CN103885338B - A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm - Google Patents
A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm Download PDFInfo
- Publication number
- CN103885338B CN103885338B CN201410108735.6A CN201410108735A CN103885338B CN 103885338 B CN103885338 B CN 103885338B CN 201410108735 A CN201410108735 A CN 201410108735A CN 103885338 B CN103885338 B CN 103885338B
- Authority
- CN
- China
- Prior art keywords
- particle
- input shaper
- particle swarm
- swarm optimization
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005457 optimization Methods 0.000 title claims abstract description 31
- 238000004088 simulation Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims description 2
- 230000002028 premature Effects 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 6
- 244000145845 chattering Species 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000013404 process transfer Methods 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明涉及一种基于粒子群优化算法的输入整形器参数自整定控制方法,属于共轴传动机械启动过程的驱动控制方法技术领域;针对共轴传动机械启动过程存在抖振问题,本发明提出的控制方法对传动机构进行前馈控制,并且经实验结果证明了这种控制方法的有效性和可行性;在离线的状态下,运用粒子群优化算法对双脉冲的输入整形器进行优化,得到其最优参数,然后运用得到的最优输入整形器对执行机构前馈控制;本发明针对共轴传动印刷机械启动过程中的扭振问题,提出了一种基于粒子群优化的输入整形器参数自整定的控制算法。此控制在大幅抑制了系统的扭振的同时,较小的牺牲了系统的动态性能,实现了系统的快速无振响应。
The invention relates to an input shaper parameter self-tuning control method based on a particle swarm optimization algorithm, which belongs to the technical field of drive control methods in the start-up process of coaxial transmission machinery; in view of the chattering problem in the start-up process of coaxial transmission machinery, the invention proposes The control method performs feed-forward control on the transmission mechanism, and the experimental results prove the effectiveness and feasibility of this control method; in the off-line state, the particle swarm optimization algorithm is used to optimize the input shaper of the double pulse, and its Optimum parameters, and then use the obtained optimal input shaper to feed-forward control the actuator; the present invention aims at the torsional vibration problem in the start-up process of the coaxial transmission printing machine, and proposes a parameter automatic input shaper based on particle swarm optimization. Tuned control algorithm. This control greatly suppresses the torsional vibration of the system, while sacrificing the dynamic performance of the system to a small extent, and realizes a fast vibration-free response of the system.
Description
技术领域technical field
本发明涉及一种基于粒子群优化算法的输入整形器参数自整定控制方法,属于共轴传动机械启动过程的驱动控制方法技术领域。The invention relates to a parameter self-tuning control method of an input shaper based on a particle swarm optimization algorithm, and belongs to the technical field of drive control methods in the start-up process of coaxial transmission machinery.
背景技术Background technique
共轴传动印刷机在启动过程中,由于采用长轴连接,轴与轴之间传输距离长、系统刚度低、负载质量重等诸多因素的影响造成了启动时会发生扭转振动,扭振现象不仅影响了启动过程的稳态时间,而且对传动轴也会带来很大的冲击,从而影响印刷机的使用寿命。During the start-up process of the coaxial transmission printing machine, due to the long-axis connection, the long transmission distance between the shafts, the low stiffness of the system, the heavy load and many other factors, the torsional vibration will occur during the start-up. The torsional vibration phenomenon is not only It affects the steady-state time of the start-up process, and it will also bring a great impact to the transmission shaft, thereby affecting the service life of the printing press.
针对以上原因采用了输入整形器的方法对系统进行时域滤波,然而传统的零振荡输入整形器需要精确建模,参数间相互影响,整定困难。本发明引入粒子群优化算法对控制器参数进行优化,通过对系统进程传函变换,实现了系统信号的在线采集、离线优化、同时保持了较高地精度。For the above reasons, the input shaper method is used to filter the system in time domain. However, the traditional zero-oscillation input shaper requires precise modeling, and the parameters interact with each other, making tuning difficult. The invention introduces the particle swarm optimization algorithm to optimize the controller parameters, realizes the online collection and offline optimization of system signals, and maintains high precision at the same time by transforming the system process transfer function.
