[go: up one dir, main page]

CN103825557B - Transconductance amplifier with low power consumption and high linearity - Google Patents

Transconductance amplifier with low power consumption and high linearity Download PDF

Info

Publication number
CN103825557B
CN103825557B CN201410073419.XA CN201410073419A CN103825557B CN 103825557 B CN103825557 B CN 103825557B CN 201410073419 A CN201410073419 A CN 201410073419A CN 103825557 B CN103825557 B CN 103825557B
Authority
CN
China
Prior art keywords
pmos transistor
transistor
nmos transistor
nmos
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410073419.XA
Other languages
Chinese (zh)
Other versions
CN103825557A (en
Inventor
周泽坤
张其营
张瑜
王霞
石跃
明鑫
王卓
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410073419.XA priority Critical patent/CN103825557B/en
Publication of CN103825557A publication Critical patent/CN103825557A/en
Application granted granted Critical
Publication of CN103825557B publication Critical patent/CN103825557B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明涉及模拟集成运放技术领域,具体涉及一种低功耗高线性度Push‑Pull跨导放大器。本发明的跨导放大器包括依次连接的偏置电路、Rail‑to‑Rail输入级和Push‑Pull输出级;所述偏置电路由镜像电流镜管组成,为Rail‑to‑Rail输入级和Push‑Pull输出级提供偏置电压;所述Rail‑to‑Rail输入级采用折叠式NMOS差分对和PMOS差分对实现共模输入范围轨至轨,并采用源极负反馈实现线性化跨导;所述Push‑Pull输出级采用低功耗偏置实现低功耗推挽输出,并采用镜像电流放大提高输出驱动能力。本发明的有益效果为,具有结构简单、高线性度、低功耗、高电源抑制比、芯片面积小等优点。本发明尤其适用于跨导放大器。

The invention relates to the technical field of analog integrated operational amplifiers, in particular to a Push-Pull transconductance amplifier with low power consumption and high linearity. The transconductance amplifier of the present invention comprises a bias circuit, a Rail-to-Rail input stage and a Push-Pull output stage connected in sequence; the bias circuit is made up of a mirror current mirror tube, which is a Rail-to-Rail input stage and a Push Pull output stage; The ‑Pull output stage provides the bias voltage; the Rail‑to‑Rail input stage uses folded NMOS differential pairs and PMOS differential pairs for common-mode input range rail-to-rail and uses source degeneration for linearized transconductance; The Push-Pull output stage described above uses low-power bias to realize low-power push-pull output, and uses mirror current amplification to improve output drive capability. The invention has the advantages of simple structure, high linearity, low power consumption, high power supply rejection ratio, small chip area and the like. The invention is particularly applicable to transconductance amplifiers.

Description

一种低功耗高线性度跨导放大器A Low Power Consumption and High Linearity Transconductance Amplifier

技术领域technical field

本发明涉及模拟集成运放技术领域,具体涉及一种低功耗高线性度Push-Pull跨导放大器。The invention relates to the technical field of analog integrated operational amplifiers, in particular to a Push-Pull transconductance amplifier with low power consumption and high linearity.

背景技术Background technique

运算跨导放大器(OTA)作为模拟电路系统中重要的基础和关键模块之一,广泛应用于电源、功率放大、信号处理等系统中,运放的性能水平直接决定了整个系统性能的优劣。由于不同应用场合对运算跨导放大器指标参数的要求各不相同,运算跨导放大器的设计多基于应用系统对其性能指标的要求。Operational transconductance amplifier (OTA), as one of the important foundations and key modules in the analog circuit system, is widely used in power supply, power amplification, signal processing and other systems. The performance level of the operational amplifier directly determines the performance of the entire system. Since different application occasions have different requirements on the parameters of operational transconductance amplifiers, the design of operational transconductance amplifiers is mostly based on the requirements of the application system for its performance indicators.

在开关电源领域,作为电压控制环路核心的误差放大器,其指标要求在不同系统拓扑结构、不同反馈信号类型下就各不相同。在某些系统拓扑结构和反馈信号类型下就要用到低功耗高线性度的误差放大器来构成电压控制环路,例如实际应用中当反馈信号类型为交流信号时,误差放大器就需要接受宽范围输入,而宽输入范围引入的非线性问题也需要设计者考虑;当误差放大器的输出驱动PWM(Pulse Width Modulation)控制器要求大的调节范围时,误差放大器就需要大的输出摆幅;当芯片对功耗的要求较为严格时,误差放大器的设计就要尽可能的降低功耗。正是基于此种应用需求,设计出可作误差放大器的低功耗高线性度跨导放大器具有很好的现实意义。In the field of switching power supplies, the error amplifier, which is the core of the voltage control loop, has different index requirements under different system topologies and different feedback signal types. In some system topologies and feedback signal types, an error amplifier with low power consumption and high linearity is used to form a voltage control loop. For example, when the feedback signal type is an AC signal in practical applications, the error amplifier needs to accept a wide Range input, and the nonlinear problem introduced by the wide input range also needs to be considered by the designer; when the output of the error amplifier drives the PWM (Pulse Width Modulation) controller and requires a large adjustment range, the error amplifier requires a large output swing; when When the chip has strict requirements on power consumption, the design of the error amplifier should reduce power consumption as much as possible. It is based on this application requirement that it is of great practical significance to design a low-power and high-linearity transconductance amplifier that can be used as an error amplifier.

传统源极耦合差动放大结构实现的OTA线性度受限于尾电流ISS和β若想提高线性输入范围就必须增大尾电流ISS或减小β;矛盾的是增大ISS会增大功耗,减小β会减小共模输入范围,因而传统的放大器还不具备同时具有高线性度、低功耗和宽输入范围。The OTA linearity achieved by the traditional source-coupled differential amplifier structure is limited by the tail current I SS and β If you want to increase the linear input range, you must increase the tail current I SS or reduce β; the paradox is that increasing I SS will increase power consumption, and reducing β will reduce the common-mode input range, so traditional amplifiers do not have It also has high linearity, low power consumption and wide input range.

发明内容Contents of the invention

本发明所要解决的,就是针对上述传统放大器存在的问题,同时为了实现开关电源电压控制环路对误差放大器低功耗和高线性度的要求,提出了一种可作误差放大器的低功耗高线性度Push-Pull跨导放大器。What the present invention aims to solve is to aim at the problems existing in the above-mentioned traditional amplifiers, and at the same time, in order to realize the requirements of the switching power supply voltage control loop on the error amplifier with low power consumption and high linearity, a low power consumption and high linearity amplifier that can be used as an error amplifier is proposed Linearity Push-Pull Transconductance Amplifier.

本发明解决上述技术问题所采用的技术方案是:一种低功耗高线性度跨导放大器,其特征在于,包括依次连接的偏置电路、Rail-to-Rail输入级和Push-Pull输出级;所述偏置电路由镜像电流镜管组成,为Rail-to-Rail输入级和Push-Pull输出级提供偏置电压;所述Rail-to-Rail输入级采用折叠式NMOS差分对和PMOS差分对实现共模输入范围轨至轨,并采用源极负反馈实现线性化跨导;所述Push-Pull输出级采用低功耗偏置实现低功耗推挽输出,并采用镜像电流放大提高输出驱动能力。The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a low-power consumption high-linearity transconductance amplifier, characterized in that it includes a bias circuit connected in sequence, a Rail-to-Rail input stage and a Push-Pull output stage ; The bias circuit is composed of a mirror current mirror tube, which provides a bias voltage for the Rail-to-Rail input stage and the Push-Pull output stage; the Rail-to-Rail input stage adopts a folded NMOS differential pair and a PMOS differential pair To achieve common mode input range rail to rail, and use source negative feedback to achieve linearized transconductance; the Push-Pull output stage uses low power bias to achieve low power push-pull output, and uses mirror current amplification to improve output Drive capability.

具体的,所述偏置电路包括第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3和电流源;Specifically, the bias circuit includes a first PMOS transistor MP1, a second PMOS transistor MP2, a third PMOS transistor MP3, a fourth PMOS transistor MP4, a first NMOS transistor MN1, a second NMOS transistor MN2, and a third NMOS transistor MN3 and current source;

所述Rail-to-Rail输入级包括第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第十PMOS管MP10、第十一PMOS管MP11、第十二PMOS管MP12、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9、第十NMOS管MN10、第十一NMOS管MN11、第一电阻RSN和第二电阻RSP;The Rail-to-Rail input stage includes fifth PMOS transistor MP5, sixth PMOS transistor MP6, seventh PMOS transistor MP7, eighth PMOS transistor MP8, ninth PMOS transistor MP9, tenth PMOS transistor MP10, eleventh PMOS transistor Tube MP11, twelfth PMOS tube MP12, fourth NMOS tube MN4, fifth NMOS tube MN5, sixth NMOS tube MN6, seventh NMOS tube MN7, eighth NMOS tube MN8, ninth NMOS tube MN9, tenth NMOS tube MN10, an eleventh NMOS transistor MN11, a first resistor RSN and a second resistor RSP;

所述Push-Pull输出级包括第十三PMOS管MP13、第十四PMOS管MP14、第十五PMOS管MP15、第十六PMOS管MP16、第十七PMOS管MP17、第十八PMOS管MP18、第十二NMOS管MN12、第十三NMOS管MN13、第十四NMOS管MN14、第十五NMOS管MN15、第十六NMOS管MN16、第十七NMOS管MN17、第三电阻RBP和第四电阻RBN;其中,The Push-Pull output stage includes a thirteenth PMOS transistor MP13, a fourteenth PMOS transistor MP14, a fifteenth PMOS transistor MP15, a sixteenth PMOS transistor MP16, a seventeenth PMOS transistor MP17, an eighteenth PMOS transistor MP18, The twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the fourteenth NMOS transistor MN14, the fifteenth NMOS transistor MN15, the sixteenth NMOS transistor MN16, the seventeenth NMOS transistor MN17, the third resistor RBP and the fourth resistor RBN; where,

第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第九PMOS管MP9、第十PMOS管MP10、第十五PMOS管MP15、第十六PMOS管MP16的源衬端以及第十一PMOS管MP11、第十二PMOS管MP12、第十七PMOS管MP17、第十八PMOS管MP18的衬端接电源电压;The first PMOS transistor MP1, the second PMOS transistor MP2, the third PMOS transistor MP3, the fourth PMOS transistor MP4, the fifth PMOS transistor MP5, the sixth PMOS transistor MP6, the ninth PMOS transistor MP9, the tenth PMOS transistor MP10, the tenth PMOS transistor The source lining terminals of the fifth PMOS transistor MP15, the sixteenth PMOS transistor MP16, the lining terminals of the eleventh PMOS transistor MP11, the twelfth PMOS transistor MP12, the seventeenth PMOS transistor MP17, and the eighteenth PMOS transistor MP18 are connected to the power supply voltage;

第一PMOS管MP1的栅漏端、第二PMOS管MP2的栅端、第三PMOS管MP3的栅端、第五PMOS管MP5的栅端、第六PMOS管MP6的栅端均接电流源正向端,电流源负向端接地电位;The gate-drain terminal of the first PMOS transistor MP1, the gate terminal of the second PMOS transistor MP2, the gate terminal of the third PMOS transistor MP3, the gate terminal of the fifth PMOS transistor MP5, and the gate terminal of the sixth PMOS transistor MP6 are all connected to the positive current source. To the terminal, the negative terminal of the current source is grounded;

第一NMOS管MN1的栅漏端、第十NMOS管MN10的栅端、第十一NMOS管MN11的栅端、第十六NMOS管MN16的栅端、第十七NMOS管MN17的栅端均与第二PMOS管MP2的漏端相连接;The gate-drain terminal of the first NMOS transistor MN1, the gate terminal of the tenth NMOS transistor MN10, the gate terminal of the eleventh NMOS transistor MN11, the gate terminal of the sixteenth NMOS transistor MN16, and the gate terminal of the seventeenth NMOS transistor MN17 are all connected to The drain end of the second PMOS transistor MP2 is connected;

第二NMOS管MN2的栅漏端、第三NMOS管MN3的栅端、第四NMOS管MN4的栅端、第五NMOS管MN5的栅极、第八NMOS管MN8的栅端、第九NMOS管MN9的栅端均与第三PMOS管MP3的漏端相连接;The gate-drain end of the second NMOS transistor MN2, the gate end of the third NMOS transistor MN3, the gate end of the fourth NMOS transistor MN4, the gate end of the fifth NMOS transistor MN5, the gate end of the eighth NMOS transistor MN8, the gate end of the ninth NMOS transistor The gate terminals of MN9 are all connected to the drain terminal of the third PMOS transistor MP3;

第四PMOS管MP4的栅漏端、第十一PMOS管MP11的栅端、第十二PMOS管MP12的栅端、第十七PMOS管MP17的栅端、第十八PMOS管MP18的栅端均与第三NMOS管MN3的漏端相连接;The gate-drain terminal of the fourth PMOS transistor MP4, the gate terminal of the eleventh PMOS transistor MP11, the gate terminal of the twelfth PMOS transistor MP12, the gate terminal of the seventeenth PMOS transistor MP17, and the gate terminal of the eighteenth PMOS transistor MP18 are all connected to the drain end of the third NMOS transistor MN3;

第六NMOS管MN6的栅端与第七PMOS管MP7的栅端相连接作为一个输入端,第七NMOS管MN7的栅端与第八PMOS管MP8的栅端相连接作为另一个输入端,第六NMOS管MN6的源衬端、第七NMOS管MN7的源衬端分别与第四NMOS管MN4的漏端、第五NMOS管MN5的漏端相连接并通过第一电阻RSN跨接;The gate terminal of the sixth NMOS transistor MN6 is connected to the gate terminal of the seventh PMOS transistor MP7 as an input terminal, and the gate terminal of the seventh NMOS transistor MN7 is connected to the gate terminal of the eighth PMOS transistor MP8 as another input terminal. The source liner end of the sixth NMOS transistor MN6 and the source liner end of the seventh NMOS transistor MN7 are respectively connected to the drain end of the fourth NMOS transistor MN4 and the drain end of the fifth NMOS transistor MN5 and bridged through the first resistor RSN;

第七PMOS管MP7的源衬端、第八PMOS管MP8的源衬端分别与第五PMOS管MP5的漏端、第六PMOS管MP6的漏端相连接并通过第二电阻RSP跨接;The source liner end of the seventh PMOS transistor MP7 and the source liner end of the eighth PMOS transistor MP8 are respectively connected to the drain end of the fifth PMOS transistor MP5 and the drain end of the sixth PMOS transistor MP6 and bridged through the second resistor RSP;

第九PMOS管MP9的漏端、第十一PMOS管MP11的源端与第七NMOS管MN7的漏端相连接;第十PMOS管MP10的漏端、第十二PMOS管MP12的源端与第六NMOS管MN6的漏端相连接;The drain end of the ninth PMOS transistor MP9, the source end of the eleventh PMOS transistor MP11 are connected to the drain end of the seventh NMOS transistor MN7; the drain end of the tenth PMOS transistor MP10, the source end of the twelfth PMOS transistor MP12 and the The drain terminals of the six NMOS transistors MN6 are connected;

第八NMOS管MN8的漏端、第十NMOS管MN10的源端与第八PMOS管MP8的漏端相连接;第九NMOS管MN9的漏端、第十一NMOS管MN11的源端与第七PMOS管MP7的漏端相连接;The drain end of the eighth NMOS transistor MN8, the source end of the tenth NMOS transistor MN10 are connected to the drain end of the eighth PMOS transistor MP8; the drain end of the ninth NMOS transistor MN9, the source end of the eleventh NMOS transistor MN11 and the seventh The drain end of the PMOS transistor MP7 is connected;

第九PMOS管MP9的栅端、第十PMOS管MP10的栅端、第十一PMOS管MP11的漏端均与第十NMOS管MN10的漏端相连接;第十二PMOS管MP12的漏端、第十四PMOS管MP14的源衬端、第十三NMOS管MN13的源端均与第十一NMOS管MN11的漏端相连接;The gate end of the ninth PMOS transistor MP9, the gate end of the tenth PMOS transistor MP10, and the drain end of the eleventh PMOS transistor MP11 are all connected to the drain end of the tenth NMOS transistor MN10; the drain end of the twelfth PMOS transistor MP12, The source end of the fourteenth PMOS transistor MP14 and the source end of the thirteenth NMOS transistor MN13 are connected to the drain end of the eleventh NMOS transistor MN11;

第十二NMOS管MN12漏栅端、第十三NMOS管MN13栅端接第三电阻RBP到电源;第十三PMOS管MP13漏栅端、第十四PMOS管MP14栅端接第四电阻RBN到地电位,第十二NMOS管MN12的源端接第十三PMOS管MP13的源衬端;The drain gate terminal of the twelfth NMOS transistor MN12 and the gate terminal of the thirteenth NMOS transistor MN13 are connected to the third resistor RBP to the power supply; the drain gate terminal of the thirteenth PMOS transistor MP13 and the gate terminal of the fourteenth PMOS transistor MP14 are connected to the fourth resistor RBN to ground potential, the source end of the twelfth NMOS transistor MN12 is connected to the source end of the thirteenth PMOS transistor MP13;

第十五PMOS管MP15的栅端、第十六PMOS管MP16的栅端、第十七PMOS管MP17的漏端均与第十三NMOS管MN13的漏端相连接;第十四NMOS管MN14的栅端、第十五NMOS管MN15的栅端、第十六NMOS管MN16的漏端均与第十四PMOS管MP14的漏端相连接;The gate end of the fifteenth PMOS transistor MP15, the gate end of the sixteenth PMOS transistor MP16, and the drain end of the seventeenth PMOS transistor MP17 are all connected to the drain end of the thirteenth NMOS transistor MN13; the drain end of the fourteenth NMOS transistor MN14 The gate terminal, the gate terminal of the fifteenth NMOS transistor MN15, and the drain terminal of the sixteenth NMOS transistor MN16 are all connected to the drain terminal of the fourteenth PMOS transistor MP14;

第十五PMOS管MP15的漏端、第十六PMOS管MP16的漏端分别与第十七PMOS管MP17的源端、第十八PMOS管MP18的源端相连接;The drain end of the fifteenth PMOS transistor MP15 and the drain end of the sixteenth PMOS transistor MP16 are respectively connected to the source end of the seventeenth PMOS transistor MP17 and the source end of the eighteenth PMOS transistor MP18;

第十四NMOS管MN14的漏端、第十五NMOS管MN15的漏端分别与第十六NMOS管MN16的源端、第十七NMOS管MN17的源端相连接;第十七NMOS管MN17的漏端与第十八PMOS管MP18的漏端相连接作为输出端;The drain end of the fourteenth NMOS transistor MN14 and the drain end of the fifteenth NMOS transistor MN15 are respectively connected to the source end of the sixteenth NMOS transistor MN16 and the source end of the seventeenth NMOS transistor MN17; The drain end is connected to the drain end of the eighteenth PMOS transistor MP18 as an output end;

第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第八NMOS管MN8、第九NMOS管MN9、第十四NMOS管MN14、第十五NMOS管MN15的源衬端以及第十NMOS管MN10、第十一NMOS管MN11、第十二NMOS管MN12、第十三NMOS管MN13、第十六NMOS管MN16、第十七NMOS管MN17的衬端均接地电位。The first NMOS transistor MN1, the second NMOS transistor MN2, the third NMOS transistor MN3, the fourth NMOS transistor MN4, the fifth NMOS transistor MN5, the eighth NMOS transistor MN8, the ninth NMOS transistor MN9, the fourteenth NMOS transistor MN14, the The source lining end of the fifteenth NMOS transistor MN15, the tenth NMOS transistor MN10, the eleventh NMOS transistor MN11, the twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the sixteenth NMOS transistor MN16, and the seventeenth NMOS transistor MN17 The pad ends are at ground potential.

本发明的有益效果为,具有结构简单、高线性度、低功耗、高电源抑制比、芯片面积小等优点。与现有技术相比,所述低功耗高线性度Push-Pull跨导放大器克服了为提高线性度而增加额外电路引起的结构复杂、功耗大、版图面积大等问题,在满足开关电源电压控制环路对误差放大器要求的应用条件下,实现了高线性度低功耗的紧凑型电路设计。The invention has the advantages of simple structure, high linearity, low power consumption, high power supply rejection ratio, small chip area and the like. Compared with the prior art, the push-pull transconductance amplifier with low power consumption and high linearity overcomes the problems of complex structure, large power consumption, and large layout area caused by adding additional circuits to improve linearity. Under the application conditions that the voltage control loop requires the error amplifier, a compact circuit design with high linearity and low power consumption is realized.

附图说明Description of drawings

图1为线性化跨导之源极电阻跨接式负反馈结构示意图;Figure 1 is a schematic diagram of the source resistor cross-connected negative feedback structure of the linearized transconductance;

图2为线性化跨导之源极电阻分离式负反馈结构示意图;Fig. 2 is a schematic diagram of a source resistor separated negative feedback structure for linearized transconductance;

图3为本发明的低功耗高线性度跨导放大器整体电路结构示意图。Fig. 3 is a schematic diagram of the overall circuit structure of the low power consumption and high linearity transconductance amplifier of the present invention.

具体实施方式detailed description

下面结合附图,详细描述本发明的技术方案:Below in conjunction with accompanying drawing, describe technical scheme of the present invention in detail:

本发明的低功耗高线性度跨导放大器,包括Rail-to-Rail输入级、Push-Pull推挽输出级和偏置电路,其中低功耗高线性度Push-Pull跨导放大器采用源极电阻跨接式负反馈结构(图1)实现高线性跨导,与源极电阻分离式负反馈结构(图2)相比源端压降不会升高,保证了双差分对管的共同作用的共模电平范围宽;同时低功耗高线性度Push-Pull跨导放大器采用电流传输放大推挽输出级使输出驱动能力大,能够驱动PWM控制器实现大的占空比调节范围;低功耗高线性度Push-Pull跨导放大器输出级采用低功耗偏置可以减小电路功耗,仿真显示25℃典型情况下功耗只有708uw;低功耗高线性度Push-Pull跨导放大器电路结构简单,版图紧凑型设计,采用BCD350工艺版图面积只有300×270um2;另外,输入输出级都采用的cascode(共源共栅)结构可以获得高的PSRR,仿真显示100kHz频率范围内PSRR在45db以上,满足系统要求。The low power consumption and high linearity transconductance amplifier of the present invention comprises a Rail-to-Rail input stage, a Push-Pull push-pull output stage and a bias circuit, wherein the low power consumption and high linearity Push-Pull transconductance amplifier adopts a source Resistor-connected negative feedback structure (Figure 1) achieves high linear transconductance, compared with the source resistor separated negative feedback structure (Figure 2), the voltage drop at the source end will not increase, ensuring the joint effect of the double differential pair of tubes The common mode level range is wide; at the same time, low power consumption and high linearity Push-Pull transconductance amplifier uses current transmission to amplify the push-pull output stage to make the output drive capability large, and can drive the PWM controller to achieve a large duty cycle adjustment range; low High power consumption and linearity Push-Pull transconductance amplifier output stage adopts low power consumption bias to reduce circuit power consumption. Simulation shows that the typical power consumption is only 708uw at 25°C; low power consumption and high linearity Push-Pull transconductance amplifier The circuit structure is simple, the layout is compact, and the BCD350 process layout area is only 300×270um 2 ; in addition, the cascode (cascode) structure used in the input and output stages can obtain high PSRR, and the simulation shows that the PSRR is within the frequency range of 100kHz. More than 45db, meet the system requirements.

