[go: up one dir, main page]

CN103834686B - High-efficient cloning screening expression vector, Preparation Method And The Use - Google Patents

High-efficient cloning screening expression vector, Preparation Method And The Use Download PDF

Info

Publication number
CN103834686B
CN103834686B CN201210483844.7A CN201210483844A CN103834686B CN 103834686 B CN103834686 B CN 103834686B CN 201210483844 A CN201210483844 A CN 201210483844A CN 103834686 B CN103834686 B CN 103834686B
Authority
CN
China
Prior art keywords
expression vector
vector
sequence
itr5
itrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210483844.7A
Other languages
Chinese (zh)
Other versions
CN103834686A (en
Inventor
楼庄伟
孔云华
梅佳
贾园
陈侃
宋云鹏
吕强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Biologics Shanghai Co Ltd
Original Assignee
Wuxi Biologics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Biologics Shanghai Co Ltd filed Critical Wuxi Biologics Shanghai Co Ltd
Priority to CN201210483844.7A priority Critical patent/CN103834686B/en
Publication of CN103834686A publication Critical patent/CN103834686A/en
Application granted granted Critical
Publication of CN103834686B publication Critical patent/CN103834686B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention discloses a kind of high-efficient cloning screening expression vector, this carrier is inserted in mammalian expression vector and is obtained by the ITRs sequence of piggyBac transposon system. The invention also discloses the preparation method and its usage of above-mentioned carrier. The present invention utilizes the ITRs sequence construct high-efficient cloning screening expression vector of piggyBac transposon system, codon is optimized simultaneously can be in mouse the transcriptase Gene cloning of high efficient expression to another one carrier for expression of eukaryon, by containing the expression vector of ITRs sequence with containing the coexpression of the carrier of transcriptase, selection markers and genes of interest are together incorporated in the genome of host cell, thereby have greatly improved the efficiency of transfection and the screening rate of positive colony.

Description

High-efficiency cloning screening expression vector, preparation method and application thereof
Technical Field
The invention relates to the field of biology, in particular to an efficient cloning and screening expression vector constructed by using an ITRs sequence of a piggyBac transposition system, a construction method of the vector and application of the vector.
Background
Transposons are moveable DNA sequences in a genome that can "jump" from one location to another in the genome through a series of processes, such as cutting, reintegration, and the like. Transposons account for over 40% of the human and mouse genomic sequences (Nature, 2001,409, 860-562; Nature,2002,420, 520-562).
Since the first transposon was discovered in maize by McClintock (Proc. Natl. Acad. Sci.1950, USA36, 344-. In prokaryotes, mutation studies using transposons have found genes that play an important role in the pathogenesis of harmful microorganisms (Science, 1999,286, 2165-2169; J.Virol.2003,77, 123-134). In eukaryotes, transgenic and insertional mutagenesis techniques using P-elements, a transposon, have driven the development of Drosophila genetics considerably. Many transposons, including P elements, are not active in organisms other than their native host, suggesting that some host elements are involved in the transposition process (Arch. InsectBiochem. Physiol.1993,22, 373-384). Several transposition systems including the Tc1/Mariner family have been applied to mice and zebrafish. A Tc 1-like transposon SleepingBeauty (SB) artificially synthesized using the comparative phylogenetic approach was shown to be active in mouse and human cells (Cell 1997,91, 501-510; Proc. Natl. Acad. Sci.1998, USA95, 10769-10773). Although transposons such as SB and Minos have been tested for insertion mutation in mice, these transposons have not been widely used due to the concentration of new insertion sites around the original site, low transposition efficiency and limited length of the carrying DNA (Genomics 2003,81, 108-.
The PB factor is a DNA transposon derived from moth and cabbage looper, and has 2472 bases in the total length. It contains 13 base Inverted Terminal Repeats (ITRs) at both ends and encodes a 594 amino acid transposase. PB has been successfully used for genetic analysis of Drosophila melanogaster and other insects. It specifically inserts into the four-base TTAA site and forms TTAA repeats flanking the insertion site (Virology1989, 172, 156-169; Virology1995,211, 397-407; InsectMol. biol.1996,5, 141-151). PB is a representative of a new DNA transposon family, piggyBac family, due to its unique transposase and TTAA target sequences (InMobileDNAII, 2002, pp.1093-1110). PB has been used as a germline transgenic tool for over ten insects of four purposes (InsectBiochem. mol. biol.2003,33, 449-458). As a mutagen, PB transposes in Drosophila melanogaster at least as efficiently as P-element (nat. Genet.2004,36, 283-287). In Triboliumcastaneum, PB is also efficiently transposable between non-homologous chromosomes (InsectMol. biol.2003,12, 433-440). The PB-like sequences found in the genomes of a number of phylogenetically different species, from moulds to mammals, further predict that PB activity may not be restricted to insects (mol. Genet. genomics,2003,270, 173-180). In fact, PB has recently been found to have high-efficiency transposition activity in Giraradiatigrina, mammals and their cells, and has been widely used in the fields of animal genome function research, gene transfer and induced pluripotent stem cells (Proc. Natl. Acad. Sci.2003, USA100, 14046-.
Although the PB system has wide host range and high transfection efficiency, and has been widely used for gene therapy in mammalian cells (molecular therapy,2007,15, 139-145), no relevant report has been reported in vitro studies.
Disclosure of Invention
One of the technical problems to be solved by the invention is to provide an expression vector for efficient cloning and screening, which can greatly improve the transfection efficiency and the screening rate of positive clones.
In order to solve the technical problems, the efficient cloning and screening expression vector is obtained by inserting an ITRs sequence of a piggyBac transposition system into a mammalian expression vector.
The second technical problem to be solved by the present invention is to provide a method for preparing the above efficient cloning and screening expression vector.
In order to solve the technical problems, the preparation method of the high-efficiency cloning and screening expression vector comprises the following steps:
1) taking pGH as a cloning vector, synthesizing 5 'ITR and 3' ITRDNA fragments through a whole gene, and adding enzyme cutting sites of EcoRV at two ends of the fragments to obtain vectors pGH-ITR5 and pGH-ITR 3;
2) taking pGH as a cloning vector, synthesizing a transcriptive enzyme gene fragment with the sequence number of EF587698 of a GeneBank through a whole gene, and respectively adding enzyme cutting sites of EcoRI and HindIII into two ends of the fragment to obtain a vector pGH-Transposase;
3) cutting the vector pGH-ITR5 and pGH-ITR3 by EcoRV enzyme, cutting the vector pGH-Transposase by EcoRI and HindIII enzyme;
4) NruI enzyme-cutting the mammalian expression vector, and simultaneously EcoRI and HindIII enzyme-cutting the expression vector pTriEx 2;
5) connecting the fragment ITR5 to a mammal expression vector subjected to NruI enzyme digestion to obtain an expression vector containing an ITR5 fragment;
6) meanwhile, the fragment Transposase is connected to an expression vector pTriEx2 which is cut by EcoRI and HindIII to obtain a new expression vector pTriEx 2-Transposase;
7) bstz17I enzyme-cutting the expression vector containing the ITR5 fragment obtained in the step 5);
8) the fragment ITR3 was ligated to the expression vector obtained in step 7).
The invention also provides the application of the efficient cloning and screening expression vector in transfecting mammalian cells and screening and expressing target protein clones.
The invention constructs an efficient cloning and screening expression vector by using an ITRs sequence of a piggyBac transposition system, clones a transcription enzyme gene which is optimized by a codon and can be efficiently expressed in a mouse to another eukaryotic expression vector, and integrates a screening marker and a target gene into a genome of a host cell together through the co-expression of the expression vector containing the ITRs sequence and the vector containing the transcription enzyme, thereby greatly improving the transfection efficiency and the screening rate of positive cloning, providing possibility for constructing a stable transfer cell line co-expressed by a plurality of subunits and providing favorable conditions for researching the functions of exogenous genes in mammalian cells.
Drawings
FIG. 1 is a schematic diagram of the structure of expression vector pcDNA3.1(+) -ITRs.
FIG. 2 is a schematic diagram of the structure of expression vector pcDNA 4/TO-ITRs.
Detailed Description
For a more detailed understanding of the technical content, features and effects of the present invention, reference is now made to the following detailed description taken in conjunction with the accompanying drawings, in which:
EXAMPLE 1 preparation of pcDNA3.1(+) -ITRs vector
The construction of the pcDNA3.1(+) -ITRs expression vector is shown in FIG. 1, and the ITRs sequence is inserted into the vector in the correct direction of the DNA sequence (see FIG. 1) with pcDNA3.1(+) as the vector to obtain the eukaryotic expression vector pcDNA3.1(+) -ITRs containing the ITRs sequence. The expression vector pcDNA3.1(+) -ITRs can carry the target gene at the mammalian promoter (CMV), Multiple Cloning Site (MCS) and the selection gene (Neomycin) to be integrated into the genome of the host cell when being transposed.
The preparation method comprises the following steps:
(1) finding out specific sequences of 5 'ITR and 3' ITR from a commercial pXL-BacII plasmid vector; a codon-optimized transcription enzyme (Transposase) gene sequence (GeneBank sequence number: EF 587698) which can be efficiently expressed in mice is found in reported literature (nucleic acids research,2007,35, e 87). Wherein,
the 5' ITR sequence (SEQ ID NO: 1) is:
TATAACAAGAAAATATATATATAATAAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAATCTTAAAAGTCACGTAAAAGATAATCATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGCACGCCTCACGGGAGCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAAAGAGAGAGCAATATTTCAAGAATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAATCTAGCTGCATCAGGATCATATCGTCGGGTCTTTTTTCCGGCTCAGTCATCGCCCAAGCTGGCGCTATCTGGGCATCGGGGAGGAAGAAGCCCGTGCCTTTTCCCGCGAGGTTGAAGCGGCATGGAAAGAGTTTGC
the 3' ITR sequence (SEQ ID NO: 2) is:
TAAAACGACGGCCAGTGAGCGCGCCTCGTTCATTCACGTTTTTGAACCCGTGGAGGACGGGCAGACTCGCGGTGCAAATGTGTTTTACAGCGTGATGGAGCAGATGAAGATGCTCGACACGCTGCAGAACACGCAGCTAGATTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGTAAAATTGACGCATGTGTTTTATCGGTCTGTATATCGAGGTTTATTTATTAATTTGAATAGATATTAAGTTTTATTATATTTACACTTACATACTAATAATAAATTCAACAAACAATTTATTTATGTTTATTTATTTATTAAAAAAAAACAAAAACTCAAAATTTCTTCTATAAAGTAACAAAACTTTTATCGATATCGTC
(2) pGH is taken as a cloning vector, inverted terminal repetitive sequences 5 'ITR and 3' ITRDNA fragments required by whole-gene synthesis are synthesized, enzyme cutting sites (GATATC) of EcoRV are added to two ends of the fragments, and the vectors pGH-ITR5 and pGH-ITR3 are respectively obtained.
Meanwhile, pGH is used as a cloning vector, a required transcriptive enzyme gene fragment is synthesized by the whole gene, and enzyme cutting sites of EcoRI (5 'GAATTC) and HindIII (3' AAGCTT) are respectively added to two ends of the fragment to obtain the vector pGH-Transposase.
(3) The vector pGH-ITR5 and pGH-ITR3 were cut with EcoRV, EcoRI and HindIII, and pGH-Transposase was cut with EcoRV.
(4) The NruI restriction enzyme digestion expression vector pcDNA3.1(+), and the EcoRI and HindIII restriction enzyme digestion expression vector pTriEx 2.
(5) The fragment ITR5 was ligated to NruI digested expression vector pcDNA3.1(+) to give the new expression vector ITR5-pcDNA3.1 (+).
(6) Meanwhile, the fragment Transposase was ligated to EcoRI and HindIII digested expression vector pTriEx2 to obtain a novel expression vector pTriEx 2-Transposase.
(7) Bstz17I digested expression vector ITR5-pcDNA3.1 (+).
(8) The fragment ITR3 was ligated to Bstz17I digested expression vector ITR5-pcDNA3.1(+), to obtain the new vector ITR5-pcDNA3.1(+) -ITR 3.
The sequence of the vector ITR5-pcDNA3.1(+) -ITR3 (SEQ ID NO: 3) is:
GACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGATCTATAACAAGAAAATATATATATAAT AAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAATCTTAAAAGTCACGTAAAAGATAAT CATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGCACGCCTCACGGGA GCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAAAGAGAGAGCAATATTTCAAGA ATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAATCTAGCTGCATCAGGATCATATCGTCGGGTCTTTTTTC CGGCTCAGTCATCGCCCAAGCTGGCGCTATCTGGGCATCGGGGAGGAAGAAGCCCGTGCCTTTTCCCGCGAGGTTGAAGC GGCATGGAAAGAGTTTGCGATCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTAATCGATAAAAGTTTTGTTACTTTATAGAAGAAATTTTGAGTTTTTGTTTTTTTTTAATAAATAAATAAACA TAAATAAATTGTTTGTTGAATTTATTATTAGTATGTAAGTGTAAATATAATAAAACTTAATATCTATTCAAATTAATAAA TAAACCTCGATATACAGACCGATAAAACACATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATT ATCTTTCTAGGGTTAATCTAGCTGCGTGTTCTGCAGCGTGTCGAGCATCTTCATCTGCTCCATCACGCTGTAAAACACAT TTGCACCGCGAGTCTGCCCGTCCTCCACGGGTTCAAAAACGTGAATGAACGAGGCGCGCTCACTGGCCGTCGTTTTAGATTACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC
EXAMPLE 2 preparation of pcDNA4/TO-ITRs vector
The construction method of pcDNA4/TO-ITRs vector is shown in FIG. 2, and the ITRs sequence is inserted into the vector with pcDNA4/TO as the vector according TO the correct direction of DNA sequence (see FIG. 2), so as TO obtain eukaryotic expression vector pcDNA4/TO-ITRs containing ITRs sequence. The expression vector pcDNA4/TO-ITRs, when transposed, can carry the mammalian promoter (CMV), the gene of interest at the Multiple Cloning Site (MCS), and the selection gene (Zeocin) together into the genome of the host cell.
The preparation method comprises the following steps:
(1) examples (3) and (3) are the same as example 1.
(4) The expression vector pcDNA4/TO was digested with NruI, while the expression vector pTriEx2 was digested with EcoRI and HindIII.
(5) The fragment ITR5 was ligated TO NruI digested expression vector pcDNA4/TO TO obtain the new expression vector ITR5-pcDNA 4/TO.
(6) Meanwhile, the fragment Transposase was ligated to EcoRI and HindIII digested expression vector pTriEx2 to obtain a novel expression vector pTriEx 2-Transposase.
(7) Bstz17I digested the expression vector ITR5-pcDNA 4/TO.
(8) The fragment ITR3 is connected TO an expression vector ITR5-pcDNA4/TO cut by Bstz17I TO obtain a new vector ITR5-pcDNA4/TO-ITR 3.
The sequence of the vector ITR5-pcDNA4/TO-ITR3 (SEQ ID NO: 4) is as follows:
GACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGATCTATAACAAGAAAATATATATATAAT AAGTTATCACGTAAGTAGAACATGAAATAACAATATAATTATCGTATGAGTTAAATCTTAAAAGTCACGTAAAAGATAAT CATGCGTCATTTTGACTCACGCGGTCGTTATAGTTCAAAATCAGTGACACTTACCGCATTGACAAGCACGCCTCACGGGA GCTCCAAGCGGCGACTGAGATGTCCTAAATGCACAGCGACGGATTCGCGCTATTTAGAAAGAGAGAGCAATATTTCAAGA ATGCATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAATCTAGCTGCATCAGGATCATATCGTCGGGTCTTTTTTC CGGCTCAGTCATCGCCCAAGCTGGCGCTATCTGGGCATCGGGGAGGAAGAAGCCCGTGCCTTTTCCCGCGAGGTTGAAGC GGCATGGAAAGAGTTTGCGATCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGAACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTATCAGTGATAGAGATCTCCCTATCAGTGATAGAGATCGTCGACGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAGCACGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTGCTACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTAATCGATAAAAGTTTTGTTACT TTATAGAAGAAATTTTGAGTTTTTGTTTTTTTTTAATAAATAAATAAACATAAATAAATTGTTTGTTGAATTTATTATTA GTATGTAAGTGTAAATATAATAAAACTTAATATCTATTCAAATTAATAAATAAACCTCGATATACAGACCGATAAAACAC ATGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGGTTAATCTAGCTGCGTGTT CTGCAGCGTGTCGAGCATCTTCATCTGCTCCATCACGCTGTAAAACACATTTGCACCGCGAGTCTGCCCGTCCTCCACGG GTTCAAAAACGTGAATGAACGAGGCGCGCTCACTGGCCGTCGTTTTAGATTACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC
example 3 application of pcDNA3.1(+) -ITRs vector in Hela cell
1. The experimental method comprises the following steps:
(1) resuscitating Hela (human cervical cancer cell) cells for transfection in the following culture media: RM1640+10% fetal bovine serum +1% Streptococcus mutans (PenStrep).
(2) Hela cells were seeded into six-well plates at 4X 105/well the day before transfection. When the cell coverage rate is 80% -90%, the culture medium is changed to a culture medium without any antibiotics.
(3) Two 1.5ml EP tubes (b) were preparedModel 3810 microcentrifuge tubes) were added the following two combined plasmids:
combination 1: 2 μ g of pcDNA3.1(+) -EGFP
And (3) combination 2: 1.5. mu.g of pcDNA3.1(+) -ITRs-EGFP and 0.5. mu.g of transcriptase
Then, the volume was filled up to 100. mu.l with OPTI-MEM medium.
(4) Carefully add 5 μ l fugenehd transfection reagent to each of the two EP tubes, gently blow the mixture with a tip, and allow the mixture to stand at room temperature for 15 minutes.
(5) The mixed solution was added dropwise to a six-well plate on which cells had been spread, and gently mixed. Oven culture at 37 ℃.
(6) 48 hours after transfection, at 6 × 103Number of wells cells were plated in a black-walled clear 96-well plate,four replicate wells were combined for each, and the remaining cells were replated in equal numbers in 6cm dishes and screened by adding 400. mu.g/ml G418 final concentration.
(7) The next day, 72 hours after transfection, ArrayScan (array scan) was performed, and the signal value of fluorescence was measured.
(8) After 2 days of screening, 6 × 10 days3Number of wells cells were plated in a black-walled clear 96-well plate, four wells each were combined, and the ArrayScan assay was performed, and the remaining cells were plated in 6cm dishes at the same ratio (i.e., 70%) as the respective original cells, and screened by adding 400. mu.g/ml G418 at the final concentration.
(9) After 6 days and 11 days of the screening, the same treatment as in step (8) was carried out, respectively.
2. The experimental results are as follows:
the results are shown in Table 1, and it can be seen from Table 1 that the number of cells in combination 1 gradually decreased with the increase of the number of screening days, and by 11 days after screening, the number of cells reached a minimum of 3.1E +05, which is equivalent to the number of cells in the control group (1.8E + 05); the number of cells in combination 2 showed an increasing trend, with the number of cells at 11 days after screening reaching a maximum of 5.7E +06, 18 times the number of cells in combination 1 and 32 times the number of cells in the control group.
TABLE 1 number of cells at different times after transfection
3. And (4) conclusion:
it can be seen from the experiment that the expression rate of Green Fluorescent Protein (GFP) and the survival rate of cells (as shown in table 1) in cells (combination 2) containing PB Transposition Sequence (ITRs) vectors are significantly higher than those of cells transfected with unmodified vectors, indicating that the vectors can greatly improve the screening rate of positive clones, and meanwhile, the system has also successfully constructed a stable transgenic cell line of a monogenic ion channel protein TRPV3 and a calcium ion channel protein cav1.2 co-expressed by three subunits, and the specific experimental scheme is not repeated here.

Claims (3)

1. The efficient cloning and screening expression vector is characterized in that the vector is obtained by inserting an ITRs sequence of a piggyBac transposition system into a mammalian expression vector, the mammalian expression vector is pcDNA3.1(+) or pcDNA4/TO, the vector obtained by inserting the ITRs sequence into the pcDNA3.1(+) vector has a sequence shown as SEQIDNo:3, and the vector obtained by inserting the ITRs sequence into the pcDNA4/TO vector has a sequence shown as SEQIDNo: 4.
2. A method for preparing the carrier of claim 1, comprising the steps of:
1) taking pGH as a cloning vector, synthesizing 5 'ITR and 3' ITRDNA fragments through a whole gene, and adding enzyme cutting sites of EcoRV at two ends of the fragments to obtain vectors pGH-ITR5 and pGH-ITR 3; the sequence of the 5 'ITR is shown as SEQIDNo:1, and the sequence of the 3' ITR is shown as SEQIDNo: 2;
2) cutting the vector pGH-ITR5 and pGH-ITR3 by EcoRV enzyme;
3) NruI enzyme-digested mammalian expression vector;
4) connecting the fragment ITR5 to a mammal expression vector subjected to NruI enzyme digestion to obtain an expression vector containing an ITR5 fragment;
5) bstz17I enzyme-cutting the expression vector containing the ITR5 fragment obtained in the step 4);
6) the fragment ITR3 was ligated to the expression vector obtained in step 5).
3. The method of claim 2, wherein the mammalian expression vector comprises pcDNA3.1(+) or pcDNA 4/TO.
CN201210483844.7A 2012-11-23 2012-11-23 High-efficient cloning screening expression vector, Preparation Method And The Use Active CN103834686B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210483844.7A CN103834686B (en) 2012-11-23 2012-11-23 High-efficient cloning screening expression vector, Preparation Method And The Use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210483844.7A CN103834686B (en) 2012-11-23 2012-11-23 High-efficient cloning screening expression vector, Preparation Method And The Use

Publications (2)

Publication Number Publication Date
CN103834686A CN103834686A (en) 2014-06-04
CN103834686B true CN103834686B (en) 2016-05-25

Family

ID=50798581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210483844.7A Active CN103834686B (en) 2012-11-23 2012-11-23 High-efficient cloning screening expression vector, Preparation Method And The Use

Country Status (1)

Country Link
CN (1) CN103834686B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779469A (en) * 2016-03-25 2018-11-09 基因体先驱生医股份有限公司 To the set group and application thereof of construction transposon
CN106480081A (en) * 2016-09-22 2017-03-08 苏州泓迅生物科技有限公司 A kind of CRISPRi carrier of single pUC pUC and preparation method thereof
CN106755096A (en) * 2016-12-20 2017-05-31 上海药明生物技术有限公司 The method for obtaining the stable cell mass of expression target protein in Chinese hamster ovary celI using piggyBac transposon
WO2020034097A1 (en) 2018-08-14 2020-02-20 Wuxi Biologics (Shanghai) Co., Ltd. Transcriptional regulatory element and its use in enhancing the expression of exogenous protein
CN109628488A (en) * 2018-12-28 2019-04-16 赛业(苏州)生物科技有限公司 The method for constructing gene overexpression based on piggyBAC system or interfering stable cell strain
CN111471714A (en) * 2020-05-07 2020-07-31 西南大学 Eukaryotic transgenic cell line and construction method mediated by Minos transposon system
CN116144705B (en) * 2022-12-28 2024-01-30 昭衍(苏州)新药研究中心有限公司 Method for efficiently preparing voltage-dependent calcium ion channel cell model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362520A (en) * 2001-01-02 2002-08-07 成都天友发展有限公司 Constitution process of blank expression system for transferring spider's dragline protein gene into Bombyx mori

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362520A (en) * 2001-01-02 2002-08-07 成都天友发展有限公司 Constitution process of blank expression system for transferring spider's dragline protein gene into Bombyx mori

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
piggyBac共转染系统的构建以及转座活性的验证;缪辉,等;《四川大学学报(自然科学版)》;20110731;第48卷(第4期);摘要,第944-947页 *
piggyBac转座子及其转基因昆虫的应用;唐丽莉,等;《安徽农业科学》;20100228;第38卷(第6期);2809-2811 *
哺乳动物转基因载体——piggyBac转座子;宋利军,等;《畜牧与兽医》;20120531;第44卷(第5期);92-95 *

Also Published As

Publication number Publication date
CN103834686A (en) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103834686B (en) High-efficient cloning screening expression vector, Preparation Method And The Use
US20240409908A1 (en) Novel crispr-associated transposon systems and components
ES2629509T3 (en) Site Specific Integration
EP3953481A1 (en) Integration of nucleic acid constructs into eukaryotic cells with a transposase from oryzias
EP3676378A1 (en) Methods and compositions comprising crispr-cpf1 and paired guide crispr rnas for programmable genomic deletions
EP3974524A1 (en) Dna vectors, transposons and transposases for eukaryotic genome modification
CN107893073B (en) Method for screening glutamine synthetase defect type HEK293 cell strain
EP1815001B8 (en) Gene trap cassettes for random and targeted conditional gene inactivation
CN109628489B (en) A method for improving the expression level of CHO cell recombinant protein and application thereof, expression vector, expression system and preparation method thereof
US20070243616A1 (en) In vivo alteration of cellular dna
WO2006124784A2 (en) Regulated vectors for selection of cells exhibiting desired phenotypes
CN118460591A (en) A large-scale parallel DNA sequence editing method and its application
WO2023050158A1 (en) Method for achieving multi-base editing
CA2375821A1 (en) Novel vectors for improving cloning and expression in low copy number plasmids
WO2010023787A1 (en) Element capable of stabilizing gene expression
CN105695509B (en) Method for obtaining high-purity myocardial cells
CN115725652A (en) Method for realizing multi-base editing
CN113234759A (en) Preparation method of NAMPT gene modified human umbilical cord mesenchymal stem cell exosome
WO2023050169A1 (en) Method for achieving tag-to-taa conversion on genome with high throughput
WO2023235894A2 (en) Type i-d crispr-guided transposon with enhanced genome editing
Kurasawa et al. Biallelic genome engineering to create isogenic induced pluripotent stem cells modeling Huntington’s disease
CN117778286A (en) Engineering bacterium and engineering plasmid combination for non-antibiotic screening and preparation method and application thereof
HK1202580B (en) Site-specific integration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 200131 Shanghai City, Pudong New Area Waigaoqiao Free Trade Zone Foote Road No. 288 Building No. 1

Applicant after: Wuxi AppTec Co.,Ltd.

Applicant after: Suzhou Wuming Kant New Drug Development Co.,Ltd.

Address before: 200131 Shanghai City, Pudong New Area Waigaoqiao Free Trade Zone Foote Road No. 288 Building No. 1

Applicant before: Wuxi AppTec Co.,Ltd.

Applicant before: WUXI APPTEC (SUZHOU) CO.,LTD.

ASS Succession or assignment of patent right

Owner name: WUXI APPTEC CO.,LTD.

Free format text: FORMER OWNER: SHANGHAI YAOMING KANGDE NEW MEDICINE DEVELOPMENT CO., LTD.

Effective date: 20150112

Free format text: FORMER OWNER: SUZHOU YAOMING KANGDE NEW DRUG DEVELOPMENT CO., LTD. WUXI APPTEC CO.,LTD.

Effective date: 20150112

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 200131 PUDONG NEW AREA, SHANGHAI TO: 214092 WUXI, JIANGSU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20150112

Address after: 214092, Wuxi, Jiangsu province Binhu District Ma Shan Mei Liang West Road, No. 88

Applicant after: WUXI APPTEC CO.,LTD.

Address before: 200131 Shanghai City, Pudong New Area Waigaoqiao Free Trade Zone Foote Road No. 288 Building No. 1

Applicant before: Wuxi AppTec Co.,Ltd.

Applicant before: Suzhou Wuming Kant New Drug Development Co.,Ltd.

Applicant before: Wuxi AppTec Co.,Ltd.

C41 Transfer of patent application or patent right or utility model
CB02 Change of applicant information

Address after: 214092, Wuxi, Jiangsu province Binhu District Ma Shan Mei Liang West Road, No. 88

Applicant after: WUXI APPTEC BIOTECHNOLOGY CO.,LTD.

Address before: 214092, Wuxi, Jiangsu province Binhu District Ma Shan Mei Liang West Road, No. 88

Applicant before: WUXI APPTEC CO.,LTD.

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20150922

Address after: 200131 Shanghai city Chinese (Shanghai) free trade zone 2 Huajing Road No. 7 room 701

Applicant after: WUXI BIOLOGICS (SHANGHAI) Co.,Ltd.

Address before: 214092, Wuxi, Jiangsu province Binhu District Ma Shan Mei Liang West Road, No. 88

Applicant before: WUXI APPTEC BIOTECHNOLOGY CO.,LTD.

C14 Grant of patent or utility model
GR01 Patent grant