CN103753585A - Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis - Google Patents
Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis Download PDFInfo
- Publication number
- CN103753585A CN103753585A CN201410010457.0A CN201410010457A CN103753585A CN 103753585 A CN103753585 A CN 103753585A CN 201410010457 A CN201410010457 A CN 201410010457A CN 103753585 A CN103753585 A CN 103753585A
- Authority
- CN
- China
- Prior art keywords
- manipulator
- grasping force
- central processing
- database
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000007 visual effect Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000010191 image analysis Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000007787 solid Substances 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
本发明涉及一种机械手及其抓紧力的调节方法,所述机械手还包括视觉图像采集系统及数据库;所述视觉图像采集系统拍集机械手将要抓握的物体的3D实体图像,并同时扫描被采集物体的尺寸信息,获得体积大小,传送至中央处理器;所述数据库存储有各类物品的图像资料及材质的密度、粗糙度、摩擦系数参数;所述中央处理将采集的3D实体图像与数据库中的图像资料比较判断,确定被抓握物体的种类,尺寸和体积,并调出该物体的材质的密度、粗糙度、摩擦系数参数,中央处理器根据上述参数输出抓举力信息至控制单元,所述控制单元控制机械手臂的抓紧力与举起力。本发明获得的是三维实体图像,能更为精确的计算机械臂所需输出的抓握力。
The invention relates to a manipulator and a method for adjusting its grasping force. The manipulator also includes a visual image acquisition system and a database; the visual image acquisition system captures a 3D solid image of an object to be grasped by the manipulator, and simultaneously scans the acquired The size information of the object is obtained and sent to the central processing unit; the database stores the image data of various items and the parameters of density, roughness and friction coefficient of the material; the central processing unit combines the collected 3D solid images with the database Compare and judge the image data in, determine the type, size and volume of the grasped object, and call out the density, roughness and friction coefficient parameters of the material of the object. The central processing unit outputs the grasping force information to the control unit according to the above parameters. The control unit controls the grasping force and lifting force of the mechanical arm. The present invention obtains a three-dimensional solid image, which can more accurately calculate the grasping force required to be output by the mechanical arm.
Description
the
技术领域 technical field
本发明涉及一种机械手及其抓紧力的调节方法,特别是涉及一种基于视觉图像分析的机械手及其抓紧力智能调节方法。 The invention relates to a manipulator and an adjustment method for its gripping force, in particular to an intelligent adjustment method for a manipulator and its gripping force based on visual image analysis. the
the
背景技术 Background technique
随着科学与技术的发展,机器人技术水平不断提高,其应用领域也不断扩大,也解决了人们生活中的许多难题。 国内制造业正面临着雇佣劳动力问题:劳动密集型制造企业需要大量雇佣劳务工,但每年长假过后,一线人员总有部分员工流失,有时会干扰正常生产,操作员更替频繁会影响产品质量,增加设备损坏率以及安全隐患事故增多。如今许多工人不愿意到生产线上进行重负荷作业,另外,劳动力成本不断提升。这些问题驱动企业不断引入机器人。 未来家庭机器人应用很多,诸如打扫卫生,照顾老人方面等。据2010年全国第六次人口普查,全国有60岁及以上老年人口的家庭户数为1.23亿户,其中,空巢家庭(子女外出工作或学习,老人独居)为0.43亿户,随着家用服务机器人技术的不断成熟,家用清洁和医疗陪护智能机器人的应用将越来越多。 但目前关键问题是:人可以根据经验判断出手抓取一个物体大概需要多少抓紧力和举起力,从而能保证把要抓举的物品抓紧并举起,涉及两个问题:第一不打滑掉下,第二举起力是多少。而且可以在抓举的过程中根据情况变化,如打滑,重量大等,通过大脑反应自动增加抓紧力和举起力,这是人智能的优势。而目前机械手还无法做到这一点,只是利用各种传感器技术等来努力向这一方向发展。 例如:在机械手抓取一些物品(体),如光滑的杯子、饼干,香烟,矿泉水等这类软包装、怕压坏的物品时,如何保证机械手在抓起它们,如一个装有水的圆柱形、光滑的玻璃杯时,既能抓起,又不至于抓紧力过大把被子压碎,使抓紧力恰到好处,这是一个难题。同时,还要能根据体积大小和不同材料,作出判断其重量,调整抓紧和移动(举起等)力是另一个关键性的难题。本专利基于视觉图像功能解决这两大问题。 With the development of science and technology, the level of robot technology has been continuously improved, and its application fields have also been continuously expanded, and it has also solved many problems in people's lives. The domestic manufacturing industry is facing the problem of employing labor: labor-intensive manufacturing enterprises need to hire a large number of laborers, but after the annual long holiday, some front-line personnel always lose some employees, which sometimes interferes with normal production. Frequent operator replacement will affect product quality and increase The rate of equipment damage and potential safety hazard accidents increased. Nowadays, many workers are unwilling to do heavy-duty work on the production line. In addition, labor costs continue to increase. These issues are driving companies to continuously introduce robots. In the future, there will be many applications for home robots, such as cleaning and caring for the elderly. According to the sixth national census in 2010, the number of households with elderly population aged 60 and above was 123 million, of which 43 million were empty-nest families (children went out to work or study, and the elderly lived alone). With the continuous maturity of service robot technology, there will be more and more applications of intelligent robots for household cleaning and medical care. But the key problem at present is: people can judge based on experience how much grasping force and lifting force are needed to grasp an object, so as to ensure that the object to be grasped is grasped and lifted, which involves two problems: first, it will not slip and fall, How much is the second lifting force. Moreover, it can automatically increase the grasping force and lifting force through the brain response according to changes in the situation during the snatch process, such as slippery, heavy weight, etc. This is the advantage of human intelligence. At present, manipulators are still unable to do this, but use various sensor technologies to develop in this direction. For example: when the manipulator grabs some items (body), such as smooth cups, biscuits, cigarettes, mineral water and other soft-packed items that are afraid of being crushed, how to ensure that the manipulator is grabbing them, such as a cylinder filled with water It is a difficult problem to get the grip just right for a shaped, smooth glass without overwhelming the grip and crushing the quilt. At the same time, it is also necessary to be able to judge its weight according to the volume and different materials, and to adjust the grasping and moving (lifting, etc.) force is another key problem. This patent solves these two major problems based on the visual image function. the
另在家庭机器人方面,特别是要处理一些常见、但不断变化的物品中有重要意义和作用。如一会拿杯子,一会拿纸巾,一会拿小孩橡胶玩具,一会拿水果香蕉等,家庭机器人需要判别出这些常用物品,从而合理施力。 In addition, in terms of home robots, it is of great significance and role, especially in dealing with some common but ever-changing items. For example, holding a cup for a while, a paper towel for a while, a child’s rubber toy for a while, and a fruit and banana for a while, the home robot needs to distinguish these commonly used items, so as to apply force reasonably. the
the
发明内容 Contents of the invention
本发明的目的在于提供了一种基于视觉图像分析的机械手及其抓紧力的智能调节方法,其具有成本低,反应灵敏等特点,可用于家庭机器人的物品抓取活动,也可用于工业生产。 The purpose of the present invention is to provide an intelligent adjustment method of the manipulator and its grasping force based on visual image analysis, which has the characteristics of low cost and sensitive response, and can be used for the grasping activities of household robots and industrial production. the
本发明的技术方案如下: Technical scheme of the present invention is as follows:
一种基于视觉图像分析的机械手,所述机械手包括中央处理器、控制单元及机械手臂,其特征在于: A kind of manipulator based on visual image analysis, described manipulator comprises central processing unit, control unit and mechanical arm, is characterized in that:
所述机械手还包括视觉图像采集系统及数据库;所述视觉图像采集系统拍集机械手将要抓握的物体的3D实体图像,并同时扫描被采集物体的尺寸信息,获得体积大小,传送至中央处理器; The manipulator also includes a visual image acquisition system and a database; the visual image acquisition system captures the 3D solid image of the object to be grasped by the manipulator, and scans the size information of the collected object at the same time to obtain the volume and send it to the central processing unit ;
所述数据库存储有各类物品的图像资料及材质的密度、粗糙度、摩擦系数参数; The database stores image data of various items and parameters of material density, roughness, and coefficient of friction;
所述中央处理将采集的3D实体图像与数据库中的图像资料比较判断,确定被抓握物体的种类,尺寸和体积,并调出该物体的材质的密度、粗糙度、摩擦系数参数,中央处理器根据上述参数输出抓举力信息至控制单元,所述控制单元控制机械手臂的抓紧力与举起力。 The central processing compares and judges the collected 3D solid image with the image data in the database, determines the type, size and volume of the grasped object, and calls out the density, roughness, and friction coefficient parameters of the material of the object, and the central processing The controller outputs information on the grasping force to the control unit according to the above parameters, and the control unit controls the grasping force and lifting force of the mechanical arm.
进一步的,所述视觉图像采集系统包括一光学扫描系统,所述光学扫描系统包括两个CCD相机及光栅发生器; Further, the visual image acquisition system includes an optical scanning system, and the optical scanning system includes two CCD cameras and a grating generator;
所述两个CCD相机按不同角度安装在机器人头部,所述光栅发生器将多组光栅条纹投影到物体表面,不同角度的两个CCD相机同时拍摄物体表面的条纹图案,并将条纹图像输入到中央处理器中。 The two CCD cameras are installed on the head of the robot at different angles, and the grating generator projects multiple groups of grating stripes onto the object surface, and the two CCD cameras at different angles simultaneously photograph the stripe patterns on the object surface, and input the stripe images into the central processing unit.
进一步的,所述机械手指端上安装有位移传感器,当检测到有微小滑移时,中央处理器根据滑移程度增加抓紧力。 Further, a displacement sensor is installed on the end of the mechanical finger, and when a slight slippage is detected, the central processing unit increases the gripping force according to the degree of slippage. the
进一步的,所述数据库不断更新新的物品图像资料及材质信息,并记忆已抓取物品的特征在下次重复抓取时调用。 Further, the database is continuously updated with new item image data and material information, and remembers the features of the captured items to be called when the next repeated capture is performed. the
the
一种机械手抓紧力智能调节方法,所述方法步骤如下: A method for intelligently adjusting the grasping force of a manipulator, the steps of the method are as follows:
(1)视觉图像采集系统拍摄机械手将要抓握的物体的3D实体图像,并同时扫描被采集物体的尺寸信息,获得体积大小,并传送至中央处理器; (1) The visual image acquisition system captures the 3D solid image of the object to be grasped by the manipulator, and scans the size information of the acquired object at the same time, obtains the volume size, and transmits it to the central processing unit;
(2)中央处理器将采集的实体图像与数据库比较判断,确定被抓握物体的材质的密度、粗糙度、摩擦系数等参数,中央处理器根据上述参数输出抓举力信息至控制单元,所述控制单元控制机械手臂的抓紧力与举起力。 (2) The central processor compares and judges the collected entity image with the database, and determines the material density, roughness, friction coefficient and other parameters of the grasped object, and the central processor outputs the grasping force information to the control unit according to the above parameters. The control unit controls the grasping force and lifting force of the mechanical arm.
进一步的,所述步骤(1)中,视觉图像采集系统的光学扫描步骤方法如下: Further, in the step (1), the optical scanning step method of the visual image acquisition system is as follows:
光学三维扫描系统中的光栅发生器将多组光栅条纹投影到物体表面,不同角度的两个CCD相机同时拍摄物体表面的条纹图案,并将条纹图像输入到计算机中,根据条纹曲率变化利用相位法和三角法精确计算出物体表面每一点的空间坐标(X、Y、Z)三维点云数据,判断出物体三维空间距离、尺寸;利用计算机控制,多角度拍摄并将多次拍摄的数据精确地拼合在一起,拍摄结果是物体的3D立体图像,获得物体大小和体积信息,并可根据物品外形特征,识别为哪种物品;当识别为某种物品时,调用数据库中该物品的密度, 粗糙度、摩擦系数等参数,中央处理器根据上述参数输出抓举力信息至控制单元,所述控制单元控制机械手臂的抓紧力与举起力。 The grating generator in the optical three-dimensional scanning system projects multiple groups of grating fringes onto the object surface, and two CCD cameras at different angles simultaneously capture the fringe patterns on the object surface, and input the fringe images into the computer, and use the phase method according to the fringe curvature changes The three-dimensional point cloud data of the space coordinates (X, Y, Z) of each point on the surface of the object can be accurately calculated by using trigonometry and trigonometry, and the three-dimensional space distance and size of the object can be judged; the data of multiple shots can be accurately captured by using computer control, multi-angle shooting Stitched together, the shooting result is a 3D stereoscopic image of the object, the size and volume information of the object is obtained, and the object can be identified according to the shape characteristics of the object; when it is identified as a certain object, the density of the object in the database is called, rough According to parameters such as degree and coefficient of friction, the central processing unit outputs information on the grasping force to the control unit, and the control unit controls the grasping force and lifting force of the mechanical arm.
本发明的技术方案与现有技术相比具有如下的有益效果: Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
(1)本发明的技术方案获得的是三维实体图像,所以与普通图像采集系统获得的二维图像相比具有更准确的物体判别率,从而能更为精确的计算机械臂所需输出的抓握力。 (1) The technical solution of the present invention obtains a three-dimensional solid image, so compared with the two-dimensional image obtained by the ordinary image acquisition system, it has a more accurate object discrimination rate, so that it can more accurately calculate the grasp output required by the manipulator. Grip.
(2)普通图像采集系统无法获得物体的外形尺寸和体积信息,而本视觉图像采集系统的扫描功能可以准确获得这些信息。 (2) Ordinary image acquisition systems cannot obtain the external dimensions and volume information of objects, but the scanning function of this visual image acquisition system can accurately obtain these information. the
the
附图说明 Description of drawings
图1是本发明专利的功能原理框图。 Fig. 1 is a functional principle block diagram of the patent of the present invention. the
图2是机械人结构示意图。 Figure 2 is a schematic diagram of the structure of the robot. the
图3是机械人头部结构示意图。 Fig. 3 is a schematic diagram of the structure of the head of the robot. the
其中,1-机器人头部;2-机械手,3-光学光栅式发生器,4-CCD相机,其中,3和4组成视觉图像采集系统。 Among them, 1-robot head; 2-manipulator, 3-optical grating generator, 4-CCD camera, among which, 3 and 4 form a visual image acquisition system. the
the
具体实施方式 Detailed ways
以水杯为例,首先判断出是一个玻璃杯:通过将拍摄的图像和数据库中已有的图像比较,判断出该玻璃水杯;继而判断出水的位置,然后判断出杯子的尺寸、大小体积,计算出水大概体积,继而计算出杯子重量,根据数据库中存储的资料,经中央处理器计算出要多少抓紧力,保证摩擦力能够在抓起杯子时不至于滑落。然后通过控制器,控制机械手运动并以合适的力夹(抓)紧光滑的玻璃杯。 Taking a water glass as an example, first determine that it is a glass: by comparing the captured image with the existing images in the database, determine the glass water glass; then determine the position of the water, and then determine the size, size and volume of the glass, and calculate The approximate volume of the water is produced, and then the weight of the cup is calculated. According to the information stored in the database, the central processing unit calculates the amount of gripping force required to ensure that the friction force can prevent the cup from slipping when grabbing it. Then through the controller, control the movement of the manipulator and clamp (catch) the smooth glass with a suitable force. the
对于一些常用的标准物品,如香烟、矿泉水等,当判断出后,则可直接调用数据库中针对这些物品已建立起的夹紧力数值。 For some commonly used standard items, such as cigarettes, mineral water, etc., after the judgment is made, the clamping force values established for these items in the database can be directly called. the
通过光学扫描仪对其外部进行扫描,通过中央处理器计算出体积,首先通过计算得出重力,然后计算其摩擦力,得出抓住物体时该施加的抓取力。 Its exterior is scanned by an optical scanner, the volume is calculated by the CPU, first gravity is calculated, and then friction is calculated to determine the grasping force that should be applied when grasping an object. the
同时,机械手指端上有位移传感器,但检测到有微小滑移时,则根据滑移程度增加抓紧力。 At the same time, there is a displacement sensor on the end of the mechanical finger, but when a small slip is detected, the gripping force is increased according to the degree of slip. the
同时,在抓起其他物品时,可通过图像识别及与数据库比较分析,确定是哪种材质,计算出体积,将该材质密度乘以体积就可得到重量。调出该材质的摩擦系数就可计算出该体的重量及所需多少夹紧力了,可实现人工智能调节。 At the same time, when grabbing other items, the material can be determined through image recognition and comparison with the database, and the volume can be calculated, and the weight can be obtained by multiplying the density of the material by the volume. The weight of the body and the required clamping force can be calculated by calling out the friction coefficient of the material, which can realize artificial intelligence adjustment. the
数据库可扩充物品信息,同时系统具有自学习功能,即可记忆已抓取物品的特征,供下次重复抓取时调用,从而提高速度。 但物体外形较复杂时,该视觉系统可围绕物体做360°扫描,这样就可获得该部件完整三维实体,从而准确计算出其体积。当机械手2准备抓取物品时,首先通过图像采集系统进行拍摄物体,通过与数据库比较判断材料,得到相应材料的相关参数,如密度,粗糙度等。
The database can expand the item information, and the system has a self-learning function, which can memorize the characteristics of the captured items and call them for the next repeated capture, thereby increasing the speed. However, when the shape of the object is complex, the vision system can scan 360° around the object, so that the complete three-dimensional entity of the part can be obtained, and its volume can be accurately calculated. When the
机械手在抓取物品前,首先对物品进行扫描。机器人头部1装有两个不同角度的CCD相机4。光学三维扫描系统中的光栅发生器3将多组光栅条纹投影到物体表面,不同角度的两个CCD相机同时拍摄物体表面的条纹图案,并将条纹图像输入到计算机中,根据条纹曲率变化利用相位法和三角法等精确计算出物体表面每一点的空间坐标(X、Y、Z)三维点云数据,能判断出物体三维空间距离、尺寸。利用计算机控制,多角度拍摄并将多次拍摄的数据精确地拼合在一起,拍摄结果是物体的3D立体图像。通过这种方式可获得物体大小和体积等信息。并可根据物品外形特征,与数据库图形资料比较分析进行识别为哪种物品,一旦识别为某种物品时,可调用数据库中该物品的密度,计算出重量。如:当判别为一瓶矿泉水时,已知塑料瓶体积,并可观察到水的高度,则可按塑料与水的体积和密度计算出总重量,再根据塑料瓶摩擦系数,最后计算出合适的夹紧力和举起力等。
Before the robot grabs the item, it first scans the item. The
通过处理器计算,得到物体的重量及抓取的摩擦力,从而确定机械手的抓紧力与举起力,避免抓紧力过大损坏物体。 Through the calculation of the processor, the weight of the object and the friction force of grasping are obtained, so as to determine the grasping force and lifting force of the manipulator, and avoid damage to the object due to excessive grasping force. the
通过控制单元将计算结果转化成控制指令发出给机械手,指导机械手完成动作。 The calculation results are converted into control commands by the control unit and sent to the manipulator to guide the manipulator to complete the action. the
所述的扫描方法可以用于柔软、易碎物体的扫描以及难于接触或不允许接触扫描的场合,扫描精度高。通过图像采集系统得到的物体3D立体图像用于判别材质,相比采集二维图像更准确,精度更高。通过这种方式,还还可实时监控物体的变形情况,并将实时指令传给机械手,使机械手根据物体形状调节力的大小,具有灵敏度高,安全可靠的特点。 The scanning method can be used for scanning soft and fragile objects and occasions where contact scanning is difficult or not allowed, and the scanning accuracy is high. The 3D stereoscopic image of the object obtained through the image acquisition system is used to distinguish the material, which is more accurate and precise than the two-dimensional image acquisition. In this way, the deformation of the object can also be monitored in real time, and real-time instructions can be transmitted to the manipulator, so that the manipulator can adjust the force according to the shape of the object, which has the characteristics of high sensitivity, safety and reliability. the
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410010457.0A CN103753585A (en) | 2014-01-10 | 2014-01-10 | Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410010457.0A CN103753585A (en) | 2014-01-10 | 2014-01-10 | Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103753585A true CN103753585A (en) | 2014-04-30 |
Family
ID=50520980
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410010457.0A Pending CN103753585A (en) | 2014-01-10 | 2014-01-10 | Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103753585A (en) |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104048607A (en) * | 2014-06-27 | 2014-09-17 | 上海朗煜电子科技有限公司 | Visual identification and grabbing method of mechanical arms |
| CN105459136A (en) * | 2015-12-29 | 2016-04-06 | 上海帆声图像科技有限公司 | Robot vision grasping method |
| CN105478363A (en) * | 2015-11-20 | 2016-04-13 | 苏州易瑞得电子科技有限公司 | Defective product detection and classification method and system based on three-dimensional figures |
| CN105479461A (en) * | 2016-01-26 | 2016-04-13 | 先驱智能机械(深圳)有限公司 | Control method, control device and manipulator system |
| CN106054829A (en) * | 2016-05-27 | 2016-10-26 | 山东建筑大学 | Domestic water carriage service robot system and motion method thereof |
| CN107000208A (en) * | 2014-12-16 | 2017-08-01 | 亚马逊技术股份有限公司 | Robotic grasping of items in an inventory system |
| CN107160387A (en) * | 2016-12-13 | 2017-09-15 | 陈胜辉 | A kind of material grasping means and system |
| CN107168110A (en) * | 2016-12-09 | 2017-09-15 | 陈胜辉 | A kind of material grasping means and system |
| CN107265129A (en) * | 2017-06-02 | 2017-10-20 | 成都福莫斯智能系统集成服务有限公司 | Using the system of image recognition auxiliary robot stacking |
| CN107966944A (en) * | 2017-11-30 | 2018-04-27 | 贵州财经大学 | Smart greenhouse zone control system and subregion picking method |
| CN108127666A (en) * | 2017-12-29 | 2018-06-08 | 深圳市越疆科技有限公司 | A kind of grasping means of mechanical arm, system and mechanical arm |
| WO2018176241A1 (en) * | 2017-03-28 | 2018-10-04 | 深圳市源畅通科技有限公司 | Production device machinery smart control system |
| CN109048975A (en) * | 2018-10-21 | 2018-12-21 | 西北农林科技大学 | A kind of force feedback system and its working method grabbing fruits and vegetables vacuum chuck |
| CN109459984A (en) * | 2018-11-02 | 2019-03-12 | 宁夏巨能机器人股份有限公司 | A kind of positioning grasping system and its application method based on three-dimensional point cloud |
| CN109927058A (en) * | 2017-12-05 | 2019-06-25 | 丰田自动车株式会社 | Grip device grasps determination method and grasps decision procedure |
| CN110014416A (en) * | 2019-04-10 | 2019-07-16 | 中国矿业大学 | A system and method for dynamic matching of clamping force of stacking robot |
| CN110038666A (en) * | 2019-05-13 | 2019-07-23 | 闽江师范高等专科学校 | Intelligent crushing machine and working method |
| CN110549353A (en) * | 2018-05-31 | 2019-12-10 | 国立大学法人名古屋大学 | Force vision device, robot, and computer-readable medium storing force vision program |
| CN110638312A (en) * | 2019-10-11 | 2020-01-03 | 广东美的厨房电器制造有限公司 | Control device, control method, cooking device and storage medium of cooking equipment |
| CN110815213A (en) * | 2019-10-21 | 2020-02-21 | 华中科技大学 | A method and device for parts recognition and assembly based on multi-dimensional feature fusion |
| CN110834335A (en) * | 2019-11-21 | 2020-02-25 | 广东弓叶科技有限公司 | Object clamping method and sorting equipment |
| CN111615623A (en) * | 2018-01-16 | 2020-09-01 | 首选网络株式会社 | Tactile information estimation device, haptic information estimation method, and program |
| CN112720495A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720500A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720498A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720499A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112775959A (en) * | 2020-07-24 | 2021-05-11 | 上海芯翌智能科技有限公司 | Method and system for determining grabbing pose of manipulator and storage medium |
| CN112847348A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, manipulator control device, pickup apparatus, and computer-readable storage medium |
| CN112847347A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, manipulator control device, electronic device, and storage medium |
| CN112847346A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, device, equipment and computer readable storage medium |
| CN114037756A (en) * | 2021-10-11 | 2022-02-11 | 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 | Automatic adding method and system of grinding body and terminal equipment |
| CN114193450A (en) * | 2021-12-10 | 2022-03-18 | 南京我乐家居智能制造有限公司 | Double-station robot feeding operation precision intelligent analysis and regulation method based on artificial intelligence |
| CN115139341A (en) * | 2021-03-31 | 2022-10-04 | 本田技研工业株式会社 | Tactile sensor, sensitivity switching circuit, and sensitivity switching method |
| CN115805457A (en) * | 2023-02-09 | 2023-03-17 | 中建科技集团有限公司 | Clamp regulation and control method and device based on computer vision, terminal and storage medium |
| CN120347783A (en) * | 2025-06-24 | 2025-07-22 | 四川译企科技有限公司 | Multi-degree-of-freedom robot control method and system |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1293752A (en) * | 1999-03-19 | 2001-05-02 | 松下电工株式会社 | Three-D object recognition method and pin picking system using the method |
| CN1483999A (en) * | 2003-08-15 | 2004-03-24 | 清华大学 | Method and system for measuring three-dimensional surface profile of object |
| CN1698067A (en) * | 2003-04-28 | 2005-11-16 | 索尼株式会社 | Image recognition device, method and robot device |
| CN101067548A (en) * | 2007-06-08 | 2007-11-07 | 东南大学 | Grating self-calibration method based on linear phase |
| CN101245994A (en) * | 2008-03-17 | 2008-08-20 | 南京航空航天大学 | Calibration method of structured light measurement system for three-dimensional contour of object surface |
| CN101430192A (en) * | 2007-11-07 | 2009-05-13 | 三菱电机株式会社 | Method and system for determining 3D pose of object in scene |
| CN102487667A (en) * | 2011-11-25 | 2012-06-13 | 南京林业大学 | Tea-leaf pick-up robot |
| JP5013270B2 (en) * | 2006-02-02 | 2012-08-29 | 株式会社安川電機 | Robot system |
| CN102902271A (en) * | 2012-10-23 | 2013-01-30 | 上海大学 | Binocular vision-based robot target identifying and gripping system and method |
| US20130054030A1 (en) * | 2011-08-29 | 2013-02-28 | Dainippon Screen Mfg. Co., Ltd. | Object gripping apparatus, object gripping method, and object gripping program |
| US20130204436A1 (en) * | 2012-02-03 | 2013-08-08 | Samsung Electronics Co., Ltd | Apparatus for controlling robot and control method thereof |
-
2014
- 2014-01-10 CN CN201410010457.0A patent/CN103753585A/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1293752A (en) * | 1999-03-19 | 2001-05-02 | 松下电工株式会社 | Three-D object recognition method and pin picking system using the method |
| CN1698067A (en) * | 2003-04-28 | 2005-11-16 | 索尼株式会社 | Image recognition device, method and robot device |
| CN1483999A (en) * | 2003-08-15 | 2004-03-24 | 清华大学 | Method and system for measuring three-dimensional surface profile of object |
| JP5013270B2 (en) * | 2006-02-02 | 2012-08-29 | 株式会社安川電機 | Robot system |
| CN101067548A (en) * | 2007-06-08 | 2007-11-07 | 东南大学 | Grating self-calibration method based on linear phase |
| CN101430192A (en) * | 2007-11-07 | 2009-05-13 | 三菱电机株式会社 | Method and system for determining 3D pose of object in scene |
| CN101245994A (en) * | 2008-03-17 | 2008-08-20 | 南京航空航天大学 | Calibration method of structured light measurement system for three-dimensional contour of object surface |
| US20130054030A1 (en) * | 2011-08-29 | 2013-02-28 | Dainippon Screen Mfg. Co., Ltd. | Object gripping apparatus, object gripping method, and object gripping program |
| CN102487667A (en) * | 2011-11-25 | 2012-06-13 | 南京林业大学 | Tea-leaf pick-up robot |
| US20130204436A1 (en) * | 2012-02-03 | 2013-08-08 | Samsung Electronics Co., Ltd | Apparatus for controlling robot and control method thereof |
| CN102902271A (en) * | 2012-10-23 | 2013-01-30 | 上海大学 | Binocular vision-based robot target identifying and gripping system and method |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104048607A (en) * | 2014-06-27 | 2014-09-17 | 上海朗煜电子科技有限公司 | Visual identification and grabbing method of mechanical arms |
| CN107000208A (en) * | 2014-12-16 | 2017-08-01 | 亚马逊技术股份有限公司 | Robotic grasping of items in an inventory system |
| US10272566B2 (en) | 2014-12-16 | 2019-04-30 | Amazon Technologies, Inc. | Robotic grasping of items in inventory system |
| CN105478363A (en) * | 2015-11-20 | 2016-04-13 | 苏州易瑞得电子科技有限公司 | Defective product detection and classification method and system based on three-dimensional figures |
| CN105459136A (en) * | 2015-12-29 | 2016-04-06 | 上海帆声图像科技有限公司 | Robot vision grasping method |
| CN105459136B (en) * | 2015-12-29 | 2017-07-14 | 上海帆声图像科技有限公司 | Robot vision grasping means |
| CN105479461A (en) * | 2016-01-26 | 2016-04-13 | 先驱智能机械(深圳)有限公司 | Control method, control device and manipulator system |
| CN106054829A (en) * | 2016-05-27 | 2016-10-26 | 山东建筑大学 | Domestic water carriage service robot system and motion method thereof |
| CN106054829B (en) * | 2016-05-27 | 2018-12-21 | 山东建筑大学 | Family send the method for operating of water service robot system |
| CN107168110A (en) * | 2016-12-09 | 2017-09-15 | 陈胜辉 | A kind of material grasping means and system |
| CN107160387A (en) * | 2016-12-13 | 2017-09-15 | 陈胜辉 | A kind of material grasping means and system |
| WO2018176241A1 (en) * | 2017-03-28 | 2018-10-04 | 深圳市源畅通科技有限公司 | Production device machinery smart control system |
| CN107265129A (en) * | 2017-06-02 | 2017-10-20 | 成都福莫斯智能系统集成服务有限公司 | Using the system of image recognition auxiliary robot stacking |
| CN107966944A (en) * | 2017-11-30 | 2018-04-27 | 贵州财经大学 | Smart greenhouse zone control system and subregion picking method |
| CN107966944B (en) * | 2017-11-30 | 2020-12-08 | 贵州财经大学 | Smart greenhouse partition control system and partition picking method |
| CN109927058A (en) * | 2017-12-05 | 2019-06-25 | 丰田自动车株式会社 | Grip device grasps determination method and grasps decision procedure |
| CN108127666A (en) * | 2017-12-29 | 2018-06-08 | 深圳市越疆科技有限公司 | A kind of grasping means of mechanical arm, system and mechanical arm |
| US11590658B2 (en) | 2018-01-16 | 2023-02-28 | Preferred Networks, Inc. | Tactile information estimation apparatus, tactile information estimation method, and program |
| CN111615623A (en) * | 2018-01-16 | 2020-09-01 | 首选网络株式会社 | Tactile information estimation device, haptic information estimation method, and program |
| CN110549353B (en) * | 2018-05-31 | 2022-10-14 | 国立大学法人名古屋大学 | Force vision device, robot, and computer-readable medium storing force vision program |
| CN110549353A (en) * | 2018-05-31 | 2019-12-10 | 国立大学法人名古屋大学 | Force vision device, robot, and computer-readable medium storing force vision program |
| CN109048975A (en) * | 2018-10-21 | 2018-12-21 | 西北农林科技大学 | A kind of force feedback system and its working method grabbing fruits and vegetables vacuum chuck |
| CN109048975B (en) * | 2018-10-21 | 2023-09-01 | 西北农林科技大学 | A Force Feedback System and Working Method of a Vacuum Suction Cup for Grabbing Fruits and Vegetables |
| CN109459984A (en) * | 2018-11-02 | 2019-03-12 | 宁夏巨能机器人股份有限公司 | A kind of positioning grasping system and its application method based on three-dimensional point cloud |
| CN110014416A (en) * | 2019-04-10 | 2019-07-16 | 中国矿业大学 | A system and method for dynamic matching of clamping force of stacking robot |
| CN110038666B (en) * | 2019-05-13 | 2024-03-29 | 闽江师范高等专科学校 | Intelligent crushing machine |
| CN110038666A (en) * | 2019-05-13 | 2019-07-23 | 闽江师范高等专科学校 | Intelligent crushing machine and working method |
| CN110638312A (en) * | 2019-10-11 | 2020-01-03 | 广东美的厨房电器制造有限公司 | Control device, control method, cooking device and storage medium of cooking equipment |
| CN110815213A (en) * | 2019-10-21 | 2020-02-21 | 华中科技大学 | A method and device for parts recognition and assembly based on multi-dimensional feature fusion |
| CN110815213B (en) * | 2019-10-21 | 2021-03-19 | 华中科技大学 | Part identification and assembly method and device based on multi-dimensional feature fusion |
| CN110834335A (en) * | 2019-11-21 | 2020-02-25 | 广东弓叶科技有限公司 | Object clamping method and sorting equipment |
| CN112775959A (en) * | 2020-07-24 | 2021-05-11 | 上海芯翌智能科技有限公司 | Method and system for determining grabbing pose of manipulator and storage medium |
| CN112720499B (en) * | 2020-12-30 | 2022-06-17 | 深兰智能科技(上海)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112847348A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, manipulator control device, pickup apparatus, and computer-readable storage medium |
| CN112847346A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, device, equipment and computer readable storage medium |
| CN112847347A (en) * | 2020-12-30 | 2021-05-28 | 深兰人工智能芯片研究院(江苏)有限公司 | Manipulator control method, manipulator control device, electronic device, and storage medium |
| CN112720498A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720500A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720499A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN112720495A (en) * | 2020-12-30 | 2021-04-30 | 深兰人工智能芯片研究院(江苏)有限公司 | Control method and device for manipulator, pickup device and storage medium |
| CN115139341A (en) * | 2021-03-31 | 2022-10-04 | 本田技研工业株式会社 | Tactile sensor, sensitivity switching circuit, and sensitivity switching method |
| CN114037756A (en) * | 2021-10-11 | 2022-02-11 | 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 | Automatic adding method and system of grinding body and terminal equipment |
| CN114193450A (en) * | 2021-12-10 | 2022-03-18 | 南京我乐家居智能制造有限公司 | Double-station robot feeding operation precision intelligent analysis and regulation method based on artificial intelligence |
| CN114193450B (en) * | 2021-12-10 | 2022-12-30 | 南京我乐家居智能制造有限公司 | Double-station robot feeding operation precision intelligent analysis and regulation method based on artificial intelligence |
| CN115805457A (en) * | 2023-02-09 | 2023-03-17 | 中建科技集团有限公司 | Clamp regulation and control method and device based on computer vision, terminal and storage medium |
| CN120347783A (en) * | 2025-06-24 | 2025-07-22 | 四川译企科技有限公司 | Multi-degree-of-freedom robot control method and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103753585A (en) | Method for intelligently adjusting manipulator and grasping force on basis of visual image analysis | |
| DE102019009201B3 (en) | A robotic system with piece loss management mechanism | |
| DE112019000170B4 (en) | Control system, transport device, program and control method | |
| WO2017015898A1 (en) | Control system for robotic unstacking equipment and method for controlling robotic unstacking | |
| CN110211180A (en) | A kind of autonomous grasping means of mechanical arm based on deep learning | |
| CN203266633U (en) | Space coordinate positioning grabbing mechanical arm | |
| DE112019000177T5 (en) | A ROBOTIC SYSTEM WITH AN AUTOMATED PACKAGE REGISTRATION MECHANISM AND METHOD TO OPERATE THIS SYSTEM | |
| Willimon et al. | Classification of clothing using interactive perception | |
| US9849591B2 (en) | Localization of a robot in an environment using detected edges of a camera image from a camera of the robot and detected edges derived from a three-dimensional model of the environment | |
| CN110969660B (en) | Robot feeding system based on three-dimensional vision and point cloud deep learning | |
| CN110509273B (en) | Robot manipulator detection and grabbing method based on visual deep learning features | |
| CN110509281A (en) | Device and method for pose recognition and grasping based on binocular vision | |
| CN108748149A (en) | Based on deep learning without calibration mechanical arm grasping means under a kind of complex environment | |
| CN104331894A (en) | Robot unstacking method based on binocular stereoscopic vision | |
| CN105598965A (en) | Robot under-actuated hand autonomous grasping method based on stereoscopic vision | |
| CN108080289A (en) | Robot sorting system, robot sorting control method and device | |
| CN101890720A (en) | Item holding system, robot and robot control method | |
| CN109500811A (en) | A method of the mankind are actively avoided towards man-machine co-melting robot | |
| JP2023024980A (en) | Robotic system with image-based sizing mechanism and method for operating the robotic system | |
| CN109579698B (en) | Intelligent cargo detection system and detection method thereof | |
| US20180215044A1 (en) | Image processing device, robot control device, and robot | |
| JP7218881B1 (en) | ROBOT SYSTEM WITH OBJECT UPDATE MECHANISM AND METHOD FOR OPERATING ROBOT SYSTEM | |
| Zhang et al. | Learning-based six-axis force/torque estimation using GelStereo fingertip visuotactile sensing | |
| CN107381050B (en) | Glass crawl position corrects system and method | |
| CN114192447A (en) | Image Recognition-Based Garbage Sorting Method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140430 |
|
| RJ01 | Rejection of invention patent application after publication |