如图3所示,为本发明的低功耗高线性度跨导放大器整体的电路结构,所述偏置电路包括第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3和电流源;As shown in Figure 3, it is the overall circuit structure of the low power consumption high linearity transconductance amplifier of the present invention, the bias circuit includes a first PMOS transistor MP1, a second PMOS transistor MP2, a third PMOS transistor MP3, a fourth PMOS transistor MP4, first NMOS transistor MN1, second NMOS transistor MN2, third NMOS transistor MN3 and a current source;

所述Rail-to-Rail输入级包括第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第十PMOS管MP10、第十一PMOS管MP11、第十二PMOS管MP12、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9、第十NMOS管MN10、第十一NMOS管MN11、第一电阻RSN和第二电阻RSP;The Rail-to-Rail input stage includes fifth PMOS transistor MP5, sixth PMOS transistor MP6, seventh PMOS transistor MP7, eighth PMOS transistor MP8, ninth PMOS transistor MP9, tenth PMOS transistor MP10, eleventh PMOS transistor Tube MP11, twelfth PMOS tube MP12, fourth NMOS tube MN4, fifth NMOS tube MN5, sixth NMOS tube MN6, seventh NMOS tube MN7, eighth NMOS tube MN8, ninth NMOS tube MN9, tenth NMOS tube MN10, an eleventh NMOS transistor MN11, a first resistor RSN and a second resistor RSP;

所述Push-Pull输出级包括第十三PMOS管MP13、第十四PMOS管MP14、第十五PMOS管MP15、第十六PMOS管MP16、第十七PMOS管MP17、第十八PMOS管MP18、第十二NMOS管MN12、第十三NMOS管MN13、第十四NMOS管MN14、第十五NMOS管MN15、第十六NMOS管MN16、第十七NMOS管MN17、第三电阻RBP和第四电阻RBN;其中,The Push-Pull output stage includes a thirteenth PMOS transistor MP13, a fourteenth PMOS transistor MP14, a fifteenth PMOS transistor MP15, a sixteenth PMOS transistor MP16, a seventeenth PMOS transistor MP17, an eighteenth PMOS transistor MP18, The twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the fourteenth NMOS transistor MN14, the fifteenth NMOS transistor MN15, the sixteenth NMOS transistor MN16, the seventeenth NMOS transistor MN17, the third resistor RBP and the fourth resistor RBN; where,

第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第九PMOS管MP9、第十PMOS管MP10、第十五PMOS管MP15、第十六PMOS管MP16的源衬端以及第十一PMOS管MP11、第十二PMOS管MP12、第十七PMOS管MP17、第十八PMOS管MP18的衬端接电源电压;The first PMOS transistor MP1, the second PMOS transistor MP2, the third PMOS transistor MP3, the fourth PMOS transistor MP4, the fifth PMOS transistor MP5, the sixth PMOS transistor MP6, the ninth PMOS transistor MP9, the tenth PMOS transistor MP10, the tenth PMOS transistor The source lining terminals of the fifth PMOS transistor MP15, the sixteenth PMOS transistor MP16, the lining terminals of the eleventh PMOS transistor MP11, the twelfth PMOS transistor MP12, the seventeenth PMOS transistor MP17, and the eighteenth PMOS transistor MP18 are connected to the power supply voltage;

第一PMOS管MP1的栅漏端、第二PMOS管MP2的栅端、第三PMOS管MP3的栅端、第五PMOS管MP5的栅端、第六PMOS管MP6的栅端均接电流源正向端,电流源负向端接地电位;The gate-drain terminal of the first PMOS transistor MP1, the gate terminal of the second PMOS transistor MP2, the gate terminal of the third PMOS transistor MP3, the gate terminal of the fifth PMOS transistor MP5, and the gate terminal of the sixth PMOS transistor MP6 are all connected to the positive current source. To the terminal, the negative terminal of the current source is grounded;

第一NMOS管MN1的栅漏端、第十NMOS管MN10的栅端、第十一NMOS管MN11的栅端、第十六NMOS管MN16的栅端、第十七NMOS管MN17的栅端均与第二PMOS管MP2的漏端相连接;The gate-drain terminal of the first NMOS transistor MN1, the gate terminal of the tenth NMOS transistor MN10, the gate terminal of the eleventh NMOS transistor MN11, the gate terminal of the sixteenth NMOS transistor MN16, and the gate terminal of the seventeenth NMOS transistor MN17 are all connected to The drain end of the second PMOS transistor MP2 is connected;

第二NMOS管MN2的栅漏端、第三NMOS管MN3的栅端、第四NMOS管MN4的栅端、第五NMOS管MN5的栅极、第八NMOS管MN8的栅端、第九NMOS管MN9的栅端均与第三PMOS管MP3的漏端相连接;The gate-drain end of the second NMOS transistor MN2, the gate end of the third NMOS transistor MN3, the gate end of the fourth NMOS transistor MN4, the gate end of the fifth NMOS transistor MN5, the gate end of the eighth NMOS transistor MN8, the gate end of the ninth NMOS transistor The gate terminals of MN9 are all connected to the drain terminal of the third PMOS transistor MP3;

第四PMOS管MP4的栅漏端、第十一PMOS管MP11的栅端、第十二PMOS管MP12的栅端、第十七PMOS管MP17的栅端、第十八PMOS管MP18的栅端均与第三NMOS管MN3的漏端相连接;The gate-drain terminal of the fourth PMOS transistor MP4, the gate terminal of the eleventh PMOS transistor MP11, the gate terminal of the twelfth PMOS transistor MP12, the gate terminal of the seventeenth PMOS transistor MP17, and the gate terminal of the eighteenth PMOS transistor MP18 are all connected to the drain end of the third NMOS transistor MN3;

第六NMOS管MN6的栅端与第七PMOS管MP7的栅端相连接作为一个输入端,第七NMOS管MN7的栅端与第八PMOS管MP8的栅端相连接作为另一个输入端,第六NMOS管MN6的源衬端、第七NMOS管MN7的源衬端分别与第四NMOS管MN4的漏端、第五NMOS管MN5的漏端相连接并通过第一电阻RSN跨接;The gate terminal of the sixth NMOS transistor MN6 is connected to the gate terminal of the seventh PMOS transistor MP7 as an input terminal, and the gate terminal of the seventh NMOS transistor MN7 is connected to the gate terminal of the eighth PMOS transistor MP8 as another input terminal. The source liner end of the sixth NMOS transistor MN6 and the source liner end of the seventh NMOS transistor MN7 are respectively connected to the drain end of the fourth NMOS transistor MN4 and the drain end of the fifth NMOS transistor MN5 and bridged through the first resistor RSN;

第七PMOS管MP7的源衬端、第八PMOS管MP8的源衬端分别与第五PMOS管MP5的漏端、第六PMOS管MP6的漏端相连接并通过第二电阻RSP跨接;The source liner end of the seventh PMOS transistor MP7 and the source liner end of the eighth PMOS transistor MP8 are respectively connected to the drain end of the fifth PMOS transistor MP5 and the drain end of the sixth PMOS transistor MP6 and bridged through the second resistor RSP;

第九PMOS管MP9的漏端、第十一PMOS管MP11的源端与第七NMOS管MN7的漏端相连接;第十PMOS管MP10的漏端、第十二PMOS管MP12的源端与第六NMOS管MN6的漏端相连接;The drain end of the ninth PMOS transistor MP9, the source end of the eleventh PMOS transistor MP11 are connected to the drain end of the seventh NMOS transistor MN7; the drain end of the tenth PMOS transistor MP10, the source end of the twelfth PMOS transistor MP12 and the The drain terminals of the six NMOS transistors MN6 are connected;

第八NMOS管MN8的漏端、第十NMOS管MN10的源端与第八PMOS管MP8的漏端相连接;第九NMOS管MN9的漏端、第十一NMOS管MN11的源端与第七PMOS管MP7的漏端相连接;The drain end of the eighth NMOS transistor MN8, the source end of the tenth NMOS transistor MN10 are connected to the drain end of the eighth PMOS transistor MP8; the drain end of the ninth NMOS transistor MN9, the source end of the eleventh NMOS transistor MN11 and the seventh The drain end of the PMOS transistor MP7 is connected;

第九PMOS管MP9的栅端、第十PMOS管MP10的栅端、第十一PMOS管MP11的漏端均与第十NMOS管MN10的漏端相连接;第十二PMOS管MP12的漏端、第十四PMOS管MP14的源衬端、第十三NMOS管MN13的源端均与第十一NMOS管MN11的漏端相连接;The gate end of the ninth PMOS transistor MP9, the gate end of the tenth PMOS transistor MP10, and the drain end of the eleventh PMOS transistor MP11 are all connected to the drain end of the tenth NMOS transistor MN10; the drain end of the twelfth PMOS transistor MP12, The source end of the fourteenth PMOS transistor MP14 and the source end of the thirteenth NMOS transistor MN13 are connected to the drain end of the eleventh NMOS transistor MN11;

第十二NMOS管MN12漏栅端、第十三NMOS管MN13栅端接第三电阻RBP到电源;第十三PMOS管MP13漏栅端、第十四PMOS管MP14栅端接第四电阻RBN到地电位,第十二NMOS管MN12的源端接第十三PMOS管MP13的源衬端;The drain gate terminal of the twelfth NMOS transistor MN12 and the gate terminal of the thirteenth NMOS transistor MN13 are connected to the third resistor RBP to the power supply; the drain gate terminal of the thirteenth PMOS transistor MP13 and the gate terminal of the fourteenth PMOS transistor MP14 are connected to the fourth resistor RBN to ground potential, the source end of the twelfth NMOS transistor MN12 is connected to the source end of the thirteenth PMOS transistor MP13;

第十五PMOS管MP15的栅端、第十六PMOS管MP16的栅端、第十七PMOS管MP17的漏端均与第十三NMOS管MN13的漏端相连接;第十四NMOS管MN14的栅端、第十五NMOS管MN15的栅端、第十六NMOS管MN16的漏端均与第十四PMOS管MP14的漏端相连接;The gate end of the fifteenth PMOS transistor MP15, the gate end of the sixteenth PMOS transistor MP16, and the drain end of the seventeenth PMOS transistor MP17 are all connected to the drain end of the thirteenth NMOS transistor MN13; the drain end of the fourteenth NMOS transistor MN14 The gate terminal, the gate terminal of the fifteenth NMOS transistor MN15, and the drain terminal of the sixteenth NMOS transistor MN16 are all connected to the drain terminal of the fourteenth PMOS transistor MP14;

第十五PMOS管MP15的漏端、第十六PMOS管MP16的漏端分别与第十七PMOS管MP17的源端、第十八PMOS管MP18的源端相连接;The drain end of the fifteenth PMOS transistor MP15 and the drain end of the sixteenth PMOS transistor MP16 are respectively connected to the source end of the seventeenth PMOS transistor MP17 and the source end of the eighteenth PMOS transistor MP18;

第十四NMOS管MN14的漏端、第十五NMOS管MN15的漏端分别与第十六NMOS管MN16的源端、第十七NMOS管MN17的源端相连接;第十七NMOS管MN17的漏端与第十八PMOS管MP18的漏端相连接作为输出端;The drain end of the fourteenth NMOS transistor MN14 and the drain end of the fifteenth NMOS transistor MN15 are respectively connected to the source end of the sixteenth NMOS transistor MN16 and the source end of the seventeenth NMOS transistor MN17; The drain end is connected to the drain end of the eighteenth PMOS transistor MP18 as an output end;

第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第八NMOS管MN8、第九NMOS管MN9、第十四NMOS管MN14、第十五NMOS管MN15的源衬端以及第十NMOS管MN10、第十一NMOS管MN11、第十二NMOS管MN12、第十三NMOS管MN13、第十六NMOS管MN16、第十七NMOS管MN17的衬端均接地电位The first NMOS transistor MN1, the second NMOS transistor MN2, the third NMOS transistor MN3, the fourth NMOS transistor MN4, the fifth NMOS transistor MN5, the eighth NMOS transistor MN8, the ninth NMOS transistor MN9, the fourteenth NMOS transistor MN14, the The source lining end of the fifteenth NMOS transistor MN15, the tenth NMOS transistor MN10, the eleventh NMOS transistor MN11, the twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the sixteenth NMOS transistor MN16, and the seventeenth NMOS transistor MN17 The pad ends are at ground potential

其中,所述电流源IB、NMOS管MN1、MN2、MN3和PMOS管MP1、MP2、MP3、MP4组成偏置电路。电源VDD上电即可产生偏置电压VB1、VB2、VB3、VB4为Rail-to-Rail输入级和Push-Pull输出级提供偏置电压。Wherein, the current source IB, NMOS transistors MN1 , MN2 , MN3 and PMOS transistors MP1 , MP2 , MP3 , MP4 form a bias circuit. The power supply VDD can generate bias voltages VB1, VB2, VB3, and VB4 to provide bias voltages for the Rail-to-Rail input stage and the Push-Pull output stage.

所述NMOS管MN4~MN11、PMOS管MP5~MP12、电阻RSN、RSP组成Rail-to-Rail输入级。采用双折叠式差分对输入可以实现ICMR轨至轨,采用源端电阻跨接式负反馈可以实现线性化跨导,采用共源共栅cascode结构不仅可以提高电流传输精确度也可以提高PSRR。The NMOS transistors MN4-MN11, PMOS transistors MP5-MP12, resistors RSN and RSP form a Rail-to-Rail input stage. ICMR rail-to-rail can be achieved by using a double-folded differential pair input, linearized transconductance can be achieved by using a source-end resistor cross-connect negative feedback, and a cascode cascode structure can not only improve current transmission accuracy but also improve PSRR.

所述NMOS管MN12~MN17、PMOS管MP13~MP18、电阻RBN、RBP组成Push-Pull输出级。其中MN12、MP13、RBP、RBN可以为MN13、MP14提供低功耗偏置,通过调节RBP、RBN大小可以实现版图面积和功耗的折衷,NMOS管MN14~MN17、PMOS管MP15~MP18电流镜像结构可以实现电流放大,提高驱动负载的能力。The NMOS transistors MN12-MN17, PMOS transistors MP13-MP18, resistors RBN and RBP form a Push-Pull output stage. Among them, MN12, MP13, RBP, and RBN can provide low-power bias for MN13 and MP14. By adjusting the size of RBP and RBN, a compromise between layout area and power consumption can be achieved. NMOS transistors MN14~MN17 and PMOS transistors MP15~MP18 have a current mirror structure It can achieve current amplification and improve the ability to drive the load.

本发明的工作原理:Working principle of the present invention:

对于偏置电路,设置所有管子都工作在饱和区。为了保证NMOS差分对MN6、MN7和PMOS差分对MP7、MP8具有相同的尾电流源从而保证具有相同的跨导,须设置(W/L)N2=(W/L)N4=(W/L)N5;为了保证共源共栅管偏置合适从而使摆幅范围最大化,须设置(W/L)N1约为(W/L)N2为了保证镜像电流的准确性,须将镜像管的沟长设置大些以减小沟道长度调制效应的影响。For the bias circuit, set all the tubes to work in the saturation region. In order to ensure that the NMOS differential pairs MN6, MN7 and the PMOS differential pairs MP7, MP8 have the same tail current source and thus have the same transconductance, it is necessary to set (W/L) N2 =(W/L) N4 =(W/L) N5 ; in order to ensure that the cascode transistor is properly biased so as to maximize the swing range, (W/L) N1 must be set approximately ( W/L) N2 In order to ensure the accuracy of the mirror current, the channel length of the mirror tube must be set larger to reduce the influence of the channel length modulation effect.

对于Rail-to-Rail输入级电路,设置所有管子工作在饱和区。NMOS差分对可以实现共模输入范围(VGSN6,7+VDSATN4,5)~VDD,PMOS差分对可以实现共模输入范围VSS~(VDD-VDSATP5,6-VGS7,8),双差分对结构可以很容易实现共模输入范围轨至轨,为了使双差分对共同作用区间更大,采用电阻跨接式结构(图1所示)来实现线性化跨导,此时的共同作用区间为(VGSN6,7+VDSATN4,5)~(VDD-VDSATP5,6-VGS7,8),而采用电阻分离式结构(图2所示)的共同作用区间为(VGSN6,7+VDSATN4,5+VRSN)~(VDD-VDSATP5,6-VGS7,8-VRSP),很明显图1所示结构可以获得更大的共同作用区间;设置RSN=RSP=RS,则有:For Rail-to-Rail input stage circuits, set all tubes to work in the saturation region. NMOS differential pair can realize common mode input range (V GSN6,7 +V DSATN4,5 )~VDD, PMOS differential pair can realize common mode input range VSS~(VDD-V DSATP5,6 -V GS7,8 ), double differential The pair structure can easily realize the common-mode input range rail-to-rail. In order to make the double differential pair have a larger mutual action range, a resistance jumper structure (shown in Figure 1) is used to achieve linearized transconductance. At this time, the common action range is (V GSN6,7 +V DSATN4,5 )~(VDD-V DSATP5,6 -V GS7,8 ), and the common action range of the resistance separation structure (shown in Figure 2) is (V GSN6,7 + V DSATN4,5 +V RSN )~(VDD-V DSATP5,6 -V GS7,8 -V RSP ), it is obvious that the structure shown in Figure 1 can obtain a larger joint action interval; set RSN=RSP=RS, then Have:

GG mNn 6,76,7 == GG mPmP 7,87,8 ≈≈ 22 RSRS -- -- -- (( 33 ))

其中GmN6,7和GmP7,8分别表示NMOS差分对MN6、MN7加源极负反馈后的等效跨导和PMOS差分对MP7、MP8加源极负反馈后的等效跨导,gmNi、rdsNi分别表示第i个NMOS管的跨导、漏源电阻,gmPi、rdsPi分别表示第i个PMOS管的跨导、漏源电阻。Among them, G mN6,7 and G mP7,8 represent the equivalent transconductance of the NMOS differential pair MN6, MN7 plus source negative feedback and the equivalent transconductance of the PMOS differential pair MP7, MP8 plus source negative feedback, respectively, g mNi , rdsNi represent the transconductance and drain-source resistance of the i-th NMOS transistor respectively, and g mPi and rdsPi represent the transconductance and drain-source resistance of the i-th PMOS transistor respectively.

由表达式(3)可以看出输入差分对的跨导仅由源端跨接电阻决定,实现了线性化,版图上采用隔离式电阻及匹配技术可以使NMOS差分对和PMOS差分对跨导更精确,线性化更好。It can be seen from the expression (3) that the transconductance of the input differential pair is only determined by the source-side jumper resistance, which realizes linearization. The use of isolated resistors and matching technology on the layout can make the transconductance of the NMOS differential pair and the PMOS differential pair more accurate. Exact, better linearization.

对于Push-Pull输出级电路,主要是实现电流传输放大,采用current buffer和电流镜像放大结构。MN12二极管连接、MP13二极管连接、RBN、RBP为current buffer MOS管MN13、MP14提供低功耗偏置,增大RBN、RBP的阻值可以减小功耗;输入级的输出从MN13、MP14的源端输入、漏端输出后经电流镜像放大结构MN14~MN17和MP15~MP18比例放大电流;大信号时输入级输出变化幅度比较大,会使MN13、MP14有个管子进入截止区,从而实现推挽输出;For the Push-Pull output stage circuit, it mainly realizes current transmission amplification, and adopts current buffer and current mirror amplification structure. MN12 diode connection, MP13 diode connection, RBN, RBP provide low power consumption bias for current buffer MOS transistors MN13, MP14, increasing the resistance of RBN, RBP can reduce power consumption; the output of the input stage is from the source of MN13, MP14 After the terminal input and the drain terminal output, the current mirror amplification structure MN14~MN17 and MP15~MP18 is used to amplify the current proportionally; when the signal is large, the output of the input stage changes greatly, which will cause a tube of MN13 and MP14 to enter the cut-off area, thereby realizing push-pull output;

可以看出,本发明提出的一种低功耗高线性度Push-Pull跨导放大器结构简单,只用了17个NMOS、18个PMOS管和4个电阻,非常适合应用于开关电源领域作为电压控制环路核心的误差放大器。It can be seen that a low power consumption and high linearity Push-Pull transconductance amplifier proposed by the present invention has a simple structure, only 17 NMOS, 18 PMOS transistors and 4 resistors are used, and it is very suitable for use in the field of switching power supplies as a voltage Error amplifier at the heart of the control loop.

Claims (1)

1.一种低功耗高线性度跨导放大器,其特征在于,包括依次连接的偏置电路、Rail-to-Rail输入级和Push-Pull输出级;所述偏置电路由镜像电流镜管组成,为Rail-to-Rail输入级和Push-Pull输出级提供偏置电压;所述Rail-to-Rail输入级采用折叠式NMOS差分对和PMOS差分对实现共模输入范围轨至轨,并采用源极负反馈实现线性化跨导;所述Push-Pull输出级采用低功耗偏置实现低功耗推挽输出,并采用镜像电流放大提高输出驱动能力;1. a kind of low power consumption high linearity transconductance amplifier is characterized in that, comprises the bias circuit, Rail-to-Rail input stage and Push-Pull output stage that are connected successively; Described bias circuit is formed by mirror current mirror tube Composed to provide a bias voltage for the Rail-to-Rail input stage and the Push-Pull output stage; the Rail-to-Rail input stage uses a folded NMOS differential pair and a PMOS differential pair to achieve a common-mode input range rail-to-rail, and Linearized transconductance is realized by using source negative feedback; the Push-Pull output stage uses low power consumption bias to realize low power consumption push-pull output, and uses mirror current amplification to improve output drive capability; 所述偏置电路包括第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3和电流源;The bias circuit includes a first PMOS transistor MP1, a second PMOS transistor MP2, a third PMOS transistor MP3, a fourth PMOS transistor MP4, a first NMOS transistor MN1, a second NMOS transistor MN2, a third NMOS transistor MN3 and a current source ; 所述Rail-to-Rail输入级包括第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第十PMOS管MP10、第十一PMOS管MP11、第十二PMOS管MP12、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9、第十NMOS管MN10、第十一NMOS管MN11、第一电阻RSN和第二电阻RSP;The Rail-to-Rail input stage includes fifth PMOS transistor MP5, sixth PMOS transistor MP6, seventh PMOS transistor MP7, eighth PMOS transistor MP8, ninth PMOS transistor MP9, tenth PMOS transistor MP10, eleventh PMOS transistor Tube MP11, twelfth PMOS tube MP12, fourth NMOS tube MN4, fifth NMOS tube MN5, sixth NMOS tube MN6, seventh NMOS tube MN7, eighth NMOS tube MN8, ninth NMOS tube MN9, tenth NMOS tube MN10, an eleventh NMOS transistor MN11, a first resistor RSN and a second resistor RSP; 所述Push-Pull输出级包括第十三PMOS管MP13、第十四PMOS管MP14、第十五PMOS管MP15、第十六PMOS管MP16、第十七PMOS管MP17、第十八PMOS管MP18、第十二NMOS管MN12、第十三NMOS管MN13、第十四NMOS管MN14、第十五NMOS管MN15、第十六NMOS管MN16、第十七NMOS管MN17、第三电阻RBP和第四电阻RBN;其中,The Push-Pull output stage includes a thirteenth PMOS transistor MP13, a fourteenth PMOS transistor MP14, a fifteenth PMOS transistor MP15, a sixteenth PMOS transistor MP16, a seventeenth PMOS transistor MP17, an eighteenth PMOS transistor MP18, The twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the fourteenth NMOS transistor MN14, the fifteenth NMOS transistor MN15, the sixteenth NMOS transistor MN16, the seventeenth NMOS transistor MN17, the third resistor RBP and the fourth resistor RBN; where, 第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第九PMOS管MP9、第十PMOS管MP10、第十五PMOS管MP15、第十六PMOS管MP16的源衬端以及第十一PMOS管MP11、第十二PMOS管MP12、第十七PMOS管MP17、第十八PMOS管MP18的衬端接电源电压;The first PMOS transistor MP1, the second PMOS transistor MP2, the third PMOS transistor MP3, the fourth PMOS transistor MP4, the fifth PMOS transistor MP5, the sixth PMOS transistor MP6, the ninth PMOS transistor MP9, the tenth PMOS transistor MP10, the tenth PMOS transistor The source lining terminals of the fifth PMOS transistor MP15, the sixteenth PMOS transistor MP16, the lining terminals of the eleventh PMOS transistor MP11, the twelfth PMOS transistor MP12, the seventeenth PMOS transistor MP17, and the eighteenth PMOS transistor MP18 are connected to the power supply voltage; 第一PMOS管MP1的栅漏端、第二PMOS管MP2的栅端、第三PMOS管MP3的栅端、第五PMOS管MP5的栅端、第六PMOS管MP6的栅端均接电流源正向端,电流源负向端接地电位;The gate-drain terminal of the first PMOS transistor MP1, the gate terminal of the second PMOS transistor MP2, the gate terminal of the third PMOS transistor MP3, the gate terminal of the fifth PMOS transistor MP5, and the gate terminal of the sixth PMOS transistor MP6 are all connected to the positive current source. To the terminal, the negative terminal of the current source is grounded; 第一NMOS管MN1的栅漏端、第十NMOS管MN10的栅端、第十一NMOS管MN11的栅端、第十六NMOS管MN16的栅端、第十七NMOS管MN17的栅端均与第二PMOS管MP2的漏端相连接;The gate-drain terminal of the first NMOS transistor MN1, the gate terminal of the tenth NMOS transistor MN10, the gate terminal of the eleventh NMOS transistor MN11, the gate terminal of the sixteenth NMOS transistor MN16, and the gate terminal of the seventeenth NMOS transistor MN17 are all connected to The drain end of the second PMOS transistor MP2 is connected; 第二NMOS管MN2的栅漏端、第三NMOS管MN3的栅端、第四NMOS管MN4的栅端、第五NMOS管MN5的栅极、第八NMOS管MN8的栅端、第九NMOS管MN9的栅端均与第三PMOS管MP3的漏端相连接;The gate-drain end of the second NMOS transistor MN2, the gate end of the third NMOS transistor MN3, the gate end of the fourth NMOS transistor MN4, the gate end of the fifth NMOS transistor MN5, the gate end of the eighth NMOS transistor MN8, the gate end of the ninth NMOS transistor The gate terminals of MN9 are all connected to the drain terminal of the third PMOS transistor MP3; 第四PMOS管MP4的栅漏端、第十一PMOS管MP11的栅端、第十二PMOS管MP12的栅端、第十七PMOS管MP17的栅端、第十八PMOS管MP18的栅端均与第三NMOS管MN3的漏端相连接;The gate-drain terminal of the fourth PMOS transistor MP4, the gate terminal of the eleventh PMOS transistor MP11, the gate terminal of the twelfth PMOS transistor MP12, the gate terminal of the seventeenth PMOS transistor MP17, and the gate terminal of the eighteenth PMOS transistor MP18 are all connected to the drain end of the third NMOS transistor MN3; 第六NMOS管MN6的栅端与第七PMOS管MP7的栅端相连接作为一个输入端,第七NMOS管MN7的栅端与第八PMOS管MP8的栅端相连接作为另一个输入端,第六NMOS管MN6的源衬端、第七NMOS管MN7的源衬端分别与第四NMOS管MN4的漏端、第五NMOS管MN5的漏端相连接并通过第一电阻RSN跨接;The gate terminal of the sixth NMOS transistor MN6 is connected to the gate terminal of the seventh PMOS transistor MP7 as an input terminal, and the gate terminal of the seventh NMOS transistor MN7 is connected to the gate terminal of the eighth PMOS transistor MP8 as another input terminal. The source liner end of the sixth NMOS transistor MN6 and the source liner end of the seventh NMOS transistor MN7 are respectively connected to the drain end of the fourth NMOS transistor MN4 and the drain end of the fifth NMOS transistor MN5 and bridged through the first resistor RSN; 第七PMOS管MP7的源衬端、第八PMOS管MP8的源衬端分别与第五PMOS管MP5的漏端、第六PMOS管MP6的漏端相连接并通过第二电阻RSP跨接;The source liner end of the seventh PMOS transistor MP7 and the source liner end of the eighth PMOS transistor MP8 are respectively connected to the drain end of the fifth PMOS transistor MP5 and the drain end of the sixth PMOS transistor MP6 and bridged through the second resistor RSP; 第九PMOS管MP9的漏端、第十一PMOS管MP11的源端与第七NMOS管MN7的漏端相连接;第十PMOS管MP10的漏端、第十二PMOS管MP12的源端与第六NMOS管MN6的漏端相连接;The drain end of the ninth PMOS transistor MP9, the source end of the eleventh PMOS transistor MP11 are connected to the drain end of the seventh NMOS transistor MN7; the drain end of the tenth PMOS transistor MP10, the source end of the twelfth PMOS transistor MP12 and the The drain terminals of the six NMOS transistors MN6 are connected; 第八NMOS管MN8的漏端、第十NMOS管MN10的源端与第八PMOS管MP8的漏端相连接;第九NMOS管MN9的漏端、第十一NMOS管MN11的源端与第七PMOS管MP7的漏端相连接;The drain end of the eighth NMOS transistor MN8, the source end of the tenth NMOS transistor MN10 are connected to the drain end of the eighth PMOS transistor MP8; the drain end of the ninth NMOS transistor MN9, the source end of the eleventh NMOS transistor MN11 and the seventh The drain end of the PMOS transistor MP7 is connected; 第九PMOS管MP9的栅端、第十PMOS管MP10的栅端、第十一PMOS管MP11的漏端均与第十NMOS管MN10的漏端相连接;第十二PMOS管MP12的漏端、第十四PMOS管MP14的源衬端、第十三NMOS管MN13的源端均与第十一NMOS管MN11的漏端相连接;The gate end of the ninth PMOS transistor MP9, the gate end of the tenth PMOS transistor MP10, and the drain end of the eleventh PMOS transistor MP11 are all connected to the drain end of the tenth NMOS transistor MN10; the drain end of the twelfth PMOS transistor MP12, The source end of the fourteenth PMOS transistor MP14 and the source end of the thirteenth NMOS transistor MN13 are connected to the drain end of the eleventh NMOS transistor MN11; 第十二NMOS管MN12漏栅端、第十三NMOS管MN13栅端接第三电阻RBP到电源;第十三PMOS管MP13漏栅端、第十四PMOS管MP14栅端接第四电阻RBN到地电位,第十二NMOS管MN12的源端接第十三PMOS管MP13的源衬端;The drain gate terminal of the twelfth NMOS transistor MN12 and the gate terminal of the thirteenth NMOS transistor MN13 are connected to the third resistor RBP to the power supply; the drain gate terminal of the thirteenth PMOS transistor MP13 and the gate terminal of the fourteenth PMOS transistor MP14 are connected to the fourth resistor RBN to ground potential, the source end of the twelfth NMOS transistor MN12 is connected to the source end of the thirteenth PMOS transistor MP13; 第十五PMOS管MP15的栅端、第十六PMOS管MP16的栅端、第十七PMOS管MP17的漏端均与第十三NMOS管MN13的漏端相连接;第十四NMOS管MN14的栅端、第十五NMOS管MN15的栅端、第十六NMOS管MN16的漏端均与第十四PMOS管MP14的漏端相连接;The gate end of the fifteenth PMOS transistor MP15, the gate end of the sixteenth PMOS transistor MP16, and the drain end of the seventeenth PMOS transistor MP17 are all connected to the drain end of the thirteenth NMOS transistor MN13; the drain end of the fourteenth NMOS transistor MN14 The gate terminal, the gate terminal of the fifteenth NMOS transistor MN15, and the drain terminal of the sixteenth NMOS transistor MN16 are all connected to the drain terminal of the fourteenth PMOS transistor MP14; 第十五PMOS管MP15的漏端、第十六PMOS管MP16的漏端分别与第十七PMOS管MP17的源端、第十八PMOS管MP18的源端相连接;The drain end of the fifteenth PMOS transistor MP15 and the drain end of the sixteenth PMOS transistor MP16 are respectively connected to the source end of the seventeenth PMOS transistor MP17 and the source end of the eighteenth PMOS transistor MP18; 第十四NMOS管MN14的漏端、第十五NMOS管MN15的漏端分别与第十六NMOS管MN16的源端、第十七NMOS管MN17的源端相连接;第十七NMOS管MN17的漏端与第十八PMOS管MP18的漏端相连接作为输出端;The drain end of the fourteenth NMOS transistor MN14 and the drain end of the fifteenth NMOS transistor MN15 are respectively connected to the source end of the sixteenth NMOS transistor MN16 and the source end of the seventeenth NMOS transistor MN17; The drain end is connected to the drain end of the eighteenth PMOS transistor MP18 as an output end; 第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第八NMOS管MN8、第九NMOS管MN9、第十四NMOS管MN14、第十五NMOS管MN15的源衬端以及第十NMOS管MN10、第十一NMOS管MN11、第十二NMOS管MN12、第十三NMOS管MN13、第十六NMOS管MN16、第十七NMOS管MN17的衬端均接地电位。The first NMOS transistor MN1, the second NMOS transistor MN2, the third NMOS transistor MN3, the fourth NMOS transistor MN4, the fifth NMOS transistor MN5, the eighth NMOS transistor MN8, the ninth NMOS transistor MN9, the fourteenth NMOS transistor MN14, the The source lining end of the fifteenth NMOS transistor MN15, the tenth NMOS transistor MN10, the eleventh NMOS transistor MN11, the twelfth NMOS transistor MN12, the thirteenth NMOS transistor MN13, the sixteenth NMOS transistor MN16, and the seventeenth NMOS transistor MN17 The pad ends are at ground potential.
CN201410073419.XA 2014-02-28 2014-02-28 Transconductance amplifier with low power consumption and high linearity Expired - Fee Related CN103825557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410073419.XA CN103825557B (en) 2014-02-28 2014-02-28 Transconductance amplifier with low power consumption and high linearity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410073419.XA CN103825557B (en) 2014-02-28 2014-02-28 Transconductance amplifier with low power consumption and high linearity

Publications (2)

Publication Number Publication Date
CN103825557A CN103825557A (en) 2014-05-28
CN103825557B true CN103825557B (en) 2017-01-11

Family

ID=50760442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410073419.XA Expired - Fee Related CN103825557B (en) 2014-02-28 2014-02-28 Transconductance amplifier with low power consumption and high linearity

Country Status (1)

Country Link
CN (1) CN103825557B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9661695B1 (en) * 2015-11-12 2017-05-23 Hong Kong Applied Science and Technology Research Institute Company Limited Low-headroom constant current source for high-current applications
CN105305970B (en) * 2015-11-19 2018-03-09 重庆大学 A kind of low-power consumption dynamic transconductance compensates Class AB audio-frequency power amplifiers
CN105450181A (en) * 2015-11-27 2016-03-30 天津大学 Slew rate enhanced operational amplifier suitable for restraining electromagnetic interference
CN105958948A (en) * 2016-04-26 2016-09-21 西安电子科技大学昆山创新研究院 Low-power-consumption wide-range operational transconductance amplifier
CN107991524B (en) * 2017-12-14 2023-12-22 张家港康得新光电材料有限公司 Low-power consumption signal energy indicating circuit
CN109120243B (en) * 2018-07-23 2020-07-07 中国电子科技集团公司第二十四研究所 clock drive circuit
CN108900169A (en) * 2018-09-18 2018-11-27 上海新进半导体制造有限公司 A kind of Hall amplifier
CN109067368B (en) * 2018-10-23 2024-07-02 湘潭大学 Power operational amplifier with current limiting protection function based on CDMOS process
CN109167583B (en) * 2018-10-31 2024-07-16 上海海栎创科技股份有限公司 Transconductance amplifier
CN109787583B (en) * 2018-11-27 2020-11-17 西安电子科技大学 Low-frequency fully-differential Gm-C filter applied to ECG signal acquisition
CN111162739B (en) * 2020-01-09 2023-04-28 电子科技大学 Transconductance operational amplifier with wide linear input range
CN111988029B (en) * 2020-08-24 2023-05-26 电子科技大学 High-speed high-precision level shift circuit
CN116614094B (en) * 2023-04-27 2025-04-25 北京汇芯通电子科技有限公司 Implementation method of analog amplifier with large dynamic and high linearity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497167A (en) * 2011-12-09 2012-06-13 电子科技大学 Radio-frequency ultra-wideband low-noise amplifier based on inductance compensation
CN103457554A (en) * 2013-08-22 2013-12-18 龙芯中科技术有限公司 Rail-to-rail operation amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041948A1 (en) * 2006-10-04 2008-04-10 Nanyang Technological University A low noise amplifier circuit with noise cancellation and increased gain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497167A (en) * 2011-12-09 2012-06-13 电子科技大学 Radio-frequency ultra-wideband low-noise amplifier based on inductance compensation
CN103457554A (en) * 2013-08-22 2013-12-18 龙芯中科技术有限公司 Rail-to-rail operation amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于镜像电流源与电压源偏置的功率放大器;张吕彦;《电声技术》;20101231;第34卷(第12期);第37-44页 *

Also Published As

Publication number Publication date
CN103825557A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN103825557B (en) Transconductance amplifier with low power consumption and high linearity
CN104218904B (en) The Full differential operational amplifier of rail-to-rail input AB class outputs
CN104238611B (en) Current-mode band gap current reference
EP2652872B1 (en) Current mirror and high-compliance single-stage amplifier
CN104113295A (en) Low-voltage fully-differential operation amplifier circuit
CN106549639B (en) Gain self-adaptive error amplifier
KR20100021938A (en) Folded cascode operational amplifier having improved phase margin
CN103326681A (en) Amplifier for output buffer, signal processing apparatus and amplifier circuit
CN106788434A (en) A kind of source-follower buffer circuit
CN110729995A (en) A level conversion circuit and level conversion method
CN116470857B (en) Low-mismatch Class-AB output stage bias circuit
EP4362327A1 (en) Bias circuit and power amplifier
CN107154786A (en) A kind of rail-to-rail operation transconductance amplifier of low-voltage
CN106953610A (en) A Rail-to-Rail Operational Amplifier Introducing Negative Resistance Input Tube Structure
CN111697935B (en) A Low Voltage Rail-to-Rail Input-Output Operational Amplifier
CN111988029B (en) High-speed high-precision level shift circuit
CN114253341B (en) Output circuit and voltage buffer
CN105162424B (en) A kind of low-power consumption linear transconductance error amplifier
CN113671236B (en) A current detection circuit and device applied to load resistance
CN113377152B (en) Quick response does not have external electric capacity type linear voltage regulator
CN103956983A (en) Error amplifier with clamping function
CN102394582A (en) Substrate drive low voltage operational amplifier circuit
CN104104229B (en) A kind of quiescent current control device
CN118868829A (en) A high voltage chopper operational amplifier with adaptively widened common mode range for current sensing
CN106059516B (en) Track to track operational amplification circuit and ADC converter, dcdc converter and power amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20190228