CN103681264B - The forming method of semiconductor device and the forming method of MOS transistor - Google Patents
The forming method of semiconductor device and the forming method of MOS transistor Download PDFInfo
- Publication number
- CN103681264B CN103681264B CN201210365225.8A CN201210365225A CN103681264B CN 103681264 B CN103681264 B CN 103681264B CN 201210365225 A CN201210365225 A CN 201210365225A CN 103681264 B CN103681264 B CN 103681264B
- Authority
- CN
- China
- Prior art keywords
- ions
- layer
- dummy gate
- ion implantation
- mask layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000004065 semiconductor Substances 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 238000005468 ion implantation Methods 0.000 claims description 58
- -1 phosphorus ions Chemical class 0.000 claims description 49
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 41
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 41
- 238000001039 wet etching Methods 0.000 claims description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 18
- 229910021332 silicide Inorganic materials 0.000 claims description 16
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 229910005883 NiSi Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 238000004151 rapid thermal annealing Methods 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910012990 NiSi2 Inorganic materials 0.000 claims 2
- 229910052731 fluorine Inorganic materials 0.000 claims 2
- 239000011737 fluorine Substances 0.000 claims 2
- 239000010410 layer Substances 0.000 description 153
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000002955 isolation Methods 0.000 description 4
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JXXICDWXXTZTHN-UHFFFAOYSA-M N.[O-2].[O-2].[OH-].O.[Ta+5] Chemical compound N.[O-2].[O-2].[OH-].O.[Ta+5] JXXICDWXXTZTHN-UHFFFAOYSA-M 0.000 description 1
- 229910005881 NiSi 2 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/01—Manufacture or treatment
- H10D62/021—Forming source or drain recesses by etching e.g. recessing by etching and then refilling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/017—Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及半导体制造技术领域,尤其涉及半导体器件的形成方法以及MOS晶体管的形成方法。 The invention relates to the technical field of semiconductor manufacturing, in particular to a method for forming a semiconductor device and a method for forming a MOS transistor.
背景技术 Background technique
现有半导体器件制作工艺中,由于应力可以改变硅材料的能隙和载流子迁移率,因此通过应力来提高MOS晶体管的性能成为越来越常用的手段。具体地,通过适当控制应力,可以提高载流子(NMOS晶体管中的电子,PMOS晶体管中的空穴)迁移率,进而提高驱动电流,以此极大地提高MOS晶体管的性能。 In the existing manufacturing process of semiconductor devices, since stress can change the energy gap and carrier mobility of silicon materials, it has become an increasingly common means to improve the performance of MOS transistors through stress. Specifically, by properly controlling the stress, the mobility of carriers (electrons in NMOS transistors and holes in PMOS transistors) can be increased, thereby increasing the driving current, thereby greatly improving the performance of MOS transistors.
目前,采用嵌入式锗硅(Embedded SiGe)技术,即在需要形成重掺杂区的区域先形成锗硅层,然后再进行掺杂形成MOS晶体管的重掺杂区。形成所述锗硅层是为了引入硅和锗硅(SiGe)之间晶格失配形成的压应力,以提高MOS晶体管的性能。 At present, an embedded silicon germanium (Embedded SiGe) technology is adopted, that is, a silicon germanium layer is first formed in a region where a heavily doped region needs to be formed, and then doped to form a heavily doped region of a MOS transistor. The silicon germanium layer is formed to introduce compressive stress caused by lattice mismatch between silicon and silicon germanium (SiGe), so as to improve the performance of the MOS transistor.
为了提高MOS晶体管的性能,除了在MOS晶体管的重掺杂区形成锗硅层外,还会在形成MOS晶体管的重掺杂区后,形成与重掺杂区连接的导电插塞前,在MOS晶体管的重掺杂区表面形成金属硅化物层,以降低MOS晶体管的导电插塞与重掺杂区之间的接触电阻。 In order to improve the performance of MOS transistors, in addition to forming a silicon germanium layer in the heavily doped region of the MOS transistor, after forming the heavily doped region of the MOS transistor and before forming a conductive plug connected to the heavily doped region, the MOS A metal silicide layer is formed on the surface of the heavily doped region of the transistor to reduce the contact resistance between the conductive plug of the MOS transistor and the heavily doped region.
更多关于MOS晶体管的形成工艺请参考专利号US7569443的美国专利。 For more information on the formation process of MOS transistors, please refer to US Patent No. US7569443.
然而,现有技术形成的MOS晶体管的性能不够稳定。 However, the performance of the MOS transistor formed by the prior art is not stable enough.
发明内容 Contents of the invention
本发明解决的问题是提供半导体器件的形成方法以及MOS晶体管的形 成方法,提高所形成半导体器件以及MOS晶体管的稳定性。 The problem to be solved by the present invention is to provide a method for forming a semiconductor device and a method for forming a MOS transistor, and improve the stability of the formed semiconductor device and MOS transistor.