发明内容Contents of the invention
本发明的目的在于提供了一种基于粒子群优化算法的输入整形器参数自整定控制方法,针对共轴传动机械启动过程存在抖振问题,本发明提出的控制方法对传动机构进行前馈控制,并且经实验结果证明了这种控制方法的有效性和可行性。The purpose of the present invention is to provide a self-tuning control method for input shaper parameters based on particle swarm optimization algorithm. In view of the chattering problem in the start-up process of coaxial transmission machinery, the control method proposed by the present invention performs feedforward control on the transmission mechanism, And the experimental results prove the effectiveness and feasibility of this control method.
为实现上述目的,本发明所采用的技术方案为一种基于粒子群优化算法的输入整形器参数自整定控制方法,在离线的状态下,运用粒子群优化算法对双脉冲的输入整形器进行优化,得到其最优参数,然后运用得到的最优输入整形器对执行机构前馈控制,该方法包括如下具体步骤,In order to achieve the above object, the technical solution adopted in the present invention is a self-tuning control method of input shaper parameters based on particle swarm optimization algorithm. In an offline state, the particle swarm optimization algorithm is used to optimize the input shaper of double pulses. , to obtain its optimal parameters, and then use the obtained optimal input shaper to feed-forward control the actuator, the method includes the following specific steps,
S1对原始系统输入速度信号x(t),驱动机械系统运动,运用编码器从系统输出轴采集到其速度曲线v(t)和最终稳定速度u;S1 inputs the speed signal x(t) to the original system, drives the mechanical system to move, uses the encoder to collect the speed curve v(t) and the final stable speed u from the output shaft of the system;
S2根据系统输出轴的稳定速度u,采用粒子群优化算法得到双脉冲输入整形器的参数,双脉冲输入整形器的频域表达式为其中Ai和ti分别是脉冲序列的幅值及其所对应的时滞,由时间最优可令t1=0,则得公式为:为使系统输出达到稳定速度u,添加约束方程A1+A2=1,Ai>0;S2 According to the stable speed u of the output shaft of the system, the parameters of the double-pulse input shaper are obtained by using the particle swarm optimization algorithm. The frequency domain expression of the double-pulse input shaper is Among them, A i and t i are respectively the amplitude of the pulse sequence and its corresponding time lag, and t 1 = 0 can be set for optimal time, then the formula is: In order to make the system output reach a stable speed u, add the constraint equation A 1 +A 2 =1, A i >0;
所述粒子群优化算法的过程如下,The process of the particle swarm optimization algorithm is as follows,
S2.1初始化并设置输入整形器相关参数;包括A1、A2和t2的取值范围,由于A1+A2=1,Ai>0,故A2的取值范围[0~1],A1=1-A2;t2的选取比较重要,因为过大的t2的取值范围会使粒子群算法早熟,陷入局部极小值,然而过小的取值范围优化时会漏掉最优解,要首先根据系统的模型来估算信号的延时时间,多质转动平台的延时较小,故给定t2的取值范围为[0~5];S2.1 Initialize and set the relevant parameters of the input shaper; including the value range of A 1 , A 2 and t 2 , since A 1 +A 2 =1, A i >0, the value range of A 2 is [0~ 1], A 1 =1-A 2 ; the selection of t 2 is more important, because the too large value range of t 2 will make the particle swarm algorithm premature and fall into the local minimum value, but the too small value range optimization The optimal solution will be missed, and the delay time of the signal must be estimated according to the system model firstly. The delay time of the multi-substance rotating platform is relatively small, so the value range of given t 2 is [0~5];
设置粒子群相关参数;包括确定粒子群的规模数m=100,粒子搜索空间维数D=2,即A2、t2两个粒子,迭代次数k最大为60,搜索空间范围Ld=[00]、Ud=[00],即根据A2、t2范围确定,学习因子c1=c2=2,惯性权重范围wmin=0.6,第i个粒子个体最优位置为其中为所有中的最优,随机初始化每个粒子的位置和速度;Set particle swarm related parameters; including determining the size of particle swarm m=100, particle search space dimension D=2, that is, two particles A 2 and t 2 , the maximum number of iterations k is 60, and the range of search space L d = [00], U d = [00], that is, determined according to the range of A 2 and t 2 , learning factor c 1 =c 2 =2, range of inertial weight w min =0.6, optimal position of the i-th particle for in for all The optimal in , randomly initialize the position and velocity of each particle;
S2.2将每个粒子的位置向量依次作为输入整形器参数,依次对采集回来的速度曲线进行仿真,得到仿真曲线;根据仿真曲线计算每个粒子的适应度值,并将其作为衡量粒子位置优劣的依据;设置适应度函数为S2.2 The position vector of each particle is used as the input shaper parameter in turn, and the speed curve collected is simulated in turn to obtain the simulation curve; the fitness value of each particle is calculated according to the simulation curve, and it is used as a measure of the particle position The basis of pros and cons; set the fitness function as
式中,v(t)为仿真曲线的瞬时速度,u为系统输出轴最终稳定速度,ftr为一惩罚函数值,具体定义为In the formula, v(t) is the instantaneous speed of the simulation curve, u is the final stable speed of the system output shaft, ftr is a penalty function value, specifically defined as
其中,tr为仿真曲线上升时间,当在指定仿真周期内没有达到上升时间时,ftr为一惩罚函数值kt;当时间达到上升时间时,ftr取值为tr;Among them, t r is the rise time of the simulation curve, when the rise time is not reached within the specified simulation period, ftr is a penalty function value k t ; when the time reaches the rise time, ftr is set to t r ;
S2.3根据适应度函数计算每一个粒子的适应度值,如果该粒子的适应度值小于粒子自身以前的适应度值,则用该粒子的当前位置替换如果该粒子适应度值小于粒子群以前的适应度值,则用该粒子的位置替换 S2.3 Calculate the fitness value of each particle according to the fitness function, if the fitness value of the particle is less than the previous fitness value of the particle itself, replace it with the current position of the particle If the fitness value of the particle is less than the previous fitness value of the particle swarm, replace it with the particle's position
S2.4对每个粒子的速度和位置进行更新,第k次循环时,此时第i个粒子位置矢量为飞行速度为当前粒子个体最优位置为当前全局最优位置为d=1,2...,D,则第k+1次循环时,第i个粒子速度迭代方程为位置矢量迭代方程w、r1、r2表示各迭代方程参数的随机权重;S2.4 Update the velocity and position of each particle. In the kth cycle, the position vector of the i-th particle is The flight speed is The optimal position of the current particle individual is The current global optimal position is d=1,2...,D, then when the k+1th cycle, the i-th particle velocity iteration equation is position vector iterative equation w, r 1 , r 2 represent the random weight of each iteration equation parameter;
S2.5当k达到设定的迭代次数后,结束滚动优化过程,输出参数优化值;否则,转到步骤S2.2;S2.5 When k reaches the set number of iterations, end the rolling optimization process, and output parameter optimization values; otherwise, go to step S2.2;
S3运用得到的最优整形器对执行机构进行前馈控制。S3 uses the obtained optimal shaper to perform feed-forward control on the actuator.
与现有技术相比,本发明的有益效果在于:本发明针对共轴传动印刷机械启动过程中的扭振问题,提出了一种基于粒子群优化的输入整形器参数自整定的控制算法。此控制在大幅抑制了系统的扭振的同时,较小的牺牲了系统的动态性能,实现了系统的快速无振响应。Compared with the prior art, the beneficial effect of the present invention lies in that the present invention proposes a control algorithm for self-tuning of input shaper parameters based on particle swarm optimization for the torsional vibration problem during the start-up process of the coaxial transmission printing machine. This control greatly suppresses the torsional vibration of the system, while sacrificing the dynamic performance of the system to a small extent, and realizes a fast vibration-free response of the system.
附图说明Description of drawings
图1是该控制方法应用系统结构框图。Figure 1 is a structural block diagram of the control method application system.
图2是粒子群优化过程图。Figure 2 is a diagram of the particle swarm optimization process.
图3是simulink下的优化模型图。Figure 3 is the optimization model diagram under simulink.
图4是原始系统启停曲线图。Fig. 4 is the start-stop curve diagram of the original system.
图5是带输入整形器的系统启停曲线图。Figure 5 is a system start-stop curve diagram with an input shaper.
图6是原始系统与带输入整形器的系统启停曲线频域比较图。Figure 6 is a frequency domain comparison diagram of the start-stop curves of the original system and the system with an input shaper.
具体实施方式detailed description
本发明是一种基于粒子群优化的输入整形器参数自整定的控制方法,参照图1,在线情况下输入信号进入机械系统后采集输出轴速度运动曲线,再根据采集曲线运用粒子群优化算法离线优化出输入整形器的参数,然后将优化出的输入整形器对机械系统前馈控制,这样可以滤掉启动信号中与执行机构共振的频点,在大幅抑制了系统扭振的同时能够比较小的牺牲动态性能,实现了系统的快速无振响应。。The present invention is a control method based on particle swarm optimization for parameter self-tuning of the input shaper. Referring to Figure 1, the input signal enters the mechanical system in the online state and collects the output shaft speed motion curve, and then uses the particle swarm optimization algorithm to go offline according to the collected curve. Optimize the parameters of the input shaper, and then feed-forward control the optimized input shaper to the mechanical system, so that the frequency points that resonate with the actuator in the start signal can be filtered out, and the torsional vibration of the system can be greatly suppressed while being relatively small. The dynamic performance is sacrificed to achieve a fast vibration-free response of the system. .
粒子群离线的优化方法如图2所示,粒子群算法与simulink模型之间链接的桥梁是粒子(即输入整形器公式中的A2、t2)。优化过程如下,随机产生粒子群,将该粒子群中的粒子依次赋值给simulink模型输入整形器中的参数A2、t2,然后运行控制系统的simulink模型,得到该粒子的适应度值,最后判断是否判断是否可以退出算法,若不退出,则对粒子的速度和位置进行更新,即对A2、t2更新。The off-line optimization method of particle swarm optimization is shown in Figure 2. The bridge between the particle swarm algorithm and the simulink model is the particle (that is, A 2 and t 2 in the input shaper formula). The optimization process is as follows: randomly generate a particle swarm, assign the particles in the particle swarm to the simulink model in turn and input the parameters A 2 and t 2 in the shaper, then run the simulink model of the control system to obtain the fitness value of the particle, and finally Judging whether it is possible to exit the algorithm, if not, update the velocity and position of the particles, that is, update A 2 and t 2 .
图3是simulink下的优化模型图,采集的速度信号经过输入整形器模块后得到仿真曲线,再经过适应度函数模块得到适应度值。Figure 3 is an optimization model diagram under simulink. The collected speed signal is input to the shaper module to obtain the simulation curve, and then the fitness value is obtained through the fitness function module.
图4是原始系统启停曲线图,在幅值25000的阶跃信号激励多质量转动系统,由于共振点的存在,启动和停止过程中,系统振动十分明显。启动过程中振动峰值可以达到4.78×104脉冲/秒,最大超调55.7%,振荡时间可达15秒,响应时间长振荡明显。Figure 4 is the start-stop curve of the original system. When a step signal with an amplitude of 25,000 is used to excite the multi-mass rotating system, due to the existence of the resonance point, the system vibrates very obviously during the start-up and stop process. During the starting process, the vibration peak can reach 4.78×10 4 pulses/second, the maximum overshoot is 55.7%, the oscillation time can reach 15 seconds, and the oscillation is obvious after a long response time.
图5是带输入整形器的系统启停曲线图,在同样的幅值的阶跃信号激励下,多质量转动系统以开环系统输出终值为24490个脉冲/s误差小于稳态信号的5%认为系统稳定,则系统的超调仅仅为2.327%,系统无振荡的进入稳定状态,响应时间仅为700ms。响应速度大幅提高,振荡得到抑制。Figure 5 is the start-stop curve diagram of the system with input shaper. Under the excitation of the step signal with the same amplitude, the multi-mass rotating system outputs a final value of 24490 pulses/s with an open-loop system, and the error is less than 5% of the steady-state signal. % think the system is stable, the overshoot of the system is only 2.327%, the system enters a stable state without oscillation, and the response time is only 700ms. The response speed is greatly improved and the oscillation is suppressed.
图6是原始系统与带输入整形器的系统启停曲线频域比较图,可以看出导致系统振荡的主要原因是存在一个1HZ左右的低频振点,输入信号进入输入整形器后再进入机械系统,此共振点消除。Figure 6 is a frequency domain comparison diagram of the start-stop curves of the original system and the system with an input shaper. It can be seen that the main cause of system oscillation is a low-frequency vibration point of about 1HZ. The input signal enters the input shaper and then enters the mechanical system. , this resonance point is eliminated.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410108735.6A CN103885338B (en) | 2014-03-21 | 2014-03-21 | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410108735.6A CN103885338B (en) | 2014-03-21 | 2014-03-21 | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103885338A CN103885338A (en) | 2014-06-25 |
| CN103885338B true CN103885338B (en) | 2016-08-17 |
Family
ID=50954289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410108735.6A Expired - Fee Related CN103885338B (en) | 2014-03-21 | 2014-03-21 | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103885338B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104090596A (en) * | 2014-06-27 | 2014-10-08 | 北京工业大学 | Five-stage S-curve acceleration and deceleration control method based on particle swarm optimization algorithm |
| CN104090490B (en) * | 2014-07-04 | 2018-11-02 | 北京工业大学 | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm |
| CN104331083A (en) * | 2014-11-21 | 2015-02-04 | 大连大学 | Method for optimizing wide-angle attitude control parameters of spacecraft |
| CN104950680B (en) * | 2015-06-18 | 2017-11-03 | 温州大学 | A kind of optimization method of bank electricity attitude conirol |
| CN105334883B (en) * | 2015-10-21 | 2017-10-13 | 中国电子工程设计院 | A kind of Intelligent Feed-forward signal analysis method in vibration control system |
| CN108303887A (en) * | 2018-01-31 | 2018-07-20 | 珞石(北京)科技有限公司 | A method of the inhibition actual robot system vibration based on EI reshapers |
| CN108267959B (en) * | 2018-01-31 | 2021-06-08 | 珞石(北京)科技有限公司 | Method for jointly inhibiting vibration based on iterative learning control and input shaping technology |
| CN108828934B (en) * | 2018-09-26 | 2021-10-22 | 云南电网有限责任公司电力科学研究院 | A Fuzzy PID Control Method and Device Based on Model Identification |
| CN108919652B (en) * | 2018-10-10 | 2021-07-27 | 北京工商大学 | An adaptive disturbance rejection shaping control method and system |
| CN110376900B (en) * | 2019-08-16 | 2022-06-07 | 中国科学院深圳先进技术研究院 | Parameter optimization method, terminal device, and computer storage medium |
| CN110632892B (en) * | 2019-08-23 | 2022-10-18 | 深圳科瑞技术股份有限公司 | Input shaping residual vibration suppression method and system adapting to motion system track error |
| CN112021001B (en) * | 2020-09-02 | 2022-05-10 | 东北林业大学 | A Vibration Suppression Method of Pine Cone Picking Device Based on QL-SI Algorithm |
| CN113435304B (en) * | 2021-06-23 | 2023-09-19 | 西安交通大学 | Method, system, equipment and storage medium for extracting torsional vibration information from torsional vibration signals |
| CN115167144B (en) * | 2022-08-04 | 2024-04-30 | 北京航空航天大学 | An aircraft actuation system based on particle swarm algorithm |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20000007568A (en) * | 1998-07-04 | 2000-02-07 | 윤종용 | Input shaping filtering method and apparatus thereof using digital convolution |
| CN102636993A (en) * | 2012-04-19 | 2012-08-15 | 徐州工程学院 | Method for restraining flexible arm tail end vibration of robot |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6505085B1 (en) * | 1999-03-04 | 2003-01-07 | Massachusetts Institute Of Technology | Method and apparatus for creating time-optimal commands for linear systems |
-
2014
- 2014-03-21 CN CN201410108735.6A patent/CN103885338B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20000007568A (en) * | 1998-07-04 | 2000-02-07 | 윤종용 | Input shaping filtering method and apparatus thereof using digital convolution |
| CN102636993A (en) * | 2012-04-19 | 2012-08-15 | 徐州工程学院 | Method for restraining flexible arm tail end vibration of robot |
Non-Patent Citations (3)
| Title |
|---|
| Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System;A.Zolfagharian等;《International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering》;20111231;第5卷(第6期);第962-967页 * |
| 基于粒子群优化算法的自抗扰控制器设计;史永丽等;《系统仿真学报》;20080131;第20卷(第2期);第433-436页 * |
| 闭环输入整形器消除多模态柔性系统残留振荡;董明晓等;《机械工程学报》;20060531;第42卷(第5期);第110-114页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103885338A (en) | 2014-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103885338B (en) | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm | |
| CN104090490B (en) | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm | |
| CN103389646B (en) | A kind of servo feed system closed-loop identification method | |
| CN108638056A (en) | Joint of robot vibration analysis based on kinetics of deformable bodies model and suppressing method | |
| CN106873383B (en) | Online control method for reducing vibration of industrial robot | |
| CN103746630B (en) | A kind of Active Control Method for electric drive system low-frequency vibration | |
| CN104065322B (en) | Method for controlling output feedback of motor position servo system | |
| WO2016197552A1 (en) | High-speed platform movement parameter self-tuning method based on model identification and equivalent simplification | |
| CN104035337B (en) | A kind of flexible mechanical arm Sliding Mode Control Design Method based on singular perturbation theory | |
| JP6390774B1 (en) | Dynamometer control device | |
| CN104898568B (en) | NC machine tool feed system Optimization about control parameter method based on rigidity identification | |
| CN102570956B (en) | Direct-current motor control method based on resonance suppression | |
| CN104090596A (en) | Five-stage S-curve acceleration and deceleration control method based on particle swarm optimization algorithm | |
| JPWO2014167852A1 (en) | Motor drive device | |
| Huang et al. | Control synchronization of two nonidentical homodromy exciters in nonlinear coupled vibration system | |
| Mandra | Comparison of automatically tuned cascade control systems of servo-drives for numerically controlled machine tools | |
| Wang et al. | Robust and precision control for a directly-driven XY table | |
| Westermayer et al. | High dynamic torque control for industrial engine test beds | |
| CN106877769B (en) | A method for self-tuning of gain parameters of servo motor speed controller | |
| Shehovtsov et al. | Influence of elements dynamic cohesiveness in power shafting on torsional vibrations spreading and dynamic equality of reducible model | |
| Fei et al. | Dynamic sliding mode control of MEMS gyroscope | |
| CN106899253A (en) | A kind of model reference adaptive inertia identification method of use variable gain | |
| CN107065553A (en) | Many rotation excitations translate oscilator system Non-linear coupling self-adaptation control method | |
| Xu et al. | Fuzzy PID control for AC servo system based on Stribeck friction model | |
| Qiu et al. | Adaptive resonant vibration control of a piezoelectric flexible plate implementing Filtered-X LMS algorithm |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information |
Inventor after: Liu Zhifeng Inventor after: Zhang Tao Inventor after: Zhang Sen Inventor after: Cai Ligang Inventor before: Cai Ligang Inventor before: Zhang Sen Inventor before: Liu Zhifeng Inventor before: Xu Bo |
|
| COR | Change of bibliographic data | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |