CN103746731A - Probability calculation-based multiple input multiple output detector and detection method - Google Patents
Probability calculation-based multiple input multiple output detector and detection method Download PDFInfo
- Publication number
- CN103746731A CN103746731A CN201410027994.6A CN201410027994A CN103746731A CN 103746731 A CN103746731 A CN 103746731A CN 201410027994 A CN201410027994 A CN 201410027994A CN 103746731 A CN103746731 A CN 103746731A
- Authority
- CN
- China
- Prior art keywords
- probability
- sequence
- random sequence
- output
- multiplier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 92
- 238000001514 detection method Methods 0.000 title claims description 24
- 239000011159 matrix material Substances 0.000 claims abstract description 74
- 238000005070 sampling Methods 0.000 claims abstract description 55
- 238000007476 Maximum Likelihood Methods 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 10
- 238000013507 mapping Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 11
- 230000007704 transition Effects 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明公开了一种基于概率计算的多输入多输出检测器,包括一个矩阵QR分解器,矩阵QR分解器分别连接两个随机序列生成器,两个随机序列生成器分别连接一个概率复数乘法器,其中一个概率复数乘法器连接Gibbs采样更新单元,另一个概率复数乘法器和Gibbs采样更新单元同时连接对数似然比计算单元。本发明多输入多输出检测器使用概率计算来实现MCMC算法,大大降低了运算复杂度,提高了MCMC算法中马尔科夫链的转移概率,解决了高性噪比下锁定的问题。利用滑窗生成序列法进行Gibbs采样更新,减少了概率序列的长度。应用本发明多输入多输出检测器构建全并行检测器,能够以全并行的方式实现以达到较高的吞吐率。
The invention discloses a multi-input multi-output detector based on probability calculation, which includes a matrix QR decomposer, the matrix QR decomposer is respectively connected to two random sequence generators, and the two random sequence generators are respectively connected to a probability complex multiplier , one of the probability complex multipliers is connected to the Gibbs sampling update unit, and the other probability complex multiplier and the Gibbs sampling update unit are simultaneously connected to the log likelihood ratio calculation unit. The multi-input multi-output detector of the present invention uses probability calculation to realize MCMC algorithm, greatly reduces computational complexity, improves the transition probability of Markov chain in MCMC algorithm, and solves the problem of locking under high performance-to-noise ratio. The Gibbs sampling update is performed by using the sliding window generation sequence method, which reduces the length of the probability sequence. Applying the multi-input multi-output detector of the present invention to construct a fully parallel detector can be realized in a fully parallel manner to achieve higher throughput.
Description
技术领域technical field
本发明涉及无线通信技术领域,特别涉及一种基于概率计算的多输入多输出(Multiple Input Multiple Output,MIMO)检测器,及应用该多输入多输出检测器的组成的全并行检测系统,及多输入多输出检测器的检测方法。The present invention relates to the technical field of wireless communication, in particular to a multiple input multiple output (Multiple Input Multiple Output, MIMO) detector based on probability calculation, and a fully parallel detection system composed of the multiple input multiple output detector, and multiple Enter the detection method for the multiple output detector.
背景技术Background technique
MIMO通信系统在无线链路的两端均采用多天线,分别同时接收与发射信号,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。由于多输入多输出(MIMO)技术可以在无线移动环境下为移动用户提供高质量、高速率的信息传递,因此MIMO技术成为第四代移动通信和未来无线/移动通信的核心技术。The MIMO communication system uses multiple antennas at both ends of the wireless link to receive and transmit signals at the same time, which can fully exploit space resources and double the capacity and reliability of the communication system without increasing spectrum resources and transmission power. sex. Since multiple-input multiple-output (MIMO) technology can provide mobile users with high-quality, high-speed information transmission in a wireless mobile environment, MIMO technology has become the core technology of the fourth generation mobile communication and future wireless/mobile communication.
目前的MIMO通信系统仅是对接收信号转换后检测还原成发送信号,得到发送信号的估计值,没有进一步检测得到的发送信号与接收信号的相似度,不能直接与译码器连接使用。此外,MIMO通信系统中常采用蒙特卡洛马尔科夫链(MCMC)算法对接收信号进行检测。MCMC算法是一个非常有利的数学工具,其基本思想是:构造一条马尔科夫链,使其平稳分布为待估参数的后验分布,通过这条马尔科夫链产生后验分布的样本,并基于马尔科夫链达到平稳分布时的样本(有效样本)进行蒙特卡罗积分。由于传统的MCMC算法中Gibbs采样(吉布斯采样)更新涉及大量的乘法运算和加法运算,因此传统的MCMC算法需要大量的运算量来更新条件概率和采样数据,计算复杂度高。The current MIMO communication system only detects and restores the received signal to the transmitted signal after conversion, and obtains the estimated value of the transmitted signal. Without further detection of the similarity between the transmitted signal and the received signal, it cannot be directly connected to the decoder for use. In addition, the Monte Carlo Markov Chain (MCMC) algorithm is often used in MIMO communication systems to detect received signals. The MCMC algorithm is a very beneficial mathematical tool. Its basic idea is to construct a Markov chain, make its stationary distribution the posterior distribution of the parameters to be estimated, and generate samples of the posterior distribution through this Markov chain, and Monte Carlo integration is performed based on the samples (effective samples) when the Markov chain reaches a stationary distribution. Since the Gibbs sampling (Gibbs sampling) update in the traditional MCMC algorithm involves a large number of multiplication and addition operations, the traditional MCMC algorithm requires a large amount of calculations to update the conditional probability and sampling data, and the computational complexity is high.
发明内容Contents of the invention
本发明的目的在于克服现有技术中所存在的基于传统MCMC算法的MIMO检测器运算量大、结构复杂的不足,提供一种基于概率计算的多输入多输出检测器,及应用该多输入多输出检测器组成的全并行检测系统。本发明多输入多输出检测器及全并行检测系统,采用基于概率计算的MCMC算法,可大大降低计算复杂度,简化MIMO检测器的结构。The purpose of the present invention is to overcome the disadvantages of the conventional MCMC algorithm-based MIMO detector with a large amount of computation and complex structure existing in the prior art, to provide a multi-input multi-output detector based on probability calculation, and to apply the multi-input multi-output detector. A fully parallel detection system composed of output detectors. The multi-input multi-output detector and the full parallel detection system of the present invention adopt the MCMC algorithm based on probability calculation, which can greatly reduce the computational complexity and simplify the structure of the MIMO detector.
为了实现上述发明目的,本发明提供了以下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
基于概率计算的多输入多输出检测器,包括一个矩阵QR分解器,所述矩阵QR分解器分别连接第二随机序列生成器、第三随机序列生成器;所述第三随机序列生成器通过第二概率复数乘法器连接Gibbs采样更新单元;所述第二随机序列生成器连接第一概率复数乘法器,所述第一概率复数乘法器还连接第一随机序列生成器和对数似然比计算单元;第一概率复数乘法器的运算结果输出至对数似然比计算单元,Gibbs采样更新单元的运算结果分别输出至对数似然比计算单元和第二概率复数乘法器,对数似然比计算单元的输出作为Gibbs采样更新单元的输入。The multi-input multi-output detector based on probability calculation includes a matrix QR decomposer, and the matrix QR decomposer is respectively connected to the second random sequence generator and the third random sequence generator; the third random sequence generator is passed through the third random sequence generator Two probability complex multipliers are connected to the Gibbs sampling update unit; the second random sequence generator is connected to the first probability complex multiplier, and the first probability complex multiplier is also connected to the first random sequence generator and the log likelihood ratio calculation unit; the operation result of the first probability complex multiplier is output to the log likelihood ratio calculation unit, and the operation result of the Gibbs sampling update unit is respectively output to the log likelihood ratio calculation unit and the second probability complex multiplier, and the log likelihood The output of the ratio calculation unit is used as the input of the Gibbs sampling update unit.
上述的基于概率计算的多输入多输出检测器中,所述第一随机序列生成器、第二随机序列生成器和第三随机序列生成器的结构相同,均包括绝对值运算模块和比较器,绝对值运算模块对每一个时钟的输入信号求取绝对值后输出至比较器,比较器将输入信号的绝对值与区间[0,m)内任一个满足均匀分布的随机数进行比较,如果输入信号的绝对值大于随机数则输出1,否则输出0,获得由1和0组成的值序列;与值序列中每个比特相对应,如果输入信号小于0,则输出1,否则输出0,根据值序列获得由0和1组成的符号序列。In the above-mentioned multi-input multi-output detector based on probability calculation, the first random sequence generator, the second random sequence generator and the third random sequence generator have the same structure, and all include an absolute value operation module and a comparator, The absolute value calculation module calculates the absolute value of the input signal of each clock and outputs it to the comparator. The comparator compares the absolute value of the input signal with any random number that satisfies a uniform distribution in the interval [0, m). If the input If the absolute value of the signal is greater than the random number,
上述的基于概率计算的多输入多输出检测器中,所述第一概率复数乘法器和第二概率复数乘法器的结构相同,均由四个概率实数乘法器、两个概率实数加法器和一个取反电路组成;四个概率实数乘法器分别为第一概率实数乘法器、第二概率实数乘法器、第三概率实数乘法器和第四概率实数乘法器;两个概率实数加法器分别为第一概率实数加法器和第二概率实数加法器;第一概率实数乘法器连接第一概率实数加法器,第二概率实数乘法器通过取反电路连接第一概率实数加法器;第三概率实数乘法器和第四概率实数乘法器分别与第二概率实数加法器连接;第一随机序列生成器输出的第一随机序列和第二随机序列生成器输出的第二随机序列经过复数乘法运算后获得第一乘积序列第三随机序列生成器输出的第三随机序列与Gibbs采样更新单元输出的似然估计序列S经过复数运算后获得第二乘积序列 In the above-mentioned multi-input multi-output detector based on probability calculation, the structure of the first probability complex multiplier and the second probability complex multiplier are the same, and are all composed of four probability real number multipliers, two probability real number adders and a Negative circuit composition; four probability real number multipliers are respectively the first probability real number multiplier, the second probability real number multiplier, the third probability real number multiplier and the fourth probability real number multiplier; the two probability real number adders are respectively the first probability real number multiplier A probability real number adder and a second probability real number adder; the first probability real number multiplier is connected to the first probability real number adder, and the second probability real number multiplier is connected to the first probability real number adder through an inversion circuit; the third probability real number multiplication The device and the fourth probability real number multiplier are respectively connected with the second probability real number adder; the first random sequence output by the first random sequence generator and the second random sequence output by the second random sequence generator Obtain the first product sequence after complex multiplication The third random sequence output by the third random sequence generator The second product sequence is obtained after complex operation with the likelihood estimation sequence S output by the Gibbs sampling update unit
上述的基于概率计算的多输入多输出检测器中,所述对数似然比计算单元对第一概率复数乘法器输出的第一乘积序列和第二概率复数乘法器输出的第二乘积序列进行滑窗处理,分别截取第一乘积序列和第二乘积序列中时间窗口t1内的数据,截取的数据与Gibbs采样更新单元输出的似然估计序列S进行对数似然值计算,获取最大似然估计值
上述的基于概率计算的多输入多输出检测器中,所述Gibbs采样更新单元根据获得由M个变量组成的参数序列 经过QAM映射后的参数序列更替似然估计序列S中的参数获得更新后的似然估计序列,M为时间窗口t1内截取的数据数。In the above-mentioned multiple-input multiple-output detector based on probability calculation, the Gibbs sampling update unit is based on Get a parameter sequence consisting of M variables Parameter sequence after QAM mapping Replacement Likelihood Estimation of Parameters in Sequence S The updated likelihood estimation sequence is obtained, and M is the number of intercepted data in the time window t1 .
本发明还提供了一种全并行检测系统,包括上述基于概率计算的多输入多输出检测器,多个基于概率计算的多输入多输出检测器分别与同一个译码器并行连接。优选的,所述全并行检测系统还包括矩阵预处理单元,所述矩阵预处理单元中包括矩阵QR分解器和两个随机序列生成器,信道矩阵H经矩阵QR分解器分解为子矩阵Q和子矩阵R,子矩阵R经过一个随机序列生成器生成第三随机序列子矩阵Q经过另一个随机序列生成器生成第二随机序列第三随机序列和第二随机序列广播至多个并行的基于概率计算的多输入多输出检测器。The present invention also provides an all-parallel detection system, including the above-mentioned MIMO detector based on probability calculation, and multiple MIMO detectors based on probability calculation are respectively connected in parallel to the same decoder. Preferably, the full parallel detection system also includes a matrix preprocessing unit, which includes a matrix QR decomposer and two random sequence generators, and the channel matrix H is decomposed into sub-matrix Q and sub-matrix by the matrix QR decomposer. Matrix R, sub-matrix R generates a third random sequence through a random sequence generator The sub-matrix Q generates a second random sequence through another random sequence generator third random sequence and the second random sequence Broadcast to multiple parallel probability-based MIMO detectors.
本发明还提供了一种基于概率计算的多输入多输出检测器的检测方法,包括以下步骤:The present invention also provides a detection method of a multi-input multi-output detector based on probability calculation, comprising the following steps:
步骤1:矩阵QR分解器将信道矩阵H分解成子矩阵Q和R,子矩阵R经过第三随机序列生成器生成第三随机序列并输出至第一概率复数乘法器,子矩阵Q经过矩阵求逆运算得到表征矩阵QH,表征矩阵QH再经过第二随机序列生成器生成第二随机序列并输出至第二概率复数乘法器;接收信号Z经过第一随机序列生成器生成第一随机序列并输出至第一概率复数乘法器;Step 1: The matrix QR decomposer decomposes the channel matrix H into sub-matrices Q and R, and the sub-matrix R generates a third random sequence through the third random sequence generator And output to the first probability complex multiplier, the sub-matrix Q obtains the representation matrix Q H through the matrix inversion operation, and the representation matrix Q H generates the second random sequence through the second random sequence generator And output to the second probability complex multiplier; the received signal Z generates the first random sequence through the first random sequence generator And output to the first probability complex multiplier;
步骤2:第一概率复数乘法器对第二随机序列和第一随机序列进行复数乘法运算,获得第一乘积序列并输出至对数似然比计算单元;第二概率复数乘法器对第三随机序列和Gibbs采样更新单元输出的似然估计序列S进行复数乘法运算,获得第二乘积序列 Step 2: The first probabilistic complex multiplier against the second random sequence and the first random sequence Perform complex multiplication to obtain the first product sequence and output to the logarithmic likelihood ratio calculation unit; the second probability complex multiplier is to the third random sequence Perform complex multiplication with the likelihood estimation sequence S output by the Gibbs sampling update unit to obtain the second product sequence
步骤3:对数似然比计算单元对第一乘积序列和第二乘积序列进行滑窗处理,分别截取第一乘积序列和第二乘积序列中时间窗口t1内的数据,截取的数据与Gibbs采样更新单元输出的似然估计序列S进行对数似然值计算,获取最大似然估计值
步骤4:Gibbs采样更新单元根据对数似然比计算单元输出的最大似然估计值更新似然估计序列S:根据获得由M个变量组成的参数序列 经过QAM映射后的参数序列更替似然估计序列S中的参数获得更新后的似然估计序列;经过Nt次更新后获得完成一次迭代的似然估计序列S',
步骤5:循环执行步骤3和步骤4,对完成一次迭代后的似然估计序列S'进行再次迭代更新,直至迭代次数达到设定值,得到迭代更新完成后的最终似然估计序列Sz',最终似然估计序列Sz'再被送至LLR计算单元,得到最终的最大似然估计值并输出。Step 5: Perform step 3 and
上述方法中,所述步骤2中,第一概率复数乘法器和第二概率复数乘法器中,第一概率实数乘法器对输入被乘数的实部随机序列和输入乘数的实部随机序列进行乘法运算,并将运算结果输出至第一概率实数加法器;第二概率实数乘法器对输入被乘数的虚部随机序列和输入乘数的虚部随机序列进行乘法运算,运算结果经过取反后输出至第一概率实数加法器;第一概率实数加法器对两个输入量求和后获得输出量的实部随机序列;第三概率实数乘法器对输入被乘数的实部随机序列和输入乘数的虚部随机序列进行乘法运算,并将运算结果输出至第二概率实数加法器;第四概率实数乘法器对输入被乘数的虚部随机序列和输入乘数的实部随机序列进行乘法运算,并将运算结果输出至第二概率实复数加法器;第二概率实数加法器对两个输入量求和后获得输出量的虚部随机序列。In the above method, in
与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:
本发明基于概率计算的多输入多输出检测器对还原得到的发送信号与接收信号进行了相似度测算,以获取似然信息,可以与译码器直接连接使用。The multi-input multi-output detector based on probability calculation of the present invention performs similarity calculation on the restored transmitted signal and received signal to obtain likelihood information, and can be directly connected with a decoder for use.
本发明基于概率计算的多输入多输出检测器使用概率计算来实现MCMC算法,Gibbs采样更新时涉及的加法运算和乘法运算可以由少量的简单逻辑单元实现,大大降低了运算复杂度和结构复杂度。The multi-input multi-output detector based on probability calculation of the present invention uses probability calculation to realize MCMC algorithm, and the addition operation and multiplication operation involved in Gibbs sampling update can be realized by a small number of simple logic units, which greatly reduces the operational complexity and structural complexity .
传统的MCMC算法中,需要额外增加电路来模拟一个高斯白噪声信号来增加转移概率,减少锁定状态。本发明多输入多输出检测器使用概率计算来实现MCMC算法,概率计算自身能够产生白噪声计算方差,可提高MCMC算法中马尔科夫链的转移概率,因此能够智能的解决高性噪比(SNR)下锁定的问题,避免了额外的增设电路,简化了MIMO检测器的结构。In the traditional MCMC algorithm, an additional circuit is needed to simulate a Gaussian white noise signal to increase the transition probability and reduce the locked state. The multi-input multi-output detector of the present invention uses probability calculation to realize the MCMC algorithm, and the probability calculation itself can generate white noise calculation variance, which can improve the transition probability of the Markov chain in the MCMC algorithm, so it can intelligently solve the problem of high SNR (SNR) ) The problem of lower locking avoids additional additional circuits and simplifies the structure of the MIMO detector.
利用滑窗生成序列法(SWG)进行Gibbs采样更新,滑窗法仅利用了部分概率序列的统计值,而不是所有的概率,因此其计算周期由全序列长度减少为窗口长度,以减少计算周期,加快运算速度。Using the sliding window generation sequence method (SWG) for Gibbs sampling update, the sliding window method only uses the statistical value of part of the probability sequence, not all the probabilities, so its calculation cycle is reduced from the full sequence length to the window length to reduce the calculation cycle , to speed up the operation.
应用本发明多输入多输出检测器构建全并行检测系统,能够以全并行的方式实现全并行检测系统构建,可以达到较高的吞吐率。Applying the multi-input multi-output detector of the present invention to construct a fully parallel detection system can realize the construction of a fully parallel detection system in a fully parallel manner, and can achieve a higher throughput rate.
附图说明:Description of drawings:
图1是本发明多输入多输出检测器的结构组成框图。Fig. 1 is a structural block diagram of the MIMO detector of the present invention.
图2是检测器中随机序列生成器的结构组成框图。Figure 2 is a block diagram of the structure of the random sequence generator in the detector.
图3是检测器中概率复数乘法器的结构组成框图。Figure 3 is a block diagram of the structure of the probabilistic complex multiplier in the detector.
图4是滑窗生成序列(SWG)法中Gibbs采样更新的信号处理流程图。Figure 4 is a flow chart of signal processing for Gibbs sampling update in the sliding window generation sequence (SWG) method.
图5是检测器中对数似然比(LLR)计算单元结构组成框图。Fig. 5 is a block diagram of the composition of the logarithmic likelihood ratio (LLR) calculation unit in the detector.
图6是本发明全并行多输入多输出检测器的结构组成框图。Fig. 6 is a block diagram of the structure of the all-parallel MIMO detector of the present invention.
具体实施方式Detailed ways
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。The present invention will be further described in detail below in conjunction with test examples and specific embodiments. However, it should not be understood that the scope of the above subject matter of the present invention is limited to the following embodiments, and all technologies realized based on the content of the present invention belong to the scope of the present invention.
参考图1,本实施例列举的基于概率计算的多输入多输出检测器包括三个随机序列生成器,分别为第一随机序列生成器103、第二随机序列生成器108、第三随机序列生成器109;一个矩阵QR分解器104;两个概率复数乘法器,分别为第一概率复数乘法器112和第二概率复数乘法器119;Gibbs采样更新单元113;对数似然比(LLR)计算单元115。With reference to Fig. 1, the multi-input multi-output detector based on the calculation of probability that the present embodiment enumerates comprises three random sequence generators, is respectively the first
基于概率计算的多输入多输出检测器的输入信号为接收天线接收到的接收信号Z和信道矩阵H,信道矩阵H有Nr行Nt列,Nr为发送天线数,Nt为接收天线数。接收信号Z经过第一随机序列生成器103形成满足概率计算的信号序列所述满足概率计算的序列的含义是用于概率计算的布尔型概率序列,即是说,信号序列为布尔型概率序列。用于MIMO信号检测的信道矩阵H经过矩阵QR分解器104完成QR分解,得到子矩阵Q和子矩阵R,其中,Q为正交矩阵,R为上三角矩阵,子矩阵R经过第三随机序列生成器109形成满足概率计算的随机序列子矩阵Q经过矩阵求逆运算得到表征矩阵QH,表征矩阵QH再经过第二随机序列生成器108形成满足概率计算的随机序列随机序列和信号序列一起被送入第一概率复数乘法器112,得到随机序列和Gibbs采样更新单元113输出的似然估计序列S(初始化时,Gibbs采样更新单元没有输出,因此预输入任意值组成的S序列作为似然估计序列的初始序列)一起被送入第二概率复数乘法器119得到和一起被送入对数似然比计算单元进行最大似然估计值运算,求取到的最大似然估计值传输至Gibbs采样更新单元113,进行蒙特卡洛马尔科夫链算法中的Gibbs采样更新运算,得到更新后的似然估计序列S,更新后的似然估计序列S再传输至对数似然比计算单元,与和一起进行最大似然估计值运算。对数似然比计算单元运算得到的最大似然估计值传输至Gibbs采样更新单元进行似然估计序列更新,更新后的似然估计序列再返回至对数似然比计算单元参与最大似然估计值运算,如此迭代更新,直至迭代检测完成后,即迭代次数达到设定值(迭代次数根据实际信道条件而设定,迭代次数越多,获取的似然估计值越精确,通常的,设置迭代次数为24次即可),由LLR计算单元115输出发送信息的最大似然估计值该最大似然估计值即为多输入多输出检测器的输出。The input signal of the MIMO detector based on probability calculation is the received signal Z received by the receiving antenna and the channel matrix H. The channel matrix H has N r rows and N t columns, N r is the number of transmitting antennas, and N t is the receiving antenna number. The received signal Z passes through the first
参考图2,三个随机序列生成器(103、108、109)的结构相同,第一随机序列生成器103的输入信号是接收天线接收到的接收信号Z,第二随机序列生成器108的输入信号是子矩阵Q经过矩阵求逆运算得到表征矩阵QH,第三随机序列生成器109的输入信号是经过QR分解得到的子矩阵R,为了便于说明随机序列生成器的结构,将随机序列生成器的输入统一称为输入信号x0,如果输入信号是复数信号,则将复数信号用两路信号x'0和x″0表示,分别表示其实部和虚部。如果输入信号为实数信号,则用一路信号表示(相当于其虚部为零)。输入信号x0的动态范围为(-m,m),经过绝对值运算模块202进行求绝对值运算,得到输入信号x0的绝对值|x0|。针对每一个时钟,将绝对值|x0|和一个在区间[0,m)内满足均匀分布的随机数送入比较器205进行比较,根据比较规则获得比较输出值0或1,比较规则为:如果绝对值|x0|大于随机数则输出1,否则输出0。随着时钟的推进,得到由1和0组成的值序列value(x),其长度为32,如图2中所示的value(x)序列010001110011…,由实际仿真结果得出。与值序列value(x)中每个比特相对应,根据符号规则得到由0或1组成的符号序列sign(x),其长度也是32,如图2中所示的序列000000000000…。符号规则为:如果x0小于0,则输出1,否则输出0。value(x)序列和sign(x)序列均为布尔型序列向量,value(x)序列和sign(x)序列共同构成概率随机序列需要说明的是,针对复数信号,复数信号分别用两路信号x'0和x″0表示其实部和虚部,分别针对实部和虚部,获取实部的值序列、符号序列,及获取虚部的值序列、符号序列。Referring to Fig. 2, three random sequence generators (103, 108, 109) have the same structure, the input signal of the first
参考图3,概率复数乘法器的输入量为随机序列生成器生成的布尔型概率序列,即是说,概率复数乘法器利用概率计算方法完成复数乘法运算。概率复数乘法器由四个概率实数乘法器(308、309、312、313)、两个概率实数加法器(310、314)和一个取反电路组成,概率实数乘法器(308、309、312、313)和概率实数加法器(310、314)由简单的逻辑门实现。概率复数乘法器的输入量有两个,第一概率复数乘法器的两个输入量分别为来自第一随机序列生成器的及来自第二随机序列生成器的第二概率复数乘法器的两个输入量分别为来自第三随机序列生成器的及来自Gibbs采样更新单元113的更新后的似然估计序列(第一次进行复数乘法运算时,由于Gibbs采样更新单元113没有输出,因此,第一次进行复数乘法运算时,以给定的随机序列S为输入量)针对概率复数乘法器的两个输入量,其中一个输入量称为输入乘数,另一个输入量称为输入被乘数,其中输入乘数和输入被乘数均分别由实部随机序列和虚部随机序列构成,输入乘数可表示为a+jb,输入被乘数表示为c+jd,a和c分别表示实部随机序列,b和d分别表示虚部随机序列,j为虚数单位。概率复数乘法器对两个输入量进行乘法运算,得到x+jy=(a+jb)(c+jd),x为概率复数乘法器输出的实部随机序列,y为概率复数乘法器输出的虚部随机序列。输入被乘数的实部随机序列a和输入乘数的实部随机序列c一起经过概率实数乘法器308进行乘法运算,运算结果输入至概率实数加法器310;输入被乘数的虚部随机序列b和输入乘数的虚部随机序列d一起经过概率实数乘法器309进行乘法运算,运算结果再经过取反电路进行取反,取反后的运算结果再输入至概率实数加法器310;概率实数加法器310输出的x为概率复数乘法器输出的实部随机序列。输入被乘数的实部随机序列a和输入乘数的虚部随机序列d一起经过概率实数乘法器313进行乘法运算,运算结果输入至概率实数加法器314;输入被乘数的虚部随机序列b和输入乘数的实部随机序列c一起经过概率实数乘法器312进行乘法运算,运算结果输入至概率实复数加法器314;概率实数加法器314输出的y为概率复数乘法器输出的虚部随机序列。Referring to Fig. 3, the input quantity of the probability complex multiplier is the Boolean probability sequence generated by the random sequence generator, that is to say, the probability complex multiplier uses the probability calculation method to complete complex multiplication. The probability complex multiplier is composed of four probability real number multipliers (308, 309, 312, 313), two probability real number adders (310, 314) and a negation circuit, and the probability real number multipliers (308, 309, 312, 313) and probabilistic real number adders (310, 314) are realized by simple logic gates. There are two input quantities of the probability complex multiplier, and the two input quantities of the first probability complex multiplier are respectively from the first random sequence generator and from the second random sequence generator The two inputs of the second probabilistic complex multiplier are respectively from the third random sequence generator and the updated likelihood estimation sequence from the Gibbs sampling update unit 113 (when the complex multiplication is performed for the first time, since the Gibbs
在随机序列生成器中,输入信号的绝对值与区间[0,m)内满足均匀分布的随机数进行比较,获得由值0或1构成的值序列。在概率复数乘法器中,对两个输入量进行乘法运算,两个输入量的序列中只有相应位置的两个值均为1,其乘积才为1。值序列中的值0或1是由输入信号的绝对值与区间[0,m)内的随机数比较得到的,那么得到值为1的概率为基于概率计算,仅需要较少的逻辑运算单元即完成乘积运算,降低了运算复杂度,简化了检测器的结构。In the random sequence generator, the absolute value of the input signal is compared with a random number that satisfies a uniform distribution in the interval [0,m), and a sequence of values consisting of 0 or 1 is obtained. In the probabilistic complex multiplier, two input quantities are multiplied. In the sequence of the two input quantities, the product is 1 only if the two values at the corresponding positions are both 1. The
为了便于描述,将概率实数乘法器(308、309、312、313)的两个输入量(输入被乘数的实部随机序列a和输入乘数的实部随机序列c,或者输入被乘数的虚部随机序列b和输入乘数的虚部随机序列d,或者输入被乘数的实部随机序列a和输入乘数的虚部随机序列d,或者输入被乘数的虚部随机序列b和输入乘数的实部随机序列c)表示为x1和y1,概率实数乘法器对输入的两个随机序列x1和y1进行如下逻辑运算:For the convenience of description, the two input quantities of the probability real number multiplier (308, 309, 312, 313) (input the real part random sequence a of the multiplicand and the real part random sequence c of the input multiplier, or input the multiplicand The random sequence b of the imaginary part of the input multiplier and the random sequence d of the imaginary part of the input multiplier, or the random sequence a of the real part of the input multiplicand and the random sequence d of the imaginary part of the input multiplier, or the random sequence b of the imaginary part of the input multiplicand and the real part random sequence c) of the input multiplier is expressed as x1 and y1, and the probability real number multiplier performs the following logic operations on the two input random sequences x1 and y1:
sign(z1)=sign(x1)XORsign(y1)sign(z1)=sign(x1)XORsign(y1)
value(z1)=value(x1)ANDvalue(y1)value(z1)=value(x1)ANDvalue(y1)
sign(z1)、value(z1)分别为两个输入量经过概率实数乘法器运算后得到的符号向量和绝对值向量。sign(z1) and value(z1) are the sign vector and the absolute value vector obtained after the two input quantities are operated by the probability real number multiplier respectively.
为了便于描述,将概率实数加法器(310、314)的两个输入量表示为x2和y2,对输入的两个随机序列x2和y2进行如下逻辑运算:For the convenience of description, the two input quantities of the probabilistic real number adder (310, 314) are expressed as x2 and y2, and the following logical operations are performed on the two input random sequences x2 and y2:
sign(z2)=(value(x2)ANDsign(y2))OR(value(y2)ANDsign(x2))sign(z2)=(value(x2)ANDsign(y2))OR(value(y2)ANDsign(x2))
value(z2)=(value(x2)XNORvalue(y2))OR(value(x2)AND(sign(y2)XORsign(x2)))value(z2)=(value(x2)XNORvalue(y2))OR(value(x2)AND(sign(y2)XORsign(x2)))
sign(z2)、value(z2)分别为两个输入量经过概率实数加法器运算后得到的符号向量和绝对值向量。sign(z2) and value(z2) are the sign vector and absolute value vector obtained after the two input quantities are operated by the probabilistic real number adder respectively.
为了便于描述,将取反电路的输入量表示为x3,取反电路对输入的随机序列x3进行如下逻辑运算:For the convenience of description, the input quantity of the inversion circuit is expressed as x3, and the inversion circuit performs the following logical operation on the input random sequence x3:
sign(z3)=NOT(sign(x3))sign(z3)=NOT(sign(x3))
value(z3)=value(x3)value(z3)=value(x3)
sign(z3)、value(z3)分别为输入量经过取反电路运算后得到的符号向量和绝对值向量。sign(z3) and value(z3) are the sign vector and absolute value vector obtained after the input quantity undergoes negation circuit operation respectively.
下面结合图4、图5来说明对数似然比计算单元和Gibbs采样更新的过程。参考图5,在LLR计算单元的三个输入量分别是来自第一概率复数乘法器的来自第二概率复数乘法器的和来自Gibbs采样更新单元更新后的似然估计序列S,三个输入量均以随机序列表征。为了保证以较短的序列获得满足系统性能要求的计算精度,对和进行滑窗处理,即是说,以时间长度t1为窗口,分别选取和序列中时间窗口t1内截取的数据进行对数似然比计算。The process of log-likelihood ratio calculation unit and Gibbs sampling update will be described below with reference to FIG. 4 and FIG. 5 . Referring to Fig. 5, the three input quantities of the LLR calculation unit are respectively from the first probability complex multiplier from the second probability complex multiplier and the updated likelihood estimation sequence S from the Gibbs sampling update unit, the three input quantities are characterized by random sequences. In order to ensure that the calculation accuracy that meets the system performance requirements is obtained in a short sequence, the and Carry out sliding window processing, that is to say, take the time length t 1 as the window, select and The data intercepted in the time window t1 in the sequence are calculated by logarithmic likelihood ratio.
参考图5,在LLR计算单元中进行如下计算:With reference to Figure 5, the following calculations are performed in the LLR calculation unit:
式中,表示序列中每个数值与S序列中每个数值相乘,表示序列中与S序列中参数相对应的第k个部分(每一个部分包含的数值个数与参数中数值个数相同)的每个数值与参数中每个数值相乘。LLR计算单元由三个子运算单元(501、502、503)组成,其中,子运算单元501完成的计算工作,具体的,Nt(Nt为接收天线数)个输入量经过一概率复数加法器进行求和运算,再经过取反电路取反,取反后的值与一起输入一个概率复数加法器进行求和运算,运算结果作为一个输入量分别输入至M(M为一个时间窗口t1内截取的数据个数)路概率复数加法器,在各路概率复数加法器中,运算结果与一起进行加法运算,得到的运算值再经过取绝对值||·||得到输出至子运算单元502。子运算单元502完成对Nt个值进行求和运算,具体的,先求取出Nt个输入量的平方,求取平方后Nt个输入量经过一个概率实数加法器进行加法运算,得到的再将求得的和由概率序列转换为二进制数,并输出至存储器。子运算单元501和子运算单元502分别针对每一个似然估计序列S中的参数求取出其并将求得的和由概率序列转换为二进制数,输出至存储器存储。子运算单元503完成的计算,即是说,子运算单元503从存储器中存储的Nt个中,求取与接收信号偏差最小的值,即最大似然估计值然后将输出至Gibbs采样更新单元。In the formula, express Each value in the sequence is multiplied by each value in the S sequence, express In-sequence and S-sequence parameters The corresponding kth part (the number of values and parameters contained in each part The same number of values in the middle) each value and parameter Multiply each value in . The LLR calculation unit is composed of three sub-operation units (501, 502, 503), among which, the
Gibbs采样更新是经典的蒙特卡洛马尔科夫链(MCMC)算法,本发明用滑窗序列生成(SWG)法截短的随机序列以概率计算的方法完成Gibbs采样和更新运算。参考图4,在Gibbs采样更新单元中,根据来自LLR计算单元的最大似然估计值进行采样更新,根据得到似然估计序列S中更新后的即是说,当来自LLR计算单元的最大似然估计值小于零时xk,b=1,当大于零时xk,b=-1,当等于零时,随机的xk,b=1或xk,b=-1,evenly的含义是“随机的”。由M个xk,b组成序列[xk,1,xk,2...,xk,b,...xk,M],[xk,1,xk,2...,xk,b,...xk,M]经过QAM映射后得到替代原似然估计序列S中的参数S1,原似然估计序列S中的其他参数不变,得到第一次更新后的似然估计序列S,更新后的似然估计序列输出至第二概率复数乘法单元,与进行复数乘法运算,得到在第一次采样更新时,似然估计序列S为任意给定的随机序列,由组成。更新后的似然估计序列S与经过第二次滑窗处理后的一起在LLR计算单元中进行似然估计值运算,获取最大似然估计值,并传输至Gibbs采样更新单元。更新后的似然估计序列S在Gibbs采样更新单元中进行第二次Gibbs采样运算,得到更新后的即是说,第一次更新后的似然估计序列S中的S2由再次更新后的替代,得到再次更新后的似然估计序列S, 如此,进行至第Nt次Gibbs采样运算后,得到更新后的即完成整个似然估计序列S中所有的参数更新,得到完全更新后的似然估计序列S',
本发明还提供了应用本发明基于概率计算的多输入多输出检测器构建的全并行检测系统。全并行检测系统包括多个基于概率计算的多输入多输出检测器(如图中的604、606、607),每个基于概率计算的多输入多输出检测器均与一个译码器608并行连接,各个基于概率计算的多输入多输出检测器将求取的最终的最大似然估计值输出至译码器中。由于每个基于概率计算的多输入多输出检测器都会对信道矩阵H进行QR分解,因此采用一个公用的矩阵预处理单元,降低运算量,提高处理效率。参考图6,矩阵预处理单元601连接L个基于概率计算的多输入多输出检测器,矩阵预处理单元中包括矩阵QR分解器和两个随机序列生成器,信道矩阵H经矩阵QR分解器分解为子矩阵Q和子矩阵R,子矩阵R经过随机序列生成器生成随机序列子矩阵Q经过随机序列生成器生成随机序列和再广播至L路并行的基于概率计算的多输入多输出检测器。 和Z1在第一路MIMO检测器607求解出发送信号的最大似然估计值;和Z2在第二路MIMO检测器604求解出发送信号的最大似然估计值;如此并行完成L路MIMO信号检测,获得提供给译码器608使用的代表一个完整发送信道码码字的最大似然估计值,由译码器608完成信道译码,获得通信所传输的数据信息。全并行检测系统可以处理L路并行的MIMO符号,L由信道编码长度、调制方式、MIMO规模共同决定,使得L路并行检测的结果可以支持一个完整的信道码码字进行并行译码,信道译码由译码器608完成,可以是LDPC、Turbo、卷积码、BHC码、RS码等纠错编码形式。The invention also provides a fully parallel detection system constructed by applying the probability calculation-based MIMO detector of the invention. The full parallel detection system includes multiple probability-based multiple-input multiple-output detectors (604, 606, 607 in the figure), and each probability-based multiple-input multiple-output detector is connected in parallel with a
本发明多输入多输出检测器可以以专用集成电路的形式实现,或者以可编程逻辑门阵列的形式实现,或者以可编程通用微处理器电路的形式实现。The multiple-input multiple-output detector of the present invention can be implemented in the form of an application-specific integrated circuit, or in the form of a programmable logic gate array, or in the form of a programmable general-purpose microprocessor circuit.
本发明同时还提供了一种基于概率计算的多输入多输出检测器的检测方法,包括以下步骤:The present invention also provides a detection method based on a probability calculation MIMO detector, comprising the following steps:
步骤1:矩阵QR分解器将信道矩阵H分解成子矩阵Q和R,子矩阵R经过第三随机序列生成器生成随机序列并输出至第一概率复数乘法器,子矩阵Q经过矩阵求逆运算得到表征矩阵QH,表征矩阵QH再经过第二随机序列生成器生成随机序列并输出至第二概率复数乘法器;接收信号Z经过第一随机序列生成器生成信号序列并输出至第一概率复数乘法器。Step 1: The matrix QR decomposer decomposes the channel matrix H into sub-matrices Q and R, and the sub-matrix R generates a random sequence through the third random sequence generator And output to the first probability complex multiplier, the sub-matrix Q undergoes matrix inversion operation to obtain the representation matrix Q H , and the representation matrix Q H generates a random sequence through the second random sequence generator And output to the second probability complex multiplier; the received signal Z generates a signal sequence through the first random sequence generator And output to the first probability complex multiplier.
步骤2:第一概率复数乘法器对和进行复数乘法运算,获得并输出至对数似然比计算单元;第二概率复数乘法器对和Gibbs采样更新单元输出的更新后的似然估计序列S进行复数乘法运算,获得首次进行复数乘法运算时,由于Gibbs采样更新单元没有输出,因此,进行复数乘法运算的是任意给出的S序列。Step 2: First Probabilistic Complex Multiplier Pair and Perform complex multiplication to obtain And output to the logarithmic likelihood ratio computing unit; The second probability complex multiplier pairs Perform complex multiplication with the updated likelihood estimation sequence S output by the Gibbs sampling update unit to obtain When the complex multiplication operation is performed for the first time, since the Gibbs sampling update unit has no output, the complex multiplication operation is an arbitrarily given S sequence.
具体的,第一概率复数乘法器和第二概率复数乘法器中,第一概率实数乘法器对输入被乘数的实部随机序列和输入乘数的实部随机序列进行乘法运算,并将运算结果输出至第一概率实数加法器;第二概率实数乘法器对输入被乘数的虚部随机序列和输入乘数的虚部随机序列进行乘法运算,运算结果经过取反后输出至第一概率实数加法器;第一概率实数加法器对两个输入量求和后获得输出量的实部随机序列;第三概率实数乘法器对输入被乘数的实部随机序列和输入乘数的虚部随机序列进行乘法运算,并将运算结果输出至第二概率实数加法器;第四概率实数乘法器对输入被乘数的虚部随机序列和输入乘数的实部随机序列进行乘法运算,并将运算结果输出至第二概率实复数加法器;第二概率实数加法器对两个输入量求和后获得输出量的虚部随机序列。Specifically, in the first probabilistic complex multiplier and the second probabilistic complex multiplier, the first probabilistic real multiplier multiplies the real part random sequence of the input multiplicand and the real part random sequence of the input multiplier, and performs the operation The result is output to the first probability real number adder; the second probability real number multiplier multiplies the imaginary part random sequence of the input multiplicand and the imaginary part random sequence of the input multiplier, and the operation result is inverted and output to the first probability Real number adder; the first probability real number adder sums the two input quantities to obtain the real part random sequence of the output quantity; the third probability real number multiplier inputs the real part random sequence of the multiplicand and the imaginary part of the input multiplier The random sequence is multiplied, and the result of the operation is output to the second probability real number adder; the fourth probability real number multiplier multiplies the imaginary part random sequence of the input multiplicand and the real part random sequence of the input multiplier, and The operation result is output to the second probabilistic real-complex adder; the second probable real-complex adder sums the two input quantities to obtain a random sequence of the imaginary part of the output quantity.
步骤3:对数似然比计算单元对输入的和进行滑窗处理后,与更新后的似然估计序列S进行
步骤4:Gibbs采样更新单元根据最大似然估计值更新似然估计序列S,根据得到似然估计序列S中更新后的即是说,当来自LLR计算单元的最大似然估计值小于零时xk,b=1,当大于零时xk,b=-1,当等于零时,随机的xk,b=1或xk,b=-1,evenly的含义是“随机的”。由M个xk,b组成序列[xk,1,xk,2...,xk,b,...xk,M],[xk,1,xk,2...,xk,b,...xk,M]经过QAM映射后得到替代原似然估计序列S中的参数S1,原似然估计序列S中的其他参数不变,得到第一次更新后的似然估计序列S,更新后的似然估计序列输出至第二概率复数乘法单元,与进行复数乘法运算。第一次采样更新时,似然估计序列S为任意给定的随机序列,由组成。更新后的似然估计序列S与经过第二次滑窗处理后的一起在LLR计算单元中进行似然估计值运算,获取最大似然估计值,并传输至Gibbs采样更新单元。更新后的似然估计序列S在Gibbs采样更新单元中进行第二次Gibbs采样运算,得到更新后的即是说,第一次更新后的似然估计序列S中的S2由再次更新后的替代,得到再次更新后的似然估计序列S,如此,进行至第Nt次Gibbs采样运算后,得到更新后的即完成整个似然估计序列S中所有的参数更新,得到完全更新后的似然估计序列S', 完成一次更新迭代。完成一次更新迭代后,对更新后的似然估计序列S'再次进行迭代更新,直至迭代次数达到设定值,得到最终更新后的似然估计序列S'z,似然估计序列S'z再被送至LLR计算单元,求取出最终的最大似然估计值输出。多输入多输出检测器与译码器连接后,多输入多输出检测器将求取的最终的最大似然估计值输出至译码器。Step 4: The Gibbs sampling update unit updates the likelihood estimation sequence S according to the maximum likelihood estimation value, according to Get the updated likelihood estimation sequence S That is, when the maximum likelihood estimate from the LLR computation unit When x k,b =1 is less than zero, when When x k,b =-1 is greater than zero, when When equal to zero, random x k,b =1 or x k,b =-1, evenly means "random". A sequence [x k ,1 ,x k,2 ...,x k,b ,...x k,M ] consists of M x k,b, [x k,1 ,x k,2 ... ,x k,b ,...x k,M ] are obtained after QAM mapping Substituting the parameter S 1 in the original likelihood estimation sequence S, and keeping other parameters in the original likelihood estimation sequence S unchanged, the likelihood estimation sequence S after the first update is obtained, The updated likelihood estimation sequence is output to the second probability complex multiplication unit, and Perform complex multiplication. When the first sampling is updated, the likelihood estimation sequence S is any given random sequence, given by composition. The updated likelihood estimation sequence S and after the second sliding window processing Together, the likelihood estimation value operation is performed in the LLR calculation unit to obtain the maximum likelihood estimation value, and is transmitted to the Gibbs sampling update unit. The updated likelihood estimation sequence S performs the second Gibbs sampling operation in the Gibbs sampling update unit to obtain the updated That is to say, S2 in the likelihood estimation sequence S after the first update is determined by the updated Instead, get the updated likelihood sequence S again, In this way, after the N t Gibbs sampling operation, the updated That is to complete all the parameter updates in the entire likelihood estimation sequence S, and obtain the completely updated likelihood estimation sequence S', Complete an update iteration. After completing an update iteration, iteratively update the updated likelihood estimation sequence S' again until the number of iterations reaches the set value, and obtain the final updated likelihood estimation sequence S' z , and then the likelihood estimation sequence S' z It is sent to the LLR calculation unit to obtain the final maximum likelihood estimation value output. After the MIMO detector is connected to the decoder, the MIMO detector outputs the obtained final maximum likelihood estimation value to the decoder.
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps.
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification (including any appended claims, abstract and drawings), unless expressly stated otherwise, may be replaced by alternative features which are equivalent or serve a similar purpose. That is, unless expressly stated otherwise, each feature is one example only of a series of equivalent or similar features.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410027994.6A CN103746731B (en) | 2014-01-21 | 2014-01-21 | Multiple-input and multiple-output detector and detection method based on probability calculation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410027994.6A CN103746731B (en) | 2014-01-21 | 2014-01-21 | Multiple-input and multiple-output detector and detection method based on probability calculation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103746731A true CN103746731A (en) | 2014-04-23 |
| CN103746731B CN103746731B (en) | 2017-03-15 |
Family
ID=50503728
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410027994.6A Expired - Fee Related CN103746731B (en) | 2014-01-21 | 2014-01-21 | Multiple-input and multiple-output detector and detection method based on probability calculation |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103746731B (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106059597A (en) * | 2016-05-19 | 2016-10-26 | 电子科技大学 | Signed probability calculating unit based on probability Turbo decoder |
| CN106603099A (en) * | 2016-12-19 | 2017-04-26 | 四川理工学院 | Single-bit receiver signal detection method based on probability calculations |
| CN108352841A (en) * | 2015-12-17 | 2018-07-31 | 国际商业机器公司 | single flux quantum probability digitizer |
| CN109495114A (en) * | 2018-10-10 | 2019-03-19 | 东南大学 | Ldpc decoder building method based on markov Monte Carlo method |
| CN109831215A (en) * | 2019-01-21 | 2019-05-31 | 湖南国科微电子股份有限公司 | Log-likelihood calculations apparatus and method |
| CN110168981A (en) * | 2017-01-17 | 2019-08-23 | 高通股份有限公司 | The beam combination scheme with beam index instruction is scanned with broadcast beam |
| CN110377267A (en) * | 2019-07-25 | 2019-10-25 | 中北大学 | A kind of plus/minus musical instruments used in a Buddhist or Taoist mass of signed number that concentrating sequence based on probability calculation |
| CN111277522A (en) * | 2020-01-23 | 2020-06-12 | 青岛科技大学 | Method for quickly reconstructing channel parameters in underwater acoustic OFDM communication system |
| CN112929660A (en) * | 2015-10-13 | 2021-06-08 | 三星电子株式会社 | Method and apparatus for encoding or decoding image |
| CN113726314A (en) * | 2021-08-19 | 2021-11-30 | 江苏润石科技有限公司 | High-precision fast comparator and design method thereof |
| CN115622665A (en) * | 2022-10-31 | 2023-01-17 | 电子科技大学 | A MCMC-MIMO detection method, device and system based on adaptive probability calculation |
| CN115733525A (en) * | 2022-10-31 | 2023-03-03 | 电子科技大学 | A MIMO Detection System Based on MCMC |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1832386A (en) * | 2005-03-10 | 2006-09-13 | 松下电器产业株式会社 | A multiple selection multiple input multiple output detection method and device based on reduced condition number |
-
2014
- 2014-01-21 CN CN201410027994.6A patent/CN103746731B/en not_active Expired - Fee Related
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11553182B2 (en) | 2015-10-13 | 2023-01-10 | Samsung Electronics Co., Ltd. | Method and device for encoding or decoding image |
| US11638006B2 (en) | 2015-10-13 | 2023-04-25 | Samsung Electronics Co., Ltd. | Method and device for encoding or decoding image |
| CN112929659B (en) * | 2015-10-13 | 2023-12-26 | 三星电子株式会社 | Method and apparatus for encoding or decoding image |
| CN112929660A (en) * | 2015-10-13 | 2021-06-08 | 三星电子株式会社 | Method and apparatus for encoding or decoding image |
| US12088808B2 (en) | 2015-10-13 | 2024-09-10 | Samsung Electronics Co., Ltd. | Method and device for encoding or decoding image |
| CN112929660B (en) * | 2015-10-13 | 2023-12-26 | 三星电子株式会社 | Method and apparatus for encoding or decoding image |
| CN112929659A (en) * | 2015-10-13 | 2021-06-08 | 三星电子株式会社 | Method and apparatus for encoding or decoding image |
| CN108352841A (en) * | 2015-12-17 | 2018-07-31 | 国际商业机器公司 | single flux quantum probability digitizer |
| CN108352841B (en) * | 2015-12-17 | 2021-04-27 | 国际商业机器公司 | Single flux quantum probability digitizer |
| CN106059597A (en) * | 2016-05-19 | 2016-10-26 | 电子科技大学 | Signed probability calculating unit based on probability Turbo decoder |
| CN106603099A (en) * | 2016-12-19 | 2017-04-26 | 四川理工学院 | Single-bit receiver signal detection method based on probability calculations |
| CN110168981A (en) * | 2017-01-17 | 2019-08-23 | 高通股份有限公司 | The beam combination scheme with beam index instruction is scanned with broadcast beam |
| CN110168981B (en) * | 2017-01-17 | 2022-01-25 | 高通股份有限公司 | Method and apparatus for decoding broadcast information jointly encoded with beam indices |
| CN109495114B (en) * | 2018-10-10 | 2022-07-26 | 东南大学 | Construction method of LDPC decoder based on Markov Monte Carlo method |
| CN109495114A (en) * | 2018-10-10 | 2019-03-19 | 东南大学 | Ldpc decoder building method based on markov Monte Carlo method |
| CN109831215A (en) * | 2019-01-21 | 2019-05-31 | 湖南国科微电子股份有限公司 | Log-likelihood calculations apparatus and method |
| CN110377267B (en) * | 2019-07-25 | 2021-03-16 | 中北大学 | Signed number adder/subtracter based on probability calculation concentrated sequence |
| CN110377267A (en) * | 2019-07-25 | 2019-10-25 | 中北大学 | A kind of plus/minus musical instruments used in a Buddhist or Taoist mass of signed number that concentrating sequence based on probability calculation |
| CN111277522A (en) * | 2020-01-23 | 2020-06-12 | 青岛科技大学 | Method for quickly reconstructing channel parameters in underwater acoustic OFDM communication system |
| CN113726314B (en) * | 2021-08-19 | 2023-11-21 | 江苏润石科技有限公司 | High-precision fast comparator and design method thereof |
| CN113726314A (en) * | 2021-08-19 | 2021-11-30 | 江苏润石科技有限公司 | High-precision fast comparator and design method thereof |
| CN115733525A (en) * | 2022-10-31 | 2023-03-03 | 电子科技大学 | A MIMO Detection System Based on MCMC |
| CN115622665A (en) * | 2022-10-31 | 2023-01-17 | 电子科技大学 | A MCMC-MIMO detection method, device and system based on adaptive probability calculation |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103746731B (en) | 2017-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103746731B (en) | Multiple-input and multiple-output detector and detection method based on probability calculation | |
| Jin et al. | A low complexity signal detection scheme based on improved Newton iteration for massive MIMO systems | |
| Meng et al. | A unified Bayesian inference framework for generalized linear models | |
| Gao et al. | Low‐complexity near‐optimal signal detection for uplink large‐scale MIMO systems | |
| He et al. | Generalized expectation consistent signal recovery for nonlinear measurements | |
| US9565581B2 (en) | Iterative detection-decoding system | |
| US9729277B2 (en) | Signal detecting method and device | |
| Nguyen et al. | Deep learning for estimation and pilot signal design in few-bit massive MIMO systems | |
| CN110730008B (en) | RS code belief propagation decoding method based on deep learning | |
| Zou et al. | Message passing based joint channel and user activity estimation for uplink grant-free massive MIMO systems with low-precision ADCs | |
| Chen et al. | Sparse code multiple access decoding based on a Monte Carlo Markov chain method | |
| CN109951214A (en) | A Signal Detection Method Applicable to Massive MIMO System | |
| Chen et al. | Stochastic MIMO detector based on the Markov chain Monte Carlo algorithm | |
| CN104506470A (en) | MMSE-IICPD (minimum mean-square error-iterative interference cancellation parallel detection) algorithm applicable to efficient calculation of symbol detection on parallel transmission system | |
| CN102882579B (en) | Parallel matrix inversion method for multi-antenna system | |
| Tera et al. | Deep learning approach for efficient 5g ldpc decoding in iot | |
| Cyriac et al. | Polar code encoder and decoder implementation | |
| CN106357367A (en) | Non-coherent joint detecting and channel decoding method under massive MIMO (multiple input multiple output) system | |
| Brennsteiner et al. | LAMANet: A real-time, machine learning-enhanced approximate message passing detector for massive MIMO | |
| Wang et al. | Expectation propagation-based sampling decoding: Enhancement and optimization | |
| CN103384180A (en) | Space-time coding method and device for multiple-input multiple-output system | |
| Zhang et al. | Low complexity signal detector based on Lanczos method for large-scale MIMO systems | |
| CN105553899B (en) | The signal detecting method and device of approximate solution are asked based on system of linear equations | |
| Yang et al. | Joint activity detection and channel estimation for massive connectivity network with 1-bit DAC | |
| CN102664707A (en) | Method for determining log-likelihood ratio, Turbo decoding method and device thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170315 |