为解决上述问题,本发明提供了一种半导体器件的形成方法,包括:提供衬底,所述衬底上形成有伪栅,所述伪栅的顶部和侧壁上覆盖有掩膜层;对衬底表面以及伪栅顶部的掩膜层表面进行离子注入,形成离子注入层;去除伪栅侧壁上的掩膜层;去除所述离子注入层。 In order to solve the above problems, the present invention provides a method for forming a semiconductor device, comprising: providing a substrate on which a dummy gate is formed, and the top and side walls of the dummy gate are covered with a mask layer; Ion implantation is performed on the surface of the substrate and the surface of the mask layer on the top of the dummy gate to form an ion implantation layer; the mask layer on the sidewall of the dummy gate is removed; and the ion implantation layer is removed.
本发明还提供了一种MOS晶体管的形成方法,包括:提供衬底,所述衬底上形成有伪栅极结构,所述伪栅极结构包括栅介质层以及位于栅介质层上的伪栅,所述伪栅极结构的顶部和侧壁上覆盖有掩膜层;以所述掩膜层为掩模,刻蚀所述伪栅极结构两侧的衬底,形成凹槽,并在所述凹槽内填满锗硅层;对所述衬底和锗硅层表面以及伪栅极结构顶部上的掩膜层表面进行离子注入,形成离子注入层;去除伪栅极结构侧壁上的掩膜层;去除所述离子注入层;对伪栅极结构两侧的衬底进行轻掺杂离子注入,形成轻掺杂区;形成覆盖所述伪栅极结构侧壁的侧墙;对所述锗硅层进行重掺杂离子注入,形成重掺杂区。 The present invention also provides a method for forming a MOS transistor, including: providing a substrate, on which a dummy gate structure is formed, and the dummy gate structure includes a gate dielectric layer and a dummy gate on the gate dielectric layer. , the top and sidewalls of the dummy gate structure are covered with a mask layer; using the mask layer as a mask, etching the substrates on both sides of the dummy gate structure to form grooves, and The groove is filled with a silicon germanium layer; the surface of the substrate and the silicon germanium layer and the surface of the mask layer on the top of the dummy gate structure are ion-implanted to form an ion implantation layer; the dummy gate structure sidewall is removed mask layer; removing the ion implantation layer; performing lightly doped ion implantation on the substrates on both sides of the dummy gate structure to form lightly doped regions; forming sidewalls covering the sidewalls of the dummy gate structure; The germanium silicon layer is implanted with heavily doped ions to form a heavily doped region.
与现有技术相比,本发明技术方案具有以下优点: Compared with the prior art, the technical solution of the present invention has the following advantages:
在去除伪栅侧壁上的掩膜层之前,对衬底表面和伪栅顶部上的掩膜层表面进行离子注入,形成离子注入层,在去除伪栅侧壁上掩膜层过程中,由于去除工艺对离子注入层的去除速率远小于对掩膜层的去除速率,所述离子注入层能够保护伪栅顶部上的掩膜层,避免去除工艺对衬底造成损伤以及避免伪栅顶部暴露,进而避免对后续工艺造成影响,提高所形成半导体器件的稳定性。 Before removing the mask layer on the sidewall of the dummy gate, ion implantation is performed on the surface of the substrate and the surface of the mask layer on the top of the dummy gate to form an ion implantation layer. In the process of removing the mask layer on the sidewall of the dummy gate, due to The removal rate of the ion implantation layer by the removal process is much lower than the removal rate of the mask layer, and the ion implantation layer can protect the mask layer on the top of the dummy gate, avoiding damage to the substrate caused by the removal process and exposure of the top of the dummy gate, Further, influence on the subsequent process is avoided, and the stability of the formed semiconductor device is improved.
进一步,在离子注入层形成之后,进行退火处理,以激活离子注入层中的掺杂离子,进而能更好地保护衬底和伪栅顶部上的掩膜层,提高所形成半导体器件的稳定性。 Further, after the ion implantation layer is formed, an annealing treatment is performed to activate the dopant ions in the ion implantation layer, thereby better protecting the substrate and the mask layer on the top of the dummy gate, and improving the stability of the formed semiconductor device .
附图说明 Description of drawings
图1~图7为本发明MOS晶体管的形成方法一个实施例中所形成各阶段MOS晶体管的剖面结构示意图。 1 to 7 are schematic cross-sectional structure diagrams of MOS transistors formed at various stages in an embodiment of a method for forming a MOS transistor according to the present invention.
具体实施方式 detailed description
正如背景技术部分所述,现有技术形成MOS晶体管的性能不够稳定。 As mentioned in the background section, the performance of MOS transistors formed in the prior art is not stable enough.
经过发明人研究发现,现有技术中MOS晶体管的性能不够稳定,是由于在形成MOS晶体管重掺杂区表面的金属硅化物层时,金属硅化物会在未被掩膜层覆盖的伪栅极结构顶部堆积,在去除伪栅极结构顶部上的掩膜层后,部分伪栅仍被金属硅化物覆盖,不利于伪栅的去除以及栅极的形成,导致所形成栅极的形态较差,所形成MOS晶体管的性能不稳定。 After research by the inventors, it was found that the performance of MOS transistors in the prior art is not stable enough, because when the metal silicide layer on the surface of the heavily doped region of the MOS transistor is formed, the metal silicide will be formed on the dummy gate not covered by the mask layer. The top of the structure is piled up. After removing the mask layer on the top of the dummy gate structure, part of the dummy gate is still covered by metal silicide, which is not conducive to the removal of the dummy gate and the formation of the gate, resulting in poor morphology of the formed gate. The performance of the formed MOS transistor is not stable.
针对上述问题,发明人提出了一种半导体器件的形成方法,在衬底上形成顶部和侧壁覆盖有掩膜层的伪栅后,对衬底表面和伪栅底部上掩膜层表面进行离子注入,形成离子注入层,然后依次去除伪栅侧壁上掩膜层和离子注入层。本发明半导体器件的形成方法在去除伪栅侧壁上掩膜层之前,先通过离子注入工艺在衬底表面和伪栅顶部掩膜层表面形成离子注入层,以在伪栅侧壁上掩膜层去除过程中保护衬底和伪栅顶部上掩膜层,避免伪栅顶部过早暴露而对半导体器件的后续形成工艺造成影响,提高了所形成半导体器件的稳定性。 In view of the above problems, the inventor has proposed a method for forming a semiconductor device. After forming a dummy gate whose top and sidewalls are covered with a mask layer on the substrate, ionization is carried out on the surface of the substrate and the surface of the mask layer on the bottom of the dummy gate. implanting to form an ion implantation layer, and then removing the mask layer and the ion implantation layer on the sidewall of the dummy gate in sequence. In the formation method of the semiconductor device of the present invention, before removing the mask layer on the sidewall of the dummy gate, an ion implantation layer is formed on the surface of the substrate and the top mask layer of the dummy gate by an ion implantation process, so as to mask the mask layer on the sidewall of the dummy gate. During the layer removal process, the substrate and the mask layer on the top of the dummy gate are protected, so as to prevent the premature exposure of the top of the dummy gate from affecting the subsequent formation process of the semiconductor device, and improve the stability of the formed semiconductor device.
参考图1至图7,通过一实施例对本发明半导体器件的形成方法以及MOS晶体管的形成方法进行详细说明。 Referring to FIG. 1 to FIG. 7 , the method for forming a semiconductor device and the method for forming a MOS transistor of the present invention will be described in detail through an embodiment.
参考图1,提供衬底101,所述衬底101上形成有伪栅极结构,所述伪栅极结构的顶部和侧壁上覆盖有掩膜层107a。 Referring to FIG. 1 , a substrate 101 is provided. A dummy gate structure is formed on the substrate 101 . The top and sidewalls of the dummy gate structure are covered with a mask layer 107 a.
本实施例中,所述伪栅极结构包括位于衬底101上的栅介质层103以及位于所述栅介质层103上的伪栅105。所述衬底101的材质为硅、锗硅或者绝 缘体上硅等,所述衬底101内形成有隔离结构(图未示),所述隔离结构可以为氧化硅浅沟槽隔离结构,所述隔离结构用于隔离形成于衬底101表面的器件。所述栅介质层103的材质为氧化硅或氧化铪等高k介质材料,所述伪栅105的材质为非晶硅或者掺杂多晶硅。所述掩膜层107a的材质为氮化硅。 In this embodiment, the dummy gate structure includes a gate dielectric layer 103 on the substrate 101 and a dummy gate 105 on the gate dielectric layer 103 . The material of the substrate 101 is silicon, silicon germanium, or silicon-on-insulator, etc., and an isolation structure (not shown) is formed in the substrate 101. The isolation structure may be a silicon oxide shallow trench isolation structure. The isolation structure is used to isolate devices formed on the surface of the substrate 101 . The material of the gate dielectric layer 103 is a high-k dielectric material such as silicon oxide or hafnium oxide, and the material of the dummy gate 105 is amorphous silicon or doped polysilicon. The mask layer 107a is made of silicon nitride.
继续参考图1,以所述掩膜层107a为掩模,刻蚀所述伪栅极结构两侧的衬底101,形成凹槽,并在所述凹槽内填满锗硅层109a。 Continuing to refer to FIG. 1 , using the mask layer 107 a as a mask, the substrate 101 on both sides of the dummy gate structure is etched to form a groove, and the silicon germanium layer 109 a is filled in the groove.
