CN103782519B - 阻抗轨迹上的天线调谐 - Google Patents
阻抗轨迹上的天线调谐 Download PDFInfo
- Publication number
- CN103782519B CN103782519B CN201280042009.8A CN201280042009A CN103782519B CN 103782519 B CN103782519 B CN 103782519B CN 201280042009 A CN201280042009 A CN 201280042009A CN 103782519 B CN103782519 B CN 103782519B
- Authority
- CN
- China
- Prior art keywords
- tuning state
- antenna
- track
- tuning
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0458—Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/18—Input circuits, e.g. for coupling to an antenna or a transmission line
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Transmitters (AREA)
Abstract
用于生成从调谐状态的预先建立轨迹导出的天线调谐状态以将检测信号电平朝着预置、给定值调整的方法、收发器集成电路(IC)以及通信设备。调谐状态生成(TSG)控制器确定检测信号电平是否与给定值匹配。如果检测信号电平并不与给定值匹配,则TSG控制器从对应于与当前操作条件最佳匹配的预先识别的操作条件的预先建立轨迹中选择初始预置调谐状态。TSG逻辑将初始预置调谐状态转发至天线调谐器以触发阻抗变换。在生成初始预置调谐状态之后,控制器接收已更新的检测信号电平。如果已更新的检测信号电平未能与给定值匹配,则控制器生成在初始和最终预置调谐状态之间内插的递增调谐状态。
Description
技术领域
本发明一般地涉及一种无线通信设备且具体地涉及一种在无线通信设备中的天线调谐。
背景技术
随着无线通信设备中的模式组合、特征和功能的数目增加,为这些设备提供高质量的通信变得越来越困难。另外,现在的无线通信设备与许多应用程序集成,包括游戏应用程序及其他电子功能,例如,诸如照相机的提供。虽然这些应用程序和电子功能正在使用,但确保通信信号具有到和来自天线的清晰、无障碍路径提出唯一的挑战。通信挑战还由于与预期设备将支持的各种通信模式相关联的大范围的传输要求而增加。
这种挑战的传统方法涉及到使用具有空时信号处理的多个天线。然而,随着手机设计者为了用户的方便而继续缩小其产品,可用于辐射结构的空间正在变得越来越有限。辐射元件的有限空间和有限尺寸促使通信设备对由源自于手或身体接近的失配而引起的严重失调更加敏感。
附图说明
将结合附图来阅读所述实施例,在所述附图中:
图1图示出根据一个实施例的无线通信设备的示例性框图表示,在其内部能够包含所述实施例的特征;
图2图示出根据一个实施例的无线通信设备(WCD)的射频通信部件(RFCC)的框图表示,包括控制器、天线调谐器和天线选择开关;
图3图示出根据一个实施例的被用于天线阻抗匹配的史密斯图表;
图4是根据一个实施例的提供关于各种预先建立和预先选择自适应轨迹、相应设备操作条件以及调谐状态的示例性表格;
图5是图示出根据一个实施例的功率控制和天线调谐反馈电路的框图;以及
图6是图示出根据一个实施例的用于从调谐状态的预先建立轨迹生成调谐状态的方法的流程图。
具体实施方式
说明性实施例提供了一种用于生成天线调谐状态以朝着预置、给定值调整检测信号电平的方法、收发器集成电路(IC)以及通信设备,其中,调谐天线状态是从调谐状态的预先建立轨迹导出的。调谐状态发生(TSG)控制器和/或在处理器上执行的TSG逻辑确定检测信号电平是否与预置给定值匹配。如果检测信号电平未能与给定值匹配,则TSG控制器确定一个或多个预先识别操作条件中的哪个操作条件与当前操作条件最佳地匹配。设备所支持的每个操作条件分别地与调谐状态的特定预先建立轨迹相关联。响应于确定特定预先识别操作条件与当前操作条件最佳地匹配,控制器从与特定预先识别操作条件相对应的预先建立轨迹中选择初始预置调谐状态并将该初始预置调谐状态转发至天线调谐器以使得天线调谐器能够执行阻抗变换。在生成初始预置调谐状态之后,控制器接收已更新检测信号电平,并且控制器确定已更新检测信号电平是否与给定值匹配。如果已更新检测信号电平未能与给定值匹配,则控制器生成沿着初始调谐状态与最终预置调谐状态之间的轨迹内插的递增调谐状态。
在本发明的示例性实施例的以下详细描述中,足够详细地描述了其中可实施本发明的特定示例性实施例以使得本领域的技术人员能够实施本发明,并且应理解的是可利用其他实施例,并且在不脱离本发明的精神或范围的情况下可进行逻辑、架构、编程、机械、电及其他变更。因此不应以限制性意义来理解以下详细描述,并且由所附权利要求及其等效物来定义本发明的范围。
在附图的不同视图的描述内,为类似的要素提供与先前的图类似的名称和附图标记。分配给各要素的特定数字仅仅是为了帮助描述而提供的,并且并不意图暗示对所述实施例的任何限制(结构或功能等)。
应理解的是特定部件、设备和/或参数名称(诸如执行本文中所述的实用工具/逻辑/固件的那些)的使用仅仅是用于示例且并不意图暗示对所述实施例的任何限制。因此在没有限制的情况下用被用来描述本文中的部件/设备/参数的不同命名法/术语来描述实施例。在描述实施例的一个或多个要素、特征或概念时对任何特定协议或所有权名称的参考仅仅是作为一个实施方式的示例而提供的,并且此类参考并不限制要求保护的实施例到其中利用不同要素、特征或概念名称的实施例的扩展。因此,本文中利用的每个术语在给定其中利用该数据的背景的情况下被给定其最宽泛解释。
如下面进一步描述的,本文所述的本发明的功能特征和实施方式是在处理设备/结构内提供的,并且能够涉及到硬件、固件以及执行以便为设备提供特定实用工具的多个软件水平结构(例如,程序代码)的组合的使用。呈现的附图示出示例性无线通信设备架构内的硬件部件和软件/逻辑部件两者。
现在具体地参考图1,提供了示例性双天线无线通信设备100的框图,在其内部可有利地实现所述实施例的某些功能方面。为了简单起见,在本文中应简单地通过缩写WCD100来提及无线通信设备100。在一个实施例中,无线通信设备是移动设备,诸如蜂窝电话、智能电话或膝上型计算机、笔记本或平板计算机或类似设备。同样地,WCD100能够是任何类型的通信设备,其经历不同的操作条件,并保持阻抗轨迹的关联图以供在反馈环路中使用,诸如双向无线电通信设备。
WCD100包括处理器110和通信接口电路112,其包括数字信号处理器(DSP)114。处理器110和接口电路112经由信号总线102被连接到存储器元件104。WCD100包括使得WCD能够发送和接收通信信号的射频(RF)收发器集成电路(IC)116。在至少一个实施例中,收发器的发送和接收功能无线地发生,并且通过一个或多个天线、例如天线118A和天线118B来促进无线通信以从收发器IC116传播信号。
天线的数目对于不同的设备而言能够不同,范围从单个天线至两个或更多天线,并且两个天线的WCD100内的呈现仅仅用于举例说明。另外,两个天线的定位能够是在WCD100的外壳150内的不同位置处以解决能够影响一个天线相对于另一天线的有效地传播信号的能力的不同操作条件。耦合在收发器116与至少一个天线、天线118A和天线118B之间的是天线调谐器122。
天线调谐器122与天线118A和天线118B相关联地执行阻抗匹配和/或天线调谐。阻抗匹配电路能够包括在匹配电路中配置的电路元件,诸如电感器、电容器以及传输线路,其将天线118A/118B阻抗变换成输入阻抗。在一个实施例中,结果得到的输入阻抗能够是收发器116输出阻抗的复共轭匹配。能够使用可调谐阻抗匹配,使得耦合在天线118A/118B与收发器116之间的信号被以最大功率传输或以最小损耗耦合,使得WCD100能够在大范围的操作频率和使用情况上支持通信要求。替换地,天线118A/118B能够是能够被调谐以针对最大功率传输或最小损耗实现天线阻抗的可调谐天线。作为另一替换,能够使用可调谐匹配与可调谐天线的组合。匹配电路调谐或天线调谐能够通过经由开关从多个电路元件之中进行选择或通过采用可调谐阻抗电路元件来实现。在可调谐阻抗的可能示例中,电路元件是采用诸如钛酸锶钡(BST)的电压响应电介质材料的变容二极管和电路元件。
WCD100能够经由天线118A/118B无线地与例如基站收发器系统(BTS)130或简单地基站进行通信。WCD100还包括TSG控制器120,其被耦合到天线调谐器122,并且其提供下面更详细地描述的特定功能。TSG控制器120还能够在天线被配置为可调谐天线(未明确地示出)时控制天线118A/118B。
WCD100还包括提供特殊功能的各种其他部件。例如,WCD100包括照相机140。当照相机140在WCD100内可操作时,照相机140触发WCD100的某些定位和保持特性。WCD100还包括一个或多个传感器132,其向控制器120提供关于某些设备条件的信息。可在WCD100内提供各种不同类型的传感器,每个传感器提供与WCD100的一个或多个操作条件相关联的某些信息。例如,传感器132可检测WCD100的用户接近、用户接触和/或用户抓紧。WCD100包括一个或多个输入/输出(I/O)设备134,其能够基于当前设备操作条件被利用,并且其在某些情景中能够对建立当前设备操作条件有所贡献。在一个实施例中,WCD100利用应用管理软件107和由传感器132收集的信息来确定WCD100的操作条件。
除WCD100的上述硬件部件之外,能够经由存储在控制器(例如,控制器120)、存储器104或其他存储器(未示出)内并由DSP114和处理器110中的一个来执行的软件(或固件)代码或可编程逻辑完成和/或支持所述实施例的各种特征。因此,例如,在存储器104内示出的是许多软件、固件和/或逻辑部件或模块,包括设备操作条件数据106和游戏及其他类型的应用程序。当被执行时,这些应用程序每个能够促进最终可确定或触发当前设备操作条件的某些设备保持和定位状态。如所示,存储器104还包括调谐状态生成(TSG)逻辑108。
在随后的描述中,TSG逻辑108表示附加软件、固件和/或逻辑部件,其在处理器110和/或控制器120上执行以提供特定功能,如下面所述。在所述实施例中,TSG逻辑108提供触发控制器120执行某些天线调谐功能的某些可执行代码。下面参考图2和后续各图来呈现与TSG逻辑108相关联的功能的附加细节。
TSG逻辑108所支持和/或提供的某些功能能够经由由无线设备处理器和/或诸如控制器120的其他设备硬件执行的处理逻辑或代码来实现。在所述实施例中,在由TSG逻辑108提供的软件实现逻辑功能之中的是:(a)用于例如在持久性存储器中存储调谐状态的多个预先建立轨迹以及被分别地映射到调谐状态的各种预先建立轨迹的相应的多个预先识别设备操作条件和通信模式的逻辑;(b)用于确定指示被输送给天线的功率水平的检测信号电平的逻辑;(c)用于确定是否检测信号电平与预置给定值匹配的逻辑;(d)用于响应于检测信号电平不与预置给定值匹配,确定通信设备的当前操作条件的逻辑;(e)用于确定分别地与调谐状态的特定预先建立轨迹相关联的一个或多个预先识别操作条件中的哪一个与当前操作条件最佳地匹配的逻辑;以及(f)用于响应于确定一个或多个预先识别操作条件中的特定预先识别操作条件与当前操作条件最佳地匹配,从对应于与当前操作条件最佳地匹配的特定预先识别操作条件的预先建立轨迹中选择初始预置调谐状态的逻辑;以及(g)用于将初始预置调谐状态转发至天线调谐器以使得天线调谐器能够执行阻抗变换的逻辑。
在一个实施例中,TSG逻辑还提供:(h)逻辑,其在初始预置调谐状态的生成之后用于:接收已更新检测信号电平、确定已更新检测信号电平是否超过给定值;并且响应于已更新检测信号水平未能与给定值匹配,根据沿着初始和最终预置调谐状态之间的轨迹内插的多个其他调谐状态生成至少一个下一个调谐状态,其中,基于生成的前一调谐状态、已更新检测信号电平、操作条件以及设备的主动通信模式中的至少一个来生成下一调谐状态。
现在参考图2,呈现了根据一个实施例的无线通信设备(WCD)、诸如图1的WCD100中的射频通信部件(RFCC)200的框图表示。RFCC200包括被耦合到功率放大器(PA)218的收发器216,该功率放大器(PA)218被进一步耦合到天线调谐器222。被耦合到天线调谐器222的还有控制器220。另外,天线调谐器222被连接到第一天线118。
针对上行链路信号,天线调谐器222在天线调谐器222的输入端口处接收RFin信号219。在一个实施例中,RFin信号219表示最初由收发器(例如,收发器216)传播、被功率放大器218放大且然后被传播至天线调谐器222的信号。然而,为了促进所述实施例的描述,在本文中可将RFin信号219简称为由收发器216传播的信号。同样地,天线调谐器222在天线调谐器222的输出端处产生RFout信号224。RFout信号224的复值取决于由天线调谐器222提供的阻抗变换的水平。调谐器222的优选最优化涉及到最大化输送给天线118的RFout信号功率。针对下行链路信号,天线调谐器222从天线118接收RFout信号并传播至位于收发器216中的接收器(未示出)。由于天线调谐器222至少包括近似双边线性电路,所以用于上行链路或正向信号路径的给定阻抗变换至少大约也在用于下行链路或反向信号路径的最佳范围中。
在一个实施例中,天线调谐器能够向天线谐振器结构提供阻抗匹配以获得期望的操作频率。另外,天线调谐器能够直接地调整天线的谐振器结构。如果天线调谐器包括一个或多个微电机(MEM)开关,或者用本领域中已知的其他方法,则能够实现天线的谐振结构的调整。在一个实施例中,将MEM集成到天线结构并在MEM被致动时修改天线谐振器的长度。天线调谐器还可包括扩展功能,其使得天线调谐器能够提供(a)对天线谐振的调整以及(b)阻抗匹配。在随后的描述中,可主要从阻抗匹配天线调谐器的角度来描述天线调谐功能。然而,如由电长度调谐天线调谐器提供的电长度调谐也适用于这些描述。此外,在一个实施例中,可将电长度调谐器与阻抗匹配功能和电长度或谐振频率调谐功能集成。
再次地参考图2,并且还参考图5,至少一个天线、第一天线118A具有响应于通信设备的操作条件变化而改变的输入阻抗。天线调谐器222基于由天线调谐控制器220提供的控制信号来执行天线调谐以补偿通信设备的操作条件的各种变化。天线调谐器控制器220被连接在反馈配置内,如图5中所示,该配置为天线调谐器控制器220提供反馈信息以使得天线调谐器控制器220能够确定检测信号电平。
在一个实施例中,天线调谐器控制器220从可通过定向耦合器的使用来实现的功率输送检测器(图5)接收反馈信息。天线调谐器控制器220使用检测信号水平以及调谐状态的预先建立轨迹、诸如轨迹信息204来生成天线调谐状态。天线调谐器控制器220将调谐状态转发至天线调谐器222以使得天线调谐器222能够将对应于检测信号水平的射频(RF)信号功率朝着预置、给定值调整。该给定值是以下各项中的一个:(a)最大值,其中,检测信号表示到天线的输送功率和到天线匹配的输送功率中的至少一个;以及(b)最小值,其中,检测信号表示来自天线匹配的反射功率、返回损耗量值和驻波比中的至少一个。在一个实施例中,到天线匹配的输送功率基本上等效于基于提供的天线阻抗匹配水平的输送给天线调谐器的功率减去天线调谐器222中的电路元件的换能器损耗。在特定实施方式中,到天线匹配的输送功率是从收发器出来到理想50欧姆负载的可用功率减去失配损耗,其中,失配损耗是阻抗匹配的函数。来自天线匹配的反射功率基于天线阻抗失配的水平基本上等效于由天线调谐器222反射的功率。天线调谐状态从调谐状态的预先建立轨迹生成。图3图示出沿着示例性轨迹304的点的可能序列。特别地,生成的天线调谐状态表示沿着天线状态的所选择的、预先建立轨迹的点的序列,所述调谐状态包括(a)初始预置调谐状态324和最终预置调谐状态326和(b)多个其他调谐状态328,其被内插在初始和最终预置调谐状态324和326之间。在简单示例中,天线调谐器222包括M个可调谐电容器。针对每个电容器Cm定义N个调谐状态的轨迹,包括Cm,i的初始电容和Cm,i+ΔCm的最终电容。针对每个可调谐元素m=1至M,针对从0至N-1,N个调谐状态的轨迹包括从0至N-1的n的状态Cm,i+n*ΔCm/N。调谐状态的这些轨迹被天线调谐器控制器220从持久性存储器、例如通信设备100(图1)内的存储器104检索和/或访问。
通信设备(例如,WCD100)在持久性存储器中存储调谐状态的多个预先建立轨迹,以及各自的多个预先识别设备操作条件和通信模式。所述多个预先识别设备操作条件和通信模式分别被映射到调谐状态的特定预先建立轨迹。该设备操作条件能够包括(a)设备定位,(b)设备的用户操纵和(c)设备的特定功能的激活。因此,响应于由信息信号、诸如来自图5的检测信号电平信号提供的检测信号电平的接收,天线调谐器控制器220确定检测信号电平是否与给定值匹配;并且如果检测信号电平与给定值匹配,则天线调谐器控制器220确定通信设备的当前操作条件。天线调谐器控制器220然后确定分别地与调谐状态的特定预先建立轨迹相关联的一个或多个预先识别操作条件中的至少一个是否与当前操作条件匹配。响应于分别地与调谐状态的特定预先建立轨迹相关联的一个或多个预先识别操作条件中的至少一个与当前操作条件匹配的确定,天线调谐控制器220确定分别地与调谐状态的特定预先建立轨迹相关联的一个或多个预先识别操作条件中的哪一个与当前操作条件匹配。响应于确定一个或多个预先识别操作条件的特定预先识别操作条件与当前操作条件最佳地匹配,天线调谐器控制器220选择对应于与当前操作条件最佳地匹配的特定预先识别操作条件的预先建立轨迹。
在一个实施例中,天线调谐器控制器220首先从预先建立轨迹中选择初始预置调谐状态以发送到天线调谐器222。在一个实施例中,可在检测信号电平的分析之后,或者在替换实施例中,在没有检测信号电平的分析的情况下完成该选择。在另一实施例中,天线调谐器控制器220首先基于当前检测信号电平的分析从预先建立轨迹中选择不同于初始调谐状态的另一调谐状态。天线调谐器控制器220然后将初始预置调谐状态或第一所选其他调谐状态转发至天线调谐器以使得天线调谐器能够执行阻抗变换。
在生成初始预置调谐状态之后,天线调谐器控制器220接收已更新或另一检测信号电平,并且天线调谐器控制器220确定已更新检测信号电平与预置给定值匹配。响应于已更新检测信号电平未能与预置给定值匹配,天线调谐器控制器220生成第二调谐状态。在一个实施例中,第二调谐状态是在初始和最终预置调谐状态之间内插的多个其他调谐状态中的一个。特别地,天线调谐器控制器220生成第一内插调谐状态。内插调谐状态是基于生成的前一调谐状态、相应的检测信号电平、操作条件以及主动通信模式中的至少一个而生成的。
例如,操作条件和主动通信模式提供与设备使用和操作相关联的条件的稳定性水平的指示。条件的稳定性水平可用于确定用来响应于前一反馈而生成调谐状态的轨迹是否保持有效或是否需要到不同轨迹的切换。已更新或相应的检测信号电平的值和生成的先前调谐状态被共同地用来指定并生成递增水平的调谐状态自适应。此递增水平的调谐状态自适应是相对于先前选择或生成的调谐状态提供的,并且对应于促使在辐射元件处接收或检测预定和预置给定信号电平所需的估计水平的阻抗调整。天线调谐器控制器220继续生成调谐状态,只要当前或已更新检测信号电平未能与预置给定值匹配即可。当检测信号水平在给定值的预先建立阈值范围内时,检测信号电平与给定值“匹配”。然而,天线调谐器控制器220响应于与预置给定值匹配的检测信号电平的接收而停止生成任何调谐状态。天线调谐器控制器220响应于未能与预置给定值匹配的检测信号电平的接收而重新开始调谐状态的生成。
在一个实施例中,在生成第二调谐状态之后,如果当前检测信号电平并不与给定值匹配,则天线调谐器控制器220基于检测信号电平和以下各项中的至少一个而生成“下一调谐状态”或“第二内插调谐状态”:(a)初始调谐状态;(b)第一所选调谐状态,其不同于初始调谐状态;(c)第二调节状态;(d)第一内插调谐状态,其在初始调谐状态的生成之后或在第一所选调谐状态之后连续地生成;以及(d)另一调谐状态,其在第二调谐状态之后生成,或者在第二调谐状态的生成之后连续地生成。天线调谐器控制器220将下一调谐状态或第二内插调谐状态转发至天线调谐器222。
第一内插调谐状态在轨迹内连续地在调谐状态位置上高于在初始调谐状态。初始调谐状态连续地是轨迹的最低定位调谐状态,而最终调谐状态连续地是轨迹的最高调谐状态。在一个实施例中,较低定位状态(即,相对于较高调谐状态)是提供或对应于较低水平的阻抗调谐的调谐状态。另一方面,相对较高定位状态是提供或对应于相对较高水平的阻抗调谐的调谐状态。
下一调谐状态是以下各项中的一个:(a)与被发送到天线调谐器的先前选择连续调谐状态相比的所选轨迹内的连续较高调谐状态,以及(b)与先前所选连续调谐状态相比的连续较低调谐状态。天线调谐器控制器220响应于以下各组条件中的至少一个而将连续较高调谐状态选作下一调谐状态:(i)先前所选连续调谐状态是从另一调谐状态朝向轨迹的最终调谐状态的连续增加调谐状态,并且当前检测信号电平超过前一检测信号电平;以及(ii)先前选择连续调谐状态是从另一调谐状态朝向轨迹的初始调谐状态的连续减小调谐状态,并且当前检测电流水平小于前一检测信号电平。
天线调谐器控制器220响应于以下各组条件中的至少一个而将连续较低调谐状态选作下一调谐状态:(i)先前选择连续调谐状态是来自另一调谐状态的连续增加调谐状态,并且当前检测信号电平小于前一或第一检测信号电平;以及(ii)先前选择连续调谐状态是来自另一调谐状态的连续减小调谐状态,并且当前或第二检测信号电平超过第一检测信号电平。
先前选择连续调谐状态是在另一调谐状态之后连续生成的。在一个实施例中,下一调谐状态和先前选择的连续调谐状态是内插调谐状态。在相关实施例中,先前选择连续调谐状态是第二调谐状态。此外,在相关实施例中,另一调谐状态是初始调谐状态或不同于初始调谐状态的第一所选调谐状态。在替换实施例中,先前选择连续调谐状态是在第二调谐状态的生成之后生成的调谐状态。在替换实施例中,另一调谐状态是在以下各项的生成之后生成的调谐状态(a)初始调谐状态或不同于初始调谐状态的第一所选调谐状态或(b)初始调谐状态和第一所选调谐状态两者。
在一个实施例中,天线调谐器控制器220从一对相邻调谐状态之中选择当前调谐状态。这些相邻调谐状态连续地在最近选择调谐状态以上或连续地在其以下。该对相邻调谐状态中的一个的此选择是基于当前检测信号电平大于或小于前一检测信号电平。然而,在另一实施例中,天线调谐器控制器220从所选轨迹内的完整或通用的一组调谐状态之中选择当前调谐状态。从通用的一组调谐状态之中进行的此选择是基于(a)当前检测信号电平大于或小于前一检测信号电平以及(b)当前检测信号电平不同于前一检测信号电平的程度。
再次参考通信设备的操作条件和轨迹的选择,在一个实施例中,响应于确定当前操作条件并不与任何的预先识别操作条件匹配,控制器220使用选自以下各项中的至少一个的值来生成调谐状态:(a)第一轨迹,其与具有与当前操作条件的最高相关水平的特定预先识别操作条件相关联;以及(b)第二轨迹,其是基于操作条件中的当前趋势和所利用的相应的一组先前轨迹而预测的。用后一种方法,第二轨迹对应于与当前操作条件至少具有阈值相关水平的预先识别操作条件。
在另一实施例中,响应于确定当前操作条件并不与任何的预先识别操作条件匹配,天线调谐器控制器220通过对与所选预先识别操作条件相对应的至少一个预先建立轨迹进行外推以导出调谐状态值的新轨迹来生成调谐状态值。所选预先识别操作条件满足阈值、与当前操作水平的最低相关水平,并且新轨迹和组成调谐状态是基于所选预先识别操作条件与当前操作条件之间的确定相关水平而计算的。
现在转到图3,图示出根据一个实施例的被用于天线阻抗匹配的史密斯图表,其中,在两个维度上对复反射系数进行绘图。图表300包括第一状态自适应轨迹304和第二状态自适应轨迹314。特定状态自适应轨迹与特定操作频率相关联。沿着该轨迹,例如第一状态自适应轨迹304,不同的内插调谐状态328对应于反射系数的不同值,并且不同的值指示阻抗失配的不同水平。一般地,在反射系数方面表征阻抗失配。因此,从而反射系数的不同值对应于需要阻抗调谐的各种水平。史密斯图表上的每个复反射系数点Γ通过公式ZANTENNA=(Γ-r0)/(Γ+r0)对应于复天线输入阻抗ZANTENNA,r0是参考阻抗,通常为50Ω。匹配电路具有输出阻抗ZANTENNA*,其为ZANTENNA的复共轭。这提供图2的RFout信号到天线的最大功率传输。此外,检测信号水平受到阻抗失配水平的影响。
第一状态自适应轨迹304提供对应于具有初始或起始阻抗的设备操作的初始调谐状态324。例如,初始调谐状态324可对应于其中到和来自天线的信号路径基本上无障碍的设备操作,诸如其中天线未受到用户的头或手的影响的“自由空间”设备操作条件。第一状态自适应轨迹304还提供了其中通信设备正在被保持在用户的手中并与用户的头相接触的最终调谐状态326。因此,初始调谐状态324和相应的“自由空间”设备操作条件与预先建立自由空间天线阻抗306相关联。最终调谐状态326和相应的“头-手”设备操作条件与预先建立“头-手”位置阻抗308相关联。这样,天线调谐器发现从一定范围的匹配电路找到给定匹配电路,每个对应于一定程度的阻抗失配,从在“自由空间”中表征的虚拟未加载设备,到在被用紧固的手柄接近于头部保持的“头手”位置中表征的重加载设备。
类似于第一状态自适应轨迹304,第二状态自适应轨迹314提供了对应于“自由空间”设备操作条件的初始调谐状态、状态306。第二状态自适应轨迹314提供了对应于预先建立“身体佩戴”位置阻抗316的第一调谐状态,其中,通信设备正在用户的口袋或可被固定于用户的身体的设备保持器中被携带。最终调谐状态和相应的“身体佩戴”设备操作条件与预先建立“身体佩戴”位置阻抗相关联。
在图表300中,虽然“头-手”设备操作条件和“身体佩戴”设备操作条件共享初始调谐状态,但不需要各种轨迹共享初始调谐状态。因此,图表300的示例简单地图示出调谐状态的任意示例,并且不意图使初始调谐状态局限于同一调谐状态。
在一个实施例中,设备条件对应于特定复阻抗值。结果,控制器220能够通过将定义当前设备条件的信息与定义预先建立设备条件的信息相比较来确定利用哪个轨迹来生成调谐状态。定义当前和预先建立操作条件的信息因此能够包括对应于各自操作条件的复阻抗值。
为了使得能够由控制器220实现高效的搜索机制和/或搜索功能,利用预选的一组轨迹并存储在持久性存储器内。特别地,通信设备将调谐状态的多个预先建立轨迹和关联的多个预先识别设备操作条件和通信模式存储在持久性存储器、诸如图1的存储器104内的至少一个且潜在地多个表格(例如,图4的表400)中,以使得天线调谐器控制器220能够高效地搜索和生成调谐状态。
参考图4,呈现了根据一个实施例的示例性表示,其提供关于各种预先建立和预先选择自适应轨迹(具有其相应的设备操作条件)和调谐状态的信息。在表400的单独行内识别了三个不同轨迹。具体地,第一行402提供关于第一轨迹“T1”的信息,对应于“头和手”设备操作条件。第一轨迹T1能够对应于图3的轨迹304。第二行404提供了关于第二轨迹“T2”的信息,对应于在用户身体的“身体佩戴”位置上携带的设备。第三行406提供关于第三轨迹“T3”的信息,其与在“游戏”位置上取向的设备相对应,例如同时正在通信设备100(图1)上执行特定的游戏应用程序109。如第一行402进一步图示出的,轨迹“T1”提供用于在语音呼叫位置上的设备的调谐状态,其中,设备在用户的手中被保持就位,并且设备与用户的头接触。这些调谐状态包括(a)T1初始、初始调谐状态,例如初始调谐状态324(图3),(b)“T1最终”,最终调谐状态,例如最终调谐状态326(图3)和(c)多个内插调谐状态,例如内插调谐状态328(图3),包括“T1-interp1”、“T1-interp2”等,直至且包括倒数第二T1-interpN状态。在一个实施例中,关于轨迹“T1”的信息可包括至少一个可编程匹配电路元件值,其对应于用于设备条件的给定值,其中设备正在用户的手中被保持位置并与用户的头接触。此复阻抗值基于当前设备操作条件而提供用于当前水平的输出阻抗的估计。基于特定当前操作条件,控制器220然后提供调谐状态值以补偿当前、估计水平的输出阻抗。特别地,如果轨迹表示新指定的轨迹,其未被用来提供先前生成的调谐状态,则控制器220生成初始调谐状态(例如,“T1初始”)。在生成初始调谐状态和后续阻抗变换之后,控制器220经由反馈路径来接收已更新检测信号水平,其指示该估计是否成功地促使检测信号的功率水平基于所提供的阻抗变换而被朝着预置、给定值调整。如果需要进一步调整,则控制器220生成或选择内插调谐状态(例如,“T1-interp1”、“T1-interp2”等)中的一个以提供进一步的阻抗匹配。
在一个实施例中,存储在表格中的数据可以是被用来实现调谐器222中的特定阻抗的控制信息。在这种情况下,将控制信息存储在表格中来代替阻抗值本身。例如,关于轨迹T1的信息可包括至少一个可编程匹配电路元件,其对应于用于其中设备正被保持在用户的手中并用用户的头接触的设备条件的给定值。基于用于当前设备操作条件的天线输入阻抗,此匹配电路值提供给定输出阻抗。同样地,关于轨迹T2和T3的信息可包括对应于用于身体佩戴和游戏条件的给定值的电路元件值。在一个实施例中,预先确定特定数目的内插调谐状态。然而,可通过涉及到预先建立值中的多个的内插来生成许多其他调谐状态。基于用于特定操作模式和/或对应于操作条件的估计阻抗值的准确度水平所需的灵敏度水平,可需要附加、内插调谐状态的此进一步生成。在另一实施例中,图4的表格可仅包括初始和最终调谐状态,并且由控制器220来计算对应于内插状态1-N的所有调谐状态。
第二轨迹T2或第三轨迹T3的选择取决于通信设备的当前操作状态,并且每个轨迹同样地提供沿着从初始调谐状态到最终调谐状态的轨迹内插的多个可选调谐状态。应认识到的是三个不同轨迹的呈现仅仅是用于举例说明,并且不同轨迹的数目能够在从单个轨迹至任何数目的轨迹范围内,其能够独立地与通信设备的特定操作条件相关联。
在一个实施例中,如果发生以下各项中的至少一个,则TSG逻辑108促使控制器220将轨迹从第一轨迹切换至第二轨迹:(a)前一操作条件不同于当前操作条件;以及(b)检测信号电平落在值的预置范围之外(即,检测信号电平小于最小阈值值或大于最大阈值值)。如果控制器220从使用在前一调谐循环内利用的第一轨迹切换至使用用于当前调谐循环的第二轨迹,则初始调谐状态是从第二轨迹生成或选择的第一调谐状态。
图5是图示出根据一个实施例的功率控制和天线调谐反馈电路的框图。电路500包括功率放大器218和功率检测器506,其被耦合到功率放大器218的输出端。电路500还包括天线调谐器222。功率检测器506检测由功率放大器218在PA Out信号514上输送到天线调谐器222的功率水平。电路500还包括功率放大器和调谐器控制器220,其被连接在功率检测器506与功率放大器218之间的反馈路径内,并且其向天线调谐器222提供控制信号。功率放大器接收功率放大器(PA)输入504并提供PA输出514作为输出信号。天线调谐器222从RFout224接收信号219中的RF并提供RF out224作为输出信号,其被耦合到天线118。
在本文中被可互换地称为天线调谐器控制器220或简单地控制器220的功率放大器控制器和调谐器控制器220包括调谐器控制器508和功率放大器控制器512。功率放大器控制器512从功率检测器506接收反馈值,其指示被输送到至少一个天线的功率水平。特别地,功率放大器控制器512将用于输送到所述至少一个天线的功率水平的反馈值与被输送到所述至少一个天线的目标功率水平相比较以便确定功率控制值。功率放大器控制器输入端518提供预定目标水平的指示。功率放大器控制器512将功率控制信号510转发至功率放大器218。功率放大器控制器512使用功率控制信号510来触发功率放大器218以生成输出功率信号以补偿大于或小于预定、给定或目标水平的反馈值。被生成以补偿天线回波损耗的输出功率信号促使被输送到所述至少一个天线的功率接近于目标水平。在一个实施例中,功率放大器控制器512将功率控制信号转发至调谐器控制器508。
调谐器控制器508将反射功率控制信号与由预先建立调谐器控制器输入信号516提供的阈值值相比较以确定功率控制信号是否大于阈值值。响应于反射系数值大于阈值值,调谐器控制器508生成调谐状态值以减少天线阻抗失配。因此,一般地,如果对应于从PA可用于天线的功率水平的功率控制信号并不与目标值匹配,则调谐器控制器508生成调谐状态值以将检测信号水平朝着目标值调整。响应于天线阻抗失配的减少导致天线回波损耗的相应减少,功率放大器218减少输出功率信号以便保持来自所述至少一个天线的总辐射功率的要求水平。这样,PA控制器512和调谐器控制器508能能够共享用于反馈输送功率的公共检测器506。PA控制器512使输送的功率稳定至预定和/或预先建立目标水平。调谐器控制器508使天线调谐器222适应于减少失配损耗量,并且从而使PA218必须使得可用的功率量最小化。使PA218必须使得可用的功率量最小化减少来自电池的能量消耗。在一个实施例中,调谐器控制器508可比PA控制器512更缓慢地适应。
在一个实施例中,天线调谐器222从天线调谐器控制器220接收用于将天线阻抗映射到特性阻抗值、例如RFin219信号处的50欧姆的N个控制输入。天线阻抗在本文中被可互换地称为ZANTENNA。在一个实施例中,天线调谐器222可包括多个电压控制变容二极管(未明确地示出),其能够被调整以提供从ZANTENNA到特定阻抗值的阻抗变换。例如,天线调谐器222能够包括三个变容二极管。更一般地,天线调谐器222可提供N个控制变量以将阻抗变换从ZANTENNA变换成任何期望功率放大器(PA)负载阻抗,其中,N是两个或更多。在一个实施例中,天线调谐器222包括多个可调谐电容器,天线调谐器根据由天线调谐器控制器220提供的输出状态对其进行调整以将所检测天线阻抗变换成天线调谐器的输入阻抗。该输出状态被天线调谐器222作为控制输入接收。天线调谐器控制器220限制被用于提供到选自阻抗轨迹上的点的状态的阻抗变换的输出状态。如前所述,阻抗轨迹能够包括(a)第一预定调谐状态,(b)最终预定调谐状态,以及(c)在第一和最终预定调谐状态之间内插的其他递增调谐状态。
在一个实施例中,通信设备(例如,WCD100)将调谐状态的预先建立轨迹存储在持久性存储器内的多个不同表格中以使得天线调谐器控制器220能够高效地搜索和生成调谐状态。天线调谐器控制器220将具有第一调谐状态的已存储、预先建立轨迹用于将起始阻抗ZANTENNA1变换成特性阻抗值(例如,50欧姆);并将第二调谐状态用于将第二阻抗ZANTENNA2变换成特性阻抗值,例如50欧姆。最初,控制器220输出第一调谐状态。控制器220然后递增地适应沿着第一和第二调谐状态之间的轨迹指向的调谐状态,直至反馈变量被优化。第一与第二调谐状态之间的路径表示自适应轨迹。
在一个实施例中,ZANTENNA1可以是开放空间天线阻抗,并且ZANTENNA2可以是对应于设备处于语音呼叫位置、例如设备正被保持在用户的手中并正在触摸或接近于用户的头的天线位置。在一个实施例中,为与主动设备操作相关联的每个波段、子波段或信道提供不同的轨迹。根据设备操作条件,控制器220可利用各种自适应轨迹。例如,其他轨迹可分别地基于阻抗ZANTENNA3和ZANTENNA4,其对应于设备位于针对用户身体的第一或第二位置上。另一轨迹可基于阻抗ZANTENNA5,其对应于游戏位置。在一个实施例中,天线调谐器控制器220最初提供适合于将第一天线阻抗ZANTENNA1变换成特性阻抗值、例如50欧姆的调谐器控制输出。天线适应控制器然后基于递增适应调谐状态的其他控制输出,该递增适应调谐状态是基于来自预定轨迹的调谐状态。该递增适应调谐状态被用来增强阻抗变换。
图6是图示出用来完成说明性实施例的以上过程的方法的流程图。虽然可参考已参考图1—6示出和描述的部件和功能来描述图6中所示的方法,但应理解的是这仅仅是为了方便起见,并且当实现各种方法时,能够采用其替换部件和/或配置。该方法内的某些功能可由在一个或多个处理器、诸如WCD100(图1)内的处理器110或DSP114上执行的TSG逻辑108来完成,或者能够由控制器120/220来完成各功能。执行的过程然后控制WCD100的或上面的特定操作。为了描述方法时的简单起见,从控制器120/220的角度出发来描述所有方法过程和/或功能。
图6图示出根据一个实施例的用于从调谐状态的预先建立轨迹生成调谐状态的方法。该方法在发起器框602处开始并继续进行至方框604,在该处,在控制器220内执行的TSG逻辑108确定当前设备操作条件。过程移动至判定框610,在该处,处理器220确定当前操作条件是否与预先建立操作条件中的一个匹配。
如果在判定框606处控制器220确定当前操作条件与特定预先建立操作条件匹配,则控制器220生成与预先建立操作条件相关联的轨迹,该预先建立操作条件与当前操作条件匹配,如方框612处所示。然而,如果在判定框606处控制器220确定当前操作条件并不与任何预先建立的操作条件匹配,则控制器220在方框616处基于与可用轨迹相关联的特定特性来生成轨迹。控制器220选择以下各项中的一个:a)第一轨迹,与具有与当前操作条件的最高相关水平的特定预先识别操作条件相关联;(b)第二轨迹,是基于操作条件中的当前趋势和所利用的最近轨迹而预测的,该第二轨迹对应于至少具有与当前操作条件的阈值相关水平的预先识别操作条件;以及(c)调谐状态值的新轨迹,通过对应于所选预先识别操作条件的至少一个预先建立轨迹的外推而生成。通过生成新轨迹,所选预先识别操作条件将必须满足与当前操作条件的预置最小阈值水平,并且基于所选预先识别操作条件与当前操作条件之间的确定相关水平来计算新生成的轨迹和相应的组成调谐状态。特别地,在一个实施例中,可通过利用确定的相关水平对与所选预先识别操作条件相对应的复阻抗值中的一个或多个进行外推来导出新生成的轨迹。
在方框612处,控制器220向天线调谐器222发送初始调谐状态以使得天线调谐器222能够使用初始调谐状态来执行阻抗匹配。在方框614处,控制器220接收已更新检测信号电平。在判定框616处,控制器220确定已更新检测信号电平是否与预置给定值匹配。如果在判定框616处控制器220确定已更新反射系数值并不与预置给定值匹配,则过程移动至方框620,在该处,控制器220生成内插或其他初始调谐状态。过程移动至方框622,在该处,控制器220将调谐状体转发至天线调谐器222,并且该过程然后返回至方框604。
在一个实施例中,如果先前使用相同的轨迹生成初始调谐状态且没有其他轨迹中断该轨迹的使用,则控制器220生成内插调谐状态。
再次参考方框622,如果在判定框622处,控制器220确定已更新检测信号电平与预置给定值匹配,则过程移动至方框624,在该处,控制器220确定当前不需要调谐。结果,TSG逻辑108/控制器220当前不生成任何调谐状态,并且该过程然后返回至方框604。
在本文中呈现并描述的各种图中的流程图和框图图示出根据本发明的各种实施例的系统、方法和计算机程序产品的可能实施方式的架构、功能和操作。在这方面,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。还应注意的是,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。因此,虽然按照特定的序列描述并图示出方法过程,但特定过程序列的使用并不意图暗示对本发明的任何限制。在不脱离本发明的精神和范围的情况下可相对于过程序列进行修改。因此,不应以限制性意义来理解特定序列的使用,并且本发明的范围延伸至所附权利要求及其等效物。
在某些实施方式中,在不脱离本发明的精神和范围的情况下,将方法的某些过程组合、同时地或按照不同顺序执行或者可能省略。还应注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
虽然已参考示例性实施例描述了本发明,但本领域的技术人员将理解的是在不脱离本发明的范围的情况下,可以实现各种改变,并且等价物可以代替其要素。另外,在不脱离其本质范围的情况下,可以进行许多修改以使特定系统、器件或其要素适合于本发明的讲授内容。因此,意图在于本发明不限于用于执行本发明的公开的特定实施例,而是本发明将包括落在所附权利要求的范围内的所有实施例。此外,术语第一、第二等的使用并不表示任何顺序或重要性,而是使用术语第一、第二等来将一个要素与另一个区别开。
在此使用的术语仅是为了描述特定实施例,且不旨在限制本发明。如在此使用的,单数形式“一”、“一个”和“该”也旨在包括复数形式,除非上下文另外清楚地指明。还将理解,当在说明书中使用时,术语“包括”和/或“包含”指明存在所述的特征、整体、步骤、操作、要素和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、要素和/或组件。
以下权利要求中的所有装置或步骤加功能要素的相应结构、材料、动作以及等效物意图包括用于与其他权利要求要素相结合地执行功能的任何结构、材料或动作,如具体地要求保护的那样。呈现本发明的说明是为了示出和描述的作用,但不是穷尽性的或将本发明限制于所公开的形式。许多修改和变化对本领域普通技术人员来说是明显的,而不脱离本发明的范围。选择和描述实施例是为了最佳地解释本发明的原理和实际应用,并使得本领域普通技术人员能针对适于考虑的特定用途的具有各种修改的各种实施例理解本发明。
Claims (8)
1.一种通信设备,包括:
至少一个无线电收发器;
至少一个天线,所述至少一个天线具有输入阻抗,所述输入阻抗响应于所述通信设备的操作条件的变化而改变;
天线调谐器,所述天线调谐器被耦合在所述至少一个无线电收发器与所述至少一个天线之间;
持久性存储器,所述持久性存储器存储调谐状态的多个预先建立轨迹以及被分别地映射到调谐状态的各种预先建立轨迹的相应的多个预先识别设备操作条件和通信模式,其中,每个预先建立轨迹包括初始预置调谐状态和最终预置调谐状态;以及
天线调谐器控制器,所述天线调谐器控制器被连接在为所述天线调谐器控制器提供检测信号电平并且确定所述通信设备的当前操作条件的反馈配置内,其中,所述检测信号电平中的至少一个被所述天线调谐器控制器使用,通过在所述初始预置调谐状态和所述最终预置调谐状态之间的内插来生成天线调谐状态,所述天线调谐器控制器将所述天线调谐状态转发至所述天线调谐器以将所述至少一个检测信号电平朝着给定值调整,其中,生成的天线调谐状态表示沿着调谐状态的所选择的、预先建立轨迹的点的序列,所述调谐状态是从与预先建立的操作条件相对应的所述预先建立轨迹的所述初始预置调谐状态到与所述当前操作条件最佳地匹配的特定预先识别操作条件相对应的所述预先建立轨迹的所述最终预置调谐状态。
2.根据权利要求1所述的通信设备,其中:
所述给定值是以下各项中的一个:(a)最大值,其中,所述检测信号表示到所述天线的输送功率和到由所述天线调谐器提供的所述天线匹配的输送功率中的至少一个;以及(b)最小值,其中,所述检测信号表示来自所述天线匹配的反射功率、回波损耗量值和驻波比中的至少一个。
3.一种收发器集成电路,包括:
至少一个无线电收发器;
天线调谐器,所述天线调谐器被耦合在所述至少一个无线电收发器与至少一个天线之间,其中,所述至少一个天线具有输入阻抗,所述输入阻抗响应于通信设备的操作条件变化而改变;
持久性存储器,所述持久性存储器存储调谐状态的多个预先建立轨迹以及被分别地映射到调谐状态的各种预先建立轨迹的相应的多个预先识别设备操作条件和通信模式,其中,每个预先建立轨迹包括初始预置调谐状态和最终预置调谐状态;以及
天线调谐器控制器,所述天线调谐器控制器被连接在为所述天线调谐器控制器提供检测信号电平并且确定所述通信设备的当前操作条件的反馈配置内,其中,所述检测信号电平中的至少一个被所述天线调谐器控制器使用,通过在所述初始预置调谐状态和所述最终预置调谐状态之间的内插来生成天线调谐状态,所述天线调谐器控制器将所述天线调谐状态转发至所述天线调谐器以将所述至少一个检测信号电平朝着给定值调整,其中,生成的天线调谐状态表示沿着调谐状态的所选择的、预先建立轨迹的点的序列,所述调谐状态是从与预先建立的操作条件相对应的所述预先建立轨迹的所述初始预置调谐状态到与所述当前操作条件最佳地匹配的特定预先识别操作条件相对应的所述预先建立轨迹的所述最终预置调谐状态。
4.根据权利要求3所述的收发器集成电路,其中:
响应于确定所述当前操作条件不与任何的所述预先识别操作条件匹配,所述控制器使用选自以下各项中的至少一个的值来生成调谐状态:(a)第一轨迹,所述第一轨迹与具有与所述当前操作条件的最高相关水平的特定预先识别操作条件相关联;以及(b)第二轨迹,所述第二轨迹是基于操作条件中的当前趋势和所利用的相应的一组先前轨迹而预测的,其中,所述第二轨迹对应于至少具有与所述当前操作条件的阈值相关水平的预先识别操作条件。
5.根据权利要求3所述的收发器集成电路,其中,所述调谐状态的轨迹进一步包括多个其他调谐状态,所述多个其他调谐状态被内插在所述初始预置调谐状态和所述最终预置调谐状态之间,并且所述天线调谐器控制器:
从所选择的轨迹中选择第一调谐状态;
将所述第一调谐状态转发至所述天线调谐器;
接收第一检测信号电平;
基于所述初始调谐状态和所述第一检测信号电平从所选择的轨迹中选择第二调谐状态;
将所述第二调谐状态转发至所述天线调谐器;
接收第二检测信号电平;
基于所述检测信号电平和以下各项中的至少一个生成下一调谐状态:(a)所述第一调谐状态;以及(b)所述第二调谐状态;以及
将所述下一调谐状态转发至所述天线调谐器。
6.根据权利要求3所述的收发器集成电路,其中:
调谐状态的所述多个预先建立轨迹和相应的多个预先识别设备操作条件和通信模式被存储在所述持久性存储器内的多个不同表格中,以使得所述天线调谐器控制器能够高效地搜索并生成调谐状态。
7.根据权利要求3所述的收发器集成电路,其中:
所述给定值是以下各项中的一个:(a)最大值,其中,所述检测信号表示到所述天线的输送功率和到由所述天线调谐器提供的所述天线匹配的输送功率中的至少一个;以及(b)最小值,其中,所述检测信号表示来自所述天线匹配的反射功率、回波损耗量值和驻波比中的至少一个。
8.一种利用收发器集成电路来调谐通信的一个或多个天线的方法,所述方法包括:
确定指示被输送给至少一个天线的功率水平的至少一个检测信号电平;
确定通信设备的当前操作条件;
存储调谐状态的多个预先建立轨迹以及被分别地映射到调谐状态的各种预先建立轨迹的相应的多个预先识别设备操作条件和通信模式,其中,每个预先建立轨迹包括初始预置调谐状态和最终预置调谐状态;以及
天线调谐器控制器,所述天线调谐器控制器通过在所述初始预置调谐状态和所述最终预置调谐状态之间的内插并且基于所述至少一个检测信号电平而生成天线调谐状态,以将与所述至少一个检测信号电平相对应的功率水平朝着预置、给定值调整,其中,生成的天线调谐状态表示沿着调谐状态的所选择的、预先建立轨迹的点的序列,所述调谐状态是从与预先建立的操作条件相对应的所述预先建立轨迹的所述初始预置调谐状态到与所述当前操作条件最佳地匹配的特定预先识别操作条件相对应的所述预先建立轨迹的所述最终预置调谐状态;
其中,所述调谐状态包括多个其他调谐状态,所述多个其他调谐状态被内插在所述初始预置调谐状态和所述最终预置调谐状态之间。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/221,196 | 2011-08-30 | ||
| US13/221,196 US8712355B2 (en) | 2011-08-30 | 2011-08-30 | Antenna tuning on an impedance trajectory |
| PCT/US2012/052956 WO2013033277A1 (en) | 2011-08-30 | 2012-08-30 | Antenna tuning on an impedance trajectory |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103782519A CN103782519A (zh) | 2014-05-07 |
| CN103782519B true CN103782519B (zh) | 2017-02-22 |
Family
ID=47016817
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201280042009.8A Active CN103782519B (zh) | 2011-08-30 | 2012-08-30 | 阻抗轨迹上的天线调谐 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US8712355B2 (zh) |
| EP (1) | EP2751928B1 (zh) |
| KR (1) | KR101560301B1 (zh) |
| CN (1) | CN103782519B (zh) |
| WO (1) | WO2013033277A1 (zh) |
Families Citing this family (252)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8744384B2 (en) | 2000-07-20 | 2014-06-03 | Blackberry Limited | Tunable microwave devices with auto-adjusting matching circuit |
| US9406444B2 (en) | 2005-11-14 | 2016-08-02 | Blackberry Limited | Thin film capacitors |
| US7711337B2 (en) | 2006-01-14 | 2010-05-04 | Paratek Microwave, Inc. | Adaptive impedance matching module (AIMM) control architectures |
| US7535312B2 (en) | 2006-11-08 | 2009-05-19 | Paratek Microwave, Inc. | Adaptive impedance matching apparatus, system and method with improved dynamic range |
| US7714676B2 (en) | 2006-11-08 | 2010-05-11 | Paratek Microwave, Inc. | Adaptive impedance matching apparatus, system and method |
| US7917104B2 (en) | 2007-04-23 | 2011-03-29 | Paratek Microwave, Inc. | Techniques for improved adaptive impedance matching |
| US8213886B2 (en) | 2007-05-07 | 2012-07-03 | Paratek Microwave, Inc. | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
| US7991363B2 (en) | 2007-11-14 | 2011-08-02 | Paratek Microwave, Inc. | Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics |
| US8072285B2 (en) | 2008-09-24 | 2011-12-06 | Paratek Microwave, Inc. | Methods for tuning an adaptive impedance matching network with a look-up table |
| US8472888B2 (en) | 2009-08-25 | 2013-06-25 | Research In Motion Rf, Inc. | Method and apparatus for calibrating a communication device |
| US9026062B2 (en) * | 2009-10-10 | 2015-05-05 | Blackberry Limited | Method and apparatus for managing operations of a communication device |
| US8803631B2 (en) | 2010-03-22 | 2014-08-12 | Blackberry Limited | Method and apparatus for adapting a variable impedance network |
| SG184929A1 (en) | 2010-04-20 | 2012-11-29 | Paratek Microwave Inc | Method and apparatus for managing interference in a communication device |
| US9203489B2 (en) | 2010-05-05 | 2015-12-01 | Google Technology Holdings LLC | Method and precoder information feedback in multi-antenna wireless communication systems |
| US9379454B2 (en) | 2010-11-08 | 2016-06-28 | Blackberry Limited | Method and apparatus for tuning antennas in a communication device |
| US8712340B2 (en) | 2011-02-18 | 2014-04-29 | Blackberry Limited | Method and apparatus for radio antenna frequency tuning |
| US8655286B2 (en) | 2011-02-25 | 2014-02-18 | Blackberry Limited | Method and apparatus for tuning a communication device |
| US8594584B2 (en) | 2011-05-16 | 2013-11-26 | Blackberry Limited | Method and apparatus for tuning a communication device |
| US9769826B2 (en) | 2011-08-05 | 2017-09-19 | Blackberry Limited | Method and apparatus for band tuning in a communication device |
| US8611829B2 (en) * | 2011-08-09 | 2013-12-17 | Motorola Mobility Llc | Tunable filter feedback to control antenna switch diversity |
| US9002278B2 (en) * | 2012-02-29 | 2015-04-07 | Htc Corporation | Simple automatic antenna tuning system and method |
| WO2013159100A1 (en) * | 2012-04-20 | 2013-10-24 | Wispry, Inc. | Method for sensing and calibrating antenna tuner device performance in cellular handset |
| US8948889B2 (en) | 2012-06-01 | 2015-02-03 | Blackberry Limited | Methods and apparatus for tuning circuit components of a communication device |
| US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
| US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
| US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
| US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
| US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
| US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
| US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
| US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
| US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
| US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
| US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
| US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
| US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
| US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
| US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
| US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
| US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
| US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
| US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
| US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
| US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
| US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
| US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
| US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
| US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
| US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
| US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
| US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
| US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
| US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
| US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
| US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
| US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
| US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
| US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
| US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
| US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
| US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
| US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
| US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
| US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
| US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
| US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
| US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
| US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
| US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
| US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
| US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
| US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
| US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
| US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
| US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
| US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
| US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
| US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
| US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
| US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
| US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
| US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
| US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
| US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
| US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
| US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
| US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
| US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
| US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
| US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
| US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
| US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
| US9450449B1 (en) | 2012-07-06 | 2016-09-20 | Energous Corporation | Antenna arrangement for pocket-forming |
| US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
| US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
| US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
| US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
| US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
| US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
| US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
| US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
| US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
| US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
| US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
| US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
| US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
| US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
| US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
| US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
| US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
| US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
| US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
| US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
| US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
| US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
| US9853363B2 (en) | 2012-07-06 | 2017-12-26 | Blackberry Limited | Methods and apparatus to control mutual coupling between antennas |
| US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
| US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
| US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
| US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
| US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
| US9246223B2 (en) | 2012-07-17 | 2016-01-26 | Blackberry Limited | Antenna tuning for multiband operation |
| US9350405B2 (en) | 2012-07-19 | 2016-05-24 | Blackberry Limited | Method and apparatus for antenna tuning and power consumption management in a communication device |
| US9413066B2 (en) | 2012-07-19 | 2016-08-09 | Blackberry Limited | Method and apparatus for beam forming and antenna tuning in a communication device |
| US9362891B2 (en) | 2012-07-26 | 2016-06-07 | Blackberry Limited | Methods and apparatus for tuning a communication device |
| US9813262B2 (en) | 2012-12-03 | 2017-11-07 | Google Technology Holdings LLC | Method and apparatus for selectively transmitting data using spatial diversity |
| US9591508B2 (en) | 2012-12-20 | 2017-03-07 | Google Technology Holdings LLC | Methods and apparatus for transmitting data between different peer-to-peer communication groups |
| US10404295B2 (en) | 2012-12-21 | 2019-09-03 | Blackberry Limited | Method and apparatus for adjusting the timing of radio antenna tuning |
| US9374113B2 (en) | 2012-12-21 | 2016-06-21 | Blackberry Limited | Method and apparatus for adjusting the timing of radio antenna tuning |
| US9979531B2 (en) | 2013-01-03 | 2018-05-22 | Google Technology Holdings LLC | Method and apparatus for tuning a communication device for multi band operation |
| US10229697B2 (en) | 2013-03-12 | 2019-03-12 | Google Technology Holdings LLC | Apparatus and method for beamforming to obtain voice and noise signals |
| US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
| US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
| US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
| US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
| US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
| US9843763B2 (en) | 2013-05-10 | 2017-12-12 | Energous Corporation | TV system with wireless power transmitter |
| US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
| US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
| US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
| US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
| US9407335B2 (en) * | 2013-08-06 | 2016-08-02 | Google Technology Holdings LLC | Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks |
| EP3033817B1 (en) * | 2013-08-15 | 2019-10-09 | Humavox Ltd. | Wireless charging device |
| US9386542B2 (en) | 2013-09-19 | 2016-07-05 | Google Technology Holdings, LLC | Method and apparatus for estimating transmit power of a wireless device |
| US9893715B2 (en) | 2013-12-09 | 2018-02-13 | Shure Acquisition Holdings, Inc. | Adaptive self-tunable antenna system and method |
| US9549290B2 (en) | 2013-12-19 | 2017-01-17 | Google Technology Holdings LLC | Method and apparatus for determining direction information for a wireless device |
| US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
| US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
| US9491007B2 (en) | 2014-04-28 | 2016-11-08 | Google Technology Holdings LLC | Apparatus and method for antenna matching |
| US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
| US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
| US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
| US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
| US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
| US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
| US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
| US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
| US9478847B2 (en) | 2014-06-02 | 2016-10-25 | Google Technology Holdings LLC | Antenna system and method of assembly for a wearable electronic device |
| US9825364B2 (en) | 2014-06-12 | 2017-11-21 | Verily Life Sciences Llc | Adaptive antenna tuning based on measured antenna impedance |
| US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
| US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
| US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
| US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
| US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
| US9654059B2 (en) * | 2014-10-30 | 2017-05-16 | Mediatek Inc. | Apparatus and method for controlling impedance tuning by using hybrid control algorithm |
| US9614269B2 (en) * | 2014-12-10 | 2017-04-04 | Skyworks Solutions, Inc. | RF coupler with adjustable termination impedance |
| US9438319B2 (en) | 2014-12-16 | 2016-09-06 | Blackberry Limited | Method and apparatus for antenna selection |
| US10009000B2 (en) * | 2014-12-22 | 2018-06-26 | Intermec, Inc. | RFID reader antenna port isolation |
| US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
| WO2016106260A1 (en) * | 2014-12-27 | 2016-06-30 | Energous Corporation | Methodology for pocket-forming |
| US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
| US12283828B2 (en) | 2015-09-15 | 2025-04-22 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
| US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
| US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
| US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
| US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
| US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
| US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
| US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
| US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
| US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
| US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
| US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
| US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
| US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
| US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
| US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
| US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
| US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
| US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
| US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
| US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
| US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
| US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
| US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
| US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
| US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
| US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
| US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
| US10014897B2 (en) | 2015-11-03 | 2018-07-03 | Motorola Mobility Llc | Proximal user detection with measurement receiver |
| US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
| US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
| US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
| US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
| US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
| US10186892B2 (en) | 2015-12-24 | 2019-01-22 | Energous Corporation | Receiver device with antennas positioned in gaps |
| US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
| US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
| US11114749B2 (en) * | 2016-02-10 | 2021-09-07 | Sony Corporation | Communication apparatus and method, antenna apparatus, and communication system |
| EP3488532B1 (en) * | 2016-07-20 | 2025-02-19 | Qorvo US, Inc. | Method for tuning an antenna with a dvc |
| US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
| CN116455101A (zh) | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | 发射器集成电路 |
| US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
| US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
| US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
| US11011942B2 (en) | 2017-03-30 | 2021-05-18 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
| US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
| US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
| US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
| US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
| US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
| US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
| US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
| US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
| US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
| US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
| KR102516410B1 (ko) | 2018-09-04 | 2023-04-03 | 삼성전자주식회사 | 안테나 튜닝(tuning)을 수행하는 전자 장치 및 그 방법 |
| US11304071B2 (en) * | 2018-09-24 | 2022-04-12 | Qualcomm Incorporated | Radio control based on operational performance feedback |
| US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
| EP3918691A1 (en) | 2019-01-28 | 2021-12-08 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
| US11018779B2 (en) | 2019-02-06 | 2021-05-25 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
| WO2020191622A1 (zh) * | 2019-03-26 | 2020-10-01 | 华为技术有限公司 | 多通信系统中天线的调谐方法、装置和存储介质 |
| US12155231B2 (en) | 2019-04-09 | 2024-11-26 | Energous Corporation | Asymmetric spiral antennas for wireless power transmission and reception |
| EP4032166A4 (en) | 2019-09-20 | 2023-10-18 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
| US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
| US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
| WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
| WO2021055901A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Asymmetric spiral antennas with parasitic elements for wireless power transmission |
| US10673514B1 (en) * | 2019-12-12 | 2020-06-02 | Motorola Mobility Llc | Communication device with receive antenna tuning |
| EP4073905A4 (en) | 2019-12-13 | 2024-01-03 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
| US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
| US11063619B1 (en) | 2020-01-09 | 2021-07-13 | Motorola Mobility Llc | Communication device that tunes an antenna by proximal association |
| US11569858B2 (en) * | 2020-01-13 | 2023-01-31 | Apple Inc. | Adaptive antenna tuning system |
| US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
| US11469629B2 (en) | 2020-08-12 | 2022-10-11 | Energous Corporation | Systems and methods for secure wireless transmission of power using unidirectional communication signals from a wireless-power-receiving device |
| US11438850B2 (en) * | 2020-09-09 | 2022-09-06 | Samsung Electronics Co., Ltd. | Data-driven methods for look up table-free closed-loop antenna impedance tuning |
| US12306285B2 (en) | 2020-12-01 | 2025-05-20 | Energous Corporation | Systems and methods for using one or more sensors to detect and classify objects in a keep-out zone of a wireless-power transmission field, and antennas with integrated sensor arrangements |
| CN113541720B (zh) * | 2021-06-22 | 2022-11-01 | 西安电子科技大学 | 一种基于调谐功能的射频输入过功率保护方法及系统 |
| US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
| CN114844516B (zh) * | 2022-03-30 | 2024-05-31 | 深圳磁利晟科技有限公司 | 频率自适应控制方法、系统、磁疗设备及可读存储介质 |
| US12142939B2 (en) | 2022-05-13 | 2024-11-12 | Energous Corporation | Integrated wireless-power-transmission platform designed to operate in multiple bands, and multi-band antennas for use therewith |
| KR20240148202A (ko) * | 2023-04-03 | 2024-10-11 | 삼성전자주식회사 | 통신 시스템에서 출력 전력 최적화를 지원하기 위한 방법 및 장치 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1830154A (zh) * | 2003-08-14 | 2006-09-06 | 松下电器产业株式会社 | 天线匹配装置 |
| US20090073076A1 (en) * | 2007-09-13 | 2009-03-19 | Sony Ericsson Mobile Communications Ab | Adaptive antenna matching |
| US20110117863A1 (en) * | 2009-11-19 | 2011-05-19 | Camp Jr William O | Communications circuitry for an electronic device |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3794941A (en) | 1972-05-08 | 1974-02-26 | Hughes Aircraft Co | Automatic antenna impedance tuner including digital control circuits |
| US4201960A (en) | 1978-05-24 | 1980-05-06 | Motorola, Inc. | Method for automatically matching a radio frequency transmitter to an antenna |
| DE3033407A1 (de) | 1980-09-05 | 1982-04-22 | Robert Bosch Gmbh, 7000 Stuttgart | Sprechfunkgeraet |
| US5548821A (en) | 1992-06-09 | 1996-08-20 | Coveley; Michael | Adaptive system for self-tuning and selecting a carrier frequency in a radio frequency communication system |
| US5483688A (en) | 1993-01-22 | 1996-01-09 | Seiko Communications Holding N.V. | Adaptive automatic antenna tuning method and apparatus |
| US6657595B1 (en) | 2002-05-09 | 2003-12-02 | Motorola, Inc. | Sensor-driven adaptive counterpoise antenna system |
| US6993297B2 (en) | 2002-07-12 | 2006-01-31 | Sony Ericsson Mobile Communications Ab | Apparatus and methods for tuning antenna impedance using transmitter and receiver parameters |
| US7167135B2 (en) | 2003-09-11 | 2007-01-23 | Intel Corporation | MEMS based tunable antenna for wireless reception and transmission |
| US7199762B2 (en) | 2005-08-24 | 2007-04-03 | Motorola Inc. | Wireless device with distributed load |
| US8369906B2 (en) | 2006-03-31 | 2013-02-05 | Silicon Laboratories Inc. | Antenna compensation system and method in a communications device |
| US7724194B2 (en) | 2006-06-30 | 2010-05-25 | Motorola, Inc. | Dual autodiplexing antenna |
| US8120259B2 (en) | 2007-04-19 | 2012-02-21 | Plasmart Co., Ltd. | Impedance matching methods and systems performing the same |
| US8265681B2 (en) * | 2007-09-12 | 2012-09-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Outer loop transmit power control in wireless communication systems |
| US7991363B2 (en) * | 2007-11-14 | 2011-08-02 | Paratek Microwave, Inc. | Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics |
| US8068798B2 (en) * | 2008-08-15 | 2011-11-29 | Sony Ericsson Mobile Communications Ab | Full closed loop auto antenna tuning for wireless communications |
| US8948713B2 (en) | 2009-06-16 | 2015-02-03 | Broadcom Corporation | Antenna impedance/power amplifier source impedance measurement circuitry and device operation based thereon |
| US20110012792A1 (en) | 2009-07-17 | 2011-01-20 | Motorola, Inc. | Antenna arrangement for multimode communication device |
| US20120142596A1 (en) | 2009-08-13 | 2012-06-07 | Son Young Sook | Agent for stimulating mobilization of endothelial progenitor cells |
| US8204446B2 (en) | 2009-10-29 | 2012-06-19 | Motorola Mobility, Inc. | Adaptive antenna tuning systems and methods |
| US8761698B2 (en) * | 2011-07-27 | 2014-06-24 | Intel Mobile Communications GmbH | Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information |
-
2011
- 2011-08-30 US US13/221,196 patent/US8712355B2/en not_active Expired - Fee Related
-
2012
- 2012-08-30 KR KR1020147004923A patent/KR101560301B1/ko active Active
- 2012-08-30 WO PCT/US2012/052956 patent/WO2013033277A1/en active Application Filing
- 2012-08-30 CN CN201280042009.8A patent/CN103782519B/zh active Active
- 2012-08-30 EP EP12772149.6A patent/EP2751928B1/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1830154A (zh) * | 2003-08-14 | 2006-09-06 | 松下电器产业株式会社 | 天线匹配装置 |
| US20090073076A1 (en) * | 2007-09-13 | 2009-03-19 | Sony Ericsson Mobile Communications Ab | Adaptive antenna matching |
| US20110117863A1 (en) * | 2009-11-19 | 2011-05-19 | Camp Jr William O | Communications circuitry for an electronic device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103782519A (zh) | 2014-05-07 |
| EP2751928B1 (en) | 2017-04-26 |
| US8712355B2 (en) | 2014-04-29 |
| WO2013033277A1 (en) | 2013-03-07 |
| KR20140046030A (ko) | 2014-04-17 |
| US20130052967A1 (en) | 2013-02-28 |
| KR101560301B1 (ko) | 2015-10-15 |
| EP2751928A1 (en) | 2014-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103782519B (zh) | 阻抗轨迹上的天线调谐 | |
| US11594902B2 (en) | Circuit for managing multi-band operations of a wireless power transmitting device | |
| CN103516852B (zh) | 用于对通信设备的电路组件进行调谐的方法和装置 | |
| US10218070B2 (en) | Method and apparatus for tuning a communication device | |
| EP2638640B1 (en) | Method and appartus for tuning antennas in a communication device | |
| US8611829B2 (en) | Tunable filter feedback to control antenna switch diversity | |
| US8626083B2 (en) | Method and apparatus for tuning a communication device | |
| US11115065B2 (en) | Method and apparatus for dynamic tuning | |
| EP3552295A1 (en) | Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered | |
| TW201528607A (zh) | 無線通訊裝置及調整天線匹配的方法 | |
| EP3276840B1 (en) | Method and apparatus for dynamic tuning | |
| EP3276841B1 (en) | Method and apparatus for dynamic tuning | |
| CN101800561A (zh) | 一种阻抗匹配装置及方法 | |
| US10170837B2 (en) | Segmented antenna |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C41 | Transfer of patent application or patent right or utility model | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20161028 Address after: American California Applicant after: Technology Holdings Co., Ltd of Google Address before: Illinois State Applicant before: Motorola Mobility, Inc. |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |