CN103873387A - Industrial Ethernet-oriented deterministic communication scheduling method - Google Patents
Industrial Ethernet-oriented deterministic communication scheduling method Download PDFInfo
- Publication number
- CN103873387A CN103873387A CN201410088054.8A CN201410088054A CN103873387A CN 103873387 A CN103873387 A CN 103873387A CN 201410088054 A CN201410088054 A CN 201410088054A CN 103873387 A CN103873387 A CN 103873387A
- Authority
- CN
- China
- Prior art keywords
- time
- priority
- industrial ethernet
- scheduling method
- send
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 230000000737 periodic effect Effects 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 13
- 150000002678 macrocyclic compounds Chemical class 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 5
- LGAILEFNHXWAJP-BMEPFDOTSA-N macrocycle Chemical compound N([C@H]1[C@@H](C)CC)C(=O)C(N=2)=CSC=2CNC(=O)C(=C(O2)C)N=C2[C@H]([C@@H](C)CC)NC(=O)C2=CSC1=N2 LGAILEFNHXWAJP-BMEPFDOTSA-N 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 101100521097 Caenorhabditis elegans pri-1 gene Proteins 0.000 description 1
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Landscapes
- Small-Scale Networks (AREA)
Abstract
本发明公开了一种面向工业以太网的确定性通信调度方法,属于工业以太网数据通信技术领域。该方法根据工业实时以太网的应用需求,在实现通信调度实体的基础上,设计了基于动态优先级和链路时延矩阵的确定性调度方法。本发明提供的通信调度方法,既解决了工业以太网中低优先级非周期报文无限等待的问题,也提高了定时精度和调度精度,极大的提升了网络的整体管理质量与效率。
The invention discloses an industrial Ethernet-oriented deterministic communication scheduling method, which belongs to the technical field of industrial Ethernet data communication. According to the application requirements of industrial real-time Ethernet, this method designs a deterministic scheduling method based on dynamic priority and link delay matrix on the basis of realizing communication scheduling entity. The communication scheduling method provided by the invention not only solves the problem of infinite waiting for low-priority aperiodic messages in the industrial Ethernet, but also improves the timing accuracy and scheduling accuracy, and greatly improves the overall management quality and efficiency of the network.
Description
技术领域technical field
本发明属于工业以太网数据通信技术领域,涉及一种面向工业以太网的确定性通信调度方法。The invention belongs to the technical field of industrial Ethernet data communication, and relates to an industrial Ethernet-oriented deterministic communication scheduling method.
背景技术Background technique
传统的商用以太网(即IEEE802.3标准)具有开放、资源丰富、兼容性好和集成方便等优点,但也存在可靠性不高、抗干扰性和本质安全性不足等缺陷,无法直接应用于工业控制领域。工业以太网则在商用以太网的基础上增加了通信调度管理实体和TDMA错时发送机制,避免了数据冲突问题,满足了工业现场高实时性、高可靠性的需求。The traditional commercial Ethernet (IEEE802.3 standard) has the advantages of openness, rich resources, good compatibility and convenient integration, but it also has defects such as low reliability, insufficient anti-interference and intrinsic safety, and cannot be directly applied to field of industrial control. On the basis of commercial Ethernet, industrial Ethernet adds a communication scheduling management entity and a TDMA staggered transmission mechanism to avoid data conflicts and meet the needs of high real-time performance and high reliability in industrial sites.
目前,工业以太网的通信调度技术仍存在一些问题,比如非周期报文的随机发送机制会导致通信时延变化,进而影响时间同步精度和确定性通信调度精度,甚至可能会导致数据冲突;另外,非周期报文采用静态优先级测量,低优先级报文可能会被无期限延迟,从而引起节点缓冲区的溢出。因此,针对工业以太网的应用需求,设计一种合理、高效的确定性通信调度机制是非常有必要的。At present, there are still some problems in the communication scheduling technology of industrial Ethernet. For example, the random sending mechanism of aperiodic messages will lead to changes in communication delay, which will affect the accuracy of time synchronization and deterministic communication scheduling, and may even cause data conflicts; , non-periodic packets adopt static priority measurement, and low-priority packets may be delayed indefinitely, thus causing node buffer overflow. Therefore, it is very necessary to design a reasonable and efficient deterministic communication scheduling mechanism for the application requirements of industrial Ethernet.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种面向工业以太网的确定性通信调度方法,该方法在实现通信调度实体的基础上,采用了基于动态优先级和链路时延矩阵,可以有效避免低优先级报文长期延迟,提高了通信资源的调度精度。In view of this, the purpose of the present invention is to provide a deterministic communication scheduling method for industrial Ethernet. On the basis of realizing the communication scheduling entity, the method adopts a matrix based on dynamic priority and link delay, which can effectively avoid Low-priority packets are delayed for a long time, which improves the scheduling accuracy of communication resources.
工业以太网中有两种报文:一种是周期报文,如传感器循环采集的数据;另一种是非周期报文,如警报和管理报文。相应的,工业以太网也将时间分为周期报文传输阶段和非周期报文传输阶段,这两个阶段构成一个宏周期。非周期性报文通过报文优先级和IP地址来竞争总线的访问控制权。由于IP地址取决于应用,工业以太网只能通过提高非周期报文的优先级来实现稳定、快速和准确的通信调度。动态优先级技术针对具有随机性的非周期报文,它是在静态优先级的基础上加入了时间要素,即一个非周期报文等待时间越长,它的优先级越高。周期报文发送时间是确定的,它的优先级通常也最高,因此无需动态调整周期报文的优先级。There are two types of messages in Industrial Ethernet: one is periodic messages, such as the data collected by sensors cyclically; the other is non-periodic messages, such as alarm and management messages. Correspondingly, Industrial Ethernet also divides time into periodic message transmission phase and aperiodic message transmission phase, and these two phases constitute a macro cycle. Aperiodic packets compete for the access control right of the bus through packet priority and IP address. Since the IP address depends on the application, industrial Ethernet can only achieve stable, fast and accurate communication scheduling by increasing the priority of aperiodic messages. Dynamic priority technology is aimed at non-periodic messages with randomness. It adds time elements on the basis of static priority, that is, the longer the waiting time of an aperiodic message, the higher its priority. The sending time of the periodic message is determined, and its priority is usually the highest, so there is no need to dynamically adjust the priority of the periodic message.
链路时延矩阵技术主要针对周期报文,它计算周期性报文的链路时延,并调度工业以太网节点提前发送以抵消通信时延,提高调度精度。周期报文的字节数大小固定,而且发送的时间在每个周期中的偏移是相同的,这使得系统各个节点周期报文的通信时延基本相同。对于非周期报文来说,它的发送时间是不能固定的,当系统需要预约发送时间时,也可以使用基于链路时延的发送矩阵。The link delay matrix technology is mainly aimed at periodic messages. It calculates the link delay of periodic messages and schedules industrial Ethernet nodes to send them in advance to offset communication delays and improve scheduling accuracy. The byte size of the periodic message is fixed, and the offset of the sending time in each cycle is the same, which makes the communication delay of the periodic message of each node in the system basically the same. For aperiodic packets, the sending time cannot be fixed. When the system needs to reserve sending time, the sending matrix based on link delay can also be used.
定时器是工业以太网进行资源调度、时序管理的基础。基于时间差分的定时器链表使得对定时器的管理和调度变得简单、快速。在定时器链表中插入一个定时器节点即可实现定时器的设置,而删除一个节点即可中止一个定时器运行。The timer is the basis for resource scheduling and timing management of industrial Ethernet. The timer linked list based on time difference makes the management and scheduling of timers simple and fast. Inserting a timer node in the timer linked list can realize the setting of the timer, and deleting a node can stop the running of a timer.
本发明提供的技术方案如下:The technical scheme provided by the invention is as follows:
一种面向工业以太网的确定性通信调度方法,该方法在静态优先级的基础上,增加时间要素,形成动态优先级策略;所述优先级策略具体包括以下步骤:A deterministic communication scheduling method for industrial Ethernet, the method adds time elements on the basis of static priority to form a dynamic priority strategy; the priority strategy specifically includes the following steps:
1)将非周期数据报文按优先级分类,分别放入对应优先级的队列中;1) Classify the non-periodic data packets according to the priority, and put them into the corresponding priority queues;
2)报文装入队列后开始启动定时器计时,若该报文在规定时间内能够发送成功,记下此时的调整因子K;否则随着等待时间的增加K值会不断增加,直到能够成功发送为止;2) After the message is loaded into the queue, the timer starts to count. If the message can be sent successfully within the specified time, record the adjustment factor K at this time; otherwise, the K value will continue to increase as the waiting time increases until it can until successfully sent;
3)同类报文在本队列中的平均等待时间以宏周期为基本单位,等待的时间越长,队列中位置就越靠队列头,即在本队列中的优先级越高;3) The average waiting time of similar messages in this queue is based on the macro cycle. The longer the waiting time, the closer to the head of the queue, that is, the higher the priority in this queue;
4)当进入非周期报文发送阶段时,根据利用计算好的优先级进行发送,如果IP地址相同的话,则选择地址小的优先发送。若竞争失败,则采用前面的方法继续调整优先级,准备下一轮的发送。4) When entering the stage of aperiodic message sending, send according to the calculated priority. If the IP addresses are the same, choose the one with the smaller address to send first. If the competition fails, use the previous method to continue to adjust the priority and prepare for the next round of sending.
进一步,在所述调度方法中增加链路时延矩阵,从而提高了工业以太网的调度精度。Further, a link delay matrix is added in the scheduling method, thereby improving the scheduling accuracy of the industrial Ethernet.
进一步,增加链路时延矩阵具体包括以下步骤:Further, increasing the link delay matrix specifically includes the following steps:
a)计算每两个节点之间的通信延迟时间ΔT,包括发送处理时延t1,排队时延t2,传输时延t3和接收处理时延t4;a) Calculate the communication delay time ΔT between every two nodes, including sending processing delay t 1 , queuing delay t 2 , transmission delay t 3 and receiving processing delay t 4 ;
b)将该发送节点的发送时间Tsend提前ΔT,即调整后的发送时间为Tadjust=Tsend-ΔT;b) Advance the sending time T send of the sending node by ΔT, that is, the adjusted sending time is T adjust =T send -ΔT;
c)整个工业以太网的通信时延矩阵为
进一步,所述调度方法还提供了一种基于时间差分的定时器链表,用于减少处理器开销,提高系统性能。Furthermore, the scheduling method also provides a timer linked list based on time difference, which is used to reduce processor overhead and improve system performance.
进一步,所述基于时间差分的定时器链表具体为:Further, the timer linked list based on time difference is specifically:
A、定时器链表的头部始终指向宏周期相对偏移量最小的定时时间;A. The head of the timer linked list always points to the timing time with the smallest relative offset of the macrocycle;
B、定时器链表中每个定时时间值实际上是前面的几个时间值的总和;B. Each timing time value in the timer linked list is actually the sum of the previous several time values;
C、定时器链表中前面定时时间事件总是先于后面的发生,不能乱序。C. In the timer linked list, the previous timing events always occur before the latter ones, and cannot be out of sequence.
本发明的有益效果在于:本发明提供的通信调度方法,既解决了工业以太网中低优先级非周期报文无限等待的问题,也提高了定时精度和调度精度,极大的提升了网络的整体管理质量与效率。The beneficial effect of the present invention is that: the communication scheduling method provided by the present invention not only solves the problem of infinite waiting for low-priority aperiodic messages in the industrial Ethernet, but also improves the timing accuracy and scheduling accuracy, and greatly improves the efficiency of the network. Overall management quality and efficiency.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为CSME通信调度总体结构图;Figure 1 is the overall structure diagram of CSME communication scheduling;
图2为CSME状态机流程图;Fig. 2 is the flow chart of CSME state machine;
图3为CSME调度定时状态图;Fig. 3 is a CSME scheduling timing state diagram;
图4为基于时间差分的定时器链表;Fig. 4 is the timer linked list based on time difference;
图5为工业以太网通信时延。Figure 5 shows the communication delay of industrial Ethernet.
具体实施方式Detailed ways
下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
工业以太网的通信调度管理实体(Communication Scheduling Management Entity,CSME)既支持基于CSMA/CD自由竞争的通信调度方式,也支持基于TDMA分时发送的确定性通信调度方式。面向工业以太网的确定性通信调度方法,其总体架构如图1所示。对于该图中的各个组成部分如表一所示。The Communication Scheduling Management Entity (CSME) of Industrial Ethernet supports not only the communication scheduling method based on CSMA/CD free competition, but also the deterministic communication scheduling method based on TDMA time-sharing transmission. The overall architecture of the deterministic communication scheduling method for industrial Ethernet is shown in Figure 1. Each component in the figure is shown in Table 1.
表一Table I
CSME实体共有四个状态:旁路状态(Standby)、就绪状态(Ready)、周期数据发送阶段(PeriodicDataSending)和非周期数据发送阶段(NonPeriodicDataSending)。各个状态表示的含义如下:The CSME entity has four states: bypass state (Standby), ready state (Ready), periodic data sending phase (PeriodicDataSending) and non-periodic data sending phase (NonPeriodicDataSending). The meanings of each state are as follows:
(1)旁路状态:表示该设备处于自由的总线竞争状态,报文不受调度,容易导致数据冲突。该状态下无法确保数据通信的确定性。(1) Bypass state: Indicates that the device is in a free bus competition state, and messages are not scheduled, which may easily lead to data conflicts. In this state, deterministic data communication cannot be ensured.
(2)就绪状态:表示设备已经做好了通信调度的准备。该状态下设备时间同步精度达到要求,通信调度所需参数也已完成配置。(2) Ready state: Indicates that the device is ready for communication scheduling. In this state, the device time synchronization accuracy meets the requirements, and the parameters required for communication scheduling have also been configured.
(3)周期数据发送阶段:当前时间到达周期数据信息发送时刻时,节点从旁路状态才能转换到该状态发送IO数据等周期性报文。发送完所有的周期报文后,会紧跟随着发送一个非周期报文声明报文,向网络上的各个节点报告自身非周期报文的最高级别。(3) Periodic data sending stage: When the current time reaches the time for sending periodic data information, the node can only switch from the bypass state to this state to send periodic messages such as IO data. After all periodic messages are sent, an aperiodic message declaration message will be sent immediately to report the highest level of its own aperiodic message to each node on the network.
(4)非周期数据发送阶段:周期报文阶段过后,就是非周期报文阶段。它利用前期的周期报文阶段给出的非周期优先级信息,推选一个最高优先级发送。如果发送节点还有相关的信息,那么它发送非周期报文的时候,仍然需要发送本节点剩余的非周期报文。(4) Aperiodic data sending stage: After the periodic message stage, it is the aperiodic message stage. It utilizes the aperiodic priority information given in the previous periodic message stage to select a highest priority to send. If the sending node still has relevant information, when it sends an aperiodic message, it still needs to send the remaining aperiodic messages of the node.
CSME的通信调度程序流程如图2所示,详细过程如下:The flow of CSME’s communication scheduler is shown in Figure 2, and the detailed process is as follows:
设备上电后,首先会检查系统相关参数,如果发现没有相应的组态调度信息,设备会进入旁路状态。否则,当组态好而且相关相关参数达到要求(如时间同步精度),就会自动进入旁路状态。此时CSME会启动相关时间参数计算,用来决定是进入周期数据发送状态还是非周期数据发送状态,计算公式见等式(1)。After the device is powered on, it will first check the relevant system parameters. If no corresponding configuration and scheduling information is found, the device will enter the bypass state. Otherwise, when the configuration is complete and the relevant parameters meet the requirements (such as time synchronization accuracy), it will automatically enter the bypass state. At this time, the CSME will start the calculation of relevant time parameters to determine whether to enter the periodic data transmission state or the non-periodic data transmission state. The calculation formula is shown in equation (1).
Tde=Tc%T (1)T de =T c %T (1)
上式中,Tde是本地当前时间对宏周期T起始时间的偏离量,Tc是当前的系统时间。如果Tde等于预设的周期报文发送时间偏离量,就会进入周期报文发送阶段。In the above formula, T de is the deviation of the current local time from the start time of macrocycle T, and T c is the current system time. If T de is equal to the preset periodic message sending time deviation, the periodical message sending stage will be entered.
CSME定时状态如图3所示。The timing status of CSME is shown in Figure 3.
第一次进入CSME时,如果Tde小于本地节点当前周期报文发送的时间Tpi,那么启动一个间隔为ΔTp的定时器,其表示式:When entering CSME for the first time, if T de is less than the time T pi of the current periodic message sending of the local node, then start a timer with an interval of ΔT p , its expression:
ΔTp=Tpi-Tde (Tpi>Tde) (2)ΔT p =T pi -T de (T pi >T de ) (2)
只要当ΔTp>0,才能进入周期报文发送阶段;若ΔTp<0,更新ΔTp为:Only when ΔT p >0 can enter the periodic message sending phase; if ΔT p <0, update ΔT p as:
ΔTp=(T+Tpi-Tde)%T (3)ΔT p =(T+T pi -T de )%T (3)
确定性通信调度策略的设计:Design of deterministic communication scheduling strategy:
在原有静态优先级调度策略的基础上,将时间作为其中一个要素用来调整非周期性报文的优先级,避免出现低优先级非周期报文无限等待的问题。非周期报文等待时间的越长,其优先级会越高,这样就解决了工业以太网中低优先级非周期报文的无限等待问题。On the basis of the original static priority scheduling strategy, time is used as one of the elements to adjust the priority of aperiodic packets to avoid the problem of infinite waiting for low priority aperiodic packets. The longer the waiting time of aperiodic message, the higher its priority, which solves the problem of infinite waiting for low-priority aperiodic message in industrial Ethernet.
改进的动态优先级调度策略如下:The improved dynamic priority scheduling strategy is as follows:
a)将非周期数据报文按优先级分类,分别放入对应优先级的队列中。假设报文优先级共有n类:PQ1,PQ2,...,PQn,队列优先级初始值为NPri1=1,NPri2=2,...,NPrin=n。对于非周期报文,NPri1=1是最高优先级,优先级0预留给周期报文。a) Classify the non-periodic data packets according to the priority and put them into the corresponding priority queues respectively. Suppose there are n types of message priorities: PQ 1 , PQ 2 ,...,PQ n , and the initial values of queue priorities are NPri 1 =1, NPri 2 =2,...,NPri n =n. For aperiodic messages, NPri 1 = 1 is the highest priority, and priority 0 is reserved for periodic messages.
b)报文装入队列后开始启动定时器计时,若该报文在规定时间内能够发送成功,记下此时的调整因子K;否则随着等待时间的增加K值会不断增加,直到能够成功发送为止。优先级动态更新的公式如下:b) After the message is loaded into the queue, the timer starts to count. If the message can be sent successfully within the specified time, record the adjustment factor K at this time; otherwise, the value of K will continue to increase as the waiting time increases until it can be sent until successfully sent. The formula for priority dynamic update is as follows:
上式中Kn取决于非周期阶段等待时间ti,即Kn=f(t1,t2,.....,tn);NPrin是本队列队头报文的最初优先级。In the above formula, K n depends on the waiting time ti of the aperiodic phase, that is, K n =f(t1,t2,...,tn); NPrin is the initial priority of the packet at the head of the queue.
c)前面一步可以完成不同优先级队列报文的调整,但是在同一级优先级之间也是会进行相应的排列。同类报文在本队列中的平均等待时间以宏周期为基本单位,等待的时间越长,队列中位置就越靠队列头,即在本队列中的优先级越高。c) The previous step can complete the adjustment of queue messages with different priorities, but the corresponding arrangement will also be made between the same priority levels. The average waiting time of similar packets in this queue is based on the macro cycle. The longer the waiting time, the closer to the head of the queue, that is, the higher the priority in this queue.
d)非周期报文发送。当进入非周期报文发送阶段时,根据利用计算好的优先级进行发送,如果IP地址相同的话,则选择地址小的优先发送。若竞争失败,则采用前面的方法继续调整优先级,准备下一轮的发送。d) Aperiodic message sending. When entering the aperiodic message sending stage, send according to the calculated priority, if the IP addresses are the same, choose the one with the smaller address to send first. If the competition fails, use the previous method to continue to adjust the priority and prepare for the next round of sending.
定时器链表设计:Timer linked list design:
在工业以太网系统设计中,定时器链表显得十分重要,它是调度的时序管理的基础。在定时的频率和时间偏差调整的情况下,设计了一种基于时间差分的双向定时器链表,以便进行更加有效的定时器设计,如图4所示。该图中的Lefttime值,需要按照时间差分进行排序的。时间差分是以宏周期的起始点开始计算,刻度单位是硬件定时器的时间粒度单位,不是常规操作系统中的节拍。In the industrial Ethernet system design, the timer linked list is very important, it is the basis of the timing management of scheduling. In the case of timing frequency and time deviation adjustment, a two-way timer linked list based on time difference is designed for more effective timer design, as shown in Figure 4. The Lefttime values in this figure need to be sorted according to the time difference. The time difference is calculated from the starting point of the macrocycle, and the scale unit is the time granularity unit of the hardware timer, not the beat in the conventional operating system.
在这种差分的定时链表中,需要注意以下几个要素:(1)定时器链表的头部始终指向宏周期相对偏移量最小的定时时间;(2)链表中每个定时时间值实际上是前面的几个时间值的总和;(3)链表中前面定时时间事件总是先于后面的发生,不能乱序。In this differential timing linked list, the following elements need to be paid attention to: (1) the head of the timer linked list always points to the timing time with the smallest relative offset of the macrocycle; (2) each timing value in the linked list actually It is the sum of several previous time values; (3) The previous timing events in the linked list always occur before the latter, and cannot be out of order.
通过差分式的细粒度的定时链表的设计,提高了定时的精度,同时也避免了定时混乱的问题,每个事件都有严格的先后顺序。Through the design of differential fine-grained timing linked list, the timing accuracy is improved, and the problem of timing confusion is also avoided. Each event has a strict sequence.
基于链路时延矩阵的调度改进设计:Improved scheduling design based on link delay matrix:
由于工业以太网中每两个节点的通信时延并不相同,通信调度精度也会受到通信延时的影响,甚至影响到调度的顺序。因此,考虑各个节点间通信的时延问题,将对通信调度产生重要的影响。Since the communication delay of every two nodes in the industrial Ethernet is not the same, the communication scheduling accuracy will also be affected by the communication delay, and even affect the scheduling sequence. Therefore, considering the delay of communication between nodes will have an important impact on communication scheduling.
对于周期报文的发送来说,由于报文的字节数大小固定,而且发送的时间在每个宏周期中的偏移是相同的,所以系统各个节点周期报文基于时延的发送矩阵相应参数变化不大,基于时延的发送矩阵算法主要应用于周期阶段报文的发送。对于非周期报文来说,它的发送时间是不能固定的,当系统需要预约发送时间时,也可以使用基于链路时延的发送矩阵。For the transmission of periodic messages, since the number of bytes of the message is fixed and the offset of the sending time in each macrocycle is the same, the delay-based transmission matrix of each node in the system corresponds to The parameters do not change much, and the delay-based transmission matrix algorithm is mainly applied to the transmission of periodic phase messages. For aperiodic packets, the sending time cannot be fixed. When the system needs to reserve sending time, the sending matrix based on link delay can also be used.
工业以太网中的端对端通信时延由发送处理时延t1,排队时延t2,传输时延t3和接收处理时延t4组成,见图5。在考虑时间同步精度的偏差是Tptp的情况下,两节点通信时的总延迟时间为ΔT,则:The end-to-end communication delay in industrial Ethernet consists of sending processing delay t 1 , queuing delay t 2 , transmission delay t 3 and receiving processing delay t 4 , as shown in Figure 5. Considering that the deviation of time synchronization accuracy is T ptp , the total delay time when two nodes communicate is ΔT, then:
ΔT=t1+t2+t3+t4+Tptp (5)ΔT=t 1 +t 2 +t 3 +t 4 +T ptp (5)
为抵消通信时延,节点发送报文的时间需提前,实际发送时间调整如下:In order to offset the communication delay, the time for nodes to send messages needs to be advanced, and the actual sending time is adjusted as follows:
Tadjust=Tsend-ΔT (6)T adjust = T send -ΔT (6)
当工业以太网中存在n个节点时,第i个节点发送报文到第j个节点之间的时间调整为Tijadjust=Tijsend-ΔTij,那么通信时延矩阵为:When there are n nodes in the industrial Ethernet, the time between sending a message from the i-th node to the j-th node is adjusted to T ijaadjust = T ijsend -ΔT ij , then the communication delay matrix is:
当工业以太网的同步精度稳定后,时间同步精度的偏差Tptp将远远小于报文的通信时延ΔT,如果它的值过大会对通信调度产生比较大的影响。When the synchronization accuracy of industrial Ethernet is stable, the deviation T ptp of time synchronization accuracy will be far smaller than the communication delay ΔT of the message. If its value is too large, it will have a relatively large impact on communication scheduling.
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410088054.8A CN103873387A (en) | 2014-03-11 | 2014-03-11 | Industrial Ethernet-oriented deterministic communication scheduling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410088054.8A CN103873387A (en) | 2014-03-11 | 2014-03-11 | Industrial Ethernet-oriented deterministic communication scheduling method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103873387A true CN103873387A (en) | 2014-06-18 |
Family
ID=50911524
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410088054.8A Pending CN103873387A (en) | 2014-03-11 | 2014-03-11 | Industrial Ethernet-oriented deterministic communication scheduling method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103873387A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104820906A (en) * | 2015-05-21 | 2015-08-05 | 龙岩烟草工业有限责任公司 | Task scheduling method, device and system |
| CN106060940A (en) * | 2016-05-24 | 2016-10-26 | 重庆邮电大学 | Deterministic scheduling method for industrial wireless WIA-PA network |
| CN106332144A (en) * | 2016-09-29 | 2017-01-11 | 北京千安哲信息技术有限公司 | Method and device for scheduling data for body area network |
| CN108173614A (en) * | 2017-12-08 | 2018-06-15 | 同济大学 | A Time Synchronization and Scheduling Method for Vehicle Ethernet |
| CN108847961A (en) * | 2018-05-28 | 2018-11-20 | 中国电子科技集团公司第五十四研究所 | A kind of extensive, high concurrent certainty network system |
| CN109067595A (en) * | 2018-09-20 | 2018-12-21 | 迈普通信技术股份有限公司 | The method of configuration message priority |
| CN109428835A (en) * | 2017-08-25 | 2019-03-05 | 武汉米风通信技术有限公司 | A method of it reducing Beidou ground enhancing message and broadcasts delay and jitter |
| CN110120896A (en) * | 2019-04-15 | 2019-08-13 | 北京达佳互联信息技术有限公司 | Network delay control method, device, electronic equipment and storage medium |
| CN112764407A (en) * | 2021-04-09 | 2021-05-07 | 浙江国利信安科技有限公司 | Distributed control non-periodic communication method |
| CN112887180A (en) * | 2021-01-28 | 2021-06-01 | 上海理工大学 | Communication method of bus type real-time Ethernet |
| CN114051710A (en) * | 2019-08-07 | 2022-02-15 | 株式会社日立制作所 | Information processing apparatus and method for determining authorized communication |
| CN116723249A (en) * | 2023-08-11 | 2023-09-08 | 浙江国利信安科技有限公司 | Customized EPA device |
| CN116887418A (en) * | 2023-09-05 | 2023-10-13 | 浙江国利信安科技有限公司 | Method, device and medium for scheduling high-priority messages in EPA network |
| CN117278639A (en) * | 2023-11-21 | 2023-12-22 | 浙江国利信安科技有限公司 | Method, apparatus and storage medium for deterministic network-based communication time scheduling |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050111462A1 (en) * | 2003-11-26 | 2005-05-26 | J. Rodney Walton | Quality of service scheduler for a wireless network |
| CN101005438A (en) * | 2006-01-20 | 2007-07-25 | 杭州华为三康技术有限公司 | Flow control realizing method based on physical layer multiplex |
| CN101102275A (en) * | 2007-06-25 | 2008-01-09 | 中兴通讯股份有限公司 | Method for Realizing Multilevel Scheduling on Ethernet Switch Chip |
-
2014
- 2014-03-11 CN CN201410088054.8A patent/CN103873387A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050111462A1 (en) * | 2003-11-26 | 2005-05-26 | J. Rodney Walton | Quality of service scheduler for a wireless network |
| CN101005438A (en) * | 2006-01-20 | 2007-07-25 | 杭州华为三康技术有限公司 | Flow control realizing method based on physical layer multiplex |
| CN101102275A (en) * | 2007-06-25 | 2008-01-09 | 中兴通讯股份有限公司 | Method for Realizing Multilevel Scheduling on Ethernet Switch Chip |
Non-Patent Citations (1)
| Title |
|---|
| 谢昊飞: "EPA的确定性通信调度技术研究与设计", 《万方学术期刊论文数据库》 * |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104820906A (en) * | 2015-05-21 | 2015-08-05 | 龙岩烟草工业有限责任公司 | Task scheduling method, device and system |
| CN106060940A (en) * | 2016-05-24 | 2016-10-26 | 重庆邮电大学 | Deterministic scheduling method for industrial wireless WIA-PA network |
| CN106060940B (en) * | 2016-05-24 | 2019-03-22 | 重庆邮电大学 | Certainty dispatching method towards industrial wireless WIA-PA network |
| CN106332144A (en) * | 2016-09-29 | 2017-01-11 | 北京千安哲信息技术有限公司 | Method and device for scheduling data for body area network |
| CN109428835A (en) * | 2017-08-25 | 2019-03-05 | 武汉米风通信技术有限公司 | A method of it reducing Beidou ground enhancing message and broadcasts delay and jitter |
| CN108173614A (en) * | 2017-12-08 | 2018-06-15 | 同济大学 | A Time Synchronization and Scheduling Method for Vehicle Ethernet |
| CN108847961A (en) * | 2018-05-28 | 2018-11-20 | 中国电子科技集团公司第五十四研究所 | A kind of extensive, high concurrent certainty network system |
| CN108847961B (en) * | 2018-05-28 | 2021-07-16 | 中国电子科技集团公司第五十四研究所 | A large-scale, high-concurrency deterministic network system |
| CN109067595A (en) * | 2018-09-20 | 2018-12-21 | 迈普通信技术股份有限公司 | The method of configuration message priority |
| CN110120896A (en) * | 2019-04-15 | 2019-08-13 | 北京达佳互联信息技术有限公司 | Network delay control method, device, electronic equipment and storage medium |
| US11496380B2 (en) | 2019-04-15 | 2022-11-08 | Beijing Dajia Internet Information Technology Co., Ltd. | Network delay control method and apparatus, electronic device, and storage medium |
| CN114051710B (en) * | 2019-08-07 | 2023-05-09 | 株式会社日立制作所 | Information processing device and regular communication determination method |
| CN114051710A (en) * | 2019-08-07 | 2022-02-15 | 株式会社日立制作所 | Information processing apparatus and method for determining authorized communication |
| CN112887180A (en) * | 2021-01-28 | 2021-06-01 | 上海理工大学 | Communication method of bus type real-time Ethernet |
| CN112764407A (en) * | 2021-04-09 | 2021-05-07 | 浙江国利信安科技有限公司 | Distributed control non-periodic communication method |
| CN116723249A (en) * | 2023-08-11 | 2023-09-08 | 浙江国利信安科技有限公司 | Customized EPA device |
| CN116723249B (en) * | 2023-08-11 | 2023-11-10 | 浙江国利信安科技有限公司 | Customized EPA device |
| CN116887418A (en) * | 2023-09-05 | 2023-10-13 | 浙江国利信安科技有限公司 | Method, device and medium for scheduling high-priority messages in EPA network |
| CN116887418B (en) * | 2023-09-05 | 2023-12-15 | 浙江国利信安科技有限公司 | Method, device and medium for scheduling high priority messages in EPA network |
| CN117278639A (en) * | 2023-11-21 | 2023-12-22 | 浙江国利信安科技有限公司 | Method, apparatus and storage medium for deterministic network-based communication time scheduling |
| CN117278639B (en) * | 2023-11-21 | 2024-01-30 | 浙江国利信安科技有限公司 | Method, apparatus and storage medium for deterministic network-based communication time scheduling |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103873387A (en) | Industrial Ethernet-oriented deterministic communication scheduling method | |
| CN103823780B (en) | A kind of Real-time Fieldbus controls dispatching method | |
| Maxim et al. | Delay analysis of AVB traffic in time-sensitive networks (TSN) | |
| Shen et al. | PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks | |
| CN104185298B (en) | Network load dynamic self-adapting parameter regulation means based on priority | |
| JP7394986B2 (en) | Method of transmitting data packets and apparatus for implementing this method | |
| CN111740924A (en) | A Time-Sensitive Network Gating Mechanism Traffic Shaping and Routing Planning Scheduling Method | |
| Imtiaz et al. | A performance study of Ethernet Audio Video Bridging (AVB) for Industrial real-time communication | |
| CN107070808B (en) | AVB network multi-class predetermined stream worst queuing delay processing method based on credit shaping | |
| CN111030835A (en) | A task scheduling model of TTFC network and a method for generating message scheduling table | |
| CN114390000A (en) | TSN traffic scheduling method and related equipment based on queue shaping | |
| CN117896315B (en) | A hybrid flow dispatching method and system for intelligent substation based on time-sensitive network | |
| CN100382522C (en) | A Scheduling Method for Realizing Ethernet Deterministic Communication | |
| CN116032855B (en) | Enhanced time-aware shaper for emergency event flows in time-sensitive networks | |
| CN113992601A (en) | Traffic scheduling method and device for time-sensitive network | |
| CN112733303A (en) | Multi-strategy industrial TSN shaper modeling method based on deterministic network calculation | |
| CN114390122A (en) | An adaptive control scheduling method under the Glink protocol of a gravure centralized ink supply control system | |
| CN106341205A (en) | Low time-delay time triggering network system and optimization method | |
| Dang et al. | Timing analysis of TDMA-based networks using network calculus and integer linear programming | |
| Xie et al. | A high-flexibility CAN-TSN gateway with a low-congestion TSN-to-CAN scheduler | |
| Xie et al. | Robust time-sensitive networking with delay bound analyses | |
| CN106020333B (en) | Multi-core timer implementing method and multiple nucleus system | |
| Ng et al. | Performance of local area network protocols for hard real-time applications | |
| CN107070815A (en) | Sync message queuing delay control method and device in a kind of SDN | |
| Zhao et al. | Improving worst-case end-to-end delay analysis of multiple classes of AVB traffic in TSN networks using network calculus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140618 |