较佳的,所述凹槽呈sigma状(即,∑状),以在凹槽内填充满锗硅层109a后,提高所形成MOS晶体管沟道区上载流子的迁移率,进而提高所形成MOS晶体管的响应速率。所述sigma状凹槽可通过湿法刻蚀与干法刻蚀相结合的方法形成,所述锗硅层109a可通过外延生长工艺形成,形成sigma状凹槽以及在sigma状凹槽中填满锗硅层109a的方法已为本领域技术人员所熟知,在此不再赘述。 Preferably, the groove is sigma-shaped (that is, Σ-shaped), so that after the groove is filled with the silicon germanium layer 109a, the mobility of carriers on the channel region of the formed MOS transistor is improved, thereby improving the formed The response rate of the MOS transistor. The sigma-shaped groove can be formed by combining wet etching and dry etching, and the silicon germanium layer 109a can be formed by an epitaxial growth process to form a sigma-shaped groove and fill the sigma-shaped groove The method for the silicon germanium layer 109a is well known to those skilled in the art, and will not be repeated here.
需要说明的是,本实施例中所述锗硅层109a除填满sigma状凹槽外,其表面略高于所述衬底101表面,以在形成与重掺杂区连接的接触电极时,减少对重掺杂区域的消耗,减小漏电。 It should be noted that, in this embodiment, except for filling the sigma-shaped groove, the silicon germanium layer 109a has a surface slightly higher than the surface of the substrate 101, so that when the contact electrode connected to the heavily doped region is formed, Reduce the consumption of heavily doped regions and reduce leakage.
在其它实施例中,所述锗硅层109a的上表面还可与所述衬底101的表面齐平,其不限制本发明的保护范围。 In other embodiments, the upper surface of the silicon germanium layer 109 a may also be flush with the surface of the substrate 101 , which does not limit the protection scope of the present invention.
参考图2,对图1中衬底101和锗硅层109a表面以及伪栅极结构顶部上的掩膜层107a表面进行离子注入,形成覆盖所述衬底101和锗硅层109b表面的离子注入层110以及覆盖伪栅极结构顶部上的掩膜层107b表面的离子注入层108。 Referring to FIG. 2, ion implantation is performed on the surface of the substrate 101 and the silicon germanium layer 109a and the surface of the mask layer 107a on the top of the dummy gate structure in FIG. layer 110 and ion implantation layer 108 covering the surface of mask layer 107b on top of the dummy gate structure.
本实施例中,对图1中衬底101和锗硅层109a表面以及伪栅极结构顶部上的掩膜层107a表面进行离子注入的方向与衬底101以及锗硅层109a表面上法线的夹角均为0°,即形成离子注入层108的离子注入的方向与衬底101的 上表面以及锗硅层109a的上表面垂直。 In this embodiment, the direction of ion implantation on the surface of the substrate 101 and the silicon germanium layer 109a and the surface of the mask layer 107a on the top of the dummy gate structure in FIG. The included angles are all 0°, that is, the ion implantation direction for forming the ion implantation layer 108 is perpendicular to the upper surface of the substrate 101 and the upper surface of the silicon germanium layer 109a.
对锗硅层109a以及伪栅极结构顶部上的掩膜层107a进行离子注入的离子为磷离子、硼离子、二氟化硼离子、砷离子、锗离子、氩离子、碳离子、氧离子、氮离子、氟离子、硅离子、硫离子、氯离子中的一种或者几种。 The ions implanted into the silicon germanium layer 109a and the mask layer 107a on the top of the dummy gate structure are phosphorus ions, boron ions, boron difluoride ions, arsenic ions, germanium ions, argon ions, carbon ions, oxygen ions, One or more of nitrogen ions, fluoride ions, silicon ions, sulfur ions, and chloride ions.
本实施例中,所述对锗硅层109a以及伪栅极结构顶部上的掩膜层107a进行离子注入的离子为氧离子,离子注入的注入剂量为1010/cm2~1023/cm2,注入能量为1KeV~5000KeV。 In this embodiment, the ions implanted into the silicon germanium layer 109a and the mask layer 107a on the top of the dummy gate structure are oxygen ions, and the implantation dose of the ion implantation is 10 10 /cm 2 -10 23 /cm 2 , the implantation energy is 1KeV-5000KeV.
通过对伪栅极结构顶部上的掩膜层107a表面进行离子注入,使掩膜层107a表面的部分氮化硅与氧离子结合形成氮氧化硅,进而形成覆盖掩膜层107b的离子注入层108;通过对衬底101和锗硅层109a表面进行氧离子注入,氧离子与衬底101和锗硅层109a中的锗原子和/或锗原子结合,在衬底101和锗硅层109b表面形成材质为氧化锗和/或氧化硅的离子注入层110。 By performing ion implantation on the surface of the mask layer 107a on the top of the dummy gate structure, part of the silicon nitride on the surface of the mask layer 107a is combined with oxygen ions to form silicon oxynitride, and then the ion implantation layer 108 covering the mask layer 107b is formed. ; By implanting oxygen ions on the surface of the substrate 101 and the silicon-germanium layer 109a, the oxygen ions are combined with germanium atoms and/or germanium atoms in the substrate 101 and the silicon-germanium layer 109a to form on the surface of the substrate 101 and the silicon-germanium layer 109b The ion implantation layer 110 is made of germanium oxide and/or silicon oxide.
较佳的,在对衬底101和锗硅层109a表面以及伪栅极结构顶部上的掩膜层107a表面进行离子注入后,进行退火处理,以激活离子注入层108和110中的氧离子,提高离子注入层108中氮氧化硅的含量,以及提高离子注入层110中氧化硅和/或氧化锗的含量。 Preferably, after performing ion implantation on the surface of the substrate 101 and the silicon germanium layer 109a and the surface of the mask layer 107a on the top of the dummy gate structure, an annealing treatment is performed to activate the oxygen ions in the ion implantation layers 108 and 110, The content of silicon oxynitride in the ion implantation layer 108 is increased, and the content of silicon oxide and/or germanium oxide in the ion implantation layer 110 is increased.
本实施例中,所述退火处理为快速热退火,所述退火处理的温度为100℃~1400℃,气体为氮气、氩气、氢气或者氦气,时间为0s~120s。 In this embodiment, the annealing treatment is rapid thermal annealing, the temperature of the annealing treatment is 100°C-1400°C, the gas is nitrogen, argon, hydrogen or helium, and the time is 0s-120s.
参考图3,去除图2中伪栅极结构侧壁上的掩膜层107b。 Referring to FIG. 3 , the mask layer 107b on the sidewall of the dummy gate structure in FIG. 2 is removed.
本实施例中,去除伪栅极结构侧壁上的掩膜层107b的方法为湿法刻蚀,所述湿法刻蚀的溶液为磷酸溶液,所述磷酸溶液的温度为110℃~180℃,湿法刻蚀的时间为30s~600s。 In this embodiment, the method of removing the mask layer 107b on the sidewall of the dummy gate structure is wet etching, the solution of the wet etching is a phosphoric acid solution, and the temperature of the phosphoric acid solution is 110° C. to 180° C. , the wet etching time is 30s-600s.
通过磷酸溶液去除伪栅极结构侧壁上掩膜层107b时,由于磷酸溶液对氮化硅的刻蚀速率远大于对氮氧化硅、氧化硅以及氧化锗的刻蚀速率,所述离 子注入层108能够有效保护位于离子注入层108和伪栅105之间的掩膜层107c不被刻蚀,所述离子注入层110能够有效保护锗硅层109b和衬底101不被刻蚀。 When the mask layer 107b on the sidewall of the dummy gate structure is removed by phosphoric acid solution, since the etching rate of phosphoric acid solution to silicon nitride is much higher than that of silicon oxynitride, silicon oxide and germanium oxide, the ion implantation layer 108 can effectively protect the mask layer 107c located between the ion implantation layer 108 and the dummy gate 105 from being etched, and the ion implantation layer 110 can effectively protect the silicon germanium layer 109b and the substrate 101 from being etched.
参考图4,去除图3中所述离子注入层108和110,并对伪栅极结构两侧的衬底101进行轻掺杂离子注入,形成轻掺杂区(图未示)。 Referring to FIG. 4 , the ion implantation layers 108 and 110 in FIG. 3 are removed, and lightly doped ion implantation is performed on the substrate 101 on both sides of the dummy gate structure to form a lightly doped region (not shown).
本实施例中,去除所述离子注入层108和110的方法为湿法刻蚀,所述湿法刻蚀的溶液为氢氟酸溶液,所述氢氟酸溶液中氢氟酸与水的体积比为1:10~1:1000,湿法刻蚀的时间为10s~1800s。 In this embodiment, the method for removing the ion implantation layers 108 and 110 is wet etching, the solution of the wet etching is hydrofluoric acid solution, and the volume of hydrofluoric acid and water in the hydrofluoric acid solution is The ratio is 1:10 to 1:1000, and the wet etching time is 10s to 1800s.
本实施例中,所形成的MOS晶体管为PMOS晶体管或者NMOS晶体管。在形成PMOS晶体管时,所述轻掺杂离子注入的离子为硼离子或者二氟化硼离子;在形成NMOS晶体管时,所述轻掺杂离子注入的离子为磷离子、砷离子或者锑离子。形成轻掺杂区的工艺作为本领域技术人员的公知技术,在此不做赘述。 In this embodiment, the formed MOS transistors are PMOS transistors or NMOS transistors. When forming a PMOS transistor, the ions implanted by the lightly doped ions are boron ions or boron difluoride ions; when forming an NMOS transistor, the ions implanted by the lightly doped ions are phosphorus ions, arsenic ions or antimony ions. The process of forming the lightly doped region is a well-known technique for those skilled in the art, and will not be repeated here.
参考图5,形成覆盖所述伪栅极结构侧壁的侧墙111,然后对所述锗硅层109b进行重掺杂离子注入,形成重掺杂区(图未示)。 Referring to FIG. 5 , a sidewall 111 covering the sidewall of the dummy gate structure is formed, and then heavily doped ion implantation is performed on the silicon germanium layer 109 b to form a heavily doped region (not shown).
本实施例中,所述侧墙111为单层结构,其材质可为氮化硅;在其他实施例中,所述侧墙111还可为叠层结构,如ONO(oxide-nitride-oxide)结构。具体的,可先在锗硅层109b、衬底101和掩膜层107c表面形成氮化硅材料或者ONO叠层,再对氮化硅材料或者ONO叠层进行刻蚀,形成覆盖伪栅极结构侧壁的侧墙111。 In this embodiment, the sidewall 111 is a single-layer structure, and its material can be silicon nitride; in other embodiments, the sidewall 111 can also be a laminated structure, such as ONO (oxide-nitride-oxide) structure. Specifically, a silicon nitride material or an ONO stack can be formed on the surfaces of the silicon germanium layer 109b, the substrate 101, and the mask layer 107c, and then the silicon nitride material or the ONO stack can be etched to form a covering dummy gate structure. The side wall 111 of the side wall.
本实施例中,在对所述锗硅层109b进行重掺杂离子注入的离子由所形成MOS晶体管的类型决定,其与MOS晶体管轻掺杂区离子注入的离子类型相同,在此不做赘述。 In this embodiment, the ions to be implanted into the germanium-silicon layer 109b are determined by the type of the formed MOS transistor, which is the same as the type of ions implanted into the lightly doped region of the MOS transistor, and will not be repeated here. .
参考图6,以所述伪栅极结构顶部上的掩膜层107c为掩模,在所述衬底 101和锗硅层109b表面形成金属硅化物层113。 Referring to FIG. 6 , using the mask layer 107c on the top of the dummy gate structure as a mask, a metal silicide layer 113 is formed on the surface of the substrate 101 and the silicon germanium layer 109b.
本实施例中,所述金属硅化物层113的材质为NiSi或者NiSi2中的一种或者组合,用于减小重掺杂区和与之对应的导电插塞之间的接触电阻。 In this embodiment, the material of the metal silicide layer 113 is one or a combination of NiSi or NiSi 2 , which is used to reduce the contact resistance between the heavily doped region and the corresponding conductive plug.
形成所述金属硅化物层113方法可为:先在所述衬底101和锗硅层109b表面形成镍(Ni)金属层,再进行退火处理,使镍金属层中镍原子与衬底101和锗硅层109b表面的硅原子结合,形成金属硅化物层113。形成所述镍金属层的方法为物理气相沉积工艺。 The method for forming the metal silicide layer 113 can be: first form a nickel (Ni) metal layer on the surface of the substrate 101 and the silicon germanium layer 109b, and then perform an annealing treatment to make the nickel atoms in the nickel metal layer and the substrate 101 and The silicon atoms on the surface of the silicon germanium layer 109 b combine to form the metal silicide layer 113 . The method for forming the nickel metal layer is a physical vapor deposition process.
参考图6,去除图5中所述掩膜层107c。 Referring to FIG. 6, the mask layer 107c in FIG. 5 is removed.
本实施例中,通过湿法刻蚀去除所述掩膜层107c,所述湿法刻蚀的溶液为磷酸溶液,所述磷酸溶液的温度为110℃~180℃,湿法刻蚀的时间为10s~1000s。 In this embodiment, the mask layer 107c is removed by wet etching, the wet etching solution is a phosphoric acid solution, the temperature of the phosphoric acid solution is 110° C. to 180° C., and the wet etching time is 10s~1000s.
继续参考图6,去除图5中所述伪栅105,至暴露出栅介质层103。 Continuing to refer to FIG. 6 , the dummy gate 105 in FIG. 5 is removed to expose the gate dielectric layer 103 .
本实施例中,去除所述伪栅105的方法为干法刻蚀,其具体工艺作为本领域技术人员的公知技术,在此不做赘述。 In this embodiment, the method for removing the dummy gate 105 is dry etching, and its specific process is known to those skilled in the art, and will not be repeated here.
参考图7,在所述栅介质层103上形成栅极115,所述栅极115的上表面与侧墙111的上表面齐平。 Referring to FIG. 7 , a gate 115 is formed on the gate dielectric layer 103 , and the upper surface of the gate 115 is flush with the upper surface of the spacer 111 .
本实施例中,所述栅极115的材质为金属(如:钨、钛、钽、钌、锆、钴、铜、铝、铅、铂、锡、银或金)、导电复合材料(如氮化钽、氮化钛、硅化钨、氮化钨、氧化钌,硅化镍等)、碳纳米管或者导电碳。 In this embodiment, the material of the grid 115 is metal (such as: tungsten, titanium, tantalum, ruthenium, zirconium, cobalt, copper, aluminum, lead, platinum, tin, silver or gold), conductive composite material (such as nitrogen Tantalum oxide, titanium nitride, tungsten silicide, tungsten nitride, ruthenium oxide, nickel silicide, etc.), carbon nanotubes or conductive carbon.
在另一个实施例中,在图5中MOS晶体管形成后,去除图5中所述掩膜层107c和伪栅105以及形成图7中的栅极115,还可以通过如下步骤进行: In another embodiment, after the MOS transistor in FIG. 5 is formed, removing the mask layer 107c and the dummy gate 105 in FIG. 5 and forming the gate 115 in FIG. 7 can also be performed through the following steps:
形成覆盖图5中掩膜层107c、侧壁111、衬底101和金属硅化物层113表面的介质层; Forming a dielectric layer covering the surface of mask layer 107c, sidewall 111, substrate 101 and metal silicide layer 113 in FIG. 5;
平坦化所述介质层和掩膜层107c,至暴露出伪栅105; planarizing the dielectric layer and the mask layer 107c to expose the dummy gate 105;
去除所述伪栅105,并在所述栅介质层103上形成栅极115,所述栅极115的上表面与介质层的上表面齐平; removing the dummy gate 105, and forming a gate 115 on the gate dielectric layer 103, the upper surface of the gate 115 being flush with the upper surface of the dielectric layer;
去除所述介质层。 The dielectric layer is removed.
本实施例中,所述介质层的材质为低k材料或者超低k材料。 In this embodiment, the material of the dielectric layer is a low-k material or an ultra-low-k material.
在其他实施例中,还可以不去除上述介质层,以在该介质层中形成与所述金属硅化物层113连接的导电插塞,使所形成MOS晶体管的重掺杂区与外部电源实现电连接。 In other embodiments, the above-mentioned dielectric layer may not be removed, so as to form a conductive plug connected to the metal silicide layer 113 in the dielectric layer, so that the heavily doped region of the formed MOS transistor is electrically connected to the external power supply. connect.
上述实施例中,在以覆盖伪栅极结构的掩膜层为掩模对衬底进行刻蚀,形成凹槽,以及在凹槽内填满锗硅层之后,先对锗硅层和伪栅极结构顶部上的掩膜层进行离子注入,形成离子注入层,再依次去除伪栅极结构侧壁上的掩膜层和离子注入层;在去除伪栅极结构侧壁上掩膜层过程中,由于刻蚀工艺对离子注入层的刻蚀速率远小于对掩膜层的刻蚀速率,离子注入层能够保护锗硅层以及位于伪栅极结构顶部上的掩膜层不被去除,避免刻蚀工艺对锗硅层造成损伤以及保证伪栅极结构顶部被掩膜层完全覆盖,避免形成重掺杂区上金属硅化物层过程中金属硅化物在栅极结构顶部堆积,以利于后续伪栅的去除以及栅极的形成,提高所形成MOS晶体管的稳定性。 In the above-mentioned embodiment, after the substrate is etched using the mask layer covering the dummy gate structure as a mask, the groove is formed, and the silicon germanium layer is filled in the groove, the silicon germanium layer and the dummy gate are firstly etched. The mask layer on the top of the pole structure is ion-implanted to form an ion-implanted layer, and then the mask layer and the ion-implanted layer on the sidewall of the dummy gate structure are removed in sequence; in the process of removing the mask layer on the sidewall of the dummy gate structure , because the etching rate of the ion implantation layer by the etching process is much lower than the etching rate of the mask layer, the ion implantation layer can protect the silicon germanium layer and the mask layer on the top of the dummy gate structure from being removed, avoiding etching The etch process will cause damage to the silicon germanium layer and ensure that the top of the dummy gate structure is completely covered by the mask layer, so as to avoid the accumulation of metal silicide on the top of the gate structure during the formation of the metal silicide layer on the heavily doped region, so as to facilitate the subsequent dummy gate structure. The removal of the gate and the formation of the gate improve the stability of the formed MOS transistor.
本发明还提供了一种半导体器件的形成方法,包括:提供衬底,所述衬底上形成有伪栅,所述伪栅的顶部和侧壁上覆盖有掩膜层;对衬底表面以及伪栅顶部的掩膜层表面进行离子注入,形成离子注入层;去除伪栅侧壁上的掩膜层;去除所述离子注入层。其具体的形成工艺可参考MOS晶体管的形成方法的实施例中相应步骤。本发明半导体器件的形成方法在去除位于伪栅侧壁上的掩膜层之前,先对衬底表面以及伪栅顶部的掩膜层表面进行离子注入,形成离子注入层,所形成的离子注入层能够在去除伪栅侧壁上的掩膜层过程 中,保护位于伪栅顶部上的掩膜层,进而保证伪栅顶部被掩膜层覆盖,有效避免后续工艺对伪栅顶部的形貌或者结构造成影响,提高了所形成半导体器件的性能。 The present invention also provides a method for forming a semiconductor device, comprising: providing a substrate, on which a dummy gate is formed, and the top and side walls of the dummy gate are covered with a mask layer; Ion implantation is performed on the surface of the mask layer on the top of the dummy gate to form an ion implantation layer; the mask layer on the sidewall of the dummy gate is removed; and the ion implantation layer is removed. For the specific formation process, refer to the corresponding steps in the embodiment of the method for forming the MOS transistor. In the forming method of the semiconductor device of the present invention, before removing the mask layer positioned on the sidewall of the dummy gate, ion implantation is first performed on the surface of the substrate and the surface of the mask layer on the top of the dummy gate to form an ion implantation layer, and the formed ion implantation layer In the process of removing the mask layer on the sidewall of the dummy gate, the mask layer on the top of the dummy gate can be protected, thereby ensuring that the top of the dummy gate is covered by the mask layer, effectively avoiding the subsequent process from affecting the shape or structure of the top of the dummy gate. Influenced to improve the performance of the formed semiconductor device.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210365225.8A CN103681264B (en) | 2012-09-26 | 2012-09-26 | The forming method of semiconductor device and the forming method of MOS transistor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210365225.8A CN103681264B (en) | 2012-09-26 | 2012-09-26 | The forming method of semiconductor device and the forming method of MOS transistor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103681264A CN103681264A (en) | 2014-03-26 |
| CN103681264B true CN103681264B (en) | 2016-11-23 |
Family
ID=50318472
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210365225.8A Active CN103681264B (en) | 2012-09-26 | 2012-09-26 | The forming method of semiconductor device and the forming method of MOS transistor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103681264B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106898544A (en) * | 2015-12-17 | 2017-06-27 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its manufacture method and electronic installation |
| CN109148374B (en) * | 2017-06-28 | 2021-04-23 | 中芯国际集成电路制造(上海)有限公司 | A method of manufacturing a semiconductor device |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5891784A (en) * | 1993-11-05 | 1999-04-06 | Lucent Technologies, Inc. | Transistor fabrication method |
| FR2810157B1 (en) * | 2000-06-09 | 2002-08-16 | Commissariat Energie Atomique | METHOD FOR PRODUCING AN ELECTRONIC COMPONENT WITH SOURCE, DRAIN AND SELF-ALLOCATED GRID, IN DAMASCENE ARCHITECTURE |
| KR101197464B1 (en) * | 2007-12-26 | 2012-11-09 | 삼성전자주식회사 | Method of manufacturing a semiconductor device |
| CN101540315B (en) * | 2008-03-17 | 2010-12-08 | 联华电子股份有限公司 | Semiconductor device and method of forming the same |
| KR101833849B1 (en) * | 2010-10-13 | 2018-03-05 | 삼성전자주식회사 | Semiconductor devices and methods of fabricating the same |
-
2012
- 2012-09-26 CN CN201210365225.8A patent/CN103681264B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN103681264A (en) | 2014-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104217953B (en) | PMOS transistor and preparation method thereof | |
| US8835936B2 (en) | Source and drain doping using doped raised source and drain regions | |
| CN110034067B (en) | Semiconductor device and method of forming the same | |
| CN109427582B (en) | Semiconductor structure and method of forming the same | |
| CN104733531A (en) | Dual oxide trench gate power mosfet using oxide filled trench | |
| CN104701164A (en) | Semiconductor device and method for manufacturing same | |
| CN103681502B (en) | The formation method of CMOS transistor | |
| CN104103515B (en) | Manufacturing method for PMOS transistor and manufacturing method for NMOS transistor | |
| CN104517822A (en) | Manufacturing method of semiconductor device | |
| CN102569394B (en) | Transistor and manufacture method thereof | |
| CN104934324A (en) | Semiconductor device and manufacturing method thereof | |
| CN106952806A (en) | The Method of Improving the Performance of FinFET | |
| US8728894B2 (en) | Method for fabricating an NMOS transistor | |
| CN103871887B (en) | PMOS transistor, nmos pass transistor and respective preparation method thereof | |
| CN104752180A (en) | Semiconductor device forming method | |
| CN103985633B (en) | A kind of preparation method of PMOS transistor | |
| JP2010245233A (en) | Semiconductor device and manufacturing method thereof | |
| CN109148447B (en) | Semiconductor structure and forming method thereof | |
| CN103681264B (en) | The forming method of semiconductor device and the forming method of MOS transistor | |
| CN106960789B (en) | Semiconductor device and method for improving performance of semiconductor device | |
| CN104183500A (en) | Method for forming ion-implantation side wall protection layer on FinFET device | |
| CN104752348B (en) | The forming method of semiconductor devices | |
| CN103545257A (en) | How to make a CMOS transistor | |
| CN108305830A (en) | Semiconductor structure and forming method thereof | |
| CN102768993B (en) | Manufacturing method of NMOS (N-channel metal oxide semiconductor) device by stress memorization technique |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |