CN103792354B - A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof - Google Patents
A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof Download PDFInfo
- Publication number
- CN103792354B CN103792354B CN201410041037.9A CN201410041037A CN103792354B CN 103792354 B CN103792354 B CN 103792354B CN 201410041037 A CN201410041037 A CN 201410041037A CN 103792354 B CN103792354 B CN 103792354B
- Authority
- CN
- China
- Prior art keywords
- detection
- antigen
- hcv
- paper
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 238000001514 detection method Methods 0.000 claims abstract description 192
- 239000000427 antigen Substances 0.000 claims abstract description 107
- 102000036639 antigens Human genes 0.000 claims abstract description 107
- 108091007433 antigens Proteins 0.000 claims abstract description 107
- 238000012360 testing method Methods 0.000 claims abstract description 21
- 241000711549 Hepacivirus C Species 0.000 claims description 77
- 229920001220 nitrocellulos Polymers 0.000 claims description 30
- 239000000020 Nitrocellulose Substances 0.000 claims description 29
- 108700039791 Hepatitis C virus nucleocapsid Proteins 0.000 claims description 20
- 210000002966 serum Anatomy 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 102000004190 Enzymes Human genes 0.000 claims description 14
- 108090000790 Enzymes Proteins 0.000 claims description 14
- 239000013641 positive control Substances 0.000 claims description 12
- 239000013642 negative control Substances 0.000 claims description 10
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 7
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 6
- 239000003593 chromogenic compound Substances 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims description 4
- 102000005936 beta-Galactosidase Human genes 0.000 claims description 4
- 108010005774 beta-Galactosidase Proteins 0.000 claims description 4
- 235000010944 ethyl methyl cellulose Nutrition 0.000 claims description 4
- 229920003087 methylethyl cellulose Polymers 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 claims description 3
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims description 2
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 abstract description 15
- 238000002405 diagnostic procedure Methods 0.000 abstract description 5
- 230000003053 immunization Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 36
- 239000000243 solution Substances 0.000 description 19
- 238000002965 ELISA Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 208000005176 Hepatitis C Diseases 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical compound CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 description 3
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 108060003552 hemocyanin Proteins 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000020183 skimmed milk Nutrition 0.000 description 2
- VMXLZAVIEYWCLQ-UHFFFAOYSA-N 4-(4-aminophenyl)-3-methylaniline Chemical compound CC1=CC(N)=CC=C1C1=CC=C(N)C=C1 VMXLZAVIEYWCLQ-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/576—Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
- G01N33/5767—Immunoassay; Biospecific binding assay; Materials therefor for hepatitis non-A, non-B hepatitis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/18—Togaviridae; Flaviviridae
- G01N2333/183—Flaviviridae, e.g. pestivirus, mucosal disease virus, bovine viral diarrhoea virus, classical swine fever virus (hog cholera virus) or border disease virus
- G01N2333/186—Hepatitis C; Hepatitis NANB
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Communicable Diseases (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
技术领域technical field
本发明涉及疾病的诊断领域,具体而言涉及一种用于检测丙型肝炎病毒抗体的微流控纸基芯片、及其制备方法和检测试剂盒样本。The invention relates to the field of disease diagnosis, in particular to a microfluidic paper-based chip for detecting hepatitis C virus antibody, a preparation method thereof, and a detection kit sample.
背景技术Background technique
丙型肝炎是一种由丙型肝炎病毒(HCV)引起的,在全球范围传播的传染性疾病,具有较大的危害。HCV在美国每年造成的死亡人数超过艾滋病,同时也是造成肝硬化、肝癌和需要肝移植的主要原因[1]。WHO估计全球至少有1.5亿人感染了HCV[2],而且在未来的十年中,HCV对全球健康的危害还会持续性增长。我国累积的HCV患者数量已经超过了4300万人。造成HCV流行的一个主要原因是HCV的诊断率较低。大部分的丙型肝炎患者并不知道自己的感染情况。等发现HCV感染时,患者往往已经到了疾病晚期。晚期症状不仅难以治愈和逆转,而且会耗费大量的医疗和社会资源。美国疾控中心推荐1946年至1965年出生的人(婴儿潮,大致7600万人)都要进行HCV诊断[3]。因为HCV具有传播广泛和诊断率低等特点,该疾病被称为“寂静的流行病(thesilentpandemic)”[4]。Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV), which spreads globally and has great harm. HCV kills more people than AIDS each year in the United States and is the leading cause of cirrhosis, liver cancer, and the need for liver transplantation [1]. WHO estimates that at least 150 million people worldwide are infected with HCV [2], and in the next ten years, the harm of HCV to global health will continue to increase. The cumulative number of HCV patients in my country has exceeded 43 million. A major reason for the prevalence of HCV is the low diagnostic rate of HCV. Most people with hepatitis C are unaware of their infection. By the time HCV infection is discovered, patients are often at an advanced stage of the disease. Advanced symptoms are not only difficult to cure and reverse, but also consume a lot of medical and social resources. The US Centers for Disease Control and Prevention recommends that people born between 1946 and 1965 (baby boomers, approximately 76 million people) should be diagnosed with HCV [3]. Because of the wide spread and low diagnosis rate of HCV, the disease has been called "the silent pandemic" [4].
造成HCV诊断率低的主要原因之一是目前针对HCV的检测和诊断方法具有一些不足。首先,HCV的诊断流程是分步进行的[5]。第一步得到的筛查结果需要进行第二步的确诊检测。筛查诊断方法主要是酶联免疫吸附检测(ELISA),虽然具有较高的灵敏度,但是其特异性较低,容易产生假阳性的结果。因而需要使用特异性更好的方法来进行诊断结果的确认。确诊方法之一是重组免疫印迹法(RIBA)。它采用独立的HCV抗原进行检测,从而可以确保检测结果的较高特异性。因为分步进行的诊断的流程较为复杂,其会限制诊断效率的提升。有数据表明,我国的丙肝的漏诊率高达52%。即使在英国和美国等发达国家,分别只有25%至50%的患者可以拿到确诊的结果。一半以上的患者在获得筛查的结果之后,没有得到确诊的结果[6]。因而,这些患者是否真的感染了HCV也无从得知。不知情的HCV感染患者会不可避免的加速该疾病的传播。此外,HCV诊断技术本身(如ELISA和RIBA检测)的费用昂贵、检测时间较长(6-7小时)以及样本消耗量较大(20微升以上)[7]。这些都限制了在大规模人群中进行HCV诊断的可行性,影响了HCV诊断的覆盖率,最终导致HCV的广泛传播和严重危害。One of the main reasons for the low diagnosis rate of HCV is that the current detection and diagnosis methods for HCV have some shortcomings. First, the diagnostic algorithm for HCV is a step-by-step process [5]. The screening results obtained in the first step require a second step of confirmatory testing. The screening diagnostic method is mainly enzyme-linked immunosorbent assay (ELISA), although it has high sensitivity, but its specificity is low, and it is easy to produce false positive results. Therefore, it is necessary to use more specific methods to confirm the diagnosis results. One of the diagnostic methods is recombinant immunoblotting (RIBA). It uses an independent HCV antigen for detection, which can ensure high specificity of detection results. Because the step-by-step diagnosis process is relatively complicated, it will limit the improvement of diagnosis efficiency. Statistics show that the missed diagnosis rate of hepatitis C in my country is as high as 52%. Even in developed countries such as the United Kingdom and the United States, only 25% to 50% of patients can get confirmed results. More than half of the patients did not get a confirmed diagnosis after the screening results were obtained [6]. Therefore, it is not known whether these patients were actually infected with HCV. Unwitting HCV-infected patients will inevitably accelerate the spread of the disease. In addition, the HCV diagnostic techniques themselves (such as ELISA and RIBA tests) are expensive, take a long time (6-7 hours), and consume a large amount of sample (more than 20 microliters) [7]. These all limit the feasibility of HCV diagnosis in large-scale populations, affect the coverage of HCV diagnosis, and eventually lead to the widespread spread and serious harm of HCV.
微流控纸基芯片是近年发展的一种新技术,其特征是采用具有一定几何尺寸和微结构的特殊纸基,使液体可以在纸上依赖毛细管作用力在一定边界内按照一定的方向流动[8-11]。纸基是指多孔亲水的层状材料。纸基所具有的毛细管作用力可以取代动力源和驱动系统,如电源和水泵。此外,纸基芯片尺寸小、比表面积大和价格相对便宜,因此具有样本消耗少、反应速度更快和可以进行多元反应(或检测)的潜力和优势。微流控纸基芯片具有构建集成化的、廉价、快速的临床诊断平台的巨大潜力。Microfluidic paper-based chip is a new technology developed in recent years, which is characterized by the use of a special paper base with a certain geometric size and microstructure, so that the liquid can flow in a certain direction within a certain boundary on the paper relying on capillary force [8-11]. Paper base refers to a porous and hydrophilic layered material. The capillary force of the paper base can replace power sources and drive systems such as power supplies and water pumps. In addition, the paper-based chip has the potential and advantages of small size, large specific surface area, and relatively cheap price, with less sample consumption, faster reaction speed, and multiplex reaction (or detection). Microfluidic paper-based chips have great potential to build an integrated, cheap and rapid clinical diagnosis platform.
发明内容Contents of the invention
根据本发明的一方面,提供一种检测丙型肝炎病毒抗体的微流控纸基芯片,其包括两个以上的检测通道,所述检测通道各包括一个上样区和一个检测区;其特征在于:According to one aspect of the present invention, there is provided a microfluidic paper-based chip for detecting hepatitis C virus antibody, which includes more than two detection channels, each of which includes a sample loading area and a detection area; its characteristics in:
所述各检测区分别包被有选自如下的一种或多种:HCV核心抗原、HCVNS5抗原、HCVNS4抗原、HCVNS3抗原。Each detection area is coated with one or more selected from the following: HCV core antigen, HCVNS5 antigen, HCVNS4 antigen, HCVNS3 antigen.
在一些实施方式中,各检测通道可以共享、也可以不共享同一上样区。在优选实施方式中,各检测通道共享同一上样区,这使得仅需一次滴加就可以实现多通道的同时点样操作。In some embodiments, each detection channel may or may not share the same sample loading area. In a preferred embodiment, each detection channel shares the same sample loading area, which makes it possible to realize multi-channel simultaneous sample application with only one drop.
在一些实施方式中,检测区到上样区的距离可以相等也可以不等。在优选实施方式中,各检测通道的检测区到上样区的距离相等。可以理解,一经上样,样本可以同时到达检测区,便于后续操作的时间监控,也利于缩短实验流程。在微流控纸基芯片上,所述检测区以外的区域包被有选自如下的惰性成分:BSA、血蓝蛋白、脱脂奶粉、酪蛋白、卵清蛋白。In some embodiments, the distances from the detection area to the sample loading area may be equal or unequal. In a preferred embodiment, the distances from the detection area of each detection channel to the sample loading area are equal. It can be understood that once the sample is loaded, the sample can reach the detection area at the same time, which is convenient for time monitoring of subsequent operations and also helps to shorten the experimental process. On the microfluidic paper-based chip, the area outside the detection area is coated with an inert component selected from the following: BSA, hemocyanin, skimmed milk powder, casein, and ovalbumin.
在一些实施方式中,在纸基上划分出两个以上的检测通道;再在检测通道上划分出上样区和检测区;每个检测区与上样区物理上通过纸基通道相连。液体可以从纸基的上样区沿着纸基通道流到纸基检测区。In some embodiments, more than two detection channels are divided on the paper base; a sample loading area and a detection area are further divided on the detection channel; each detection area is physically connected to the sample loading area through a paper base channel. The liquid can flow from the sample loading area of the paper base to the detection area of the paper base along the paper base channel.
在一些实施方式中,本发明的微流控纸基芯片适用于化学发光或显色免疫检测。In some embodiments, the microfluidic paper-based chip of the present invention is suitable for chemiluminescent or chromogenic immunodetection.
在一些实施方式中,包括2个至20个检测通道,优选3-18、3-12、5-12、5-10个检测通道;最优选7或8个检测通道。In some embodiments, 2 to 20 detection channels are included, preferably 3-18, 3-12, 5-12, 5-10 detection channels; most preferably 7 or 8 detection channels.
此处所用术语“纸基”是指多孔亲水的层状材料,其可以允许液体在其上的流动;该材料具有一定的几何形状,从而可以控制液体的流动方向和流动的边界;该材料的部分区域可以吸附或固定抗原或抗体等蛋白质。The term "paper base" as used herein refers to a porous, hydrophilic layered material that allows liquid to flow thereon; the material has a certain geometry that allows control of the flow direction and boundaries of the liquid; the material Part of the region can adsorb or immobilize proteins such as antigens or antibodies.
当各检测通道共享同一上样区且各检测通道的检测区到上样区的距离相等时,本发明的纸基可以体现为任何适当的形状,包括但不限于图1A至图1D所示的形状。虽然本发明的具体实例基于图1A所示的具体形状和尺寸,但是技术人员可以理解,在此基础上所进行的变化也涵盖在本发明的范围内。When each detection channel shares the same sample loading area and the distance from the detection area to the sample loading area of each detection channel is equal, the paper base of the present invention can be embodied as any appropriate shape, including but not limited to the one shown in Figure 1A to Figure 1D shape. Although the specific example of the present invention is based on the specific shape and size shown in FIG. 1A , those skilled in the art will understand that changes made on this basis are also included within the scope of the present invention.
在一些实施方式中,所述纸基为亲水性多孔层状材料;纸基选自聚偏二氟乙烯、聚碳酸酯、甲基乙基纤维素、硝酸纤维素纸;其中优选甲基乙基纤维素、硝酸纤维素纸。在优选实施方式中,纸基为硝酸纤维素纸;硝酸纤维素是一种硝酸化的纤维素,在纤维素的骨架上具有硝酸基团,这些硝酸基团可以与蛋白质产生非共价的作用力,从而将蛋白质稳定的吸附在硝酸纤维素上。In some embodiments, the paper base is a hydrophilic porous layered material; the paper base is selected from polyvinylidene fluoride, polycarbonate, methyl ethyl cellulose, nitrocellulose paper; wherein methyl ethyl cellulose is preferred Base cellulose, nitrocellulose paper. In a preferred embodiment, the paper base is nitrocellulose paper; nitrocellulose is a nitrated cellulose with nitric acid groups on the backbone of the cellulose that can interact non-covalently with proteins Force, so that the protein is stably adsorbed on the nitrocellulose.
在一些具体的实施方式中,纸基为AmershamProtranNC硝酸纤维素纸。可用的硝酸纤维素纸的孔径是0.45微米、0.2微米或0.1微米。在一些实施方式中,纸基为AmershamProtranNC0.45硝酸纤维素纸。In some specific embodiments, the paper base is Amersham Protran NC nitrocellulose paper. Available nitrocellulose papers have pore sizes of 0.45 microns, 0.2 microns or 0.1 microns. In some embodiments, the paper base is Amersham Protran N 0.45 nitrocellulose paper.
在一些实施方式中,检测丙型肝炎病毒抗体的微流控纸基芯片还可以包括空白检测通道。空白检测通道的检测区上包被有惰性成分,如BSA、血蓝蛋白、脱脂奶粉、酪蛋白、卵清蛋白。In some embodiments, the microfluidic paper-based chip for detecting antibodies to hepatitis C virus may further include a blank detection channel. The detection area of the blank detection channel is coated with inert components, such as BSA, hemocyanin, skimmed milk powder, casein, and ovalbumin.
在一些实施方式中,检测丙型肝炎病毒抗体的微流控纸基芯片还可以包括阳性对照检测通道。阳性对照检测通道的检测区上包被有抗人IgG的抗体。在一些实施方式中,检测丙型肝炎病毒抗体的微流控纸基芯片还可以包括阴性对照检测通道。In some embodiments, the microfluidic paper-based chip for detecting antibodies to hepatitis C virus may further include a positive control detection channel. The detection area of the positive control detection channel is coated with anti-human IgG antibody. In some embodiments, the microfluidic paper-based chip for detecting antibodies to hepatitis C virus may further include a negative control detection channel.
在一些实施方式中,所述抗原可以是天然抗原或重组抗原。In some embodiments, the antigen can be a natural antigen or a recombinant antigen.
在一些实施方式中,所述检测区为5-6平方毫米。In some embodiments, the detection zone is 5-6 square millimeters.
在一些实施方式中,微流控纸基芯片上,除检测区以外的其它区域包被有惰性蛋白;优选牛血清白蛋白。In some embodiments, on the microfluidic paper-based chip, other areas except the detection area are coated with an inert protein; preferably bovine serum albumin.
在一些实施方式中,检测通道长度在1-15mm之间,优选7-8mm;宽在1-4mm之间,优选2mm。In some embodiments, the length of the detection channel is between 1-15 mm, preferably 7-8 mm; the width is between 1-4 mm, preferably 2 mm.
在一个优选的实施方式中,检测丙型肝炎病毒抗体的微流控纸基芯片包括8个检测通道,其中所述5个检测通道的检测区分别包被有:HCV核心抗原、HCVNS5抗原、HCVNS4抗原、HCVNS3抗原和HCV抗原的组合,所述HCV抗原的组合是指HCV核心抗原、HCVNS5抗原、HCVNS4抗原和HCVNS3抗原的组合;其中1个检测通道的检测区包被有抗人IgG的抗体作为阳性对照检测通道;其中1个检测通道的检测区包被有BSA作为空白检测通道;其中1个检测通道的检测区包被有HCV抗原的组合作为阴性对照检测通道;所述纸基是孔径为0.45微米的硝酸纤维素纸;所述检测区为5-6平方毫米,检测通道长度为5-8mm,且检测通道宽为1-4mm。In a preferred embodiment, the microfluidic paper-based chip for detecting hepatitis C virus antibody includes 8 detection channels, wherein the detection areas of the 5 detection channels are respectively coated with: HCV core antigen, HCVNS5 antigen, HCVNS4 Combination of antigens, HCVNS3 antigens and HCV antigens, the combination of HCV antigens refers to the combination of HCV core antigens, HCVNS5 antigens, HCVNS4 antigens and HCVNS3 antigens; wherein the detection area of one detection channel is coated with anti-human IgG antibodies as Positive control detection channel; wherein the detection area of one detection channel is coated with BSA as a blank detection channel; the detection area of one detection channel is coated with a combination of HCV antigen as a negative control detection channel; the paper base is a pore size of 0.45 micron nitrocellulose paper; the detection area is 5-6 square millimeters, the detection channel length is 5-8 mm, and the detection channel width is 1-4 mm.
在另一个优选的实施方式中,检测丙型肝炎病毒抗体的微流控纸基芯片,其包括7个检测通道,其中4个检测通道的检测区分别包被有:HCV核心抗原、HCVNS5抗原、HCVNS4抗原和HCV抗原的组合,所述HCV抗原的组合是指HCV核心抗原、HCVNS5抗原和HCVNS4抗原的组合;其中1个检测通道的检测区包被有抗人IgG的抗体作为阳性对照检测通道;其中1个检测通道的检测区包被有BSA作为空白检测通道;其中1个检测通道的检测区包被有HCV抗原的组合作为阴性对照检测通道;所述纸基是孔径为0.45微米的硝酸纤维素纸;所述检测区为5-6平方毫米;检测通道长度为5-8mm;检测通道宽为1-4mm。In another preferred embodiment, the microfluidic paper-based chip for detecting hepatitis C virus antibody includes 7 detection channels, wherein the detection areas of 4 detection channels are respectively coated with: HCV core antigen, HCVNS5 antigen, The combination of HCV NS4 antigen and HCV antigen, the combination of HCV antigen refers to the combination of HCV core antigen, HCV NS5 antigen and HCV NS4 antigen; wherein the detection area of one detection channel is coated with anti-human IgG antibody as a positive control detection channel; The detection area of one of the detection channels is coated with BSA as a blank detection channel; the detection area of one of the detection channels is coated with a combination of HCV antigens as a negative control detection channel; the paper base is nitrocellulose with a pore size of 0.45 microns plain paper; the detection area is 5-6 square millimeters; the detection channel length is 5-8 mm; the detection channel width is 1-4 mm.
根据本发明的另一方面,提供一种检测丙型肝炎病毒抗体的试剂盒,其包括:According to another aspect of the present invention, there is provided a test kit for detecting hepatitis C virus antibody, which includes:
本发明的检测丙型肝炎病毒抗体的微流控纸基芯片;The microfluidic paper-based chip for detecting hepatitis C virus antibody of the present invention;
样本稀释液;sample diluent;
洗涤液;detergent;
酶标鼠或酶标兔抗人IgG;和Enzyme-labeled mouse or enzyme-labeled rabbit anti-human IgG; and
化学发光底物或显色底物。Chemiluminescent or chromogenic substrates.
在一些实施方式中,试剂盒还可以任选地包括阳性对照血清和阴性对照血清。In some embodiments, the kit may also optionally include positive control sera and negative control sera.
在一些实施方式中,检测丙型肝炎病毒抗体的试剂盒还可以根据需要任选包括使用说明书、包装、滴管中的一种或多种。In some embodiments, the kit for detecting antibodies against hepatitis C virus may also optionally include one or more of instructions for use, packaging, and a dropper as required.
在一些实施方式中,所述样本稀释液为含有10%(w/w)BSA的PBS溶液,pH7.4。In some embodiments, the sample diluent is a PBS solution containing 10% (w/w) BSA, pH 7.4.
在一些实施方式中,所述洗涤液为含有0.05%(V/V)Tween-20的PBS溶液,pH7.4。In some embodiments, the washing solution is a PBS solution containing 0.05% (V/V) Tween-20, pH 7.4.
在一些实施方式中,所述酶标鼠或酶标兔抗人IgG为辣根过氧化物酶、碱性磷酸酶或β-半乳糖苷酶标记的鼠或兔抗人IgG。In some embodiments, the enzyme-labeled mouse or enzyme-labeled rabbit anti-human IgG is mouse or rabbit anti-human IgG labeled with horseradish peroxidase, alkaline phosphatase or β-galactosidase.
在一些实施方式中,所述化学发光底物或显色底物为辣根过氧化物酶、碱性磷酸酶和β-半乳糖苷酶的底物;底物选自:鲁米诺、四甲基联苯胺和磷酸对硝基苯酯。在一些实施方式中,底物为鲁米诺和过氧化氢的混合物,如ImmobilonWesternChemiluminescentSubstrateforHRP(WBKLS0500)。In some embodiments, the chemiluminescent substrate or chromogenic substrate is a substrate of horseradish peroxidase, alkaline phosphatase and β-galactosidase; the substrate is selected from the group consisting of: luminol, tetra Methylbenzidine and p-nitrophenyl phosphate. In some embodiments, the substrate is a mixture of luminol and hydrogen peroxide, such as Immobilon Western Chemiluminescent Substrate for HRP (WBKLS0500).
根据本发明的又一方面,提供一种检测丙型肝炎病毒抗体的微流控纸基芯片的制备方法,包括步骤:According to another aspect of the present invention, there is provided a method for preparing a microfluidic paper-based chip for detecting hepatitis C virus antibody, comprising the steps of:
1)提供纸基;1) Provide paper base;
2)用模具在纸基上进行压印得到微流控纸基芯片;2) Emboss the paper base with a mold to obtain a microfluidic paper base chip;
3)在微流控纸基芯片的检测区上分别包被选自如下的一种或多种:HCV核心抗原、HCVNS5抗原、HCVNS4抗原、HCVNS3抗原、BSA和抗人IgG的抗体,在室温下自然晾干;3) The detection area of the microfluidic paper-based chip is coated with one or more of the following: HCV core antigen, HCVNS5 antigen, HCVNS4 antigen, HCVNS3 antigen, BSA and anti-human IgG antibody, at room temperature dry naturally;
4)将微流控纸基芯片放入BSA中封闭20-40分钟;4) Put the microfluidic paper-based chip into BSA and seal it for 20-40 minutes;
在一些实施方式中,微流控纸基芯片包括2-20个,优选3-12个,优选5-12个,最优选7或8个检测通道;在一些实施方式中,检测通道各包括一个上样区和一个检测区;在一些实施方式中,纸基为甲基乙基纤维素或硝酸纤维素纸;在优选实施方式患者,纸基为硝酸纤维素纸。在一些实施方式中,检测区为5-6平方毫米;检测通道长度为5-8mm;检测通道宽为1-4mm;在一些实施方式中,检测通道共享同一上样区;在一些实施方式中,各检测通道的检测区到上样区的距离相等;在优选的实施方式中,在步骤2)中,用金属模具按照如图1A所示的形状在纸基上进行压印得到微流控纸基芯片;在最优选的实施方式中,步骤2)中,用金属模具按照如图1A所示的形状和尺寸在纸基上进行压印得到微流控纸基芯片。In some embodiments, the microfluidic paper-based chip includes 2-20, preferably 3-12, preferably 5-12, most preferably 7 or 8 detection channels; in some embodiments, each detection channel includes one A sample application area and a detection area; in some embodiments, the paper base is methyl ethyl cellulose or nitrocellulose paper; in preferred embodiments, the paper base is nitrocellulose paper. In some embodiments, the detection area is 5-6 square millimeters; the length of the detection channel is 5-8mm; the width of the detection channel is 1-4mm; in some embodiments, the detection channels share the same loading area; in some embodiments , the distance from the detection area of each detection channel to the sample loading area is equal; in a preferred embodiment, in step 2), a metal mold is used to emboss the paper base in the shape shown in Figure 1A to obtain a microfluidic Paper-based chip; in the most preferred embodiment, in step 2), the microfluidic paper-based chip is obtained by embossing the paper base with a metal mold according to the shape and size shown in Figure 1A.
本领域技术人员理解,在确定了纸基形状和尺寸之后,可以根据具体的形状和尺寸制作相匹配的金属模具用于切割出本发明的纸基芯片。Those skilled in the art understand that after the shape and size of the paper base are determined, a matching metal mold can be made according to the specific shape and size for cutting out the paper base chip of the present invention.
在现有技术中,纸基芯片的制作往往在较高的温度下进行,而本申请的制造方法对温度并无特殊的要求,在一些实施方式中,步骤2)在0-40℃进行;优选4-35℃、10-30℃;15-25℃;最优选室温18-25℃。In the prior art, the production of paper-based chips is often carried out at relatively high temperatures, but the manufacturing method of the present application has no special requirements on temperature. In some embodiments, step 2) is carried out at 0-40°C; Preferably 4-35°C, 10-30°C; 15-25°C; most preferably room temperature 18-25°C.
在具体的实施方式中,本发明的检测丙型肝炎病毒抗体的微流控纸基芯片的制备方法,包括步骤:In a specific embodiment, the preparation method of the microfluidic paper-based chip for detecting hepatitis C virus antibody of the present invention comprises the steps of:
1)提供纸基,所述纸基为AmershamProtranNC0.45硝酸纤维素纸;1) Provide paper base, said paper base is Amersham ProtranNC0.45 nitrocellulose paper;
2)按照图1A所示的形状和尺寸,用模具在纸基上进行压印得到微流控纸基芯片;2) According to the shape and size shown in Figure 1A, use a mold to imprint on the paper base to obtain a microfluidic paper base chip;
3)在微流控纸基芯片的检测区上分别包被:HCV核心抗原、HCVNS5抗原、HCVNS4抗原、HCVNS3抗原、HCV抗原的组合、抗人IgG的抗体、BSA,所述HCV抗原的组合是指HCV核心抗原、HCVNS5抗原、HCVNS4抗原和HCVNS3抗原的组合;在室温下自然晾干;3) The detection area of the microfluidic paper-based chip is respectively coated with: HCV core antigen, HCVNS5 antigen, HCVNS4 antigen, HCVNS3 antigen, a combination of HCV antigens, an anti-human IgG antibody, and BSA. The combination of HCV antigens is Refers to the combination of HCV core antigen, HCVNS5 antigen, HCVNS4 antigen and HCVNS3 antigen; naturally dry at room temperature;
4)将微流控纸基芯片放入BSA中封闭30分钟,获得检测丙型肝炎病毒抗体的微流控纸基芯片;4) Put the microfluidic paper-based chip into BSA and block for 30 minutes to obtain the microfluidic paper-based chip for detecting hepatitis C virus antibody;
其中微流控纸基芯片包括8个检测通道,所述检测通道各包括一个上样区和一个检测区,检测通道共享同一上样区,各检测通道的检测区到上样区的距离相等。The microfluidic paper-based chip includes 8 detection channels, each of which includes a sample loading area and a detection area, the detection channels share the same sample loading area, and the distance between the detection area of each detection channel and the sample loading area is equal.
根据本发明的又一方面,提供一种检测丙型肝炎病毒抗体的方法,包括步骤:According to another aspect of the present invention, there is provided a method for detecting hepatitis C virus antibody, comprising the steps of:
1)从受试者获得待测生物样本,生物样本选自全血、血清、血浆;1) The biological sample to be tested is obtained from the subject, and the biological sample is selected from whole blood, serum, and plasma;
2)将待测生物样本、阴性、阳性对照样本加载至本发明的微流控纸基芯片上;2) Load the biological samples to be tested, negative and positive control samples onto the microfluidic paper-based chip of the present invention;
3)加入酶标鼠或兔抗人IgG;3) Add enzyme-labeled mouse or rabbit anti-human IgG;
4)加入化学发光底物或显色底物;4) Add chemiluminescence substrate or chromogenic substrate;
5)读取光强度。5) Read the light intensity.
附图说明Description of drawings
图1A为本发明的微流控纸基芯片。1为硝酸纤维素纸,16为检测区,也可以直接滴加样品,17为上样区,18是液体流动的纸基通道。Fig. 1A is a microfluidic paper-based chip of the present invention. 1 is nitrocellulose paper, 16 is a detection area, and samples can also be directly added dropwise, 17 is a sample loading area, and 18 is a paper-based channel for liquid flow.
图1B至1D,分别具有8个检测通道,20个检测通道和5个检测通道的微流控纸基芯片;检测区用染料标出。Figures 1B to 1D, microfluidic paper-based chips with 8 detection channels, 20 detection channels and 5 detection channels respectively; the detection areas are marked with dyes.
图2为用于HCV检测的微流控纸基芯片。Figure 2 is a microfluidic paper-based chip for HCV detection.
1为硝酸纤维素纸,1 for nitrocellulose paper,
2包被有HCV抗原的组合,2 combinations coated with HCV antigens,
3包被有HCV抗原的组合,3 combinations coated with HCV antigens,
4包被有HCV核心抗原,4 coated with HCV core antigen,
5包被有HCVNS5抗原,5 coated with HCVNS5 antigen,
6包被有HCVNS4抗原,6 coated with HCVNS4 antigen,
7包被有抗人IgG的抗体,7 coated with anti-human IgG antibody,
8为空白检测区,8 is a blank detection area,
9为组成ELISA的两个检测区2和3,9 is the two detection areas 2 and 3 that make up the ELISA,
10为组成RIBA的四个检测区4-7,10 is the four detection areas 4-7 that make up RIBA,
0为预留,根据需要可以包被有HCVNS3抗原或其它抗原或抗体。0 is reserved, and can be coated with HCVNS3 antigen or other antigens or antibodies as needed.
图3为在纸基检测区上进行的间接免疫反应检测的反应原理示意图。1为硝酸纤维素纸,11为HCV抗原,12为牛血清蛋白,13为人样本中的抗HCV抗体,14为酶标的抗人IgG的二抗,15为酶。Fig. 3 is a schematic diagram of the reaction principle of the indirect immune reaction detection performed on the paper-based detection area. 1 is nitrocellulose paper, 11 is HCV antigen, 12 is bovine serum albumin, 13 is anti-HCV antibody in human sample, 14 is enzyme-labeled secondary antibody against human IgG, and 15 is enzyme.
图4A为采用图2中的策略对HCV患者血清进行检测的化学发光图像。1为硝酸纤维素纸;虚线为微流控纸基芯片的边缘。标尺为5毫米。Fig. 4A is a chemiluminescent image of HCV patient serum detected using the strategy in Fig. 2 . 1 is nitrocellulose paper; the dotted line is the edge of the microfluidic paper-based chip. The scale is 5 mm.
图4B为采用图2中的策略对非HCV患者血清进行检测的化学发光图像。1为硝酸纤维素纸。虚线为微流控纸基芯片的边缘。标尺为5毫米。Fig. 4B is a chemiluminescent image of non-HCV patient serum detected using the strategy in Fig. 2 . 1 is nitrocellulose paper. The dotted line is the edge of the microfluidic paper-based chip. The scale is 5 mm.
图5A至图5C为在微流控纸基芯片中心进样的示意图和表征实验。在微流控纸基芯片中心(由虚线标出)滴加不同体积的染料液体(2,3.5和6微升)。在纸基的毛细管作用力下,液体可以自动的被分配到周围的检测区内。虚线箭头表示液体样本的流动方向。5A to 5C are schematic diagrams and characterization experiments of sample injection in the center of the microfluidic paper-based chip. Different volumes of dye liquid (2, 3.5 and 6 microliters) were dropped in the center of the microfluidic paper-based chip (marked by the dotted line). Under the capillary force of the paper base, the liquid can be automatically distributed into the surrounding detection area. Dashed arrows indicate the flow direction of liquid samples.
图6A为检测不同体积鼠IgG的结果的化学发光图像。1为硝酸纤维素纸。标尺为5毫米。Fig. 6A is a chemiluminescent image of the results of detecting different volumes of mouse IgG. 1 is nitrocellulose paper. The scale is 5 mm.
图6B为检测不同体积鼠IgG的线性结果。1为硝酸纤维素纸。标尺为5毫米。Figure 6B is the linearity result of detecting different volumes of mouse IgG. 1 is nitrocellulose paper. The scale is 5 mm.
