CN103764989A - Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines - Google Patents
Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines Download PDFInfo
- Publication number
- CN103764989A CN103764989A CN201180073179.8A CN201180073179A CN103764989A CN 103764989 A CN103764989 A CN 103764989A CN 201180073179 A CN201180073179 A CN 201180073179A CN 103764989 A CN103764989 A CN 103764989A
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- fuel cell
- oxygen
- water tank
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 249
- 239000001257 hydrogen Substances 0.000 title claims abstract description 245
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 245
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 50
- 230000000153 supplemental effect Effects 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 166
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 125
- 239000001301 oxygen Substances 0.000 claims abstract description 124
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 124
- 239000000446 fuel Substances 0.000 claims abstract description 113
- 239000007789 gas Substances 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims description 52
- 238000007789 sealing Methods 0.000 claims 6
- 239000008400 supply water Substances 0.000 claims 6
- 238000001514 detection method Methods 0.000 claims 3
- 150000002431 hydrogen Chemical class 0.000 claims 3
- 239000013589 supplement Substances 0.000 abstract description 5
- 239000002918 waste heat Substances 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 230000009469 supplementation Effects 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000010411 electrocatalyst Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical class OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- -1 sulfonate ions Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/10—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
- F02M25/12—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Fuel Cell (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
技术领域technical field
本发明涉及氢气产生装置。更具体地,本发明涉及可用于内燃机以提高燃料效率并且减少碳排放的氢气补充系统。The present invention relates to a hydrogen generating device. More specifically, the present invention relates to hydrogen supplementation systems that can be used in internal combustion engines to improve fuel efficiency and reduce carbon emissions.
背景技术Background technique
市场上存在多种生成HHO气体的装置,该HHO气体也称为布郎气体,用作汽油和柴油发动机的补充剂。HHO由两个氢与一个氧组成。这些装置通常包含将水分解成氢与氧的电解槽。实例为专利4023405号。这些电解槽通常使用电解质,最显著地是氢氧化钾(KOH)或者碳酸氢钠。对该装置施加电压以生产HHO气体。There are several devices on the market that generate HHO gas, also known as Brown's gas, which is used as a supplement to gasoline and diesel engines. HHO consists of two hydrogens and one oxygen. These devices usually include electrolyzers that split water into hydrogen and oxygen. An example is Patent No. 4,023,405. These electrolyzers typically use electrolytes, most notably potassium hydroxide (KOH) or sodium bicarbonate. A voltage is applied to the device to produce HHO gas.
大多数这些装置的主要问题是产生氢气所需要的能量对车辆的电气系统造成很大的负荷。类似于在任何车辆内运行空调装置,附加的电负载导致每加仑的英里数减少。尽管氢气通常提高车辆的效率和每加仑的英里数,但在车辆上用于产生氢气的附加的电负载往往高至需要最小化的程度或在许多情况下否定车辆的大部分或全部的里程收益。The main problem with most of these devices is that the energy required to generate the hydrogen places a significant load on the vehicle's electrical system. Similar to running an air conditioning unit in any vehicle, the additional electrical load results in a reduction in miles per gallon. Although hydrogen generally improves vehicle efficiency and miles per gallon, the additional electrical load on the vehicle to produce hydrogen is often so high that it needs to be minimized or in many cases negate most or all of the vehicle's mileage gains .
此外,大多数HHO系统产生混合气流形式的氢气和氧气。氢气与氧气一般没有彼此分离。在现代的汽油动力车辆的情况下,这种额外的氧气被车辆的氧气传感器检测,该氧气传感器将此额外的氧气水平传达给车载计算机,即车辆的电子控制单元ECU。当电子控制单元检测到此额外的氧气时,这是发动机正缩缸(lean)运行且ECU对发动机加入更多汽油的信号。这也否定了大部分的燃料效率收益。Additionally, most HHO systems produce hydrogen and oxygen in a mixed gas stream. Hydrogen and oxygen are generally not separated from each other. In the case of modern gasoline-powered vehicles, this extra oxygen is detected by the vehicle's oxygen sensor, which communicates this extra oxygen level to the on-board computer, the vehicle's Electronic Control Unit, ECU. When the ECU detects this extra oxygen, it is a signal that the engine is running lean and the ECU is adding more gasoline to the engine. It also negates most of the fuel efficiency gains.
再者,HHO系统通常使用碳酸氢钠或者氢氧化钾(KOH)。氢氧化钾通常由于其稳定性且其对用在电解槽中的不锈钢板或其它板产生更低的劣化而比碳酸氢钠优选。但是,氢氧化钾由于其具有腐蚀性而必须小心处理,而且如果处理不当,其结晶体将会造成危险。为了电解槽的最佳运转,电解质正常需要以一定比例注入到单元中。使用它的时候需要格外小心。它不是通常你可以放心地交到没有经验的消费者手中的产品类型。Furthermore, HHO systems typically use sodium bicarbonate or potassium hydroxide (KOH). Potassium hydroxide is generally preferred over sodium bicarbonate due to its stability and its lower degradation to stainless steel or other plates used in electrolytic cells. However, potassium hydroxide must be handled with care due to its corrosive nature, and its crystals can be dangerous if not handled properly. For optimal operation of the electrolyzer, electrolyte normally needs to be injected into the cell in a certain proportion. Use it with extreme caution. It's not usually the type of product you can safely put into the hands of an inexperienced consumer.
代表性的HHO系统的另一个问题是复杂的安装。通常需要在发动机舱或者车辆外部找到空间。由于所有的车辆不尽相同,在多种车辆的发动机罩下找到合适的地点来安装该装置几乎是不可能的。而且该系统通常连接到车辆的电气系统,如果安装不当,这会导致保险丝烧断和很多其他问题。氢气仅在汽车运行时需要,而不是在打开点火时。在安装过程中,必须小心观察以确保仅在发动机运行时对该装置提供电能。否则氢气会在进气口中累积。这进一步使这些系统的安装复杂化。Another problem with typical HHO systems is complicated installation. Often it is necessary to find space in the engine compartment or on the outside of the vehicle. Since all vehicles are different, finding a suitable spot to install the unit under the hood of many vehicles can be nearly impossible. And the system is usually connected to the vehicle's electrical system, which can lead to blown fuses and a host of other problems if installed incorrectly. Hydrogen is only needed when the car is running, not when the ignition is turned on. During installation, careful observation must be made to ensure that power is only supplied to the unit when the engine is running. Otherwise hydrogen gas will accumulate in the air intake. This further complicates the installation of these systems.
发明内容Contents of the invention
本发明涉及一种用于产生氢气并将所述氢气注入内燃机,尤其是车辆的内燃机的进气口的按需生产的便携式紧凑型氢气补充系统。氢气与氧气通过燃料电池由供应箱中的水在低温低压下生产。氢气与氧气被送回供应箱以用于分配和水保存。上述气体由箱中的隔板和箱中的水面保持分离。在汽油发动机的情况下,氢气被送到发动机的进气口,而氧气可选择地排放到大气中。该装置可以由车辆交流发电机、独立电池、废热或太阳能提供动力。该系统采用了对该系统提供的动力进行控制的真空开关或其他发动机传感器,由此用于发动机的氢气生产仅在发动机运行时进行。因此,氢气随其产生而立即被发动机消耗。没有氢气储存在车辆上、车辆内或车辆周围。The present invention relates to an on-demand portable compact hydrogen supplementation system for generating hydrogen and injecting said hydrogen into the air intake of an internal combustion engine, in particular a vehicle. Hydrogen and oxygen are produced by fuel cells at low temperature and low pressure from water in supply tanks. Hydrogen and oxygen are returned to the supply tanks for distribution and water conservation. The above-mentioned gases are kept separated by the partition in the tank and the water surface in the tank. In the case of gasoline engines, hydrogen is sent to the intake of the engine, while oxygen is optionally vented to the atmosphere. The unit can be powered by the vehicle alternator, a stand-alone battery, waste heat or solar power. The system employs a vacuum switch or other engine sensor that controls the power provided by the system, whereby hydrogen production for the engine occurs only when the engine is running. Therefore, hydrogen is consumed by the engine immediately as it is produced. No hydrogen is stored on, in or around the vehicle.
附图说明Description of drawings
从以下结合附图看到的示例实施方式和权利要求的详细描述中,本发明的前述内容及更好理解将变得明显,实施方式、权利要求和附图均构成本发明公开内容的一部分。虽然前述和以下所书面描述的公开内容集中于本发明公开的示例实施方式,但应清楚理解的是,本发明公开的示例实施方式是为了说明且仅为示例,本发明不限于此,其中附图的简要说明如下:The foregoing and a better understanding of the invention will become apparent from the following detailed description of example embodiments and claims read in conjunction with the accompanying drawings, all of which form a part of this disclosure. While the foregoing and following written disclosures focus on the disclosed exemplary embodiments of the present invention, it should be clearly understood that the disclosed exemplary embodiments of the present invention are for purposes of illustration and illustration only and the invention is not limited thereto, wherein the appended A brief description of the diagram follows:
图1为根据本发明示出水箱和壳体设计的便携式氢气补充系统的详图;Figure 1 is a detailed view of a portable hydrogen replenishment system showing a water tank and housing design according to the present invention;
图2示意性示出了根据本发明安装在典型车辆内的便携式氢气补充系统;Figure 2 schematically illustrates a portable hydrogen supplementation system installed in a typical vehicle according to the present invention;
图3为示出了根据本发明的PEM电解槽的运转以及细节的示意图;Figure 3 is a schematic diagram illustrating the operation and details of a PEM electrolyzer according to the present invention;
图4为根据本发明的水箱6的另一实施方式的示意图;Figure 4 is a schematic diagram of another embodiment of the
图5A-图5B为根据本发明的安装托架3的另一实施方式的示意图;5A-5B are schematic diagrams of another embodiment of the
图6为根据本发明的控制电路50的一种实施方式的示意图。FIG. 6 is a schematic diagram of an embodiment of a
具体实施方式Detailed ways
如下面将更详细描述的,本发明提供了用于提高内燃机的燃料效率并降低碳排放的设备、方法与系统,特别是例如氢气补充系统。本发明提供了如下说明的多种实施方式。然而,应当注意的是,本发明并不限于本文所描述的实施方式,而是可扩展至本领域技术人员已知或将知的其它实施方式。As will be described in more detail below, the present invention provides apparatus, methods and systems for increasing the fuel efficiency and reducing carbon emissions of internal combustion engines, particularly such as hydrogen supplementation systems. The present invention provides various embodiments as described below. It should be noted, however, that the present invention is not limited to the embodiments described herein, but extends to other embodiments known or will become known to those skilled in the art.
如图1所示,本发明提供了一种便携式氢气补充系统1,氢气补充系统1包括可由安装托架3与紧固单元4固定在车辆的主体(trunk)或其他平整表面上的壳体单元2。燃料电池5和以使水7通过重力供应给燃料电池的方式安置在燃料电池5的上面的水箱6在壳体单元2的内部。水箱6由支撑构件8支撑在壳体单元2内且在燃料电池上方。壳体单元设计为易于从安装托架3拆卸。As shown in Figure 1, the present invention provides a portable hydrogen supplement system 1, the hydrogen supplement system 1 includes a housing unit that can be fixed on the main body (trunk) or other flat surfaces of the vehicle by a
水箱6包括安置于其下侧且与管或其它供应构件10连接的供水接头9,上述管或其它供应构件10又连接到燃料电池5上的进水接头11。水通过供应构件10供应至燃料电池5。燃料电池5还包括氢气出口接头12和氧气出口接头13,氢气出口接头12和氧气出口接头13通过管或另外的供应构件14和15与水箱6的下侧的进气接头16连接。水箱包括至少一个隔板17,该隔板17将水箱6分隔成至少两个部分,即氢气部分18与氧气部分19。隔板17沿着水箱6的内壁形成并自水箱6的底表面20延伸约1/4"。水箱6包括允许向该箱注水的充注管口21。随着水放入水箱6中,该箱在隔板17的两侧均匀充注。The
公知的用于产生电的燃料电池5被逆向操作来产生氢气与氧气。水自水箱注入燃料电池且在对该电池施加电压时,生产氢气与氧气。A known
根据本发明,燃料电池5可例如是质子交换膜电解槽或聚合物电解质膜(PEM)电解槽。PEM电解槽包括通常由离聚物制成并且设计为在使诸如氧气或氢气之类的气体无法渗透的同时而传导质子的半透膜。当被并入到质子交换膜燃料电池或质子交换膜电解槽的膜电极组件(MEA)中时,所述半透膜的基本功能是:隔离反应物和传输质子。According to the invention, the
已知的是,电解槽是通过施加电能而由水产生氢气和氧气的装置,并且所述电解槽包括一系列板,当施加低电压直流时,水流过所述板。通过通电,电解槽通常通过将化合物分解为基本部分或更简单产物而将水分解成氢气和氧气。An electrolyser is known as a device for producing hydrogen and oxygen from water by application of electrical energy and comprises a series of plates through which water flows when a low voltage direct current is applied. By applying electricity, an electrolyzer splits water into hydrogen and oxygen, usually by breaking down the compounds into their elementary parts or simpler products.
在图3中示出了PEM电解槽。PEM电解槽包括多个层,所述多个层包括:彼此相对布置的外部电极41,所述外部电极41中的一个是阳极41a,而另一个是阴极41b;分别布置在阳极41a和阴极41b上的电催化剂42a和42b;以及布置在电催化剂2a和42b之间的膜43。PEM电解槽进一步包括外部电路44,所述外部电路44以下述方式将电力施加到阳极41a和阴极41b,即,使电力以电子的形式从阳极41a沿外部电路44流动到阴极41b并且使质子从阳极41a穿过膜43到达阴极41b。In FIG. 3 a PEM electrolyzer is shown. The PEM electrolytic cell comprises a plurality of layers including: external electrodes 41 arranged opposite to each other, one of which is an anode 41 a and the other is a
PEM电解槽的效率主要依赖于它的膜和电催化剂的性能。膜43包括固态含氟聚合物,所述固态含氟聚合物被部分地化学改性以包含磺酸基SO3H,所述磺酸基能容易地以带正电荷的原子或H+质子的形式释放它们的氢:SO3H->SO3 -+H+。The efficiency of a PEM electrolyzer mainly depends on the performance of its membrane and electrocatalyst.
这些离子或带电荷的形式使得水可以透过膜结构而不产生气体,即不产生氢气H2和氧气O2分子。所产生的水合质子H3O+可自由移动而磺酸盐离子SO3 -保留固定在聚合物侧链上。因此,当对膜43施加电场时,水合质子被吸引到带负电荷的电极,即阴极41b。因为移动的电荷相当于电流,膜43充当电的导体。也可称为质子导体。These ions or charged forms allow water to permeate the membrane structure without gas generation, i.e. without generation of hydrogen H2 and oxygen O2 molecules. The generated hydrated protons H 3 O + are free to move while the sulfonate ions SO 3 − remain fixed on the polymer side chains. Therefore, when an electric field is applied to the
所使用的典型的膜材料被称为“全氟磺酸(nafion)”。全氟磺酸是包含小比例磺酸基或羧酸基离子官能基的全氟化聚合物。A typical membrane material used is called "nafion". Perfluorosulfonic acids are perfluorinated polymers containing a small proportion of sulfonic or carboxylate ionic functional groups.
因此,如图3所示,水H2O进入电池并且在膜43的表面被分解以形成质子、电子以及气态氧。当质子在所施加的电场的影响下穿过膜43并且电子通过外部电路44时,气态氧离开所述电池。质子和电子在相对的表面处(即作为阴极41b已知的带负电荷的电极)结合,以形成纯净的气态氢。Therefore, as shown in FIG. 3, water H2O enters the cell and is decomposed at the surface of the
在燃料电池5的运转过程中,少量的水、氢气泡22和氧气泡23分别从燃料电池5的氢气出口12和氧气出口13冒出并流入箱6的氢气侧18和氧气侧19。上述气泡经过水上升到由箱内的水面和箱隔板17形成的上部空气腔体24。氢气与氧气在上部腔体24内由隔板17和箱内的水面保持彼此分离。随着氢气与氧气充注它们各自的上部腔体24,氢气通过上述箱上侧的接头25流出上部腔体,氧气通过上述箱上侧的接头26流出上部腔体。氢气通过与壳体单元2的氢气接头28连接的管27流动。氧气通过与壳体单元2的接头30连接的管29流动。During operation of the
如图2所示,由汽油或柴油发动机32提供动力的车辆31装配有便携式氢气补充系统1。由连接至电线34的车辆电池33对便携式氢气补充系统1供电。氢气补充系统的电路包括真空开关35或其它发动机传感器,以及操作控制开关(operator controlled switch)36,操作控制开关36在发动机运行时接通便携式氢气补充系统1的电路。一旦对便携式氢气补充系统1供电,氢气通过与壳体单元2的氢气接头28连接的氢气出口管37流到车辆发动机32的进气口38。氧气通过氧气出口管39流动,并在具有氧气传感器的汽油发动机的情况下排放到大气中。上述两种气体能够可选地结合用于不具有氧气传感器的柴油发动机车辆或其它内燃机。As shown in FIG. 2 , a
图4中示出了水箱6的一个替代实施方式。根据如图4中所示的水箱6,隔板17a和17b被配置在箱的相对两端以将水箱6分隔成氢气部分18和氧气部分19。各隔板17a,17b沿着水箱6的内壁形成并自水箱6的底表面20延伸约1/4"。随着水放入水箱6中,该箱在各隔板17a和17b的两侧均匀充注。An alternative embodiment of the
根据本发明之前所述的,随着氢气与氧气注入它们各自的上部腔体24,氢气通过上述箱上侧的接头25流出上部腔体,氧气通过上述箱上侧的接头26流出上部腔体。或者,所述接头25和26可由气体收集器45和46替代。各气体收集器45,46被构造为包括挡板47a和47b,所述挡板47a和47b用于防止水溅入或进入到管27和29中。各挡板47a,47b配置为从气体收集器45和46的内表面垂直伸出。具体来说,挡板47a配置为从气体收集器45,46的内表面的一部分延伸,该内表面的一部分与所述气体收集器45,46的内表面的另一部分相对,挡板47b从所述气体收集器45,46的内表面的另一部分延伸。According to the present invention, as hydrogen and oxygen are injected into their respective
图5A-图5B中示出了安装托架3的一个替代实施方式。安装托架3具有形成在其中的安置在安装托架3的角部附近的椭圆形孔48,椭圆形孔48用于容纳布置在壳体单元2的底凸缘(undersigned)上的螺钉/双头螺柱。椭圆形孔48通过容纳布置在壳体单元2的底凸缘上的螺钉/双头螺柱而使得壳体单元2能够被可拆卸地附接到安装托架3上。壳体单元2可从安装托架3上拆卸,这就允许使用者拆卸该装置以便进行包括加水、进行维修、更换部件及其它在内的维护。An alternative embodiment of the mounting
举例而言,电路可由如图6所示的用于控制氢气补充系统的控制电路50而提供。控制电路50包括真空开关35或者其它发动机传感器、操作控制开关36、全球定位系统(GPS)51、与门电路52或其它类似电路以及开关53,所述真空开关35或者其它发动机传感器在发动机运转时提供正输出,所述操作控制开关36在所述操作控制开关36被移动到接通位置时提供来自所述真空开关35的正输出,所述全球定位系统51在汽车的速度超过预定的水平时提供正输出,所述与门电路52或其它类似电路在所述操作控制开关36和所述GPS51的输出都为正时提供正输出,所述开关53在所述与门电路52供给正输出时将电力切换给所述燃料电池5,因此使得所述燃料电池5在发动机运转并且汽车速度超过预定水平时运转。For example, the circuit may be provided by a
当发动机的负载没有超过预定水平且由氢气补充系统生产并且供应到汽油动力发动机的氢气的量落入预设的范围之内时,所述氢气补充系统在汽油动力发动机中最佳地运转。The hydrogen supplementation system operates optimally in a gasoline powered engine when the load of the engine does not exceed a predetermined level and the amount of hydrogen produced by the hydrogen supplementation system and supplied to the gasoline powered engine falls within a preset range.
在汽油动力发动机中,氢气补充系统所使用的电力由发动机交流发电机供应。如上所述,仅仅当发动机运转并且汽车速度超过预定水平时,才供应电力。因此,氢气补充系统施加在发动机上的负载与从交流发电机中取得的电力(以安培为单位测量)量有关。最佳地,当发动机上的负载不超过4安培的从交流发电机取得的电流或以另外一种方式测量的不超过56瓦特时,氢气补充系统在汽油动力发动机上最好地运转。应注意,安培或瓦特的量取决于发动机和交流发电机的规格(四、六或八汽缸,等等)。还应注意,柴油发动机具有不同的最佳负载设置。In gasoline powered engines, the electricity used by the hydrogen supplementation system is supplied by the engine alternator. As mentioned above, power is supplied only when the engine is running and the vehicle's speed exceeds a predetermined level. Therefore, the load placed on the engine by the hydrogen make-up system is related to the amount of power (measured in amperes) drawn from the alternator. Optimally, the hydrogen supplemental system operates best on a gasoline powered engine when the load on the engine does not exceed 4 amps of current drawn from the alternator, or 56 watts as measured otherwise. It should be noted that the amount of amps or watts depends on the size of the engine and alternator (four, six or eight cylinders, etc.). It should also be noted that diesel engines have different optimal load settings.
另外,在汽油动力发动机中,氢气补充系统产生并且供应到汽油动力发动机的最佳的氢气量落在0.10~0.25升/每分钟的预设范围内。In addition, in the gasoline-powered engine, the optimum amount of hydrogen generated by the hydrogen supplement system and supplied to the gasoline-powered engine falls within a preset range of 0.10˜0.25 liters/minute.
在上述的基础上,当发动机上的负载不超过4安培或以另外一种方式测量的不超过56瓦特并且氢气补充系统产生并供应到汽油动力发动机的氢气量落在0.10~0.25升/每分钟的预设范围内时,汽油动力发动机取得了最高的燃油效率(以公里/加仑来测量)。On the basis of the above, when the load on the engine does not exceed 4 amps or 56 watts as measured in another way and the amount of hydrogen produced by the hydrogen make-up system and supplied to the gasoline-powered engine falls within the range of 0.10 to 0.25 liters per minute Gasoline-powered engines achieve the highest fuel efficiency (measured in kilometers per gallon) when within the preset range of .
虽然已经描述了本发明的优选实施方式,但应该理解,在不脱离本发明的精神与范围可以对其进行多种修改。所有此类修改均落入所附权利要求的范围。While the preferred embodiment of the invention has been described, it should be understood that various modifications may be made thereto without departing from the spirit and scope of the invention. All such modifications are intended to fall within the scope of the appended claims.
Claims (76)
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/225,355 US8454808B2 (en) | 2010-03-15 | 2011-09-02 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| US13/225,355 | 2011-09-02 | ||
| US13/224,338 | 2011-09-02 | ||
| US13/225,362 | 2011-09-02 | ||
| US13/225,348 | 2011-09-02 | ||
| US13/224,338 US8449754B2 (en) | 2010-03-15 | 2011-09-02 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| US13/225,348 US8449735B2 (en) | 2010-03-15 | 2011-09-02 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| US13/225,362 US8449736B2 (en) | 2010-05-28 | 2011-09-02 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| PCT/US2011/054292 WO2013032497A1 (en) | 2011-09-02 | 2011-09-30 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103764989A true CN103764989A (en) | 2014-04-30 |
Family
ID=44802395
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201180073179.8A Pending CN103764989A (en) | 2011-09-02 | 2011-09-30 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| CN201180073180.0A Pending CN103764990A (en) | 2011-09-02 | 2011-09-30 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201180073180.0A Pending CN103764990A (en) | 2011-09-02 | 2011-09-30 | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
Country Status (4)
| Country | Link |
|---|---|
| EP (2) | EP2751418A1 (en) |
| JP (3) | JP5977352B2 (en) |
| CN (2) | CN103764989A (en) |
| WO (2) | WO2013032496A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105317591A (en) * | 2014-07-11 | 2016-02-10 | 苟焕信 | Hydrogen Fuel Assist for Internal Combustion Engine Systems |
| CN105952525A (en) * | 2016-06-23 | 2016-09-21 | 陆克勇 | Comprehensive power engine |
| CN107429637A (en) * | 2014-09-10 | 2017-12-01 | Brc全球公司 | Vehicle emissions reduction system |
| CN111342091A (en) * | 2020-04-11 | 2020-06-26 | 大连盛大光明节能设备有限公司 | Automobile range extender |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8449736B2 (en) * | 2010-05-28 | 2013-05-28 | Hno Greenfuels, Inc. | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines |
| ITRM20130653A1 (en) * | 2013-11-26 | 2015-05-27 | A N D Holding Ltd | CONTROLLED AND INSTANTANEOUS PRODUCTION SYSTEM OF HYDROGEN TO BE INPUT IN THE SUCTION DUCT OF AN ENDOTHERMAL ENGINE |
| CN107130257A (en) * | 2017-06-23 | 2017-09-05 | 深圳市好美水科技开发有限公司 | One kind inhales hydrogen machine |
| US10710863B2 (en) | 2018-05-30 | 2020-07-14 | Ford Global Technologies, Llc | Water bottle filling system for a motor vehicle |
| CN108546961A (en) * | 2018-06-26 | 2018-09-18 | 山东杰得润汽车科技有限公司 | A kind of automobile-used Hydrogen Energy machine |
| AU2019405749B2 (en) * | 2018-12-19 | 2022-06-16 | Donald Owens | Hydrogen producing system and device for improving fuel efficiency |
| CN111608795A (en) * | 2019-02-22 | 2020-09-01 | 大连盛大光明节能设备有限公司 | Hydrogen fuel automobile engine |
| ES2902080T3 (en) * | 2019-02-22 | 2022-03-24 | Glock Oekoenergie Gmbh | electrolytic cell |
| DK180604B1 (en) * | 2020-01-20 | 2021-10-14 | Blue World Technologies Holding ApS | Method and vehicle with a CO2 warning system |
| JP7436248B2 (en) * | 2020-03-13 | 2024-02-21 | 本田技研工業株式会社 | Automotive hydrogen purification equipment |
| KR102655125B1 (en) * | 2023-09-20 | 2024-04-05 | 주식회사 캠프티 | Fuel efficiency improvement device for internal combustion engine vehicles using PEM water electrolysis stack |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3433729A (en) * | 1966-02-16 | 1969-03-18 | Lev Mikhailovich Proskuryakov | Apparatus for producing hydrogen and oxygen |
| US3939806A (en) * | 1974-04-01 | 1976-02-24 | Bradley Curtis E | Fuel regenerated non-polluting internal combustion engine |
| US4025405A (en) * | 1971-10-21 | 1977-05-24 | Diamond Shamrock Corporation | Electrolytic production of high purity alkali metal hydroxide |
| US4111160A (en) * | 1976-04-16 | 1978-09-05 | Talenti Pier F | Method and apparatus for operating combustion engines |
| US4271793A (en) * | 1979-08-31 | 1981-06-09 | Valdespino Joseph M | Internal combustion engine |
| US4368696A (en) * | 1980-07-29 | 1983-01-18 | Reinhardt Weldon E | Electrolytic supplemental fuel generation for motor vehicles |
| US5272871A (en) * | 1991-05-24 | 1993-12-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method and apparatus for reducing nitrogen oxides from internal combustion engine |
| DE19504142A1 (en) * | 1995-02-09 | 1995-08-17 | Anton A Caruso | Electrolysis of water by direct current |
| CN2267237Y (en) * | 1996-09-25 | 1997-11-12 | 廖延康 | Oxygen generator by electrolyzing water |
| CN1264433A (en) * | 1997-03-21 | 2000-08-23 | 林恩技术公司 | Integrated ozone generator system |
| CN2435405Y (en) * | 2000-08-31 | 2001-06-20 | 蔡冠辉 | Oxygenerator |
| US20040203166A1 (en) * | 2003-04-11 | 2004-10-14 | Sullivan John Timothy | Electrolysis apparatus and method utilizing at least one coiled electrode |
| US7021249B1 (en) * | 2003-09-02 | 2006-04-04 | Christison J Devon | Hydrogen addition to hydrocarbon fuel for an internal combustion engine |
| CN1966778A (en) * | 2006-11-13 | 2007-05-23 | 倪国年 | Membrane electrode assembly structure for electrolysis type ozone generator |
| WO2009018814A2 (en) * | 2007-08-06 | 2009-02-12 | Clean World Energies Gmbh | Internal combustion engine and method for operating an internal combustion engine |
| CN201321891Y (en) * | 2008-01-24 | 2009-10-07 | 李哲平 | Environment-friendly water-feeding engine system |
| CN102947576A (en) * | 2010-05-28 | 2013-02-27 | Hno绿色燃料公司 | Hydrogen supplemental system for internal combustion engines |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1554140A (en) * | 1977-04-14 | 1979-10-17 | Talenti P | Method and apparatus for operating combustion engines |
| JPS5770943A (en) * | 1980-10-22 | 1982-05-01 | Toshiharu Yamashita | Combustion aid unit for internal combustion engine |
| US4361474A (en) * | 1981-01-12 | 1982-11-30 | George Shoaf | Electrolysis chamber for hybrid fuel system |
| JP2006348328A (en) * | 2005-06-14 | 2006-12-28 | Yamatake Corp | Electrolysis cell and gas generation and storage device |
| JP4333656B2 (en) * | 2005-09-16 | 2009-09-16 | トヨタ自動車株式会社 | Internal combustion engine using hydrogen |
-
2011
- 2011-09-30 WO PCT/US2011/054289 patent/WO2013032496A1/en active Application Filing
- 2011-09-30 JP JP2014528369A patent/JP5977352B2/en not_active Expired - Fee Related
- 2011-09-30 WO PCT/US2011/054292 patent/WO2013032497A1/en active Application Filing
- 2011-09-30 CN CN201180073179.8A patent/CN103764989A/en active Pending
- 2011-09-30 CN CN201180073180.0A patent/CN103764990A/en active Pending
- 2011-09-30 JP JP2014528368A patent/JP5960827B2/en not_active Expired - Fee Related
- 2011-09-30 EP EP11770608.5A patent/EP2751418A1/en not_active Withdrawn
- 2011-09-30 EP EP11770607.7A patent/EP2751417A1/en not_active Withdrawn
-
2016
- 2016-06-23 JP JP2016124162A patent/JP2017002403A/en active Pending
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3433729A (en) * | 1966-02-16 | 1969-03-18 | Lev Mikhailovich Proskuryakov | Apparatus for producing hydrogen and oxygen |
| US4025405A (en) * | 1971-10-21 | 1977-05-24 | Diamond Shamrock Corporation | Electrolytic production of high purity alkali metal hydroxide |
| US3939806A (en) * | 1974-04-01 | 1976-02-24 | Bradley Curtis E | Fuel regenerated non-polluting internal combustion engine |
| US4111160A (en) * | 1976-04-16 | 1978-09-05 | Talenti Pier F | Method and apparatus for operating combustion engines |
| US4271793A (en) * | 1979-08-31 | 1981-06-09 | Valdespino Joseph M | Internal combustion engine |
| US4368696A (en) * | 1980-07-29 | 1983-01-18 | Reinhardt Weldon E | Electrolytic supplemental fuel generation for motor vehicles |
| US5272871A (en) * | 1991-05-24 | 1993-12-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method and apparatus for reducing nitrogen oxides from internal combustion engine |
| DE19504142A1 (en) * | 1995-02-09 | 1995-08-17 | Anton A Caruso | Electrolysis of water by direct current |
| CN2267237Y (en) * | 1996-09-25 | 1997-11-12 | 廖延康 | Oxygen generator by electrolyzing water |
| CN1264433A (en) * | 1997-03-21 | 2000-08-23 | 林恩技术公司 | Integrated ozone generator system |
| CN2435405Y (en) * | 2000-08-31 | 2001-06-20 | 蔡冠辉 | Oxygenerator |
| US20040203166A1 (en) * | 2003-04-11 | 2004-10-14 | Sullivan John Timothy | Electrolysis apparatus and method utilizing at least one coiled electrode |
| US7021249B1 (en) * | 2003-09-02 | 2006-04-04 | Christison J Devon | Hydrogen addition to hydrocarbon fuel for an internal combustion engine |
| CN1966778A (en) * | 2006-11-13 | 2007-05-23 | 倪国年 | Membrane electrode assembly structure for electrolysis type ozone generator |
| WO2009018814A2 (en) * | 2007-08-06 | 2009-02-12 | Clean World Energies Gmbh | Internal combustion engine and method for operating an internal combustion engine |
| WO2009018814A3 (en) * | 2007-08-06 | 2009-04-30 | Clean World En Gmbh | Internal combustion engine and method for operating an internal combustion engine |
| CN201321891Y (en) * | 2008-01-24 | 2009-10-07 | 李哲平 | Environment-friendly water-feeding engine system |
| CN102947576A (en) * | 2010-05-28 | 2013-02-27 | Hno绿色燃料公司 | Hydrogen supplemental system for internal combustion engines |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105317591A (en) * | 2014-07-11 | 2016-02-10 | 苟焕信 | Hydrogen Fuel Assist for Internal Combustion Engine Systems |
| CN105317591B (en) * | 2014-07-11 | 2018-01-12 | 苟焕信 | Hydrogen fuel assist apparatus for internal combustion engine system |
| CN107429637A (en) * | 2014-09-10 | 2017-12-01 | Brc全球公司 | Vehicle emissions reduction system |
| CN105952525A (en) * | 2016-06-23 | 2016-09-21 | 陆克勇 | Comprehensive power engine |
| CN111342091A (en) * | 2020-04-11 | 2020-06-26 | 大连盛大光明节能设备有限公司 | Automobile range extender |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2013032496A1 (en) | 2013-03-07 |
| JP2014535020A (en) | 2014-12-25 |
| JP2017002403A (en) | 2017-01-05 |
| JP2014535000A (en) | 2014-12-25 |
| EP2751418A1 (en) | 2014-07-09 |
| JP5977352B2 (en) | 2016-08-24 |
| CN103764990A (en) | 2014-04-30 |
| EP2751417A1 (en) | 2014-07-09 |
| WO2013032497A1 (en) | 2013-03-07 |
| JP5960827B2 (en) | 2016-08-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103764989A (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| US8784619B2 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| US8449733B2 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| US8449754B2 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| US20110017607A1 (en) | On demand hydrogen production unit and method for the on demand production of hydrogen | |
| JP2013531756A5 (en) | ||
| US9399946B2 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| US8757107B2 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| ITFI20090155A1 (en) | SYSTEM TO ENRICH HYDROGEN THE POWER OF INTERNAL COMBUSTION ENGINES POWERED IN AMMONIA DURING THE STARTING PHASE AND DURING THE RUN. | |
| AU2015218446A1 (en) | Multifunctional on Demand Portable H2O Hydrogen/Oxygen Separator Generator For Combustion Engines, Cutting Steel and Heating | |
| WO2014146080A1 (en) | Hydrogen supplemental system for on-demand hydrogen generation for internal combustion engines | |
| HK1182159B (en) | Hydrogen supplemental system for internal combustion engines |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140430 |