 161 may have high thermal conductivity such that it acts as an additional heat sink. As an example, the reflective sidewalls 161 may be made of a highly thermally conductive material, such as an aluminum-based material that can be processed into a highly reflective and durable material. As an example, the so-called
Figure BDA0000426725990000121
s material. High reflectivity can be achieved by polishing the aluminum or by covering the inner surface of reflective sidewall 161 with one or more reflective coatings. The reflective side walls 161 may alternatively be made of highly reflective thin material such as Vikuiti ESR sold by 3M Company (USA), Lumirror E60L manufactured by Toray Company (Japan), or microcrystalline polyethylene terephthalate Ester (MCPET), such as that manufactured by Furukawa Electric Co., Ltd. (Japan). In other examples, reflective sidewall 161 may be made of PTFE material. In some examples, reflective sidewall 161 may be made of 1 to 2 mm thick PTFE material, as sold by WL Gore (USA) and Berghof (Germany). In other embodiments, the reflective sidewall 161 may be made of PTFE material behind a thin reflective layer, such as a metal layer or a non-metal layer, such as ESR, E60L or MCPET. Likewise, a highly diffuse reflective coating may be applied to the reflective sidewalls 161 . Such coatings may include titanium dioxide (TiO2), zinc oxide (ZnO), and barium sulfate (BaSO4) particles, or combinations of these materials.

在一方面中,基于LED的照明模块100包括第一颜色转换腔(例如160a),所述第一颜色转换腔具有涂覆有第一波长转换材料162的内表面区域,以及第二颜色转换腔(例如160b),所述第二颜色转换腔具有涂覆有第二波长转换材料164的内表面区域。在一些实施例中,所述基于LED的照明模块100包括第三颜色转换腔(例如160c),所述第三颜色转换腔具有涂覆有第三波长转换材料165的内表面区域。在一些其他的实施例中,所述基于LED的照明模块100可以包括附加的颜色转换腔,所述附加的颜色转换腔包括附加的、不同的波长转换材料。在一些实施例中,多个颜色转换腔包括涂覆有相同波长转换材料的内表面区域。In one aspect, LED-based lighting module 100 includes a first color converting cavity (eg, 160a) having an inner surface region coated with a first wavelength converting material 162, and a second color converting cavity (eg 160b ), the second color converting cavity has an inner surface region coated with a second wavelength converting material 164 . In some embodiments, the LED-based lighting module 100 includes a third color converting cavity (eg, 160c ) having an inner surface region coated with a third wavelength converting material 165 . In some other embodiments, the LED-based lighting module 100 may include additional color converting cavities comprising additional, different wavelength converting materials. In some embodiments, multiple color converting cavities include inner surface regions coated with the same wavelength converting material.

如图9所示,在一个实施例中,基于LED的照明模块100还包括安装在所述颜色转换腔160上方的透射层134。在一些实施例中,用包括波长转换材料163的颜色转换层135涂覆透射层134。在一个示例中,波长转换材料162、164和165可以包括发射红光荧光粉材料并且波长转换材料163包括发射黄光荧光粉材料。透射层134促进每一个颜色转换腔输出的光的混合。As shown in FIG. 9 , in one embodiment, the LED-based lighting module 100 further includes a transmissive layer 134 mounted above the color conversion cavity 160 . In some embodiments, transmissive layer 134 is coated with color converting layer 135 including wavelength converting material 163 . In one example, wavelength converting materials 162, 164, and 165 may include a red emitting phosphor material and wavelength converting material 163 includes a yellow emitting phosphor material. The transmissive layer 134 facilitates mixing of the light output by each color conversion cavity.

在一些示例中,选择包括在颜色转换腔160中的每一种波长转换材料和颜色转换层135,使得从基于LED的照明模块100发射的组合光140的颜色点与目标颜色点匹配。In some examples, each wavelength converting material included in color converting cavity 160 and color converting layer 135 is selected such that the color point of combined light 140 emitted from LED-based lighting module 100 matches a target color point.

在一些实施例中,在所述颜色转换腔160的上方安装第二混合腔170。第二混合腔170是促进所述颜色转换腔160输出的光混合的封闭腔,使得从基于LED的照明模块100发射的组合光140是颜色均匀的。如图9所示,第二混合腔170包括沿着颜色转换腔160的周边安装的反射侧壁171,以捕获所述颜色转换腔160输出的光。第二混合腔170包括安装在所述反射侧壁171上方的输出窗口108。从所述颜色转换腔160发射的光反射离开所述第二颜色转换腔的内部相对表面并且作为组合光140离开所述输出窗口108。In some embodiments, a second mixing chamber 170 is installed above the color conversion chamber 160 . The second mixing cavity 170 is a closed cavity that facilitates mixing of the light output by the color conversion cavity 160 so that the combined light 140 emitted from the LED-based lighting module 100 is uniform in color. As shown in FIG. 9 , the second mixing chamber 170 includes reflective sidewalls 171 installed along the periphery of the color conversion chamber 160 to capture the light output by said color conversion chamber 160 . The second mixing chamber 170 includes an output window 108 mounted above said reflective side wall 171 . Light emitted from the color conversion cavity 160 is reflected off the inner opposing surface of the second color conversion cavity and exits the output window 108 as combined light 140 .

如图10所示,在一个实施例中,基于LED的照明模块100包括颜色转换腔160和第二混合腔170。如图所示,第二混合腔170的输出窗口108由包括波长转换腔材料163的颜色转换层135涂覆。在一个示例中,波长转换材料162、164和165可以包括发射红光荧光粉材料并且波长转换材料163包括发射黄光荧光粉材料。可以可选地包括安装在颜色转换腔160上方的扩散层143,以促进每一个颜色转换腔输出的光的混合。在一些实施例中,扩散层143不执行颜色转换功能。扩散层143可以由半透明材料(例如PTFE薄层)或者光学透明介质(例如玻璃、蓝宝石、聚碳酸酯、塑料)构成,所述光学透明介质已经被处理(例如刻蚀)或者用材料(例如TiO2)涂覆以使它更光学扩散。As shown in FIG. 10 , in one embodiment, an LED-based lighting module 100 includes a color conversion cavity 160 and a second mixing cavity 170 . As shown, the output window 108 of the second mixing cavity 170 is coated by a color converting layer 135 comprising a wavelength converting cavity material 163 . In one example, wavelength converting materials 162, 164, and 165 may include a red emitting phosphor material and wavelength converting material 163 includes a yellow emitting phosphor material. A diffusion layer 143 mounted over the color conversion cavities 160 may optionally be included to facilitate mixing of the light output by each color conversion cavity. In some embodiments, diffusion layer 143 does not perform a color conversion function. Diffusion layer 143 may be composed of a translucent material (e.g., a thin layer of PTFE) or an optically transparent medium (e.g., glass, sapphire, polycarbonate, plastic) that has been processed (e.g., etched) or coated with a material (e.g., TiO 2 ) coating to make it more optically diffuse.

如图9和10所示,LED102安装在一个平面上并且反射侧壁161包括与其上安装有LED102的平面垂直定位的平整表面。已经发现平整的、垂直定位的表面在使背反射降至最低的同时可以对光进行有效地颜色转换。然而,也可以考虑其他表面形状和定位。例如,图11描述了反射侧壁161,所述反射侧壁包括相对于其上安装有LED102的平面成倾斜角度定位的平整表面。在一些示例中,这种配置促进从所述颜色转换腔160的光的提取。As shown in Figures 9 and 10, the LED 102 is mounted on a plane and the reflective side wall 161 includes a flat surface oriented perpendicular to the plane on which the LED 102 is mounted. It has been found that flat, vertically oriented surfaces allow efficient color conversion of light while minimizing back reflections. However, other surface shapes and orientations are also contemplated. For example, FIG. 11 depicts a reflective sidewall 161 that includes a flat surface positioned at an oblique angle relative to the plane on which LED 102 is mounted. In some examples, this configuration facilitates the extraction of light from the color conversion cavity 160 .

图12描述了在另一个实施例中的反射侧壁161。如图所示,反射侧壁161包括锥形部分,所述锥形部分包括相对于其上安装有LED102的平面成倾斜角度定位的平整表面。所述锥形部分过渡至与其上安装有LED102的平面垂直定位的平整表面。在其他实施例中,所述锥形部分包括过渡至平整的、垂直定位表面的曲面。在一些示例中,这些实施例在对所述LED102发射的光有效地进行颜色转换的同时促进从所述颜色转换腔160的光的提取。同样,如图11所示,在反射侧壁161的所述平整的、垂直定位的表面上设置波长转换材料(例如波长转换材料162、164和165)。Figure 12 depicts reflective sidewalls 161 in another embodiment. As shown, reflective sidewall 161 includes a tapered portion that includes a flat surface positioned at an oblique angle relative to the plane on which LED 102 is mounted. The tapered portion transitions to a flat surface positioned perpendicular to the plane on which the LED 102 is mounted. In other embodiments, the tapered portion includes a curved surface that transitions to a flat, vertical positioning surface. In some examples, these embodiments facilitate the extraction of light from the color conversion cavity 160 while efficiently color converting the light emitted by the LEDs 102 . Also, as shown in FIG. 11 , wavelength converting materials (eg, wavelength converting materials 162 , 164 and 165 ) are disposed on the flat, vertically oriented surfaces of reflective sidewall 161 .

如上所讨论的,通过选择包括在所述颜色转换腔160中的每一种波长转换材料并且通过选择包括在颜色转换层135中的波长转换材料,可以调谐从包括多个颜色转换腔的基于LED的照明模块100发射的光的颜色,以与目标颜色点匹配。在其他的实施例中,通过选择具有不同峰值发射波长的LED102,可以调谐从所述基于LED的照明模块100发射的光的颜色。例如,可以选择LED102a以具有480纳米的峰值发射波长,同时可以选择LED102b以具有460纳米的峰值发射波长。As discussed above, by selecting each of the wavelength converting materials included in the color converting cavity 160 and by selecting the wavelength converting material included in the color converting layer 135, it is possible to tune the output from an LED based LED comprising multiple color converting cavities. The color of the light emitted by the lighting module 100 is adjusted to match the target color point. In other embodiments, the color of light emitted from the LED-based lighting module 100 can be tuned by selecting LEDs 102 with different peak emission wavelengths. For example, LED 102a may be selected to have a peak emission wavelength of 480 nanometers, while LED 102b may be selected to have a peak emission wavelength of 460 nanometers.

图13描述了另一实施例,用于调谐从包括多个颜色转换腔的基于LED的照明模块100发射的光的颜色。通过独立地控制提供给不同LED102的电流,可以确定从每一个独立控制的颜色转换腔中发射的通量。按照这种方式,可以调谐具有不同颜色转换特性的颜色转换腔的输出通量,使得从基于LED的照明模块100输出的光的颜色与目标颜色点匹配。例如,电源180在导体183上提供电流184至LED102a。LED102a发射的光进入颜色转换腔160a,经历颜色转换并且作为进行了颜色转换的光167发射。类似地,电源181在导体185上提供电流186至LED102b。LED102b发射的光进入颜色转换腔160b,经历颜色转换并且作为进行了颜色转换的光168发射。通过调节电流184和186,可以调谐进行了颜色转换的光167的通量和进行了颜色转换的光168的通量,使得进行了颜色转换的光167和168的组合与目标颜色点匹配。类似地,可以独立地控制附加颜色转换腔,以调谐基于LED的照明模块100的输出光的颜色点。如图13所示,电源182在导体187上提供电流188至LED102c。从LED102c发射的光进入颜色转换腔160c,经历颜色转换并且作为进行了颜色转换的光169发射。按照这种方式,可以调谐电流184、186和188,使得进行了颜色转换的光167、168和169的组合与目标颜色点匹配。FIG. 13 depicts another embodiment for tuning the color of light emitted from an LED-based lighting module 100 comprising multiple color conversion cavities. By independently controlling the current supplied to the different LEDs 102, the flux emitted from each independently controlled color conversion cavity can be determined. In this way, the output flux of color conversion cavities having different color conversion characteristics can be tuned such that the color of light output from LED-based lighting module 100 matches a target color point. For example, power supply 180 provides current 184 on conductor 183 to LED 102a. Light emitted by LED 102a enters color conversion cavity 160a, undergoes color conversion and is emitted as color converted light 167. Similarly, power supply 181 provides current 186 on conductor 185 to LED 102b. Light emitted by LED 102b enters color conversion cavity 160b, undergoes color conversion and is emitted as color converted light 168 . By adjusting currents 184 and 186, the flux of color converted light 167 and the flux of color converted light 168 can be tuned such that the combination of color converted light 167 and 168 matches the target color point. Similarly, additional color conversion cavities can be independently controlled to tune the color point of the output light of LED-based lighting module 100 . As shown in FIG. 13 , power supply 182 provides current 188 on conductor 187 to LED 102c. Light emitted from LED 102c enters color conversion cavity 160c, undergoes color conversion and is emitted as color converted light 169 . In this manner, currents 184, 186, and 188 can be tuned so that the combination of color-converted light 167, 168, and 169 matches the target color point.

图14A-14E描述了基于LED的照明模块100的各种实施例的横截面顶视图。图14A描述了按照紧密堆积结构设置的六边形颜色转换腔160a-160g,其中每一个颜色转换腔的侧壁都与另一个共享。例如,颜色转换腔160g的每一个侧壁都分别与另一个颜色转换腔(160a-160f)共享。图14B描述了按照矩形网格设置的矩形颜色转换腔160a-160i。在这种配置中,每一个颜色转换腔的侧壁都与另一个共享。例如,颜色转换腔160g的每一个侧壁都分别与颜色转换腔160a-160f和160h-160i共享。图14C描述了按照六边形网格设置的矩形颜色转换腔160a-160f。在这种配置中,每一个颜色转换腔的侧壁都与多个颜色转换腔共享。例如,颜色转换腔160g的侧壁与颜色转换腔160e和160f共享。图14D描述了按照六边形网格设置的圆形颜色转换腔160a-160i。图14E描述了按照紧密堆积六边形网格设置的三角形颜色转换腔160a-160f。在这种配置中,每一个颜色转换腔的侧壁都与另一个共享。图14A-E的实施例是示例性的,但是也可以考虑不同形状和不同布局的颜色转换腔。例如,颜色转换腔可以是椭圆形、星形、一般多边形等形状。此外,可以选择导致紧密堆积配置的网格图案。然而,在其他实施例中,可以考虑不是紧密堆积的网格图案。14A-14E depict cross-sectional top views of various embodiments of LED-based lighting modules 100 . Figure 14A depicts hexagonal color conversion cavities 160a-160g arranged in a close-packed configuration, where the side walls of each color conversion cavity are shared with the other. For example, each side wall of color conversion cavity 160g is shared with another color conversion cavity (160a-160f), respectively. Figure 14B depicts rectangular color conversion cavities 160a-160i arranged in a rectangular grid. In this configuration, the side walls of each color conversion cavity are shared with the other. For example, each side wall of color conversion chamber 160g is shared with color conversion chambers 160a-160f and 160h-160i, respectively. Figure 14C depicts rectangular color conversion cavities 160a-160f arranged in a hexagonal grid. In this configuration, the side walls of each color conversion cavity are shared with multiple color conversion cavities. For example, the side walls of color conversion cavity 160g are shared with color conversion cavities 160e and 160f. Figure 14D depicts circular color conversion cavities 160a-160i arranged in a hexagonal grid. Figure 14E depicts triangular color conversion cavities 160a-160f arranged in a close-packed hexagonal grid. In this configuration, the side walls of each color conversion cavity are shared with the other. The embodiment of Figures 14A-E is exemplary, but color conversion cavities of different shapes and layouts are also contemplated. For example, the color conversion cavity may be in the shape of an ellipse, a star, a general polygon, or the like. In addition, grid patterns can be selected that result in close-packed configurations. However, in other embodiments, grid patterns that are not tightly packed may be considered.

图15、16和17描述了基于LED的照明模块100的各种实施例的横截面侧视图,所述基于LED的照明模块具有安装至透射层134的网格结构196。在一些实施例中,透射层134是基于LED的照明模块100的输出窗口。安装至所述透射层134的网格结构196形成了多个袋状结构。任意数量的袋状结构可以被一些波长转换材料至少部分地涂覆。安装至透射层的或者作为透射层一部分的网格结构提供了一种利用含有不同波长转换材料的物理隔离的袋状结构进行颜色控制的手段。通过变化具有不同波长转换材料的袋状结构的数量,控制所述输出光的颜色。此外,通过平均分配不同波长转换材料的袋状结构,提升了输出光束均匀性。最后,通过隔离平面上不同类型的波长转换材料可以提高效率,使得从LED发射的光的显著部分被波长转换材料一次吸收并且被作为输出光重新发射。这个结构使所述进行了颜色转换的光被第二种波长转换材料重新吸收的可能性降至最低。15 , 16 and 17 depict cross-sectional side views of various embodiments of an LED-based lighting module 100 having a grid structure 196 mounted to the transmissive layer 134 . In some embodiments, the transmissive layer 134 is the output window of the LED-based lighting module 100 . The grid structure 196 mounted to the transmissive layer 134 forms a plurality of pocket structures. Any number of pocket structures may be at least partially coated with some wavelength converting material. A grid structure mounted to or as part of a transmissive layer provides a means for color control using physically isolated pocket structures containing different wavelength converting materials. By varying the number of pockets with different wavelength converting materials, the color of the output light is controlled. In addition, the output beam uniformity is improved by evenly distributing the pocket structure of different wavelength conversion materials. Finally, efficiency can be improved by isolating different types of wavelength converting materials on a plane such that a significant portion of the light emitted from the LED is once absorbed by the wavelength converting material and re-emitted as output light. This structure minimizes the possibility of the color converted light being reabsorbed by the second wavelength converting material.

在图15所述的实施例中,一些袋状结构由发射红光荧光粉191填充,另外的袋状结构由发射绿光荧光粉材料192填充,并且还有其他的袋状结构由发射黄光荧光粉材料190填充。按照这种方式,从每一个LED发射的光的一部分被颜色转换成红色、绿色和黄色光,成为从基于LED的照明模块100发射的组合光140的一部分。在一些实施例中,网格结构196由PTFE材料构成。由于其有效的扩散反射属性,PTFE提升了有效的颜色转换并且允许来自LED102的光的一些透射通过透射层134,而无颜色转换。In the embodiment depicted in FIG. 15, some pockets are filled with red-emitting phosphor material 191, others are filled with green-emitting phosphor material 192, and still others are filled with yellow-emitting phosphor material 191. Phosphor material 190 is filled. In this manner, a portion of the light emitted from each LED is color converted into red, green, and yellow light as part of the combined light 140 emitted from the LED-based lighting module 100 . In some embodiments, mesh structure 196 is composed of PTFE material. Due to its effective diffuse reflective properties, PTFE promotes effective color conversion and allows some transmission of light from LED 102 through transmissive layer 134 without color conversion.

在一些实施例中,诸如图15和16所述的那些,所述袋状结构特征在于深度D和宽度W。通过调谐所述袋状结构的宽度和深度尺寸以及所述波长转换材料的组分,从基于LED的照明模块100发射的光可以与目标颜色点匹配。图17阐释了一个实施例,其中所述网格结构的深度从所述透射层134延伸至其上安装有所述LED102平面。In some embodiments, such as those described in FIGS. 15 and 16 , the pocket structure is characterized by a depth D and a width W. FIG. By tuning the width and depth dimensions of the pocket structures and the composition of the wavelength converting material, the light emitted from the LED-based lighting module 100 can be matched to a target color point. Figure 17 illustrates an embodiment wherein the depth of the mesh structure extends from the transmissive layer 134 to a plane on which the LEDs 102 are mounted.

图18描述了基于LED的照明模块100的横截面顶视图。如图所示,每一个袋状结构都由发射红光荧光粉191或者发射黄光荧光粉190涂覆。在这个实施例中,具有发射红光荧光粉191的袋状结构与发射黄光荧光粉190平均分配。在其他实施例中,更多数量的袋状结构可以涂覆一种荧光粉或者另一种,以与目标颜色点匹配。在一些其他的实施例中,附加的荧光粉可以包括在一些袋状结构中。FIG. 18 depicts a cross-sectional top view of LED-based lighting module 100 . Each pocket structure is coated with a red emitting phosphor 191 or a yellow emitting phosphor 190 as shown. In this embodiment, the pocket structure with red-emitting phosphor 191 is evenly distributed with yellow-emitting phosphor 190 . In other embodiments, a greater number of pockets may be coated with one phosphor or the other to match the target color point. In some other embodiments, additional phosphors may be included in some pocket structures.

在一些其他的实施例中,每一个都包括荧光粉组合的不同波长转换材料可以涂覆不同的袋状结构,以与目标颜色点匹配。例如,一些袋状结构可以由发射具有3000K CCT的白光的波长转换材料涂覆,而其他袋状结构可以由发射具有4000K CCT的白光的荧光粉涂覆。按照这种方式,通过变化产生3000K光和4000K光的袋状结构的相对数量,可以调谐由基于LED的照明模块100输出的组合光140,以具有3000K至4000K之间的CCT。如图18所示,每一个袋状结构都一律是正方形。然而,在其他实施例中,每一个袋状结构可以是任意的形状(例如一般多边形和一般椭圆形)。期望的是成形的袋状结构,以提高从基于LED的照明模块100发射的光的输出光束均匀性和颜色控制。In some other embodiments, different wavelength converting materials, each comprising a combination of phosphors, may be coated with different pocket structures to match the target color point. For example, some pocket structures can be coated with a wavelength converting material that emits white light with a 3000K CCT, while other pocket structures can be coated with a phosphor that emits white light with a 4000K CCT. In this way, the combined light 140 output by the LED-based lighting module 100 can be tuned to have a CCT between 3000K and 4000K by varying the relative amounts of pocket structures that produce 3000K light and 4000K light. As shown in Figure 18, each pocket structure is uniformly square. However, in other embodiments, each pocket structure may be of any shape (eg, generally polygonal and generally elliptical). A shaped pocket structure is desired to improve output beam uniformity and color control of light emitted from LED-based lighting module 100 .

如图19(和图16)所示,袋状结构的图案特征在于网格间隔距离G,而LED的图案特征在于LED间隔距离L。在一些实施例中,所述网格间隔距离可以小于所述LED间隔距离(参见图19)。在一些其他的实施例中,所述网格间隔距离可以与所述LED间隔距离相同(参见图16)。在一些其他的实施例中,所述网格间隔距离可以大于所述LED间隔距离(未示出)。同样,如图19所示,所述网格间隔距离大于所述袋状结构宽度W,以保证从LED102发射的足够的光被波长转换材料进行颜色转换。在一些实施例中,所述网格间隔距离是所述袋状结构宽度W的至少两倍。As shown in Figure 19 (and Figure 16), the pattern of pockets is characterized by a grid separation distance G, while the pattern of LEDs is characterized by an LED separation distance L. In some embodiments, the grid separation distance may be smaller than the LED separation distance (see FIG. 19 ). In some other embodiments, the grid separation distance may be the same as the LED separation distance (see FIG. 16 ). In some other embodiments, the grid separation distance may be greater than the LED separation distance (not shown). Also, as shown in FIG. 19 , the distance between the grids is greater than the width W of the pocket structure to ensure that enough light emitted from the LED 102 is color-converted by the wavelength conversion material. In some embodiments, the grid separation distance is at least twice the width W of the pocket structure.

图20阐释了包括颜色转换腔160的基于LED的照明模块100的另一方面的横截面图,所述颜色转换腔配置用于在较宽区域上方对从LED102发射的光进行色散和颜色转换。按照这种方式,在薄的剖面结构中可以实现颜色转换并且提升输出光束均匀性。如图20所示,颜色转换腔160a包括至少一个反射侧壁161,将从LED102a发射的光指向设置在LED102a上方的透射层134。所述反射侧壁161相对于设置有LED102的平面204成倾斜角度定位。如图20所示,反射侧壁161向外并且向上延伸至透射层134与反射侧壁161的附着点207。透射层134包括设置在每一个LED102上方的凸反射体205。如图所示,反射体205的中心轴与每一个LED102的中心轴202是共线的,使得每一个反射体205在每一个LED102的上方是居中的。如图所示,透射层134的一部分涂覆有波长转换材料206。按照这种方式,从LED102a发射的光在从颜色转换腔160a发射之前被横向色散和颜色转换。例如,光子208(例如蓝色光子)从LED102a中发射,反射离开反射体205,随后反射离开反射侧壁161,并且激发波长转换材料206。所述波长转换材料206吸收光子208并且发射进行了颜色转换的光(例如红光),所述进行了颜色转换的光通过透射层134并且离开颜色转换腔160a。20 illustrates a cross-sectional view of another aspect of LED-based lighting module 100 including a color conversion cavity 160 configured to disperse and color convert light emitted from LEDs 102 over a wide area. In this way, color conversion and improved output beam uniformity can be achieved in thin profile structures. As shown in FIG. 20, color conversion cavity 160a includes at least one reflective sidewall 161 that directs light emitted from LED 102a to transmissive layer 134 disposed above LED 102a. The reflective sidewall 161 is positioned at an oblique angle relative to the plane 204 on which the LED 102 is disposed. As shown in FIG. 20 , the reflective sidewall 161 extends outward and upward to the attachment point 207 of the transmissive layer 134 and the reflective sidewall 161 . Transmissive layer 134 includes a convex reflector 205 disposed over each LED 102 . As shown, the central axis of the reflector 205 is collinear with the central axis 202 of each LED 102 such that each reflector 205 is centered over each LED 102 . As shown, a portion of transmissive layer 134 is coated with wavelength converting material 206 . In this manner, light emitted from LED 102a is laterally dispersed and color converted before being emitted from color conversion cavity 160a. For example, photons 208 (eg, blue photons) are emitted from LED 102 a , reflect off reflector 205 , subsequently reflect off reflective sidewall 161 , and excite wavelength converting material 206 . The wavelength converting material 206 absorbs photons 208 and emits color converted light (eg, red light) that passes through the transmissive layer 134 and exits the color conversion cavity 160a.

如图20所示,颜色转换腔160a从LED102a的中心轴202至附着点207横向延伸一段距离DWG。为了在较宽区域上促进光的分散,透射层134与平面204之间的距离H小于DWG的一半。如图所示,在图20中,通过在所述颜色转换腔内一系列反射对光进行横向透射并且远离LED102a并且然后通过所述光与设置在水平表面上的波长转换材料的相互作用对从LED发射的光进行颜色转换,颜色转换腔160配置用于在较宽区域上对LED102发射的光进行分散和颜色转换。为了进一步促进光的横向分散,在所述LED的上方引入反射体以在颜色转换之前对光进行横向反射。As shown in FIG. 20 , color converting cavity 160a extends laterally a distance DwG from central axis 202 of LED 102a to attachment point 207 . To facilitate the dispersion of light over a wider area, the distance H between the transmissive layer 134 and the plane 204 is less than half of DWG . As shown, in FIG. 20, light is transmitted laterally by a series of reflections within the color conversion cavity and away from the LED 102a and then from The light emitted by the LEDs is color converted, and the color conversion cavity 160 is configured to disperse and color convert the light emitted by the LEDs 102 over a wide area. To further facilitate the lateral dispersion of light, reflectors are introduced above the LEDs to reflect the light laterally prior to color conversion.

图21阐释了在另一个实施例中的颜色转换腔160。在这个实施例中,透射层134是半透明层。例如,透射层134可以由烧结PTFE的薄层构成。如图所示,透射层134不包括如图20的实施例所述的反射体。作为反射体的替代,所述半透明层允许从每一个LED102发射的一部分光的透射以及另一部分的反射,以在每一个颜色转换腔内促进光的横向散射。Figure 21 illustrates a color conversion cavity 160 in another embodiment. In this embodiment, transmissive layer 134 is a translucent layer. For example, transmissive layer 134 may consist of a thin layer of sintered PTFE. As shown, the transmissive layer 134 does not include reflectors as described in the embodiment of FIG. 20 . Instead of reflectors, the translucent layer allows transmission of a portion of light emitted from each LED 102 and reflection of another portion to facilitate lateral scattering of light within each color conversion cavity.

在另一个实施例中,每一个颜色转换腔160都包括透明介质210,所述透明介质具有显著高于空气的折射率(例如硅树脂)。在一些实施例中,透明介质210填充所述颜色转换腔。在一些示例中,透明介质210的折射率与作为所述封装LED102一部分的任何封装材料的折射率匹配。在所阐释的实施例中,透明介质210填充每一个颜色转换腔的一部分,但是与所述LED102物理隔离。这可以期望用于促进从所述颜色转换腔的光的提取。如图所示,波长转换层206设置在透射层134上。在一些实施例中,波长转换层206包括多个部分,每一个部分都具有不同的波长转换材料。尽管如图所示,波长转换层206被设置在透射层134的顶上使得透射层134位于波长转换层206与每一个LED102之间,但是在一些实施例中,波长转换层206可以设置在透射层134上,位于透射层134与每一个LED102之间。此外,或者替代地,波长转换材料可以嵌入在透明介质210中。In another embodiment, each color conversion cavity 160 includes a transparent medium 210 having a significantly higher refractive index than air (eg, silicone). In some embodiments, a transparent medium 210 fills the color conversion cavity. In some examples, the refractive index of transparent medium 210 matches the refractive index of any encapsulation material that is part of the encapsulated LED 102 . In the illustrated embodiment, a transparent medium 210 fills a portion of each color conversion cavity, but is physically isolated from the LEDs 102 . This can be expected to facilitate the extraction of light from the color conversion cavity. As shown, the wavelength conversion layer 206 is disposed on the transmissive layer 134 . In some embodiments, wavelength converting layer 206 includes multiple portions, each portion having a different wavelength converting material. Although as shown, wavelength converting layer 206 is disposed atop transmissive layer 134 such that transmissive layer 134 is positioned between wavelength converting layer 206 and each of LEDs 102, in some embodiments, wavelength converting layer 206 may be disposed on top of transmissive layer 134. layer 134 between the transmissive layer 134 and each LED 102 . Additionally, or alternatively, wavelength converting material may be embedded in transparent medium 210 .

在另一方面中,基于LED的照明模块100包括设置在LED102上方并且与LED隔离的半透明非平面的非平面形状窗口220,如图22所示。在一些实施例中,半透明非平面形状窗口220可以由模塑或者玻璃材料构成。在其他实施例中,半透明非平面形状窗口220可以由烧结PTFE材料的薄层构成或者包括烧结PTGE材料的薄层。与所述LED物理隔离的成形窗口在执行颜色转换的同时促进了光的混合和颜色均匀性。所述成形窗口所述成形窗口由反射体包围。所述反射体进一步提供了光的混合以促进均匀性和输出光束成形。所述成形窗口结合所述反射体设计,以提供颜色控制和输出光束均匀性,特别是用于狭窄输出光束设计。In another aspect, LED-based lighting module 100 includes a translucent non-planar non-planar shaped window 220 disposed over and isolated from LED 102 , as shown in FIG. 22 . In some embodiments, translucent non-planar shaped window 220 may be constructed of a molded or glass material. In other embodiments, the translucent non-planar shaped window 220 may consist of a thin layer of sintered PTFE material or include a thin layer of sintered PTGE material. A shaped window physically isolated from the LEDs facilitates light mixing and color uniformity while performing color conversion. The shaping window The shaping window is surrounded by a reflector. The reflector further provides light mixing to facilitate uniformity and output beam shaping. The shaped window is designed in conjunction with the reflector to provide color control and output beam uniformity, especially for narrow output beam designs.

所述半透明非平面形状窗口220包括波长转换材料,所述波长转换材料对从LED102发射的一部分光进行颜色转换。例如,如图22所示,从LED102发射的蓝光223由包括在颜色转换层135中的波长转换材料吸收,所述颜色转换层设置在半透明非平面形状窗口220上。作为响应,所述波长转换材料发射更长波长的光(例如黄光)。在图22所示的实施例中,包括波长转换材料的所述颜色转换层135设置在成形输出窗口220上。在一些其他的实施例中,波长转换材料嵌入在所述半透明非平面形状窗口220中。The translucent non-planar shaped window 220 includes a wavelength converting material that color converts a portion of the light emitted from the LED 102 . For example, as shown in FIG. 22 , blue light 223 emitted from LED 102 is absorbed by the wavelength converting material included in color converting layer 135 disposed on translucent non-planar shaped window 220 . In response, the wavelength converting material emits longer wavelength light (eg, yellow light). In the embodiment shown in FIG. 22 , said color converting layer 135 comprising a wavelength converting material is disposed on the shaped output window 220 . In some other embodiments, wavelength conversion material is embedded in the translucent non-planar shaped window 220 .

如图22所示,所述基于LED的照明模块100包括与所述半透明非平面形状窗口220接触的反射侧壁161。按照这种方式,从LED102发射的光在离开所述基于LED的照明模块之前被指向通过所述半透明非平面形状窗口220。在一些实施例中,反射侧壁161用波长转换材料涂覆,所述波长转换材料具有与设置在所述半透明非平面形状窗口220上的波长转换材料不同的颜色转换特性。例如,如图22所示,从LED102发射的蓝光被设置在反射侧壁161上的波长转换材料吸收。作为响应,所述波长转换材料发射更长波长的光(例如红光)。As shown in FIG. 22 , the LED-based lighting module 100 includes a reflective sidewall 161 in contact with the translucent non-planar shaped window 220 . In this manner, light emitted from LEDs 102 is directed through the translucent non-planar shaped window 220 before exiting the LED-based lighting module. In some embodiments, the reflective sidewalls 161 are coated with a wavelength converting material having different color converting properties than the wavelength converting material disposed on the translucent non-planar shaped window 220 . For example, as shown in FIG. 22 , blue light emitted from LED 102 is absorbed by the wavelength converting material disposed on reflective sidewall 161 . In response, the wavelength converting material emits longer wavelength light (eg, red light).

如图22所示,反射体125贴附至基于LED的照明模块100以形成光源150。反射体125具有包围半透明非平面形状窗口220的内部空间221。按照这种方式,从LED102发射的光在到达反射体125的反射表面之前必须通过半透明非平面形状窗口220。通过用半透明非平面形状窗口220封闭LED102,保护LED102免受环境污染。另外,光源150发射的光的颜色点受控于基于LED的照明模块100的函数,与反射体125无关。此外,通过封闭半透明非平面形状窗口220,反射体125能够控制光源150提供的输出光束剖面。在一些实施例中,内部空间221被折射率大于空气折射率的透明材料(例如硅树脂)填充。按照这种方式,增强了从基于LED的照明模块100的光的提取。As shown in FIG. 22 , reflector 125 is attached to LED-based lighting module 100 to form light source 150 . The reflector 125 has an inner space 221 surrounding a translucent non-planar shaped window 220 . In this manner, light emitted from LED 102 must pass through translucent non-planar shaped window 220 before reaching the reflective surface of reflector 125 . By enclosing LED 102 with translucent non-planar shaped window 220, LED 102 is protected from environmental contamination. Additionally, the color point of the light emitted by the light source 150 is controlled as a function of the LED-based lighting module 100 independently of the reflector 125 . Furthermore, by enclosing the translucent non-planar shaped window 220, the reflector 125 is able to control the output beam profile provided by the light source 150. In some embodiments, the inner space 221 is filled with a transparent material (eg, silicone) having a refractive index greater than that of air. In this way, the extraction of light from LED-based lighting module 100 is enhanced.

在一些实施例中,所述半透明非平面形状窗口220包括反射部分222。通过反射部分222的适当定位,可以改善由半透明非平面形状窗口220发射的光的输出光束均匀性。如图22所示,半透明非平面形状窗口220包括设置在半透明非平面形状窗口220的反射部分222上的反射层。在一些其他的实施例中,半透明非平面形状窗口220可以由漫反射材料层构成或者包括漫反射材料层(例如烧结PTFE)。在这些实施例中,可能不需要独立的反射部分222,因为足够的光将被反射并且重新指向至所述半透明非平面形状窗口220的另一部分。在这些实施例中,半透明非平面形状窗口220的一部分不包括波长转换材料。In some embodiments, the translucent non-planar shaped window 220 includes a reflective portion 222 . By proper positioning of the reflective portion 222, the output beam uniformity of the light emitted by the translucent non-planar shaped window 220 can be improved. As shown in FIG. 22 , the translucent non-planar shaped window 220 includes a reflective layer disposed on the reflective portion 222 of the translucent non-planar shaped window 220 . In some other embodiments, the translucent non-planar shaped window 220 may be constructed of or include a layer of diffusely reflective material (eg, sintered PTFE). In these embodiments, a separate reflective portion 222 may not be required, as sufficient light will be reflected and redirected to another portion of the translucent non-planar shaped window 220 . In these embodiments, a portion of the translucent non-planar shaped window 220 does not include wavelength converting material.

可以对半透明非平面形状窗口220进行成形,以促进输出光束均匀性和从LED102有效的光的提取。在如图23所示的实施例中,半透明非平面形状窗口220是拱顶形的。在一些实施例中,所述拱顶形可以是抛物线形状,配置用于将从LED102发射的光集中到指定的输出光束角度。The translucent non-planar shaped window 220 can be shaped to promote output beam uniformity and efficient light extraction from the LED 102 . In the embodiment shown in FIG. 23, the translucent non-planar shaped window 220 is dome-shaped. In some embodiments, the dome shape may be a parabolic shape configured to concentrate light emitted from LED 102 to a specified output beam angle.

在一些实施例中,基于LED的照明模块100包括设置在多个颜色转换腔160上方的半透明非平面形状窗口220。如图24所示,作为示例,基于LED的照明模块100包括多个颜色转换腔160a-160d,配置成如图20所述。半透明非平面形状窗口220设置在所述颜色转换腔的上方,使得从每一个颜色转换腔发射的光在与反射体125相互作用之前都通过半透明非平面形状窗口220。In some embodiments, the LED-based lighting module 100 includes a translucent non-planar shaped window 220 disposed over the plurality of color conversion cavities 160 . As shown in FIG. 24 , by way of example, LED-based lighting module 100 includes a plurality of color conversion cavities 160 a - 160 d configured as described in FIG. 20 . The translucent non-planar shaped windows 220 are disposed above the color conversion cavities such that light emitted from each color conversion cavity passes through the translucent non-planar shaped windows 220 before interacting with the reflector 125 .

在一些实施例中,颜色转换腔160的组件可以由PTFE材料构成或者包括PTFE材料。在一些示例中,所述组件可以包括PTFE层,所述PTFE层背后是反射层,诸如抛光金属层。所述PTFE材料可以由烧结PTFE粒子形成。在一些实施例中,颜色转换腔160的内部相对表面的任何部分都可以由PTFE材料构成。在一些实施例中,所述PTFE材料可以涂覆波长转换材料。在其他的实施例中,波长转换材料可以与所述PTFE材料混合。In some embodiments, components of color conversion chamber 160 may be constructed of or include PTFE material. In some examples, the assembly may include a layer of PTFE behind a reflective layer, such as a polished metal layer. The PTFE material may be formed from sintered PTFE particles. In some embodiments, any portion of the interior opposing surfaces of color conversion cavity 160 may be constructed of PTFE material. In some embodiments, the PTFE material may be coated with a wavelength converting material. In other embodiments, a wavelength converting material may be mixed with the PTFE material.

在其他的实施例中,颜色转换腔160的组件可以由反射的陶瓷材料构成或者包括反射的陶瓷材料,诸如由CerFlex International公司(荷兰)生产的陶瓷材料。在一些实施例中,颜色转换腔160的内部相对表面的任何部分可以由陶瓷材料构成。在一些实施例中,所述陶瓷材料可以涂覆波长转换材料。In other embodiments, the components of the color conversion cavity 160 may be constructed of or include reflective ceramic materials, such as those produced by CerFlex International (Netherlands). In some embodiments, any portion of the interior opposing surfaces of color conversion chamber 160 may be composed of a ceramic material. In some embodiments, the ceramic material may be coated with a wavelength converting material.

在其他的实施例中,颜色转换腔160的组件可以由反射的金属材料构成或者包括反射的金属材料,诸如Alanod公司(德国)生产的铝或者

Figure BDA0000426725990000221
在一些实施例中,颜色转换腔160的内部相对表面的任何部分都可以由反射的金属材料构成。在一些实施例中,所述反射的金属材料可以涂覆波长转换材料。In other embodiments, the components of the color conversion chamber 160 may be constructed of or include a reflective metallic material, such as aluminum from Alanod (Germany) or
Figure BDA0000426725990000221
In some embodiments, any portion of the interior opposing surfaces of color conversion cavity 160 may be composed of a reflective metallic material. In some embodiments, the reflective metallic material may be coated with a wavelength converting material.

在其他的实施例中,颜色转换腔160的组件可以由反射的塑料材料构成或者包括反射的塑料材料,诸如由3M(美国)公司出售的VikuitiTMESR、由Toray公司(日本)制造的LumirrorTME60L或者微晶聚对苯二甲酸乙二醇酯(MCPET),诸如由Furukawa Electric有限公司(日本)制造的。在一些实施例中,颜色转换腔160的内部相对表面的任何部分都可以由反射的塑料材料构成。在一些实施例中,所述反射的塑料材料可以涂覆波长转换材料。In other embodiments, the components of the color conversion cavity 160 may be constructed of or include reflective plastic materials, such as Vikuiti ESR sold by 3M (USA), Lumirror manufactured by Toray Corporation (Japan) E60L or microcrystalline polyethylene terephthalate (MCPET), such as manufactured by Furukawa Electric Co., Ltd. (Japan). In some embodiments, any portion of the interior facing surfaces of color conversion cavity 160 may be constructed of a reflective plastic material. In some embodiments, the reflective plastic material may be coated with a wavelength converting material.

腔160可以由非固体材料填充,诸如空气或者惰性气体,使得LED102发射光进入所述非固体材料。作为示例,所述腔可以是密封的并且氩气可以用于填充所述腔。替代地,可以使用氮气。在其他的实施例中,腔160可以用固体封装材料填充。作为示例,硅树脂可以用于填充所述腔。Cavity 160 may be filled with a non-solid material, such as air or an inert gas, such that LED 102 emits light into the non-solid material. As an example, the cavity may be sealed and argon gas may be used to fill the cavity. Alternatively, nitrogen gas can be used. In other embodiments, cavity 160 may be filled with a solid encapsulating material. As an example, silicone may be used to fill the cavity.

所述PTFE材料比可以用于构成或者包括在颜色转换腔160的组件中的其他材料(诸如Alanod公司生产的)反射性低。在一个示例中,对基于LED的照明模块100的蓝光输出,所述基于LED的照明模块由未涂覆

Figure BDA0000426725990000223
的侧壁插入件107构成,与由未涂覆PTFE侧壁插入件107构成的相同模块的蓝光输出,所述侧壁插入件由Berghof公司(德国)制造的烧结PTFE材料构成,进行对比。通过使用PTFE侧壁插入件,来自照明模块100的蓝光输出减少7%。类似地,与未涂覆
Figure BDA0000426725990000224
侧壁插入件107相比,通过使用由W.L.Gore公司(美国)制造的烧结PTFE材料构成的未涂覆PTFE侧壁插入件107,来自照明模块100的蓝光输出减少5%。从所述照明模块100的光的提取与所述腔160内的反射率直接相关,因此,与其他可获得的反射材料相比,所述PTFE材料的较差的反射率将与在所述腔160中使用所述PTFE材料的目的相偏离。然而,本发明的发明人已经确定,当所述PTFE材料涂覆荧光粉时,与具有类似的荧光粉涂层的其他反射性更强的材料(诸如
Figure BDA0000426725990000231
)相比,所述PTFE材料意外地产生了光输出的增加。在另一个示例中,对照明模块100的白光输出,所述照明模块由荧光粉涂覆的
Figure BDA0000426725990000232
侧壁插入件107构成,目标相关色温(CCT)为4000K,与由荧光粉涂覆的PTFE侧壁插入件107构成的相同模块的白光输出,所述侧壁插入件由Berghof公司(德国)制造的烧结PTFE材料构成,进行比较。与荧光粉涂覆
Figure BDA0000426725990000233
相比,通过使用荧光粉涂覆PTFE侧壁插入件,来自照明模块100的白光输出增加7%。类似地,与荧光粉涂覆
Figure BDA0000426725990000234
侧壁插入件107相比,通过使用由W.L.Gore公司(美国)制造的烧结PTFE材料构成的PTFE侧壁插入件107,来自照明模块100的白光输出增加14%。在另一个示例中,对照明模块100的白光输出,所述照明模块由荧光粉涂覆的侧壁插入件107构成,目标相关色温(CCT)为3000K,与由荧光粉涂覆的PTFE侧壁插入件107构成的相同模块的白光输出,所述侧壁插入件由Berghof公司(德国)制造的烧结PTFE材料构成,进行比较。与荧光粉涂覆
Figure BDA0000426725990000236
相比,通过使用荧光粉涂覆PTFE侧壁插入件,来自照明模块100的白光输出增加10%。类似地,与荧光粉涂覆
Figure BDA0000426725990000237
侧壁插入件107相比,通过使用由W.L.Gore公司(美国)制造的烧结PTFE材料构成的PTFE侧壁插入件107,来自照明模块100的白光输出增加12%。The PTFE material ratio can be used for other materials that are constructed or included in the components of the color conversion chamber 160 (such as Alanod's ) with low reflectivity. In one example, for the blue light output of LED-based lighting module 100, the LED-based lighting module is made of uncoated
Figure BDA0000426725990000223
The blue light output of the same module consisting of sidewall inserts 107 made of uncoated PTFE sidewall inserts 107 made of sintered PTFE material manufactured by the company Berghof (Germany) was compared. By using the PTFE sidewall inserts, the blue light output from the lighting module 100 is reduced by 7%. Similarly, with uncoated
Figure BDA0000426725990000224
By using an uncoated PTFE sidewall insert 107 composed of a sintered PTFE material manufactured by WL Gore Corporation (USA), the blue light output from the lighting module 100 was reduced by 5% compared to the sidewall insert 107 . The extraction of light from the illumination module 100 is directly related to the reflectivity within the cavity 160, therefore, the poor reflectivity of the PTFE material compared to other available reflective materials The purpose of using the PTFE material in 160 is deviated. However, the inventors of the present invention have determined that when the PTFE material is phosphor-coated, it does not compare favorably with other more reflective materials with similar phosphor coatings, such as
Figure BDA0000426725990000231
), the PTFE material unexpectedly produces an increase in light output. In another example, for the white light output of the lighting module 100, the lighting module is made of phosphor-coated
Figure BDA0000426725990000232
White light output from the same module constructed from phosphor-coated PTFE sidewall inserts 107 with a target correlated color temperature (CCT) of 4000 K, manufactured by the Berghof company (Germany) Made of sintered PTFE material for comparison. Coated with Phosphor Powder
Figure BDA0000426725990000233
In comparison, white light output from lighting module 100 was increased by 7% by coating the PTFE sidewall inserts with phosphor. Similarly, with phosphor coated
Figure BDA0000426725990000234
The white light output from the lighting module 100 was increased by 14% compared to the sidewall insert 107 by using the PTFE sidewall insert 107 composed of sintered PTFE material manufactured by WL Gore Corporation (USA). In another example, for the white light output of the lighting module 100, the lighting module is made of phosphor-coated White light output of the same module constructed of sidewall inserts 107 with a target correlated color temperature (CCT) of 3000 K, made of phosphor-coated PTFE sidewall inserts 107, manufactured by the Berghof company (Germany) Made of sintered PTFE material for comparison. Coated with Phosphor Powder
Figure BDA0000426725990000236
Compared to that, the white light output from the lighting module 100 was increased by 10% by coating the PTFE sidewall inserts with phosphor. Similarly, with phosphor coated
Figure BDA0000426725990000237
The white light output from the lighting module 100 was increased by 12% compared to the sidewall insert 107 by using the PTFE sidewall insert 107 composed of sintered PTFE material manufactured by WL Gore Corporation (USA).

因此,已经发现,尽管反射性较低,期望的是用PTFE材料构成所述光混合腔160的荧光粉覆盖部分。此外,本发明还已经发现,当外露于LED的热量时,例如在光混合腔160中,与具有类似的荧光粉涂层的其他反射性更强的材料(诸如)相比,荧光粉涂覆PTFE材料具有更高的耐用性。Accordingly, it has been found that, although less reflective, it is desirable to construct the phosphor-coated portion of the light mixing cavity 160 from PTFE material. In addition, the present inventors have also found that when exposed to the heat of the LEDs, such as in the light mixing cavity 160, compared to other more reflective materials with similar phosphor coatings, such as ) compared to phosphor-coated PTFE materials for higher durability.

尽管以上出于指导目的描述了某些具体的实施例,本专利文献的教义具有普遍的适用性并且不限于上述具体实施例。例如,颜色转换腔160的任何组件都可以用荧光粉图案化。所述图案本身和所述荧光粉组分都可以变化。在一个实施例中,所述照明设备可以包括位于光混合腔160不同区域的不同类型的荧光粉。例如,红色荧光粉可以位于所述插入件107和所述底部反射体插入件106的任一个或者两个上,而黄色和绿色荧光粉可以位于所述输出窗口108的上表面或者下表面上或者嵌入在所述输出窗口108内。在一个实施例中,不同类型的荧光粉(例如红色和绿色)可以位于所述侧壁107上的不同区域上。例如,可以将一种类型的荧光粉图案化在所述侧壁插入件107上的第一区域,例如按照条纹、斑点或者其他图案,而另一种类型的荧光粉位于所述插入件107的不同第二区域上。如果需要,附加的荧光粉可以使用并且位于所述腔160的不同区域中。另外,如果需要,可以只在所述腔160中(例如在所述侧壁上)使用并且图案化一种类型的波长转换材料。在另一个示例中,腔体105用于将安装板104直接夹紧至安装基座101,无需使用安装板定位环103。在其他的示例中,安装基座101和热沉120可以是单个组件。在另一个示例中,基于LED的照明模块100如图1-3所述作为光源150的一部分。如图3所示,基于LED的照明模块100可以是可更换灯或者改造灯的一部分。但是,在另一个实施例中,基于LED的照明模块100可以成形为可更换灯或者改造灯,并且被认为如此。因此,可以在不背离权利要求中所述的本发明范围的情况下,实践各种修改、适应和所述实施例各种特征的组合。Although certain specific examples are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific examples described above. For example, any component of color conversion cavity 160 may be patterned with phosphors. Both the pattern itself and the phosphor composition can vary. In one embodiment, the lighting device may include different types of phosphors located in different regions of the light mixing cavity 160 . For example, red phosphor may be on either or both of the insert 107 and the bottom reflector insert 106, while yellow and green phosphors may be on the upper or lower surface of the output window 108 or Embedded within the output window 108. In one embodiment, different types of phosphors (eg, red and green) can be located on different regions on the sidewall 107 . For example, one type of phosphor can be patterned in a first area on the sidewall insert 107, such as in stripes, spots, or other pattern, while another type of phosphor is located on the side of the insert 107. different on the second area. Additional phosphors may be used and located in different regions of the cavity 160 if desired. Additionally, only one type of wavelength converting material may be used and patterned in the cavity 160 (eg, on the sidewalls) if desired. In another example, cavity 105 is used to clamp mounting plate 104 directly to mounting base 101 without using mounting plate retaining ring 103 . In other examples, mounting base 101 and heat sink 120 may be a single component. In another example, the LED-based lighting module 100 is used as part of the light source 150 as described in FIGS. 1-3 . As shown in FIG. 3, LED-based lighting module 100 may be part of a replaceable or retrofit lamp. However, in another embodiment, the LED-based lighting module 100 may be formed and considered as a replaceable or retrofit lamp. Accordingly, various modifications, adaptations and combinations of various features of the described embodiments can be practiced without departing from the scope of the present invention described in the claims.

权利要求书(按照条约第19条的修改)Claims (as amended under Article 19 of the Treaty)

1.一种基于LED的照明设备,包括:1. An LED-based lighting device comprising:

侧壁,具有包括第一颜色转换腔的内部表面区域的一部分的第一表面区域,以及包括第二颜色转换腔的内部表面区域的一部分的第二表面区域,其中所述第一表面区域涂覆有第一波长转换材料,以及其中所述第二表面区域涂覆有第二波长转换材料;A side wall having a first surface area comprising a portion of an interior surface area of the first color conversion cavity, and a second surface area comprising a portion of an interior surface area of a second color conversion cavity, wherein the first surface area is coated There is a first wavelength converting material, and wherein the second surface region is coated with a second wavelength converting material;

第一LED,其中从所述第一LED发射的光直接进入所述第一颜色转换腔并且不直接进入所述第二颜色转换腔;以及a first LED, wherein light emitted from the first LED directly enters the first color conversion cavity and does not directly enter the second color conversion cavity; and

第二LED,其中从所述第二LED发射的光直接进入所述第二颜色转换腔并且不直接进入所述第一颜色转换腔。a second LED, wherein light emitted from the second LED directly enters the second color converting cavity and does not directly enter the first color converting cavity.

2.根据权利要求1所述的基于LED的照明设备,还包括:2. The LED-based lighting device of claim 1, further comprising:

安装在所述第一颜色转换腔和所述第二颜色转换腔上方的透射层,其中所述透射层的第一部分覆盖所述第一颜色转换腔,以及其中所述透射层的第二部分覆盖所述第二颜色转换腔。A transmissive layer mounted above the first color conversion cavity and the second color conversion cavity, wherein a first portion of the transmissive layer covers the first color conversion cavity, and wherein a second portion of the transmissive layer covers The second color conversion cavity.

3.根据权利要求2所述的基于LED的照明设备,其中所述透射层涂覆有第三波长转换材料。3. The LED-based lighting device of claim 2, wherein the transmissive layer is coated with a third wavelength converting material.

4.根据权利要求2所述的基于LED的照明设备,其中所述透射层耦合至所述侧壁。4. The LED-based lighting device of claim 2, wherein the transmissive layer is coupled to the sidewall.

5.根据权利要求1所述的基于LED的照明设备,其中所述第一波长转换材料和第二波长转换材料是相同的材料。5. The LED-based lighting device of claim 1, wherein the first wavelength converting material and the second wavelength converting material are the same material.

6.根据权利要求3所述的基于LED的照明设备,其中将所述第一波长转换材料、所述第二波长转换材料和所述第三波长转换材料的任一个选择为使得从基于LED的照明设备发射的输出光的颜色点与目标颜色点匹配。6. The LED-based lighting device of claim 3, wherein any one of the first wavelength converting material, the second wavelength converting material, and the third wavelength converting material is selected such that from the LED-based The color point of the output light emitted by the lighting device matches the target color point.

7.根据权利要求1所述的基于LED的照明设备,其中选择供应给所述第一LED的电流,使得从所述基于LED的照明设备发射的输出光的颜色点与目标颜色点匹配。7. The LED-based lighting device of claim 1, wherein the current supplied to the first LED is selected such that a color point of output light emitted from the LED-based lighting device matches a target color point.

8.根据权利要求1所述的基于LED的照明设备,还包括:8. The LED-based lighting device of claim 1, further comprising:

设置在所述第一颜色转换腔和所述第二颜色转换腔上方的第二光混合腔,所述第二光混合腔包括:A second light mixing cavity disposed above the first color conversion cavity and the second color conversion cavity, the second light mixing cavity includes:

反射侧壁,以及reflective side walls, and

所述基于LED的照明设备的输出窗口。The output window of the LED-based lighting device.

9.根据权利要求1所述的基于LED的照明设备,其中所述第一LED的峰值发射波长不同于所述第二LED的峰值发射波长。9. The LED-based lighting device of claim 1, wherein the peak emission wavelength of the first LED is different than the peak emission wavelength of the second LED.

10.一种基于LED的照明设备,包括:10. An LED-based lighting device comprising:

多个LED;Multiple LEDs;

设置在所述多个LED的上方并且与所述多个LED间隔开的半透明非平面形状窗口,所述半透明非平面形状窗口包括设置在所述半透明非平面形状窗口的顶点的反射部分以及第一波长转换材料,所述第一波长转换材料对从所述多个LED发射的光的一部分进行颜色转换,其中贴附至所述基于LED的照明设备的反射体具有包围所述半透明非平面形状窗口的内部空间;以及a translucent non-planar shaped window disposed over and spaced from the plurality of LEDs, the translucent non-planar shaped window including a reflective portion disposed at an apex of the translucent non-planar shaped window and a first wavelength converting material that color converts a portion of light emitted from the plurality of LEDs, wherein a reflector attached to the LED-based lighting device has a reflector that surrounds the translucent the interior space of a window of non-planar shape; and

包括反射侧壁的第一颜色转换腔,所述反射侧壁沿着从设置有所述多个LED中的至少一个LED的平面向设置在所述多个LED与所述半透明非平面形状窗口之间的透射层的方向延伸,其中所述透射层的一部分涂覆有第二波长转换材料。A first color conversion cavity comprising reflective sidewalls disposed between the plurality of LEDs and the translucent non-planar shaped window along a plane direction from which at least one LED of the plurality of LEDs is disposed extending in the direction of the transmissive layer in between, wherein a portion of the transmissive layer is coated with the second wavelength converting material.

11.根据权利要求10所述的基于LED的照明设备,其中所述反射侧壁包括第三波长转换材料。11. The LED-based lighting device of claim 10, wherein the reflective sidewall comprises a third wavelength converting material.

12.根据权利要求10所述的基于LED的照明设备,还包括:12. The LED-based lighting device of claim 10, further comprising:

其上贴附有所述多个LED的安装板;以及a mounting board on which the plurality of LEDs are attached; and

设置在所述安装板上方的基座反射体。A base reflector disposed above the mounting plate.

13.根据权利要求10所述的基于LED的照明设备,其中所述半透明非平面形状窗口是拱顶形的。13. The LED-based lighting device of claim 10, wherein the translucent non-planar shaped window is dome-shaped.

14.根据权利要求10所述的基于LED的照明设备,其中所述多个LED安装在所述平面中以及其中所述半透明非平面形状窗口的表面相对于所述平面成倾斜角度朝向。14. The LED-based lighting device of claim 10, wherein the plurality of LEDs are mounted in the plane and wherein a surface of the translucent non-planar shaped window is oriented at an oblique angle relative to the plane.

15.根据权利要求10所述的基于LED的照明设备,其中所述反射侧壁围绕所述多个LED中的所述至少一个LED并且相对于设置有所述至少一个LED的平面成倾斜角度朝向。15. The LED-based lighting device of claim 10, wherein the reflective sidewall surrounds the at least one LED of the plurality of LEDs and is oriented at an oblique angle relative to a plane on which the at least one LED is disposed. .

16.根据权利要求10所述的基于LED的照明设备,还包括:16. The LED-based lighting device of claim 10, further comprising:

第二颜色转换腔,设置在所述多个LED的第二LED与所述半透明非平面形状窗口之间,其中所述第二颜色转换腔的内部表面区域的一部分涂覆有第三波长转换材料,其中从所述多个LED中的第一LED发射的光直接进入所述第一颜色转换腔并且不直接进入所述第二颜色转换腔,以及其中从所述多个LED中的第二LED发射的光直接进入所述第二颜色转换腔并且不直接进入所述第一颜色转换腔。A second color conversion cavity disposed between a second LED of the plurality of LEDs and the translucent non-planar shaped window, wherein a portion of an interior surface area of the second color conversion cavity is coated with a third wavelength conversion A material wherein light emitted from a first LED of the plurality of LEDs directly enters the first color converting cavity and does not directly enter the second color converting cavity, and wherein light emitted from the second of the plurality of LEDs Light emitted by the LED directly enters the second color conversion cavity and does not directly enter the first color conversion cavity.

17.一种装置,包括:17. A device comprising:

设置在第一平面中的多个发光二极管LED中的LED,所述LED具有沿与所述LED的管芯区域垂直地延伸的中心轴;an LED of a plurality of light emitting diodes LEDs disposed in a first plane, the LED having a central axis extending perpendicular to a die area of the LED;

颜色转换腔,包括:围绕所述LED的反射侧壁,其中所述反射侧壁相对于所述第一平面成倾斜角度朝向并且从所述第一平面延伸至第二平面,所述第二平面位于所述第一平面上方第一距离;以及设置在所述第二平面中并且贴附至所述反射侧壁的透射层,其中所述透射层的一部分涂覆有第一波长转换材料,以及其中所述第一距离小于在所述第二平面中测量的从所述透射层与所述反射侧壁的附着点到所述LED的中心轴的距离的一半;以及a color conversion cavity comprising: a reflective sidewall surrounding the LED, wherein the reflective sidewall is oriented at an oblique angle relative to the first plane and extends from the first plane to a second plane, the second plane a first distance above the first plane; and a transmissive layer disposed in the second plane and attached to the reflective sidewall, wherein a portion of the transmissive layer is coated with a first wavelength converting material, and wherein the first distance is less than half the distance measured in the second plane from the point of attachment of the transmissive layer to the reflective sidewall to the central axis of the LED; and

凸球面反射体,贴附至所述透射层并且在所述透射层与所述LED之间设置于所述LED的上方。A convex spherical reflector attached to the transmissive layer and disposed above the LED between the transmissive layer and the LED.

18.根据权利要求17所述的装置,还包括:18. The apparatus of claim 17, further comprising:

窗口,设置在所述透射层的上方并且与所述透射层间隔开,其中所述窗口的一部分涂覆有第二波长转换材料。A window is disposed over and spaced from the transmissive layer, wherein a portion of the window is coated with a second wavelength converting material.

19.根据权利要求17所述的装置,其中所述反射侧壁是漫反射的并且所述反射侧壁的至少一部分涂覆有所述第一波长转换材料。19. The device of claim 17, wherein the reflective sidewall is diffusely reflective and at least a portion of the reflective sidewall is coated with the first wavelength converting material.

20.根据权利要求17所述的装置,其中在所述LED与所述反射侧壁之间的空间由固体透明介质填充。20. The device of claim 17, wherein a space between the LED and the reflective sidewall is filled with a solid transparent medium.

21.根据权利要求20所述的装置,其中所述第一波长转换材料嵌入在所述固体透明介质中。21. The device of claim 20, wherein the first wavelength converting material is embedded in the solid transparent medium.

Claims (23)

1. a LED-based lighting apparatus, comprising:
Sidewall, the first surface region with a part for the inner surface area that comprises the first color conversion chamber, and the second surface region of a part that comprises the inner surface area in the second color conversion chamber, wherein said first surface region is coated with the first material for transformation of wave length, and wherein said second surface region is coated with second wave length transition material;
The one LED, wherein directly enters described the first color conversion chamber and does not directly enter described the second color conversion chamber from the light of a described LED transmitting; And
The 2nd LED, wherein directly enters described the second color conversion chamber and does not directly enter described the first color conversion chamber from the light of described the 2nd LED transmitting.
2. LED-based lighting apparatus according to claim 1, also comprises:
The transmission layer that is arranged on described the first color conversion chamber and described the second top, color conversion chamber, the first of wherein said transmission layer covers described the first color conversion chamber, and the second portion of wherein said transmission layer covers described the second color conversion chamber.
3. LED-based lighting apparatus according to claim 2, wherein said transmission layer is coated with three-wavelength transition material.
4. LED-based lighting apparatus according to claim 2, wherein said transmission layer is coupled to described sidewall.
5. LED-based lighting apparatus according to claim 1, wherein said the first material for transformation of wave length and second wave length transition material are identical materials.
6. LED-based lighting apparatus according to claim 3, is wherein chosen as any of described the first material for transformation of wave length, described second wave length transition material and described three-wavelength transition material the color dot making from the output light of LED-based lighting apparatus transmitting and mates with color of object point.
7. LED-based lighting apparatus according to claim 1, wherein selects to be supplied to the electric current of a described LED, makes to mate with color of object point from the color dot of the output light of described LED-based lighting apparatus transmitting.
8. LED-based lighting apparatus according to claim 1, also comprises:
The the second smooth hybrid chamber that is arranged on described the first color conversion chamber and described the second top, color conversion chamber, described the second smooth hybrid chamber comprises:
Reflective side walls, and
The output window of described LED-based lighting apparatus.
9. LED-based lighting apparatus according to claim 1, the peak emission wavelength of a wherein said LED is different from the peak emission wavelength of described the 2nd LED.
10. a LED-based lighting apparatus, comprising:
A plurality of LED;
Be arranged on described a plurality of LED top and with the isolated translucent molded non-planar window of described a plurality of LED, described translucent molded non-planar window comprises the first material for transformation of wave length, described the first material for transformation of wave length carries out color conversion to a part for the light from described a plurality of LED transmittings, and the reflector that is wherein pasted to described LED-based lighting apparatus has the inner space that surrounds described translucent molded non-planar window; And
The the first color conversion chamber that comprises reflective side walls, described reflective side walls is along extending to the direction that is arranged on the transmission layer between described a plurality of LED and described translucent molded non-planar window from being provided with the plane of at least one LED of described a plurality of LED, and a part for wherein said transmission layer is coated with second wave length transition material.
11. LED-based lighting apparatus according to claim 10, wherein said reflective side walls comprises three-wavelength transition material.
12. LED-based lighting apparatus according to claim 10, also comprise:
On it, be pasted with the installing plate of described a plurality of LED; And
Be arranged on the pedestal reflector of described installing plate top.
13. LED-based lighting apparatus according to claim 10, wherein said translucent molded non-planar window is domeshape.
14. LED-based lighting apparatus according to claim 10, wherein said translucent molded non-planar window comprises the reflecting part on the summit that is arranged on described translucent molded non-planar window.
15. LED-based lighting apparatus according to claim 10, wherein said a plurality of LED be arranged in described plane and the surface of wherein said translucent molded non-planar window with respect to described plane become angle of inclination towards.
16. LED-based lighting apparatus according to claim 10, wherein said reflective side walls around described at least one LED in described a plurality of LED and with respect to the plane that is provided with described at least one LED become angle of inclination towards.
17. LED-based lighting apparatus according to claim 10, also comprise:
The second color conversion chamber, be arranged between the 2nd LED and described translucent molded non-planar window of described a plurality of LED, a part for the inner surface area in wherein said the second color conversion chamber is coated with three-wavelength transition material, wherein the light of the LED transmitting from described a plurality of LED directly enters described the first color conversion chamber and does not directly enter described the second color conversion chamber, and the light of wherein the 2nd LED transmitting from described a plurality of LED directly enters described the second color conversion chamber and directly do not enter described the first color conversion chamber.
18. 1 kinds of devices, comprising:
Be arranged on LED in a plurality of LEDs in the first plane, described LED has along the central shaft vertically extending with the die area of described LED; And
Color conversion chamber, comprise: around the reflective side walls of described LED, wherein said reflective side walls with respect to described the first plane become angle of inclination towards and from described the first plane, extend to the second plane, described the second plane is positioned at described first plane top the first distance; And be arranged in described the second plane and be pasted to the transmission layer of described reflective side walls, a part for wherein said transmission layer is coated with the first material for transformation of wave length, and wherein said the first distance is less than the attachment point from described transmission layer and described reflective side walls measured in described the second plane to half of the distance of the central shaft of described LED.
19. devices according to claim 18, also comprise:
Protruding spheric reflection body, be pasted to described transmission layer and between described transmission layer and described LED, be arranged at described LED above.
20. devices according to claim 18, also comprise:
Window, is arranged on the top of described transmission layer and spaced apart with described transmission layer, and a part for wherein said window is coated with second wave length transition material.
21. devices according to claim 18, wherein said reflective side walls is irreflexive and at least a portion of described reflective side walls is coated with described the first material for transformation of wave length.
22. devices according to claim 18, wherein the space between described LED and described reflective side walls is by solid transparent Filled Dielectrics.
23. devices according to claim 22, wherein said the first material for transformation of wave length is embedded in described solid transparent medium.
CN201280026612.7A 2011-03-31 2012-03-29 Color conversion cavity for LED-based lighting modules Pending CN103562622A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161470389P 2011-03-31 2011-03-31
US61/470,389 2011-03-31
US13/431,796 US20120250320A1 (en) 2011-03-31 2012-03-27 Color conversion cavities for led-based illumination modules
US13/431,796 2012-03-27
PCT/US2012/031218 WO2012135504A1 (en) 2011-03-31 2012-03-29 Color conversion cavities for led-based illumination modules

Publications (1)

Publication Number Publication Date
CN103562622A true CN103562622A (en) 2014-02-05

Family

ID=46927037

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280026612.7A Pending CN103562622A (en) 2011-03-31 2012-03-29 Color conversion cavity for LED-based lighting modules
CN201280026772.1A Pending CN103582778A (en) 2011-03-31 2012-03-29 Grid structure on a transmissive layer of an LED-based illumination module

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280026772.1A Pending CN103582778A (en) 2011-03-31 2012-03-29 Grid structure on a transmissive layer of an LED-based illumination module

Country Status (10)

Country Link
US (3) US8899767B2 (en)
EP (2) EP2691692A1 (en)
JP (2) JP2014511014A (en)
KR (2) KR20140045347A (en)
CN (2) CN103562622A (en)
BR (2) BR112013025150A2 (en)
CA (2) CA2831784A1 (en)
MX (2) MX2013011276A (en)
TW (2) TW201245611A (en)
WO (2) WO2012135504A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090894A (en) * 2015-08-21 2015-11-25 杨毅 Wavelength conversion device and light emitting device
CN107248380A (en) * 2017-07-21 2017-10-13 佛山杰致信息科技有限公司 LED shows curtain wall

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2748526B1 (en) * 2011-10-26 2015-02-18 Koninklijke Philips N.V. Light-emitting arrangement
JP5644745B2 (en) * 2011-12-05 2014-12-24 豊田合成株式会社 Semiconductor light emitting element and light emitting device
EP2834858B1 (en) * 2012-04-05 2017-09-27 Koninklijke Philips N.V. Full spectrum light emitting arrangement
US20150233536A1 (en) * 2012-04-17 2015-08-20 Soraa, Inc. Phosphor-coated element in a lamp cavity
US9612002B2 (en) * 2012-10-18 2017-04-04 GE Lighting Solutions, LLC LED lamp with Nd-glass bulb
WO2014076610A1 (en) * 2012-11-16 2014-05-22 Koninklijke Philips N.V. Led-based lighting device and manufacture thereof
US8845380B2 (en) 2012-12-17 2014-09-30 Xicato, Inc. Automated color tuning of an LED based illumination device
US8870617B2 (en) 2013-01-03 2014-10-28 Xicato, Inc. Color tuning of a multi-color LED based illumination device
US20140191653A1 (en) * 2013-01-10 2014-07-10 Cree, Inc. Protective diffusive coating for led lamp
US9570661B2 (en) 2013-01-10 2017-02-14 Cree, Inc. Protective coating for LED lamp
US9657922B2 (en) 2013-03-15 2017-05-23 Cree, Inc. Electrically insulative coatings for LED lamp and elements
EP2979310B1 (en) 2013-03-29 2019-07-03 Signify Holding B.V. Light emitting device comprising wavelength converter
CN203258423U (en) 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 LED unit module, light-emitting device and light source system
US9484504B2 (en) 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
JP2015060631A (en) * 2013-09-17 2015-03-30 ウシオ電機株式会社 Led light bulb
US20150094550A1 (en) * 2013-09-30 2015-04-02 General Electric Company Dual-spectra pulse oximeter sensors and methods of making the same
JP6265055B2 (en) 2014-01-14 2018-01-24 ソニー株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
KR101657954B1 (en) * 2014-02-05 2016-09-21 삼성디스플레이 주식회사 Backlight assembly and display divece having the same
US9806240B2 (en) * 2014-03-10 2017-10-31 Osram Opto Semiconductors Gmbh Wavelength conversion element, light-emitting semiconductor component including a wavelength conversion element, method for producing a wavelength conversion element and method for producing a light-emitting semiconductor component including a wavelength conversion element
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
CN103972222A (en) * 2014-06-03 2014-08-06 宁波升谱光电半导体有限公司 LED (light-emitting diode) light source packaging method, LED light source packaging structure and light source module
CN103972221A (en) * 2014-06-03 2014-08-06 宁波升谱光电半导体有限公司 LED (light-emitting diode) light source packaging structure and method
TWI557952B (en) * 2014-06-12 2016-11-11 新世紀光電股份有限公司 Light-emitting element
KR102222580B1 (en) * 2014-07-30 2021-03-05 삼성전자주식회사 Light emitting device package and display device including the same
KR101601531B1 (en) * 2014-11-07 2016-03-10 주식회사 지엘비젼 Lighting Device
CN105990507B (en) 2015-03-18 2019-09-17 新世纪光电股份有限公司 side-illuminated light emitting diode structure and manufacturing method thereof
TWI657597B (en) 2015-03-18 2019-04-21 新世紀光電股份有限公司 Edge lighting light emitting diode structure and method of manufacturing the same
KR102400249B1 (en) * 2015-03-31 2022-05-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting module and display including the module
CN104776396A (en) * 2015-05-08 2015-07-15 李峰 LED reflection structure
CN106549092A (en) 2015-09-18 2017-03-29 新世纪光电股份有限公司 Light emitting device and method for manufacturing the same
CN105258076B (en) * 2015-10-07 2017-06-23 杨毅 Light-emitting device and light fixture
WO2017131719A1 (en) * 2016-01-28 2017-08-03 Ecosense Lighting Inc. Zoned optical cup
WO2017175858A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Planar light source, back-light unit, and liquid crystal display device
TWI651870B (en) 2016-10-19 2019-02-21 新世紀光電股份有限公司 Light emitting device and method of manufacturing same
CN107750070A (en) * 2017-10-25 2018-03-02 杭州驭光科技有限公司 A kind of LED light source and its method for packing of the even light of integrated intelligent plant characteristics spectrum
US10784423B2 (en) 2017-11-05 2020-09-22 Genesis Photonics Inc. Light emitting device
KR102593592B1 (en) * 2018-05-04 2023-10-25 엘지이노텍 주식회사 Lighting apparatus
KR102568308B1 (en) 2018-06-26 2023-08-18 삼성디스플레이 주식회사 Display device
KR102553104B1 (en) * 2018-08-01 2023-07-07 삼성디스플레이 주식회사 Display device
US20200083280A1 (en) * 2018-09-11 2020-03-12 Prilit Optronics, Inc. Top emission microled display and bottom emission microled display and a method of forming the same
KR102709161B1 (en) 2020-02-13 2024-09-24 삼성디스플레이 주식회사 Backlight unit and Display device having the same
JP7747661B2 (en) 2020-05-15 2025-10-01 ルミレッズ リミテッド ライアビリティ カンパニー Multicolor light source and manufacturing method
US11982436B2 (en) * 2020-06-02 2024-05-14 Signify Holding B.V. Melanopic LED system with collimated white light and uncollimated cyan light
US20220406764A1 (en) * 2021-05-14 2022-12-22 Seoul Viosys Co., Ltd. Light emiting module and display apparatus having the same
WO2023007823A1 (en) * 2021-07-30 2023-02-02 ソニーグループ株式会社 Light emitting device and image display apparatus
KR102390513B1 (en) * 2021-08-20 2022-04-26 주식회사 유사이언스 Laser Diode Based Sterilization Lights
KR20230085256A (en) * 2021-12-06 2023-06-14 삼성디스플레이 주식회사 Display device
EP4376551A1 (en) * 2022-11-25 2024-05-29 Richter Lighting Technologies GmbH Method for determining at least one color property of a lighting element, computer program and lighting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680992A (en) * 2007-06-04 2010-03-24 皇家飞利浦电子股份有限公司 Color-tunable lighting systems, lamps and lighting fixtures
US20110044022A1 (en) * 2009-08-20 2011-02-24 Illumitex, Inc. System and method for a phosphor coated lens

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
KR100629544B1 (en) 1996-06-26 2006-09-27 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 Light-emitting semiconductor component with luminescence conversion element
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6680569B2 (en) 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
US6351069B1 (en) 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
TW455908B (en) 1999-04-20 2001-09-21 Koninkl Philips Electronics Nv Lighting system
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US6737681B2 (en) * 2001-08-22 2004-05-18 Nichia Corporation Light emitting device with fluorescent member excited by semiconductor light emitting element
JP4172196B2 (en) * 2002-04-05 2008-10-29 豊田合成株式会社 Light emitting diode
DE60330023D1 (en) 2002-08-30 2009-12-24 Lumination Llc HISTORIZED LED WITH IMPROVED EFFICIENCY
US6758582B1 (en) * 2003-03-19 2004-07-06 Elumina Technology Incorporation LED lighting device
US7052152B2 (en) * 2003-10-03 2006-05-30 Philips Lumileds Lighting Company, Llc LCD backlight using two-dimensional array LEDs
US7250715B2 (en) 2004-02-23 2007-07-31 Philips Lumileds Lighting Company, Llc Wavelength converted semiconductor light emitting devices
US7355284B2 (en) 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
DE102004047640A1 (en) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Optoelectronic component and housing for an optoelectronic component
US8134292B2 (en) * 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
JP2007081234A (en) 2005-09-15 2007-03-29 Toyoda Gosei Co Ltd Lighting system
US7543959B2 (en) 2005-10-11 2009-06-09 Philips Lumiled Lighting Company, Llc Illumination system with optical concentrator and wavelength converting element
KR20090009772A (en) 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
EP2153114B1 (en) * 2007-05-24 2014-06-25 Koninklijke Philips N.V. Color-tunable illumination system
US7942556B2 (en) * 2007-06-18 2011-05-17 Xicato, Inc. Solid state illumination device
US9086213B2 (en) * 2007-10-17 2015-07-21 Xicato, Inc. Illumination device with light emitting diodes
US7915627B2 (en) * 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
US20090147513A1 (en) 2007-12-05 2009-06-11 Lumination Llc Backlighting led power devices
CN101960918B (en) * 2008-02-27 2014-08-27 皇家飞利浦电子股份有限公司 Illumination device with LED and one or more transmissive windows
KR100924912B1 (en) 2008-07-29 2009-11-03 서울반도체 주식회사 Warm white light emitting apparatus and back light module comprising the same
KR101018153B1 (en) * 2008-11-27 2011-02-28 삼성엘이디 주식회사 LED Package
WO2010067291A1 (en) 2008-12-11 2010-06-17 Koninklijke Philips Electronics N.V. Adjustable color lamp with movable color conversion layers
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8651692B2 (en) 2009-06-18 2014-02-18 Intematix Corporation LED based lamp and light emitting signage
EP2390557A1 (en) * 2010-05-31 2011-11-30 Koninklijke Philips Electronics N.V. Luminaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680992A (en) * 2007-06-04 2010-03-24 皇家飞利浦电子股份有限公司 Color-tunable lighting systems, lamps and lighting fixtures
US20110044022A1 (en) * 2009-08-20 2011-02-24 Illumitex, Inc. System and method for a phosphor coated lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090894A (en) * 2015-08-21 2015-11-25 杨毅 Wavelength conversion device and light emitting device
CN105090894B (en) * 2015-08-21 2017-03-01 杨毅 Wavelength converter and light-emitting device
CN107248380A (en) * 2017-07-21 2017-10-13 佛山杰致信息科技有限公司 LED shows curtain wall

Also Published As

Publication number Publication date
JP2014511014A (en) 2014-05-01
TW201245611A (en) 2012-11-16
EP2691693A1 (en) 2014-02-05
MX2013011276A (en) 2014-03-27
WO2012135504A4 (en) 2012-12-27
MX2013011277A (en) 2014-03-27
CN103582778A (en) 2014-02-12
JP2014511013A (en) 2014-05-01
CA2831784A1 (en) 2012-10-04
KR20140045347A (en) 2014-04-16
TW201248936A (en) 2012-12-01
US20150131280A1 (en) 2015-05-14
US20120250320A1 (en) 2012-10-04
US8899767B2 (en) 2014-12-02
WO2012135502A4 (en) 2012-12-20
WO2012135502A1 (en) 2012-10-04
KR20140023315A (en) 2014-02-26
BR112013025149A2 (en) 2019-09-24
EP2691692A1 (en) 2014-02-05
CA2831731A1 (en) 2012-10-04
WO2012135504A1 (en) 2012-10-04
BR112013025150A2 (en) 2019-09-24
US20120250304A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US8899767B2 (en) Grid structure on a transmissive layer of an LED-based illumination module
US9275979B2 (en) Enhanced color rendering index emitter through phosphor separation
TWI539116B (en) Led-based illumination module with preferentially illuminated color converting surfaces
EP2542834B1 (en) Led lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US9024517B2 (en) LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US8632196B2 (en) LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9316361B2 (en) LED lamp with remote phosphor and diffuser configuration
EP2542824B1 (en) Enhanced color rendering index emitter through phosphor separation
TWI428543B (en) Led-based rectangular illumination device
CN103097808A (en) LED-based lighting modules with PTFE color-converting surfaces
WO2011109092A2 (en) Led lamp with remote phosphor and diffuser configuration
JP2013528893A (en) LED lamp using remote phosphor and diffuser configuration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140205