图7A为检测不同浓度鼠IgG(668fmol-2.67amol)的化学发光图像。1为硝酸纤维素纸。标尺为5毫米。Fig. 7A is the chemiluminescence images of detecting different concentrations of mouse IgG (668fmol-2.67amol). 1 is nitrocellulose paper. The scale is 5 mm.
图7B为检测不同浓度鼠IgG(668fmol-2.67amol)的非线性Hill方程关系。1为硝酸纤维素纸。标尺为5毫米。Fig. 7B is the non-linear Hill equation relationship for detection of different concentrations of mouse IgG (668fmol-2.67amol). 1 is nitrocellulose paper. The scale is 5 mm.
图8A为检测不同浓度鼠IgG(26.7fmol-267amol)的化学发光图像。1为硝酸纤维素纸。标尺为5毫米。Fig. 8A is the chemiluminescence images of detecting different concentrations of mouse IgG (26.7 fmol-267 amol). 1 is nitrocellulose paper. The scale is 5 mm.
图8B为检测不同浓度鼠IgG(26.7fmol-267amol)的线性关系。1为硝酸纤维素纸。标尺为5毫米。Fig. 8B is a linear relationship for detection of different concentrations of mouse IgG (26.7fmol-267amol). 1 is nitrocellulose paper. The scale is 5 mm.
图9A、9B显示一对相互啮合、边缘锋利的金属模具。Figures 9A, 9B show a pair of intermeshing, sharp-edged metal molds.
具体实施方式Detailed ways
以下提供了本发明具体实施方式中所使用的具体材料及其来源。但是应当理解的是,这些仅仅是示例性的,并不意图限制本发明,与如下试剂和仪器的类型、型号、品质、性质或功能相同或相似的材料均可以用于实施本发明。Specific materials and their sources used in specific embodiments of the invention are provided below. However, it should be understood that these are merely exemplary and not intended to limit the present invention, and materials with the same or similar type, model, quality, property or function as the following reagents and instruments can be used to implement the present invention.
实施例Example
实施例1:检测丙型肝炎病毒抗体的微流控纸基芯片的制备方法Example 1: Preparation method of microfluidic paper-based chip for detection of hepatitis C virus antibody
第1步:提供微流控基片Step 1: Provide microfluidic substrate
纸基为AmershamProtranNC0.45(购自GEhealthcare)。The paper base is Amersham Protran NC0.45 (purchased from GE healthcare).
第2步:制作微流控纸基芯片Step 2: Making Microfluidic Paper-Based Chips
采用一对相互啮合、边缘锋利的金属模具(如图9A-9B所示),按照如图1A所示的尺寸以压印的方式在室温下制作微流控纸基芯片。Using a pair of intermeshing metal molds with sharp edges (as shown in Figures 9A-9B ), the microfluidic paper-based chip was fabricated at room temperature by embossing according to the dimensions shown in Figure 1A.
第3步:在通道2、3、4、5、6、7的检测区分别滴加0.5μl的HCV抗原混合物(由ab7978、ab68616和ab43027混合,通道2和3)、HCV核心抗原(购自abcam、ab7978,通道4)、HCVNS5抗原(购自abcam、ab68616,通道5)、重组HCVNS4抗原(购自abcam、ab43027,通道6)、抗人IgG的抗体(购自Sigma-Aldrich、SAB3701331,通道7);在通道8的检测区上滴加BSA作为空白检测区;检测区2和3是ELISA检测区;检测区4-7构成RIBA检测区(见图2)。在室温下晾干。Step 3: Add 0.5 μl of HCV antigen mixture (mixed by ab7978, ab68616 and ab43027, channels 2 and 3), HCV core antigen (purchased from abcam, ab7978, lane 4), HCVNS5 antigen (purchased from abcam, ab68616, lane 5), recombinant HCVNS4 antigen (purchased from abcam, ab43027, lane 6), anti-human IgG antibody (purchased from Sigma-Aldrich, SAB3701331, lane 7); Add BSA dropwise on the detection area of channel 8 as a blank detection area; detection areas 2 and 3 are ELISA detection areas; detection areas 4-7 constitute the RIBA detection area (see Figure 2). Let dry at room temperature.
第4步:将第3步获得的微流控纸基芯片浸入5%(w/w)BSA溶液中进行封闭,30分钟后取出。Step 4: Immerse the microfluidic paper-based chip obtained in Step 3 into a 5% (w/w) BSA solution for sealing, and take it out after 30 minutes.
第5步:根据需要可以加干燥剂,封装后,放置于2-8度冰箱储存待用。Step 5: Add desiccant as needed. After packaging, store in a refrigerator at 2-8 degrees for later use.
实施例2.试剂盒的组装Example 2. Assembly of the kit
按照如下组成组装成试剂盒:Assemble into a kit according to the following composition:
实施例1所述方法制备好的微流控芯片;辣根过氧化物酶标记的二抗、样本稀释液、洗涤液和底物。根据需要,还可以在试剂盒中配备使用说明书、包装、滴管等随附用品。Microfluidic chip prepared by the method described in Example 1; horseradish peroxidase-labeled secondary antibody, sample diluent, washing solution and substrate. According to needs, the kit can also be equipped with accompanying supplies such as instructions for use, packaging, and droppers.
测试例test case
测试例1:人血清样本的检测Test Example 1: Detection of Human Serum Samples
第1步:人血清样本的获得Step 1: Acquisition of Human Serum Samples
阳性和阴性血清来源北京协和医院检验科的废弃血清,符合相应的伦理原则和规范。The positive and negative sera came from discarded serum from the Laboratory Department of Peking Union Medical College Hospital, which complied with the corresponding ethical principles and norms.
第2步:上样Step 2: Sample loading
在实施例1制备的芯片上,在各检测区滴加稀释50倍的血清样本(0.5μl)。血清稀释液为含有10%w/wBSA的PBS溶液(pH7.4)。一分钟后,将芯片放于含有0.05%(v/v)Tween-20的PBS溶液(pH7.4)中,洗掉多余血清样本。再重复洗涤步骤两次。在阴性对照检测通道滴加阴性对照血清(0.5μl)。On the chip prepared in Example 1, a 50-fold diluted serum sample (0.5 μl) was added dropwise to each detection area. Serum diluent was PBS solution (pH 7.4) containing 10% w/w BSA. After one minute, the chip was placed in PBS solution (pH 7.4) containing 0.05% (v/v) Tween-20, and excess serum samples were washed away. Repeat the washing step two more times. Add negative control serum (0.5 μl) dropwise to the negative control detection channel.
第3步:将微流控纸基芯片放入HRP标记的鼠抗人IgG溶液中(购自CST,7076)(1:5000)浸泡3分钟,形成图3所示的免疫复合物。Step 3: Soak the microfluidic paper-based chip in HRP-labeled mouse anti-human IgG solution (purchased from CST, 7076) (1:5000) for 3 minutes to form the immune complex shown in Figure 3.
第4步:将微流控纸基芯片放入0.05%v/vTween-20,PBS溶液中,洗涤2分钟,再重复两次。Step 4: Put the microfluidic paper-based chip into 0.05% v/v Tween-20, PBS solution, wash for 2 minutes, and repeat twice.
第5步:混合化学发光底物(Miilipore,ImmobilonWesternChemiluminescentSubstrateforHRP,WBKLS0500),取250微升于微流控纸基芯片上,3分钟后吸出。Step 5: Mix the chemiluminescent substrate (Milipore, Immobilon Western Chemiluminescent Substrate for HRP, WBKLS0500), take 250 microliters on the microfluidic paper-based chip, and suck it out after 3 minutes.
第6步:将微流控纸基芯片放于化学发光检测器(Las4000),中检测,曝光时间15分钟,得到化学发光图像,见图4A和图4B。Step 6: Put the microfluidic paper-based chip in a chemiluminescence detector (Las4000) for detection, with an exposure time of 15 minutes to obtain a chemiluminescence image, as shown in Figure 4A and Figure 4B.
第7步:对图像进行处理,得到表1中所示数据。Step 7: Process the image to obtain the data shown in Table 1.
结果:result:
(1)2和3号检测区可以得到ELISA的结果,以信号值与临界值的比例(S/Co)来表示;临界值取自阴性血清样品的信号值;4到7号检测区可以得到RIBA结果,以信号值与阳性对照信号值的比例表示。HCV患者血清在3,4,5,6,7检测区中都得到了阳性结果。而非HCV患者血清只在7号检测区得到阳性对照结果。(1) The results of ELISA can be obtained in detection areas 2 and 3, expressed as the ratio of signal value to critical value (S/Co); the critical value is taken from the signal value of negative serum samples; detection areas 4 to 7 can be obtained RIBA results, expressed as the ratio of the signal value to the signal value of the positive control. The HCV patient sera all obtained positive results in detection areas 3, 4, 5, 6, and 7. Serum from non-HCV patients only obtained positive control results in the No. 7 detection area.
(2)检测时间:如果用ELISA检测方法,每一步孵育时间至少需要30分钟到1小时。如果用RIBA方法会更慢,例如诺华生产的试剂盒,仅孵育步骤就需要4-4.5个小时。而本申请的芯片使得可以将孵育这个过程缩短到几分钟;甚至整个检测流程还不到30分钟(从上样至化学发光显色)。(2) Detection time: If the ELISA detection method is used, the incubation time for each step needs at least 30 minutes to 1 hour. If you use the RIBA method, it will be slower, such as the one produced by Novartis kit, the incubation step alone takes 4-4.5 hours. However, the chip of the present application makes it possible to shorten the incubation process to a few minutes; even the entire detection process is less than 30 minutes (from sample loading to chemiluminescent color development).
(3)检测试剂用量:使用微流控芯片所需要的样本量为0.5微升,而ELISA实验为50-100微升,RIBA使用20-50微升,因此对于某些珍贵样本可以只用很少的量得到结果。微流控芯片的试剂用量(如酶标二抗)约为常规试剂用量的20分之一,可以减少试剂用量,从而降低成本。(3) The amount of detection reagents: the sample volume required for using a microfluidic chip is 0.5 microliters, while the ELISA experiment is 50-100 microliters, and RIBA uses 20-50 microliters, so it can only be used for some precious samples. Small amounts get results. The amount of reagents used in microfluidic chips (such as enzyme-labeled secondary antibodies) is about one-twentieth of the amount of conventional reagents, which can reduce the amount of reagents and thus reduce costs.
表1为采用本发明的微流控纸基芯片对阳性血清和三位患者血清的检测结果和与ELISA试剂盒的对比。纸基芯片的诊断检测结果与ELISA一致,S/Co还略高。单个抗原检测的检测结果以0.4作为阈值进行计数,可以很好的区分阳性和阴性结果。如样品有两个以上的单个抗原信号值大于0.4则判定为阳性,而只有一个或以下的单个抗原信号值大于0.4则判定为阴性。Table 1 shows the detection results of positive sera and three patient sera using the microfluidic paper-based chip of the present invention and the comparison with the ELISA kit. The diagnostic test results of the paper-based chip were consistent with ELISA, and the S/Co was slightly higher. The test results of a single antigen test are counted with 0.4 as the threshold, which can well distinguish positive and negative results. If the sample has more than two single antigen signal values greater than 0.4, it is judged as positive, while only one or less single antigen signal value is greater than 0.4, it is judged as negative.
表1.本发明的微流控纸基芯片与ELISA试剂盒的对比Table 1. Comparison between the microfluidic paper-based chip of the present invention and the ELISA kit
测试例2:线性测试Test Example 2: Linearity Test
第1步:按照实施例1的第1-2步制作微流控纸基芯片。Step 1: Make a microfluidic paper-based chip according to steps 1-2 of Example 1.
第2步:在检测区滴加不同体积的鼠IgG溶液(1μM),在室温下晾干。Step 2: Add different volumes of mouse IgG solution (1 μM) dropwise to the detection area, and let it dry at room temperature.
第3步:将整个微流控纸基芯片浸入5%BSA溶液中进行封闭,30分钟后取出。Step 3: Immerse the entire microfluidic paper-based chip in 5% BSA solution for sealing, and take it out after 30 minutes.
第4步:将微流控纸基芯片放入HRP标抗鼠IgG溶液中(1:5000)浸泡15分钟。Step 4: Soak the microfluidic paper-based chip in HRP-labeled anti-mouse IgG solution (1:5000) for 15 minutes.
第5步:将微流控纸基芯片放入0.05%Tween-20的PBSpH7.4溶液中,洗涤5分钟,重复三次。Step 5: Put the microfluidic paper-based chip into 0.05% Tween-20 PBS pH7.4 solution, wash for 5 minutes, and repeat three times.
第6步:混合化学发光底物,取250微升至微流控纸基芯片上,3分钟后吸出。Step 6: Mix the chemiluminescent substrate, take 250 microliters onto the microfluidic paper-based chip, and aspirate after 3 minutes.
第7步:将微流控纸基芯片放于化学发光检测器(Las4000)中检测,曝光时间15分钟,得到化学发光图像,见图6A。Step 7: Put the microfluidic paper-based chip in a chemiluminescence detector (Las4000) for detection, with an exposure time of 15 minutes to obtain a chemiluminescence image, as shown in Figure 6A.
第8步:对化学发光图像进行数据处理和分析,得到发光强度与滴加溶液体积的关系,见图6B,相关系数为0.988。Step 8: Perform data processing and analysis on the chemiluminescence image to obtain the relationship between the luminescence intensity and the volume of the dripping solution, as shown in Figure 6B, and the correlation coefficient is 0.988.
测试例3:线性测试Test Example 3: Linearity Test
第1步:按照实施例1的第1-2步制作微流控纸基芯片。Step 1: Make a microfluidic paper-based chip according to steps 1-2 of Example 1.
第2步:在检测区滴加不同浓度的鼠IgG溶液(0.5μl),在室温下晾干。Step 2: Drop different concentrations of mouse IgG solution (0.5μl) on the detection area and let it dry at room temperature.
第3步:将整个微流控纸基芯片浸入5%BSA溶液中进行封闭,30分钟后取出。Step 3: Immerse the entire microfluidic paper-based chip in 5% BSA solution for sealing, and take it out after 30 minutes.
第4步:将微流控纸基芯片放入HRP标抗鼠IgG溶液中(1:5000)浸泡15分钟。Step 4: Soak the microfluidic paper-based chip in HRP-labeled anti-mouse IgG solution (1:5000) for 15 minutes.
第5步:将微流控纸基芯片放入0.05%Tween-20的PBSpH7.4溶液中,洗涤5分钟,重复三次。Step 5: Put the microfluidic paper-based chip into 0.05% Tween-20 PBS pH7.4 solution, wash for 5 minutes, and repeat three times.
第6步:混合化学发光底物,取250微升至微流控纸基芯片上,3分钟后吸出。Step 6: Mix the chemiluminescent substrate, take 250 microliters onto the microfluidic paper-based chip, and aspirate after 3 minutes.
第7步:将微流控纸基芯片放于化学发光检测器(Las4000)中检测,曝光时间15分钟,得到化学发光图像,见图7A-7B和图8A-8B。Step 7: Put the microfluidic paper-based chip in a chemiluminescence detector (Las4000) for detection, with an exposure time of 15 minutes to obtain a chemiluminescence image, as shown in Figures 7A-7B and 8A-8B.
第8步:对化学发光图像进行数据处理和分析,得到发光强度与滴加溶液体积的关系。从667fmol到267amol的范围内,发光强度与浓度呈非线性关系,与Hill方程较好拟合,相关系数为0.999(图7A-7B)。从26.7fmol到267amol的范围内,发光强度与浓度呈线性关系。相关系数为0.995,检出限为267amol(图8A-8B)。Step 8: Perform data processing and analysis on the chemiluminescence image to obtain the relationship between the luminescence intensity and the volume of the dripping solution. In the range from 667fmol to 267amol, the luminous intensity has a nonlinear relationship with the concentration, which fits well with the Hill equation, and the correlation coefficient is 0.999 (Figure 7A-7B). In the range from 26.7 fmol to 267 amol, the luminous intensity has a linear relationship with the concentration. The correlation coefficient was 0.995 and the detection limit was 267 amol (Fig. 8A-8B).
