[go: up one dir, main page]

CN103794546A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
CN103794546A
CN103794546A CN201210422157.4A CN201210422157A CN103794546A CN 103794546 A CN103794546 A CN 103794546A CN 201210422157 A CN201210422157 A CN 201210422157A CN 103794546 A CN103794546 A CN 103794546A
Authority
CN
China
Prior art keywords
layer
sicb
silicon germanium
semiconductor substrate
gate structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210422157.4A
Other languages
Chinese (zh)
Inventor
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201210422157.4A priority Critical patent/CN103794546A/en
Publication of CN103794546A publication Critical patent/CN103794546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0186Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种半导体器件的制造方法,包括:提供半导体衬底,所述半导体衬底上形成有栅极结构,在所述栅极结构两侧的半导体衬底中形成∑状凹槽;在所述∑状凹槽的底部形成籽晶层;在所述籽晶层上形成嵌入式锗硅层,以完全填充所述∑状凹槽;在所述嵌入式锗硅层上形成SiCB帽层。根据本发明,在所述嵌入式锗硅层上形成SiCB层作为帽层,其中的碳原子可以减弱硼原子向所述半导体衬底中的扩散,同时,由所述SiCB层构成的帽层可以提高随后在其上形成的由镍硅构成的自对准金属硅化物的稳定性,由此提升器件的电学性能。

The invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, on which a gate structure is formed, and forming Σ-shaped grooves in the semiconductor substrate on both sides of the gate structure; A seed layer is formed at the bottom of the Σ-shaped groove; an embedded silicon germanium layer is formed on the seed layer to completely fill the Σ-shaped groove; a SiCB cap layer is formed on the embedded silicon germanium layer . According to the present invention, a SiCB layer is formed on the embedded silicon germanium layer as a cap layer, the carbon atoms therein can weaken the diffusion of boron atoms into the semiconductor substrate, and at the same time, the cap layer composed of the SiCB layer can The stability of the salicide composed of nickel silicon formed subsequently is improved, thereby improving the electrical performance of the device.

Description

一种半导体器件的制造方法A method of manufacturing a semiconductor device

技术领域 technical field

本发明涉及半导体制造工艺,具体而言涉及一种改善形成在嵌入式锗硅层上的帽层质量的方法。The invention relates to a semiconductor manufacturing process, in particular to a method for improving the quality of a cap layer formed on an embedded silicon germanium layer.

背景技术 Background technique

在先进的CMOS器件制造工艺中,嵌入式锗硅工艺经常被采用以提升CMOS器件的PMOS部分的性能。In the advanced CMOS device manufacturing process, the embedded silicon germanium process is often used to improve the performance of the PMOS part of the CMOS device.

在PMOS的源/漏区中形成嵌入式锗硅层的工艺次序为:提供半导体衬底,在所述半导体上形成栅极结构以及栅极结构两侧的侧壁结构→在所述侧壁结构两侧的半导体衬底中形成凹槽→采用选择性外延生长工艺在所述凹槽中形成嵌入式锗硅层→在所述嵌入式锗硅层上形成一帽层(cap layer),所述帽层用于在后续的金属互连之前形成自对准硅化物,同时还可以避免后续工艺造成的锗硅层应力的释放。如果所述帽层为单晶硅层,则由于其生长速率很低而造成单位时间内产量的下降,同时由于其表面平整度较差而影响器件的质量;如果所述帽层为硼硅(SiB)层,相对单晶硅层而言,其生长速率加快、表面平整度很好、自身电阻值降低,但是其中的硼原子极易扩散到衬底(尤其是沟道区)中,造成器件性能的下降。The process sequence of forming an embedded silicon germanium layer in the source/drain region of PMOS is: provide a semiconductor substrate, form a gate structure and sidewall structures on both sides of the gate structure on the semiconductor → on the sidewall structure Forming grooves in the semiconductor substrates on both sides → using a selective epitaxial growth process to form an embedded silicon germanium layer in the groove → forming a cap layer on the embedded silicon germanium layer, the The cap layer is used to form salicide before the subsequent metal interconnection, and at the same time, it can also avoid stress release of the silicon germanium layer caused by the subsequent process. If the cap layer is a monocrystalline silicon layer, the yield per unit time will decrease due to its low growth rate, and the quality of the device will be affected due to its poor surface flatness; if the cap layer is borosilicate ( SiB) layer, compared with the single crystal silicon layer, has faster growth rate, better surface flatness, and lower self-resistance, but the boron atoms in it can easily diffuse into the substrate (especially the channel region), causing the device performance degradation.

因此,需要提出一种方法,以提高形成在嵌入式锗硅层上的帽层的质量,从而进一步提升CMOS器件的性能。Therefore, it is necessary to propose a method to improve the quality of the cap layer formed on the embedded silicon germanium layer, so as to further improve the performance of the CMOS device.

发明内容 Contents of the invention

针对现有技术的不足,本发明提供一种半导体器件的制造方法,包括:提供半导体衬底,所述半导体衬底上形成有栅极结构,在所述栅极结构两侧的半导体衬底中形成∑状凹槽;在所述∑状凹槽的底部形成籽晶层;在所述籽晶层上形成嵌入式锗硅层,以完全填充所述∑状凹槽;在所述嵌入式锗硅层上形成SiCB帽层。Aiming at the deficiencies of the prior art, the present invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, on which a gate structure is formed, and in the semiconductor substrate on both sides of the gate structure forming a Σ-shaped groove; forming a seed layer at the bottom of the Σ-shaped groove; forming an embedded germanium-silicon layer on the seed layer to completely fill the Σ-shaped groove; A SiCB cap layer is formed on the silicon layer.

进一步,采用先干法蚀刻再湿法蚀刻的工艺形成所述∑状凹槽。Further, the Σ-shaped groove is formed by first dry etching and then wet etching.

进一步,所述籽晶层为具有低锗含量的锗硅层。Further, the seed layer is a silicon germanium layer with low germanium content.

进一步,采用选择性外延生长工艺形成所述嵌入式锗硅层。Further, the embedded silicon germanium layer is formed by using a selective epitaxial growth process.

进一步,采用原位外延生长工艺形成所述SiCB帽层。Further, the SiCB cap layer is formed by an in-situ epitaxial growth process.

进一步,所述SiCB帽层中硼原子的掺杂剂量为5.0×e14-5.0×e20atom/cm2Further, the doping dose of boron atoms in the SiCB cap layer is 5.0×e 14 -5.0×e 20 atom/cm 2 .

进一步,所述SiCB帽层中碳原子的掺杂剂量为5.0×e14-5.0×e20atom/cm2Further, the doping dose of carbon atoms in the SiCB cap layer is 5.0×e 14 -5.0×e 20 atom/cm 2 .

进一步,所述栅极结构包括依次层叠的栅极介电层、栅极材料层和栅极硬掩蔽层。Further, the gate structure includes a gate dielectric layer, a gate material layer and a gate hard mask layer stacked in sequence.

进一步,所述栅极结构的两侧形成有紧靠所述栅极结构的偏移间隙壁结构。Further, offset spacer structures close to the gate structure are formed on both sides of the gate structure.

进一步,所述偏移间隙壁结构包括至少一层氧化物层和/或至少一层氮化物层。Further, the offset spacer structure includes at least one oxide layer and/or at least one nitride layer.

根据本发明,在所述嵌入式锗硅层上形成SiCB层作为帽层,其中的碳原子可以减弱硼原子向所述半导体衬底中的扩散,同时,由所述SiCB层构成的帽层可以提高随后在其上形成的由镍硅构成的自对准金属硅化物的稳定性,由此提升器件的电学性能。According to the present invention, a SiCB layer is formed on the embedded silicon germanium layer as a cap layer, the carbon atoms therein can weaken the diffusion of boron atoms into the semiconductor substrate, and at the same time, the cap layer composed of the SiCB layer can The stability of the salicide composed of nickel silicon formed subsequently is improved, thereby improving the electrical performance of the device.

附图说明 Description of drawings

本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。The following drawings of the invention are hereby included as part of the invention for understanding the invention. The accompanying drawings illustrate embodiments of the invention and description thereof to explain principles of the invention.

附图中:In the attached picture:

图1A-图1E为本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的各步骤的示意性剖面图;1A-FIG. 1E are schematic cross-sectional views of each step of the method for improving the quality of the cap layer formed on the embedded silicon germanium layer proposed by the present invention;

图2为本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的流程图。FIG. 2 is a flowchart of a method for improving the quality of a cap layer formed on an embedded SiGe layer proposed by the present invention.

具体实施方式 Detailed ways

在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention.

为了彻底理解本发明,将在下列的描述中提出详细的步骤,以便阐释本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法。显然,本发明的施行并不限定于半导体领域的技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。In order to thoroughly understand the present invention, detailed steps will be presented in the following description to explain the method proposed by the present invention to improve the quality of the cap layer formed on the embedded SiGe layer. Obviously, the practice of the invention is not limited to specific details familiar to those skilled in the semiconductor arts. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments besides these detailed descriptions.

应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。It should be understood that when the terms "comprising" and/or "comprising" are used in this specification, they indicate the presence of the features, integers, steps, operations, elements and/or components, but do not exclude the presence or addition of one or Multiple other features, integers, steps, operations, elements, components and/or combinations thereof.

下面,参照图1A-图1E和图2来描述本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的详细步骤。Next, the detailed steps of the method for improving the quality of the cap layer formed on the embedded SiGe layer proposed by the present invention will be described with reference to FIG. 1A-FIG. 1E and FIG. 2 .

参照图1A-图1E,其中示出了本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的各步骤的示意性剖面图。Referring to FIG. 1A-FIG. 1E , there are shown schematic cross-sectional views of various steps of the method for improving the quality of the cap layer formed on the embedded SiGe layer proposed by the present invention.

首先,如图1A所示,提供半导体衬底100,所述半导体衬底100的构成材料可以采用未掺杂的单晶硅、掺杂有杂质的单晶硅、绝缘体上硅(SOI)等。作为示例,在本实施例中,所述半导体衬底100选用单晶硅材料构成。在所述半导体衬底100中形成有隔离结构以及各种阱(well)结构,为了简化,图示中予以省略。对于PMOS而言,所述半导体衬底200中还可以形成有N阱(图中未示出),并且在形成栅极结构之前,可以对整个N阱进行一次小剂量硼注入,用于调整PMOS的阈值电压VthFirst, as shown in FIG. 1A , a semiconductor substrate 100 is provided, and the constituent material of the semiconductor substrate 100 may be undoped single crystal silicon, single crystal silicon doped with impurities, silicon-on-insulator (SOI) or the like. As an example, in this embodiment, the semiconductor substrate 100 is made of single crystal silicon. Isolation structures and various well structures are formed in the semiconductor substrate 100 , which are omitted from illustration for simplicity. For PMOS, an N well (not shown in the figure) can also be formed in the semiconductor substrate 200, and before forming the gate structure, a small dose of boron implantation can be performed on the entire N well to adjust the PMOS The threshold voltage V th .

在所述半导体衬底100上形成有栅极结构101,作为一个示例,所述栅极结构101可包括自下而上依次层叠的栅极介电层、栅极材料层和栅极硬掩蔽层。栅极介电层可包括氧化物,如,二氧化硅(SiO2)层。栅极材料层可包括多晶硅层、金属层、导电性金属氮化物层、导电性金属氧化物层和金属硅化物层中的一种或多种,其中,金属层的构成材料可以是钨(W)、镍(Ni)或钛(Ti);导电性金属氮化物层可包括氮化钛(TiN)层;导电性金属氧化物层可包括氧化铱(IrO2)层;金属硅化物层可包括硅化钛(TiSi)层。栅极硬掩蔽层可包括氧化物层、氮化物层、氮氧化物层和无定形碳中的一种或多种,其中,氧化物层可包括硼磷硅玻璃(BPSG)、磷硅玻璃(PSG)、正硅酸乙酯(TEOS)、未掺杂硅玻璃(USG)、旋涂玻璃(SOG)、高密度等离子体(HDP)或旋涂电介质(SOD);氮化物层可包括氮化硅(Si3N4)层;氮氧化物层可包括氮氧化硅(SiON)层。A gate structure 101 is formed on the semiconductor substrate 100. As an example, the gate structure 101 may include a gate dielectric layer, a gate material layer and a gate hard mask layer stacked sequentially from bottom to top. . The gate dielectric layer may include an oxide such as a silicon dioxide (SiO 2 ) layer. The gate material layer may comprise one or more of a polysilicon layer, a metal layer, a conductive metal nitride layer, a conductive metal oxide layer and a metal silicide layer, wherein the constituent material of the metal layer may be tungsten (W ), nickel (Ni) or titanium (Ti); the conductive metal nitride layer may include a titanium nitride (TiN) layer; the conductive metal oxide layer may include an iridium oxide (IrO 2 ) layer; the metal silicide layer may include Titanium silicide (TiSi) layer. The gate hard mask layer may include one or more of an oxide layer, a nitride layer, an oxynitride layer, and amorphous carbon, where the oxide layer may include borophosphosilicate glass (BPSG), phosphosilicate glass ( PSG), tetraethyl tetrasilicate (TEOS), undoped silica glass (USG), spin-on-glass (SOG), high-density plasma (HDP) or spin-on-dielectric (SOD); the nitride layer can include nitride The silicon (Si 3 N 4 ) layer; the oxynitride layer may include a silicon oxynitride (SiON) layer.

此外,作为示例,在所述半导体衬底100上还形成有位于所述栅极结构101两侧且紧靠所述栅极结构101的偏移间隙壁结构102。其中,所述偏移间隙壁结构102可以包括至少一层氧化物层和/或至少一层氮化物层。In addition, as an example, offset spacer structures 102 located on both sides of the gate structure 101 and close to the gate structure 101 are further formed on the semiconductor substrate 100 . Wherein, the offset spacer structure 102 may include at least one oxide layer and/or at least one nitride layer.

接着,如图1B所示,通过所述偏移间隙壁结构102所构成的工艺窗口,在所述半导体衬底100中形成∑状凹槽103。通常采用先干法蚀刻再湿法蚀刻的工艺形成所述∑状凹槽103,该工艺的具体步骤如下:先采用干法蚀刻工艺纵向蚀刻所述偏移间隙壁结构102之间的半导体衬底100以形成硅凹槽;再采用湿法蚀刻工艺蚀刻所述硅凹槽,以形成所述∑状凹槽103。Next, as shown in FIG. 1B , a Σ-shaped groove 103 is formed in the semiconductor substrate 100 through the process window formed by the offset spacer structure 102 . Generally, the Σ-shaped groove 103 is formed by dry etching first and then wet etching, and the specific steps of this process are as follows: first, the semiconductor substrate between the offset spacer structures 102 is longitudinally etched by a dry etching process 100 to form a silicon groove; and then use a wet etching process to etch the silicon groove to form the Σ-shaped groove 103 .

接着,如图1C所示,在所述∑状凹槽103的底部形成籽晶层(seedlayer)104。采用本领域技术人员所熟习的各种适宜的工艺技术形成所述籽晶层104,例如选择性外延生长工艺。所述籽晶层104可以为具有低锗含量的锗硅层。另外,由于需要为随后将要形成的嵌入式锗硅层留出足够的空间,所以所述籽晶层104不能太厚,以防填满整个∑状凹槽103。Next, as shown in FIG. 1C , a seed layer 104 is formed at the bottom of the Σ-shaped groove 103 . The seed layer 104 is formed by various suitable process techniques familiar to those skilled in the art, such as selective epitaxial growth process. The seed layer 104 may be a silicon germanium layer with low germanium content. In addition, since enough space needs to be reserved for the embedded silicon germanium layer to be formed later, the seed layer 104 should not be too thick, so as not to fill up the entire Σ-shaped groove 103 .

接着,如图1D所示,采用选择性外延生长工艺在所述籽晶层104上形成嵌入式锗硅层105,以完全填充所述∑状凹槽103。所述选择性外延生长工艺可以采用低压化学气相沉积(LPCVD)、等离子体增强化学气相沉积(PECVD)、超高真空化学气相沉积(UHVCVD)、快速热化学气相沉积(RTCVD)和分子束外延(MBE)中的一种。Next, as shown in FIG. 1D , an embedded SiGe layer 105 is formed on the seed layer 104 by a selective epitaxial growth process to completely fill the Σ-shaped groove 103 . The selective epitaxial growth process can adopt low-pressure chemical vapor deposition (LPCVD), plasma-enhanced chemical vapor deposition (PECVD), ultra-high vacuum chemical vapor deposition (UHVCVD), rapid thermal chemical vapor deposition (RTCVD) and molecular beam epitaxy ( MBE) in one.

接着,如图1E所示,在所述嵌入式锗硅层105上形成帽层106。采用原位外延生长工艺形成所述帽层106,即形成所述帽层106所采用的外延生长工艺与形成所述嵌入式锗硅层105所采用的外延生长工艺在同一个反应腔中进行。所述帽层106为掺杂硼和碳的单晶硅层(SiCB层),其中,所述硼原子的掺杂剂量为5.0×e14-5.0×e20atom/cm2,所述碳原子的掺杂剂量为5.0×e14-5.0×e20atom/cm2Next, as shown in FIG. 1E , a cap layer 106 is formed on the embedded SiGe layer 105 . The cap layer 106 is formed by an in-situ epitaxial growth process, that is, the epitaxial growth process used to form the cap layer 106 and the epitaxial growth process used to form the embedded SiGe layer 105 are performed in the same reaction chamber. The cap layer 106 is a monocrystalline silicon layer (SiCB layer) doped with boron and carbon, wherein the doping dose of the boron atoms is 5.0×e 14 -5.0×e 20 atom/cm 2 , and the carbon atoms The doping dose is 5.0×e 14 -5.0×e 20 atom/cm 2 .

至此,完成了根据本发明示例性实施例的方法实施的全部工艺步骤,接下来,可以通过后续工艺完成整个半导体器件的制作,所述后续工艺与传统的半导体器件加工工艺完全相同。根据本发明,在所述嵌入式锗硅层105上形成SiCB层作为帽层,其中的碳原子可以减弱硼原子向所述半导体衬底100中的扩散,同时,由SiCB层构成的帽层可以提高随后在其上形成的由镍硅(NiSi)构成的自对准金属硅化物的稳定性,由此提升器件的电学性能。So far, all the process steps implemented by the method according to the exemplary embodiment of the present invention are completed, and then, the fabrication of the entire semiconductor device can be completed through a subsequent process, which is exactly the same as the traditional semiconductor device processing process. According to the present invention, a SiCB layer is formed on the embedded silicon germanium layer 105 as a cap layer, and the carbon atoms therein can weaken the diffusion of boron atoms into the semiconductor substrate 100, and at the same time, the cap layer formed by the SiCB layer can Improves the stability of a salicide composed of nickel silicon (NiSi) that is subsequently formed thereon, thereby improving the electrical performance of the device.

以上实施本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的全部工艺步骤是以PMOS晶体管为例进行说明的,本领域的技术人员可以理解的是,这里的PMOS晶体管可以是CMOS晶体管的PMOS部分。All the process steps of the method for improving the quality of the cap layer formed on the embedded silicon germanium layer in the above implementation of the present invention are illustrated by taking the PMOS transistor as an example, and those skilled in the art can understand that the PMOS transistor here can be is the PMOS portion of the CMOS transistor.

参照图2,其中示出了本发明提出的改善形成在嵌入式锗硅层上的帽层质量的方法的流程图,用于简要示出整个制造工艺的流程。Referring to FIG. 2 , it shows a flow chart of the method for improving the quality of the cap layer formed on the embedded silicon germanium layer proposed by the present invention, which is used to briefly show the flow of the entire manufacturing process.

在步骤201中,提供半导体衬底,所述半导体衬底上形成有栅极结构,在所述栅极结构两侧的半导体衬底中形成∑状凹槽;In step 201, a semiconductor substrate is provided, a gate structure is formed on the semiconductor substrate, and Σ-shaped grooves are formed in the semiconductor substrate on both sides of the gate structure;

在步骤202中,在所述∑状凹槽的底部形成籽晶层;In step 202, a seed layer is formed at the bottom of the Σ-shaped groove;

在步骤203中,在所述籽晶层上形成嵌入式锗硅层,以完全填充所述∑状凹槽;In step 203, an embedded silicon germanium layer is formed on the seed layer to completely fill the Σ-shaped groove;

在步骤204中,在所述嵌入式锗硅层上形成SiCB帽层。In step 204, a SiCB cap layer is formed on the embedded silicon germanium layer.

本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。The present invention has been described through the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications all fall within the claimed scope of the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalent scope.

Claims (10)

1.一种半导体器件的制造方法,包括:1. A method of manufacturing a semiconductor device, comprising: 提供半导体衬底,所述半导体衬底上形成有栅极结构,在所述栅极结构两侧的半导体衬底中形成∑状凹槽;A semiconductor substrate is provided, a gate structure is formed on the semiconductor substrate, and Σ-shaped grooves are formed in the semiconductor substrate on both sides of the gate structure; 在所述∑状凹槽的底部形成籽晶层;forming a seed layer at the bottom of the Σ-shaped groove; 在所述籽晶层上形成嵌入式锗硅层,以完全填充所述∑状凹槽;forming an embedded silicon germanium layer on the seed layer to completely fill the Σ-shaped groove; 在所述嵌入式锗硅层上形成SiCB帽层。A SiCB cap layer is formed on the embedded silicon germanium layer. 2.根据权利要求1所述的方法,其特征在于,采用先干法蚀刻再湿法蚀刻的工艺形成所述∑状凹槽。2 . The method according to claim 1 , wherein the Σ-shaped groove is formed by first dry etching and then wet etching. 3 . 3.根据权利要求1所述的方法,其特征在于,所述籽晶层为具有低锗含量的锗硅层。3. The method according to claim 1, wherein the seed layer is a silicon germanium layer with a low germanium content. 4.根据权利要求1所述的方法,其特征在于,采用选择性外延生长工艺形成所述嵌入式锗硅层。4. The method according to claim 1, characterized in that the embedded silicon germanium layer is formed by a selective epitaxial growth process. 5.根据权利要求1所述的方法,其特征在于,采用原位外延生长工艺形成所述SiCB帽层。5. The method according to claim 1, characterized in that the SiCB cap layer is formed by an in-situ epitaxial growth process. 6.根据权利要求1或5所述的方法,其特征在于,所述SiCB帽层中硼原子的掺杂剂量为5.0×e14-5.0×e20atom/cm2The method according to claim 1 or 5, characterized in that the doping dose of boron atoms in the SiCB cap layer is 5.0×e 14 -5.0×e 20 atom/cm 2 . 7.根据权利要求1或5所述的方法,其特征在于,所述SiCB帽层中碳原子的掺杂剂量为5.0×e14-5.0×e20atom/cm27. The method according to claim 1 or 5, characterized in that the doping dose of carbon atoms in the SiCB cap layer is 5.0×e 14 -5.0×e 20 atom/cm 2 . 8.根据权利要求1所述的方法,其特征在于,所述栅极结构包括依次层叠的栅极介电层、栅极材料层和栅极硬掩蔽层。8. The method according to claim 1, wherein the gate structure comprises a gate dielectric layer, a gate material layer and a gate hard mask layer stacked in sequence. 9.根据权利要求1所述的方法,其特征在于,所述栅极结构的两侧形成有紧靠所述栅极结构的偏移间隙壁结构。9 . The method according to claim 1 , wherein offset spacer structures close to the gate structure are formed on both sides of the gate structure. 10.根据权利要求9所述的方法,其特征在于,所述偏移间隙壁结构包括至少一层氧化物层和/或至少一层氮化物层。10. The method according to claim 9, wherein the offset spacer structure comprises at least one oxide layer and/or at least one nitride layer.
CN201210422157.4A 2012-10-29 2012-10-29 Method for manufacturing semiconductor device Pending CN103794546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210422157.4A CN103794546A (en) 2012-10-29 2012-10-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210422157.4A CN103794546A (en) 2012-10-29 2012-10-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
CN103794546A true CN103794546A (en) 2014-05-14

Family

ID=50670085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210422157.4A Pending CN103794546A (en) 2012-10-29 2012-10-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
CN (1) CN103794546A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529247A (en) * 2014-10-21 2016-04-27 上海华力微电子有限公司 Preparation method of embedded silicon-germanium
CN105590840A (en) * 2014-10-21 2016-05-18 上海华力微电子有限公司 Method for preparing embedded SiGe
CN106558550A (en) * 2015-09-25 2017-04-05 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacture method, electronic installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103791A1 (en) * 2007-02-21 2008-08-28 Texas Instruments Incorporated Formation of a selective carbon-doped epitaxial cap layer on selective epitaxial sige
CN101572269A (en) * 2008-04-30 2009-11-04 台湾积体电路制造股份有限公司 Source/drain carbon implant and rta anneal, pre-sige deposition
US20110212604A1 (en) * 2007-10-31 2011-09-01 Jusung Engineering Co., Ltd. Method of fabricating transistor
WO2012037136A2 (en) * 2010-09-13 2012-03-22 Texas Instruments Incorporated Improved lateral uniformity in silicon recess etch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103791A1 (en) * 2007-02-21 2008-08-28 Texas Instruments Incorporated Formation of a selective carbon-doped epitaxial cap layer on selective epitaxial sige
US20110212604A1 (en) * 2007-10-31 2011-09-01 Jusung Engineering Co., Ltd. Method of fabricating transistor
CN101572269A (en) * 2008-04-30 2009-11-04 台湾积体电路制造股份有限公司 Source/drain carbon implant and rta anneal, pre-sige deposition
WO2012037136A2 (en) * 2010-09-13 2012-03-22 Texas Instruments Incorporated Improved lateral uniformity in silicon recess etch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529247A (en) * 2014-10-21 2016-04-27 上海华力微电子有限公司 Preparation method of embedded silicon-germanium
CN105590840A (en) * 2014-10-21 2016-05-18 上海华力微电子有限公司 Method for preparing embedded SiGe
CN106558550A (en) * 2015-09-25 2017-04-05 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacture method, electronic installation

Similar Documents

Publication Publication Date Title
CN104299971B (en) MOS device with the distribution of uneven p type impurity
CN103594370B (en) A kind of manufacture method of semiconductor device
CN104425375B (en) A kind of manufacture method of semiconductor devices
CN108615731B (en) Semiconductor device and manufacturing method thereof
CN106558551B (en) A kind of semiconductor device and its manufacturing method, electronic device
CN104217952B (en) Manufacture method of semiconductor device
CN103794546A (en) Method for manufacturing semiconductor device
CN103681333B (en) A kind of manufacture method of semiconductor devices
CN107799470B (en) Semiconductor device, manufacturing method thereof and electronic device
CN105575900B (en) Semiconductor device, manufacturing method thereof and electronic device
CN103903984B (en) A kind of manufacture method of semiconductor devices
CN104952798B (en) A kind of manufacturing method of semiconductor devices
CN106981424A (en) A kind of semiconductor devices and its manufacture method, electronic installation
CN104934323B (en) A kind of manufacture method of semiconductor devices
CN103681257B (en) A kind of manufacture method of semiconductor device
CN107665807B (en) Semiconductor device and manufacturing method thereof
CN106558550A (en) A kind of semiconductor devices and its manufacture method, electronic installation
CN103578994B (en) A kind of manufacture method of semiconductor device
CN104779146A (en) Semiconductor device manufacturing method
CN104051245A (en) A kind of preparation method of semiconductor device
CN103681506B (en) The manufacture method of a kind of semiconducter device
CN105990141A (en) Semiconductor device and manufacturing method thereof, electronic device
CN107180868A (en) A kind of semiconductor devices and its manufacture method
CN103594363A (en) A method for manufacturing a semiconductor device
CN107452626B (en) Semiconductor device, manufacturing method thereof and electronic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140514