小结:summary:
本发明在硝酸纤维素薄膜上构建具有多通道的微流控纸基芯片,可以使得每个检测通道相互独立,尽量减小交叉污染。每个通道都有一个检测区域。检测区域面积较小,约为5-6平方毫米。在检测区域上分别滴加不同的HCV抗原或其混合物,使其在室温下自然晾干。因为硝酸纤维素薄膜具有良好的蛋白吸附能力,滴加液体中的蛋白就被固定在相应的检测区域中。随后,将纸基芯片放入3%-5%的BSA中进行封闭。在上样区滴加血清样本,由毛细作用力输送到检测区或者也可以直接滴加到检测区。每个检测区固定的蛋白种类(或数量)不同,因此每个检测区可以进行不同的免疫检测。HCV抗原捕捉血清中的人类HCV抗体后,通过三次洗涤将多余的样本冲走。再加入抗人IgG的酶标二抗和相应的洗涤后,就可以通过加入酶的底物实现化学发光或者比色法检测。固定HCV抗原混合物的检测区域可以起到ELISA检测的目的,而固定单个HCV抗原的免疫检测可以起到RIBA检测的目的。微流控纸基芯片的其它检测区还可以用来检测血清中的IgG,作为阳性对照。多元的检测能力使得微流控纸基芯片可以同时进行多个血清免疫检测。通过在微流控纸基芯片上集成筛查和确诊测试,从而提高HCV检测和诊断的效率。The invention builds a microfluidic paper-based chip with multiple channels on the nitrocellulose film, which can make each detection channel independent of each other and minimize cross-contamination. Each channel has a detection area. The detection area is small, about 5-6 square millimeters. Different HCV antigens or their mixtures were dropped on the detection area respectively, and allowed to dry naturally at room temperature. Because the nitrocellulose membrane has good protein adsorption capacity, the protein in the dripping liquid is immobilized in the corresponding detection area. Subsequently, the paper-based chip was placed in 3%-5% BSA for sealing. The serum sample is added dropwise to the sample loading area, and is transported to the detection area by capillary force or directly dropped to the detection area. The types (or quantities) of proteins immobilized in each detection area are different, so each detection area can perform different immunoassays. After the HCV antigen captures the human HCV antibodies in the serum, excess samples are washed away by three washes. After adding an anti-human IgG enzyme-labeled secondary antibody and corresponding washing, chemiluminescence or colorimetric detection can be realized by adding an enzyme substrate. Immobilizing the detection area of the HCV antigen mixture can serve the purpose of ELISA detection, while the immunoassay of immobilizing a single HCV antigen can serve the purpose of RIBA detection. Other detection areas of the microfluidic paper-based chip can also be used to detect IgG in serum as a positive control. The multiplex detection capability enables the microfluidic paper-based chip to perform multiple serum immunoassays at the same time. Improving the efficiency of HCV detection and diagnosis by integrating screening and confirmatory tests on a microfluidic paper-based chip.
通过将传统多步进行的HCV检测方法集成在微流控纸基芯片上,HCV诊断过程被大幅简化,诊断效率得以大幅提高。本发明的主要有益效果如下:By integrating the traditional multi-step HCV detection method on the microfluidic paper-based chip, the HCV diagnosis process is greatly simplified and the diagnostic efficiency is greatly improved. Main beneficial effects of the present invention are as follows:
1)将筛查检测和确诊检测集成在一步检测中,简化了诊断流程。1) Integrating screening tests and confirmatory tests into one-step testing simplifies the diagnostic process.
2)由于纸基芯片上每个检测区域的面积都较小,因此上样体积可以非常小,如300纳升,血清的试剂消耗量甚至可以低至只有6纳升。如此低的血清消耗量将使得指尖血代替静脉抽血。这样不仅对病患伤害较小,而且操作检测简便,适合大规模取血,从而进一步提高诊断效率。2) Since the area of each detection area on the paper-based chip is small, the sample loading volume can be very small, such as 300 nanoliters, and the reagent consumption of serum can even be as low as 6 nanoliters. Such low serum consumption will allow fingertip blood to replace venous blood draws. This not only causes less harm to patients, but also is easy to operate and detect, and is suitable for large-scale blood collection, thereby further improving diagnostic efficiency.
3)因为纸基检测区的比表面积大,所以扩散距离较小。样本的孵育时间和洗涤时间可以显著缩短。比如样本孵育时间只要1分钟,完成一次完整的检测流程只需要花费大概30分钟。3) Because the specific surface area of the paper-based detection area is large, the diffusion distance is small. Incubation and washing times for samples can be significantly shortened. For example, the sample incubation time is only 1 minute, and it only takes about 30 minutes to complete a complete detection process.
4)采用廉价的纸基代替塑料孔板,试剂消耗量也因为尺寸的缩小而大幅减小,因此整个检测平台的费用也相应大幅降低。一个纸基检测单元的成本大致是96孔板ELISA中一个孔成本的25分之一。4) Using cheap paper base instead of plastic orifice plate, the consumption of reagents is also greatly reduced due to the reduction in size, so the cost of the entire detection platform is also greatly reduced accordingly. The cost of a paper-based detection unit is roughly 1/25 of the cost of a well in a 96-well plate ELISA.
总之,通过微流控纸基芯片技术改进HCV的诊断策略和技术,提高诊断效率和覆盖率,最终可以更有效的控制HCV的传播和危害。In conclusion, improving the diagnostic strategy and technology of HCV through the microfluidic paper-based chip technology can improve the diagnostic efficiency and coverage, and ultimately can control the spread and harm of HCV more effectively.
参考文献:references:
[1]Poynard,T.;Yuen,M.F.;Ratziu,V.;Lai,C.L.,Lancet2003,362(9401),2095-2100.[1] Poynard, T.; Yuen, M.F.; Ratziu, V.; Lai, C.L., Lancet 2003, 362 (9401), 2095-2100.
[2]Ghany,M.G.;Strader,D.B.;Thomas,D.L.;Seeff,L.B.,Hepatology2009,49(4),1335-1374.[2] Ghany, M.G.; Strader, D.B.; Thomas, D.L.; Seeff, L.B., Hepatology 2009, 49 (4), 1335-1374.
[3]CDC,MorbidityandMortalityWeeklyReport2013,62(18),362-365.[3] CDC, Morbidity and Mortality Weekly Report 2013, 62 (18), 362-365.
[4]EconomistIntelligenceUnitThesilentpandemic:TacklinghepatitisCwithpolicyinnovation;2012.[4] Economist Intelligence Unit The silent pandemic: Tackling hepatitis C with policy innovation; 2012.
[5]Lai,K.K.Y.;Jin,M.;Yuan,S.;Larson,M.F.;Dominitz,J.A.;Bankson,D.D.,Clin.Chem.2011,57(7),1050-1056.[5]Lai, K.K.Y.;Jin,M.;Yuan,S.;Larson,M.F.;Dominitz,J.A.;Bankson,D.D.,Clin.Chem.2011,57(7),1050-1056.
[6]Irving,W.L.;Smith,S.;Cater,R.;Pugh,S.;Neal,K.R.;Coupland,C.A.C.;Ryder,S.D.;Thomson,B.J.;Pringle,M.;Bicknell,M.;Hippisley-Cox,J.,J.ViralHepatitis2006,13(4),264-271.[6] Irving, W.L.; Smith, S.; Cater, R.; Pugh, S.; Neal, K.R.; Coupland, C.A.C.; Ryder, S.D.; Thomson, B.J.; Cox, J., J. Viral Hepatitis 2006, 13(4), 264-271.
[7]Kwon,J.A.;Lee,H.;Lee,K.N.;Chae,K.;Lee,S.;Lee,D.K.;Kim,S.,Clin.Chem.2008,54(2),424-428.[7]Kwon, J.A.;Lee,H.;Lee,K.N.;Chae,K.;Lee,S.;Lee,D.K.;Kim,S.,Clin.Chem.2008,54(2),424-428.
[8]Cheng,C.M.;Martinez,A.W.;Gong,J.L.;Mace,C.R.;Phillips,S.T.;Carrilho,E.;Mirica,K.A.;Whitesides,G.M.,Angew.Chem.Int.Edit.2010,49(28),4771-4774[8] Cheng, C.M.; Martinez, A.W.; Gong, J.L.; Mace, C.R.; Phillips, S.T.; Carrilho, E.; ,4771-4774
[9]Carrilho,E.;Phillips,S.T.;Vella,S.J.;Martinez,A.W.;Whitesides,G.M.,Anal.Chem.2009,81(15),5990-5998[9]Carrilho,E.;Phillips,S.T.;Vella,S.J.;Martinez,A.W.;Whitesides,G.M.,Anal.Chem.2009,81(15),5990-5998
[10]Martinez,A.W.;Phillips,S.T.;Whitesides,G.M.,Proc.Natl.Acad.Sci.U.S.A.2008,105(50),19606-19611[10] Martinez, A.W.; Phillips, S.T.; Whitesides, G.M., Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (50), 19606-19611
[11]Martinez,A.W.;Phillips,S.T.;Carrilho,E.;Thomas,S.W.;Sindi,H.;Whitesides,G.M.,Anal.Chem.2008,80(10),3699-3707。[11] Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.;
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410041037.9A CN103792354B (en) | 2014-01-28 | 2014-01-28 | A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410041037.9A CN103792354B (en) | 2014-01-28 | 2014-01-28 | A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103792354A CN103792354A (en) | 2014-05-14 |
| CN103792354B true CN103792354B (en) | 2015-11-25 |
Family
ID=50668223
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410041037.9A Active CN103792354B (en) | 2014-01-28 | 2014-01-28 | A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103792354B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104004850B (en) * | 2014-06-11 | 2016-03-30 | 华南师范大学 | A paper-based microfluidic chip-enhanced chemiluminescent gene sensing method |
| US9346048B2 (en) * | 2014-06-23 | 2016-05-24 | Xerox Corporation | Paper-based chemical assay devices with improved fluidic structures |
| WO2016069762A2 (en) | 2014-10-29 | 2016-05-06 | Abbott Laboratories | Subject anti-hcv antibody detection assays employing ns3 capture peptides |
| CN104360060B (en) * | 2014-11-14 | 2016-11-02 | 国家纳米科学中心 | A microfluidic chip-based detection method for Mycoplasma pneumoniae and influenza virus-specific antibody IgM |
| CN104569371B (en) * | 2015-01-29 | 2016-04-27 | 华南师范大学 | The paper substrate micro-fluidic chip that PDA modifies and the application in DNA colorimetric detection thereof |
| CN106526201B (en) * | 2016-11-10 | 2018-03-06 | 陕西师范大学 | A kind of method based on paper chip immune response apart from qualitative half-quantitative detection antigen |
| CN108761058B (en) * | 2018-05-19 | 2024-11-15 | 大连大学 | Paper chip and method for parallel detection of multiple infectious disease markers |
| CN109374877B (en) * | 2018-09-19 | 2021-10-19 | 东南大学 | Preparation method and application of paper with nano-pillar array |
| CN109580506A (en) * | 2018-11-28 | 2019-04-05 | 天津瑞生物科技股份有限公司 | A kind of fungal detection system and two Methods for Fungi Detection based on digital microfluidic technology |
| BR102019004230A2 (en) * | 2019-02-28 | 2020-09-08 | Univ Do Vale Do Rio Dos Sinos Unisinos | analytical device, process of obtaining and using it |
| CN112675823B (en) * | 2020-11-29 | 2023-02-10 | 南京师范大学 | A kind of glycoprotein molecularly imprinted nanoparticle and its synthesis method |
| CN114236127A (en) * | 2021-11-19 | 2022-03-25 | 上海普然生物科技有限公司 | Hepatitis C virus antigen-antibody joint detection kit and detection method thereof |
| CN114471759B (en) * | 2022-01-27 | 2023-06-06 | 盖秩舶 | Microfluidic chip based on polytetrafluoroethylene and glass and preparation method thereof |
| CN116020582B (en) * | 2022-12-15 | 2023-11-17 | 西交利物浦大学 | A nanocellulose-based microfluidic analysis platform and its preparation method and use |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5707818A (en) * | 1994-12-13 | 1998-01-13 | Bsi Corporation | Device and method for simultaneously performing multiple competitive immunoassays |
| CN1348105A (en) * | 2001-10-09 | 2002-05-08 | 上海生物芯片有限公司 | Combined hepatosis testing biochip |
| CN1414389A (en) * | 2002-08-19 | 2003-04-30 | 上海华冠生物芯片有限公司 | HCV and TORCH protein chip and its preparation and application method |
| CN1768267A (en) * | 2003-03-28 | 2006-05-03 | 安尼生物科技公司 | Multi-channel test device, its production method and its use |
| CN102016596A (en) * | 2008-03-27 | 2011-04-13 | 哈佛学院院长等 | Paper-Based Microfluidic Systems |
| CN102821861A (en) * | 2010-02-03 | 2012-12-12 | 哈佛大学校长及研究员协会 | Devices and methods for multiplexed assays |
| CN203949878U (en) * | 2014-06-06 | 2014-11-19 | 福建医科大学 | A kind of paper substrate micro-fluidic chip simultaneously detecting for glucose, uric acid, lactic acid |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010102294A1 (en) * | 2009-03-06 | 2010-09-10 | President And Fellows Of Harvard College | Methods of micropatterning paper-based microfluidics |
-
2014
- 2014-01-28 CN CN201410041037.9A patent/CN103792354B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5707818A (en) * | 1994-12-13 | 1998-01-13 | Bsi Corporation | Device and method for simultaneously performing multiple competitive immunoassays |
| CN1348105A (en) * | 2001-10-09 | 2002-05-08 | 上海生物芯片有限公司 | Combined hepatosis testing biochip |
| CN1414389A (en) * | 2002-08-19 | 2003-04-30 | 上海华冠生物芯片有限公司 | HCV and TORCH protein chip and its preparation and application method |
| CN1768267A (en) * | 2003-03-28 | 2006-05-03 | 安尼生物科技公司 | Multi-channel test device, its production method and its use |
| CN102016596A (en) * | 2008-03-27 | 2011-04-13 | 哈佛学院院长等 | Paper-Based Microfluidic Systems |
| CN102821861A (en) * | 2010-02-03 | 2012-12-12 | 哈佛大学校长及研究员协会 | Devices and methods for multiplexed assays |
| CN203949878U (en) * | 2014-06-06 | 2014-11-19 | 福建医科大学 | A kind of paper substrate micro-fluidic chip simultaneously detecting for glucose, uric acid, lactic acid |
Non-Patent Citations (5)
| Title |
|---|
| Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing;Yun Zhang等;《Analytical Chemistry》;20140120;第86卷;第2005-2012页 * |
| Paper-based ELISA;Chao-Min Cheng等;《Angewandte Chemie International Edition》;20101231;第49卷;图3 * |
| Paper-based microfluidic point-of-care diagnostic devices.;Ali Kemal Yetisen等;《Lab on a Chip》;20131231;第13卷;第2210页,第2216页,第2219页,图8 * |
| 微流控纸芯片的加工技术及其应用;蒋艳 等;《化学进展》;20131225;第26卷(第1期);第167-177页 * |
| 黄建声,任大明主编.抗丙型肝炎病毒抗体的检测.《丙型肝炎》.2000, * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103792354A (en) | 2014-05-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103792354B (en) | A kind of micro-fluidic paper substrate chip detecting antibody of HCV and preparation method thereof | |
| Tayyab et al. | Potential microfluidic devices for COVID-19 antibody detection at point-of-care (POC): A review | |
| JP3853317B2 (en) | Diagnostic kit for simultaneous detection of multiple infections and method for producing the same | |
| Bedin et al. | Paper‐based point‐of‐care testing for cost‐effective diagnosis of acute flavivirus infections | |
| CN111781350A (en) | Colloidal gold immunochromatographic test strip for detecting novel coronavirus and preparation method thereof | |
| US20230341398A1 (en) | SARS-CoV-2 DETECTION KIT AND SARS-CoV-2 DETECTION METHOD | |
| JP2006521547A (en) | Multi-channel tester, its manufacturing method and its use | |
| JP2006058280A (en) | Assay chip | |
| AU785380B2 (en) | A hepatitis C antigen - antibody combination assay for the early detection of HCV infection | |
| Fernandes et al. | Comparison of three indirect immunoassay formats on a common paper-based microfluidic device architecture | |
| Carrell et al. | Capillary driven microfluidic sequential flow device for point-of-need ELISA: COVID-19 serology testing | |
| WO2019187271A1 (en) | Testing kit and testing method | |
| WO2009084369A1 (en) | Reagent for detecting hiv-1 antigen and detection method | |
| CN116660516A (en) | Preparation of a new crown/fluid A/fluid B lysate and immunochromatographic test strip | |
| US20120302456A1 (en) | Vertical flow-through devices for multiplexed elisa driven by wicking | |
| Xiang et al. | A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg | |
| JPH11153600A (en) | Test piece for immunoassay and measurement method using the test piece | |
| WO2022024925A1 (en) | Test reagent with ameliorated signal reduction | |
| CN111936852B (en) | Multiplex lateral flow assay to distinguish bacterial infection from viral infection | |
| CN106199017A (en) | One is occulted blood detection chromatographic test paper | |
| JP6190472B2 (en) | Novel PoC inspection system and method | |
| CN206074619U (en) | One kind is occulted blood quick diagnosis chromatographic test paper | |
| CN102053154A (en) | Kit for high-throughput detection of autoimmune antibodies | |
| EP4220166A1 (en) | In vitro method for detecting antibodies in a sample | |
| CN106248959B (en) | A kind of immunodiafiltration method and immunodiafiltration device for detecting serum fucosin |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |