[go: up one dir, main page]

CN103905037B - A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter - Google Patents

A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter Download PDF

Info

Publication number
CN103905037B
CN103905037B CN201410085525.XA CN201410085525A CN103905037B CN 103905037 B CN103905037 B CN 103905037B CN 201410085525 A CN201410085525 A CN 201410085525A CN 103905037 B CN103905037 B CN 103905037B
Authority
CN
China
Prior art keywords
field effect
effect transistor
metal oxide
oxide field
type metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410085525.XA
Other languages
Chinese (zh)
Other versions
CN103905037A (en
Inventor
吴建辉
周明杰
陈超
黄成�
李红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410085525.XA priority Critical patent/CN103905037B/en
Publication of CN103905037A publication Critical patent/CN103905037A/en
Application granted granted Critical
Publication of CN103905037B publication Critical patent/CN103905037B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种用于Gm‑C滤波器的主从结构频率校准电路,该频率校准电路包含跨导放大器主从结构控制电路和RC振荡电路以及数字逻辑电路;主从结构控制电路中的主跨导放大器与Gm‑C滤波器中的从跨导放大器相匹配,由相同的偏置电压控制,使其跨导值Gm与主从控制电路中的电阻R精确成反比关系,跨导放大器工艺误差对频率的影响转变为电阻工艺误差对频率的影响。相比于传统的Gm‑C滤波器的频率校准电路具有结构简单、鲁棒性好的特点。

The invention discloses a master-slave structure frequency calibration circuit for a Gm-C filter, the frequency calibration circuit includes a transconductance amplifier master-slave structure control circuit, an RC oscillator circuit and a digital logic circuit; the master-slave structure control circuit The master transconductance amplifier matches the slave transconductance amplifier in the Gm-C filter, and is controlled by the same bias voltage, so that its transconductance value Gm is precisely inversely proportional to the resistance R in the master-slave control circuit, and the transconductance amplifier The effect of process error on frequency is transformed into the effect of resistance process error on frequency. Compared with the traditional Gm-C filter, the frequency calibration circuit has the characteristics of simple structure and good robustness.

Description

一种用于Gm-C滤波器的主从结构频率校准电路A master-slave structure frequency calibration circuit for Gm-C filter

技术领域technical field

本发明涉及一种用于Gm-C滤波器的主从结构频率校准电路。The invention relates to a master-slave structure frequency calibration circuit for Gm-C filter.

背景技术Background technique

校准电路是集成滤波器电路中必不可少的模块。随着半导体集成电路的发展,模拟数字单芯片越来越成为主流,低中频滤波器作为无线射频收发机、传感器接口的关键电路也常常被选择集成在芯片上,以减小系统尺寸、降低成本并提高系统性能。但由于制造容差、工艺变化等工艺因素以及器件老化等影响,滤波器的频率特性会发生较大变化。如电阻电容20%的工艺偏差将会造成滤波器频率30%~50%的误差。解决办法就是在集成滤波器中加入频率校准电路,自适应调整器件的参数,使滤波器的频率特性实现需要的功能。The calibration circuit is an essential module in the integrated filter circuit. With the development of semiconductor integrated circuits, analog and digital single chips are becoming more and more mainstream. Low-IF filters, as key circuits for radio frequency transceivers and sensor interfaces, are often selected to be integrated on chips to reduce system size and cost. and improve system performance. However, due to process factors such as manufacturing tolerances, process changes, and device aging, the frequency characteristics of the filter will change greatly. For example, a process deviation of 20% in resistors and capacitors will cause a 30% to 50% error in filter frequency. The solution is to add a frequency calibration circuit in the integrated filter, and adjust the parameters of the device adaptively, so that the frequency characteristics of the filter can achieve the required functions.

不同类型的集成滤波器的频率校准电路不同。有源RC滤波器的频率特性由RC时间常数决定,电阻电容采用阵列的形式,通过数字逻辑改变阵列的码率即可改变滤波器的频率特性,频率检测电路可采用积分器或者振荡器来实现。基于积分器的检测电路由于处理的模拟信号需要放大器、比较器等电路功耗大,结构复杂,而基于振荡器的检测电路只需反相器即可实现,功耗低结构简单,因此在低功耗应用场合多采用基于振荡器的频率校准电路。不同于有源RC滤波器,Gm-C滤波器具有超低功耗的特点,因此在主流的低功耗设计电路中多采用Gm-C滤波器。但是Gm-C滤波器的频率特性由时间常数C/Gm决定,其中Gm是运算跨导放大器的跨导值,由尾电流源决定,一般通过调节偏置电压来改变,只能使用连续的模拟信号调节。传统的基于锁相环的Gm-C滤波器频率校准电路如图2所示主要包含压控振荡器、鉴相器、低通滤波三个模块。振荡器、鉴相器与低通滤波器构成控制环路,环路锁定后,压控振荡器VCO的振荡频率和鉴相器的输入参考时钟频率相同,压控振荡器VCO与Gm-C滤波器中跨导放大器和电容相匹配,因此可以通过确定鉴相器的输入参考频率来确定Gm-C滤波器中频率特性。但是这种校准电路几个模块均需要消耗很大的功耗,同时压控振荡器还存在限幅和稳定性问题。Different types of integrated filters have different frequency calibration circuits. The frequency characteristics of the active RC filter are determined by the RC time constant. The resistors and capacitors are in the form of an array, and the frequency characteristics of the filter can be changed by changing the code rate of the array through digital logic. The frequency detection circuit can be realized by an integrator or an oscillator. . The detection circuit based on the integrator requires high power consumption and complex structure due to the processing of analog signals such as amplifiers and comparators, while the detection circuit based on the oscillator can be realized with only an inverter, low power consumption and simple structure, so in low Power consumption applications often use oscillator-based frequency calibration circuits. Different from active RC filters, Gm-C filters have the characteristics of ultra-low power consumption, so Gm-C filters are often used in mainstream low-power design circuits. However, the frequency characteristic of the Gm-C filter is determined by the time constant C/Gm, where Gm is the transconductance value of the operational transconductance amplifier, which is determined by the tail current source. It is generally changed by adjusting the bias voltage, and only continuous analog signal conditioning. The traditional PLL-based Gm-C filter frequency calibration circuit mainly includes three modules: a voltage-controlled oscillator, a phase detector, and a low-pass filter, as shown in Figure 2. The oscillator, phase detector and low-pass filter form a control loop. After the loop is locked, the oscillation frequency of the voltage-controlled oscillator VCO is the same as the input reference clock frequency of the phase detector. The voltage-controlled oscillator VCO and the Gm-C filter The transconductance amplifier and capacitance in the detector are matched, so the frequency characteristics in the Gm-C filter can be determined by determining the input reference frequency of the phase detector. However, several modules of this calibration circuit need to consume a lot of power consumption, and at the same time, the voltage-controlled oscillator still has problems of limiting and stability.

跨导放大器的主从控制思想最早是出现在可变增益放大器中,可变增益放大器要实现高精度的增益调节,对跨导放大器的跨导值的精度要求较高,跨导放大器的跨导值通常和多个器件参数有关,同时也是简单的线性相关,因此直接调节难以实现高精度。采用主从结构,通过主跨导放大器将跨导值转变为与某一参数成线性相关的变量,比如电压值或者时钟频率,通过系统提供的基准电压或者参考时钟即可将主跨导放大器的跨导值固定为一个精确值,可变增益放大器中的从跨导放大器受主跨导放大器控制,从而实现高精度的增益值。The master-slave control idea of the transconductance amplifier first appeared in the variable gain amplifier. To achieve high-precision gain adjustment, the variable gain amplifier requires high accuracy of the transconductance value of the transconductance amplifier. The transconductance of the transconductance amplifier The value is usually related to multiple device parameters, and it is also a simple linear correlation, so direct regulation is difficult to achieve high accuracy. The master-slave structure is adopted, and the transconductance value is converted into a variable linearly related to a certain parameter through the master transconductance amplifier, such as voltage value or clock frequency. The reference voltage or reference clock provided by the system can convert the transconductance amplifier’s The transconductance value is fixed at an accurate value, and the slave transconductance amplifier in the variable gain amplifier is controlled by the master transconductance amplifier, thereby realizing a high-precision gain value.

因此,需要一种新的用于Gm-C滤波器的主从结构频率校准电路以解决上述问题。Therefore, a new master-slave frequency calibration circuit for Gm-C filters is needed to solve the above problems.

发明内容Contents of the invention

发明目的:本发明针对现有技术中可变增益放大器的缺陷,提供一种提升增益变化范围的用于Gm-C滤波器的主从结构频率校准电路。Purpose of the invention: The present invention aims at the defects of variable gain amplifiers in the prior art, and provides a master-slave structure frequency calibration circuit for Gm-C filters that increases the range of gain variation.

技术方案:为解决上述技术问题,本发明的用于Gm-C滤波器的主从结构频率校准电路采用如下技术方案:Technical solution: In order to solve the above technical problems, the master-slave structure frequency calibration circuit for Gm-C filter of the present invention adopts the following technical solution:

一种用于Gm-C滤波器的主从结构频率校准电路,包括跨导放大器主从控制电路,A master-slave structure frequency calibration circuit for Gm-C filter, including transconductance amplifier master-slave control circuit,

所述跨导放大器主从控制电路包括第一P型金属氧化物场效应管(PM1)、第二P型金属氧化物场效应管(PM2)、第三P型金属氧化物场效应管(PM3)、第四P型金属氧化物场效应管(PM4)、第五P型金属氧化物场效应管(PM5)、第六P型金属氧化物场效应管(PM6)、第七P型金属氧化物场效应管(PM7)、第八P型金属氧化物场效应管(PM8)、第九P型金属氧化物场效应管(PM9)、第十P型金属氧化物场效应管(PM10)、第十一P型金属氧化物场效应管(PM11)、第十二P型金属氧化物场效应管(PM12)、第一N型金属氧化物场效应管(NM1)、第二N型金属氧化物场效应管(NM2)、第三N型金属氧化物场效应管(NM3)、第四N型金属氧化物场效应管(NM4)、第五N型金属氧化物场效应管(NM5)、第六N型金属氧化物场效应管(NM6)以及电阻(R0)和主跨导放大器(Gm),The transconductance amplifier master-slave control circuit includes a first P-type metal oxide field effect transistor (PM1), a second P-type metal oxide field effect transistor (PM2), a third P-type metal oxide field effect transistor (PM3 ), the fourth P-type MOSFET (PM4), the fifth P-type MOSFET (PM5), the sixth P-type MOSFET (PM6), the seventh P-type MOSFET Object field effect transistor (PM7), eighth P-type metal oxide field effect transistor (PM8), ninth P-type metal oxide field effect transistor (PM9), tenth P-type metal oxide field effect transistor (PM10), The eleventh P-type MOSFET (PM11), the twelfth P-type MOSFET (PM12), the first N-type MOSFET (NM1), the second N-type MOSFET Object FET (NM2), third N-type MOSFET (NM3), fourth N-type MOSFET (NM4), fifth N-type MOSFET (NM5), A sixth NMOSFET (NM6) and a resistor (R0) and a main transconductance amplifier (Gm),

所述第一P型金属氧化物场效应管(PM1)的源极、所述第二P型金属氧化物场效应管(PM2)的源极、所述第三P型金属氧化物场效应管(PM3)的源极、所述第四P型金属氧化物场效应管(PM4)的源极、所述第五P型金属氧化物场效应管(PM5)的源极和所述第六P型金属氧化物场效应管(PM6)的源极连接并接电源;The source of the first P-type metal oxide field effect transistor (PM1), the source electrode of the second P-type metal oxide field effect transistor (PM2), the third P-type metal oxide field effect transistor (PM3), the source of the fourth PMOSFET (PM4), the source of the fifth PMOSFET (PM5), and the sixth PMOSFET The source of the type metal oxide field effect transistor (PM6) is connected and connected to the power supply;

所述第一P型金属氧化物场效应管(PM1)的栅极、所述第二P型金属氧化物场效应管(PM2)的栅极、所述第三P型金属氧化物场效应管(PM3)的栅极、所述第四P型金属氧化物场效应管(PM4)的栅极、所述第五P型金属氧化物场效应管(PM5)的栅极和所述第六P型金属氧化物场效应管(PM6)的栅极连接;The gate of the first P-type metal oxide field effect transistor (PM1), the gate of the second P-type metal oxide field effect transistor (PM2), the third P-type metal oxide field effect transistor (PM3), the gate of the fourth PMOSFET (PM4), the gate of the fifth PMOSFET (PM5), and the sixth PMOSFET The gate connection of the metal oxide field effect transistor (PM6);

所述第一P型金属氧化物场效应管(PM1)的漏极、所述第七P型金属氧化物场效应管(PM7)的源极和所述第八P型金属氧化物场效应管(PM8)的源极连接;The drain of the first P-type metal oxide field effect transistor (PM1), the source of the seventh P-type metal oxide field effect transistor (PM7), and the eighth P-type metal oxide field effect transistor (PM8) source connection;

所述第二P型金属氧化物场效应管(PM2)的漏极和所述第九P型金属氧化物场效应管(PM9)的源极连接;The drain of the second P-type MOSFET (PM2) is connected to the source of the ninth P-type MOSFET (PM9);

所述第三P型金属氧化物场效应管(PM3)的漏极连接所述主跨导放大器(Gm)的同相输入端与反相输出端;The drain of the third P-type MOSFET (PM3) is connected to the non-inverting input terminal and the inverting output terminal of the main transconductance amplifier (Gm);

所述第四P型金属氧化物场效应管(PM4)的漏极连接所述第十P型金属氧化物场效应管(PM10)的源极;The drain of the fourth P-type MOSFET (PM4) is connected to the source of the tenth P-type MOSFET (PM10);

所述第五P型金属氧化物场效应管(PM5)的漏极连接所述第十一P型金属氧化物场效应管(PM11)的源极;The drain of the fifth P-type MOSFET (PM5) is connected to the source of the eleventh P-type MOSFET (PM11);

所述第六P型金属氧化物场效应管(PM6)的漏极、所述第六P型金属氧化物场效应管(PM6)的栅极和所述第十二P型金属氧化物场效应管(PM12)的源极连接;The drain of the sixth P-type metal oxide field effect transistor (PM6), the gate of the sixth P-type metal oxide field effect transistor (PM6), and the twelfth P-type metal oxide field effect transistor (PM6) The source connection of the tube (PM12);

所述第七P型金属氧化物场效应管(PM7)的漏极、所述第一N型金属氧化物场效应管(NM1)的漏极、所述第一N型金属氧化物场效应管(NM1)的栅极和所述第二N型金属氧化物场效应管(NM2)的栅极连接;The drain of the seventh P-type metal oxide field effect transistor (PM7), the drain of the first N-type metal oxide field effect transistor (NM1), the first N-type metal oxide field effect transistor The gate of (NM1) is connected to the gate of the second NMOSFET (NM2);

所述第七P型金属氧化物场效应管(PM7)的栅极连接所述主跨导放大器(Gm)的同相输入端和反相输出端;The gate of the seventh P-type metal oxide field effect transistor (PM7) is connected to the non-inverting input terminal and the inverting output terminal of the main transconductance amplifier (Gm);

所述第八P型金属氧化物场效应管(PM8)的漏极连接所述第二N型金属氧化物场效应管(NM2)的漏极;The drain of the eighth P-type MOSFET (PM8) is connected to the drain of the second N-type MOSFET (NM2);

所述第八P型金属氧化物场效应管(PM8)的栅极、所述第十P型金属氧化物场效应管(PM10)的漏极和电阻(R0)的一端的连接;connecting the gate of the eighth PMOSFET (PM8), the drain of the tenth PMOSFET (PM10) and one end of a resistor (R0);

所述第九P型金属氧化物场效应管(PM9)的栅极、所述第十P型金属氧化物场效应管(PM10)的栅极、所述第十一P型金属氧化物场效应管(PM11)的栅极和所述第十二P型金属氧化物场效应管(PM12)的栅极连接;The gate of the ninth P-type metal oxide field effect transistor (PM9), the gate of the tenth P-type metal oxide field effect transistor (PM10), the eleventh P-type metal oxide field effect transistor The gate of the transistor (PM11) is connected to the gate of the twelfth P-type metal oxide field effect transistor (PM12);

所述第九P型金属氧化物场效应管(PM9)的漏极、所述第三N型金属氧化物场效应管(NM3)的漏极、所述第三N型金属氧化物场效应管(NM3)的栅极、所述第四N型金属氧化物场效应管(NM4)的栅极连接;The drain of the ninth P-type metal oxide field effect transistor (PM9), the drain of the third N-type metal oxide field effect transistor (NM3), the third N-type metal oxide field effect transistor The gate of (NM3) is connected to the gate of the fourth NMOSFET (NM4);

所述第十P型金属氧化物场效应管(PM10)的漏极通过所述电阻(R0)连接所述第五P型金属氧化物场效应管(PM5)的漏极和第四P型金属氧化物场效应管(PM4)的漏极;The drain of the tenth P-type metal oxide field effect transistor (PM10) is connected to the drain of the fifth P-type metal oxide field effect transistor (PM5) and the fourth P-type metal oxide field effect transistor (PM5) through the resistor (R0). The drain of the oxide field effect transistor (PM4);

所述第十一P型金属氧化物场效应管(PM11)的漏极、所述第六N型金属氧化物场效应管(NM6)的栅极、所述第六N型金属氧化物场效应管(NM6)的漏极和所述第五N型金属氧化物场效应管(NM5)的栅极连接;The drain of the eleventh P-type metal oxide field effect transistor (PM11), the gate of the sixth N-type metal oxide field effect transistor (NM6), the sixth N-type metal oxide field effect transistor The drain of the transistor (NM6) is connected to the gate of the fifth NMOSFET (NM5);

所述第十二P型金属氧化物场效应管(PM12)的漏极连接所述参考电流源(Iref)的输入端;The drain of the twelfth P-type metal oxide field effect transistor (PM12) is connected to the input end of the reference current source (Iref);

所述第四N型金属氧化物场效应管(NM4)的漏极、所述第五N型金属氧化物场效应管(NM5)的漏极、所述主跨导放大器(Gm)的反相输入端和所述主跨导放大器(Gm)的同相输出端连接;The drain of the fourth NMOSFET (NM4), the drain of the fifth NMOSFET (NM5), and the inverting phase of the main transconductance amplifier (Gm) The input terminal is connected to the non-inverting output terminal of the main transconductance amplifier (Gm);

所述第一N型金属氧化物场效应管(NM1)的源极、所述第二N型金属氧化物场效应管(NM2)的源极、所述第三N型金属氧化物场效应管(NM3)的源极、所述第四N型金属氧化物场效应管(NM4)的源极、所述第五N型金属氧化物场效应管(NM5)的源极、所述第六N型金属氧化物场效应管(NM6)的源极和所述参考电流源(Iref)的输出端均接地;The source of the first NMOSFET (NM1), the source of the second NMOSFET (NM2), the third NMOSFET (NM3), the source of the fourth NMOSFET (NM4), the fifth NMOSFET (NM5), the sixth NMOSFET The source of the MOSFET (NM6) and the output of the reference current source (Iref) are grounded;

所述第二N型金属氧化物场效应管(NM2)的漏极连接所述主跨导放大器(Gm)的电压控制端口和Gm-C滤波器中从跨导放大器的电压控制端口。The drain of the second NMOSFET (NM2) is connected to the voltage control port of the master transconductance amplifier (Gm) and the voltage control port of the slave transconductance amplifier in the Gm-C filter.

更进一步的,还包括RC振荡电路,所述RC振荡电路包括第一倒相放大器(Inv0)、第二倒相放大器(Inv1)、第三倒相放大器(Inv2)、可变电容(C0)、第一电阻(R1)和第二电阻(R2),所述第一倒相放大器(Inv0)、第二倒相放大器(Inv1)和第三倒相放大器(Inv2)依次首尾相接,所述第一倒相放大器(Inv0)和第三倒相放大器(Inv2)之间设置有所述第一电阻(R1)和第二电阻(R2),所述第一电阻(R1)和第二电阻(R2)串联连接;所述可变电容(C0)的一端连接所述第二倒相放大器(Inv1)和第三倒相放大器(Inv2)的连接点,所述可变电容(C0)的另一端连接所述第一电阻(R1)和第二电阻(R2)的连接点。采用低功耗的RC频率检测电路,通过调整电容值来校准滤波器的时间常数。RC振荡电路相比压控振荡器VCO不存在输入限幅和稳定性问题,同时功耗低,这种校准电路非常适合应用于低功耗、低成本的Gm-C滤波器中。可有效节约功耗,节约电路结构。Further, it also includes an RC oscillator circuit, the RC oscillator circuit includes a first inverting amplifier (Inv0), a second inverting amplifier (Inv1), a third inverting amplifier (Inv2), a variable capacitor (C0), The first resistor (R1) and the second resistor (R2), the first inverting amplifier (Inv0), the second inverting amplifier (Inv1) and the third inverting amplifier (Inv2) are connected end to end in sequence, and the first The first resistor (R1) and the second resistor (R2) are set between an inverting amplifier (Inv0) and a third inverting amplifier (Inv2), and the first resistor (R1) and the second resistor (R2 ) are connected in series; one end of the variable capacitor (C0) is connected to the connection point of the second inverting amplifier (Inv1) and the third inverting amplifier (Inv2), and the other end of the variable capacitor (C0) is connected to The connection point of the first resistor (R1) and the second resistor (R2). A low-power RC frequency detection circuit is used to calibrate the time constant of the filter by adjusting the capacitance value. Compared with the voltage-controlled oscillator VCO, the RC oscillator circuit has no input limit and stability problems, and has low power consumption. This calibration circuit is very suitable for low-power, low-cost Gm-C filters. It can effectively save power consumption and save circuit structure.

更进一步的,还包括数字逻辑电路,所述RC振荡电路连接所述数字逻辑电路,所述跨导放大器主从控制电路和数字逻辑电路分别连接所述Gm-C滤波器中从跨导放大器的电压控制端口和电容控制端口,Further, it also includes a digital logic circuit, the RC oscillating circuit is connected to the digital logic circuit, and the transconductance amplifier master-slave control circuit and the digital logic circuit are respectively connected to the slave transconductance amplifier in the Gm-C filter. voltage control port and capacitance control port,

所述数字逻辑电路用于检测所述RC振荡电路的频率并调整可调电容值,使振荡频率稳定在固定范围内,矫正时间常数RC,最后将校准后的电容值送给所述Gm-C滤波器。The digital logic circuit is used to detect the frequency of the RC oscillating circuit and adjust the adjustable capacitance value to stabilize the oscillation frequency within a fixed range, correct the time constant RC, and finally send the calibrated capacitance value to the Gm-C filter.

有益效果:本发明的用于Gm-C滤波器的主从结构频率校准电路电路结构简单,提供了一种用于Gm-C滤波器的频率校准电路。Gm-C滤波器的频率误差主要受跨导放大器的跨导值和电容的工艺误差和温度影响,影响跨导放大器的跨导值Gm的因素很多,因此需要一种准确控制跨导值的电路。该校准电路使用了跨导放大器的主从控制结构,将跨导放大器的误差转变为电阻的工艺偏差,稳定性更高。Beneficial effects: the circuit structure of the master-slave frequency calibration circuit for the Gm-C filter of the present invention is simple, and a frequency calibration circuit for the Gm-C filter is provided. The frequency error of the Gm-C filter is mainly affected by the transconductance value of the transconductance amplifier and the process error and temperature of the capacitor. There are many factors affecting the transconductance value Gm of the transconductance amplifier, so a circuit that accurately controls the transconductance value is required . The calibration circuit uses the master-slave control structure of the transconductance amplifier, which converts the error of the transconductance amplifier into the process deviation of the resistance, and has higher stability.

附图说明Description of drawings

图1为本发明的用于Gm-C滤波器的主从结构频率校准电路频率校准电路模块框图;Fig. 1 is the master-slave structure frequency calibration circuit frequency calibration circuit module block diagram for Gm-C filter of the present invention;

图2为传统基于锁相环的Gm-C滤波器频率校准电路模块框图;Fig. 2 is a block diagram of a traditional Gm-C filter frequency calibration circuit based on a phase-locked loop;

图3为本发明中关键模块跨导放大器主从控制电路原理图;Fig. 3 is key module transconductance amplifier master-slave control circuit schematic diagram among the present invention;

图4为采用本发明的频率校准电路后Gm-C低通滤波器在不同工艺角下校准前后的幅频特性曲线对比:M0为理想曲线,M1、M2分别为FF、SS工艺角下校准前的曲线,M3、M4为FF、SS工艺角下校准后的曲线。Fig. 4 is the comparison of the amplitude-frequency characteristic curves before and after calibration of the Gm-C low-pass filter under different process angles after adopting the frequency calibration circuit of the present invention: M0 is an ideal curve, M1 and M2 are before calibration under FF and SS process angles respectively The curves of M3 and M4 are the calibrated curves under the FF and SS process corners.

具体实施方式detailed description

下面结合附图与具体实施方式对本发明作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:

请参阅图1所示,本发明的用于Gm-C滤波器的主从结构频率校准电路,包括跨导放大器主从控制电路,Please refer to shown in Fig. 1, the master-slave structure frequency calibration circuit for the Gm-C filter of the present invention comprises transconductance amplifier master-slave control circuit,

跨导放大器主从控制电路包括第一P型金属氧化物场效应管PM1、第二P型金属氧化物场效应管PM2、第三P型金属氧化物场效应管PM3、第四P型金属氧化物场效应管PM4、第五P型金属氧化物场效应管PM5、第六P型金属氧化物场效应管PM6、第七P型金属氧化物场效应管PM7、第八P型金属氧化物场效应管PM8、第九P型金属氧化物场效应管PM9、第十P型金属氧化物场效应管PM10、第十一P型金属氧化物场效应管PM11、第十二P型金属氧化物场效应管PM12、第一N型金属氧化物场效应管NM1、第二N型金属氧化物场效应管NM2、第三N型金属氧化物场效应管NM3、第四N型金属氧化物场效应管NM4、第五N型金属氧化物场效应管NM5、第六N型金属氧化物场效应管NM6以及电阻R0和主跨导放大器Gm。The transconductance amplifier master-slave control circuit includes a first P-type MOSFET PM1, a second P-type MOSFET PM2, a third P-type MOSFET PM3, and a fourth P-type MOSFET. The object field effect transistor PM4, the fifth P-type metal oxide field effect transistor PM5, the sixth P-type metal oxide field effect transistor PM6, the seventh P-type metal oxide field effect transistor PM7, the eighth P-type metal oxide field effect transistor Effect tube PM8, ninth P-type MOSFET PM9, tenth P-type MOSFET PM10, eleventh P-type MOSFET PM11, twelfth P-type MOSFET Effect tube PM12, first N-type MOSFET NM1, second N-type MOSFET NM2, third N-type MOSFET NM3, fourth N-type MOSFET NM4, the fifth NMOSFET NM5, the sixth NMOSFET NM6, the resistor R0 and the main transconductance amplifier Gm.

其中,第一P型金属氧化物场效应管PM1的源极、第二P型金属氧化物场效应管PM2的源极、第三P型金属氧化物场效应管PM3的源极、第四P型金属氧化物场效应管PM4的源极、第五P型金属氧化物场效应管PM5的源极和第六P型金属氧化物场效应管PM6的源极连接并接电源。第一P型金属氧化物场效应管PM1的栅极、第二P型金属氧化物场效应管PM2的栅极、第三P型金属氧化物场效应管PM3的栅极、第四P型金属氧化物场效应管PM4的栅极、第五P型金属氧化物场效应管PM5的栅极和第六P型金属氧化物场效应管PM6的栅极连接。第一P型金属氧化物场效应管PM1的漏极、第七P型金属氧化物场效应管PM7的源极和第八P型金属氧化物场效应管PM8的源极连接。第二P型金属氧化物场效应管PM2的漏极和第九P型金属氧化物场效应管PM9的源极连接。第三P型金属氧化物场效应管PM3的漏极连接主跨导放大器Gm的同相输入端与反相输出端。第四P型金属氧化物场效应管PM4的漏极连接第十P型金属氧化物场效应管PM10的源极。第五P型金属氧化物场效应管PM5的漏极连接第十一P型金属氧化物场效应管PM11的源极。第六P型金属氧化物场效应管PM6的漏极、第六P型金属氧化物场效应管PM6的栅极和第十二P型金属氧化物场效应管PM12的源极连接。第七P型金属氧化物场效应管PM7的漏极、第一N型金属氧化物场效应管NM1的漏极、第一N型金属氧化物场效应管NM1的栅极和第二N型金属氧化物场效应管NM2的栅极连接。第七P型金属氧化物场效应管PM7的栅极连接跨导放大器Gm的同相输入端和反相输出端。第八P型金属氧化物场效应管PM8的漏极连接第二N型金属氧化物场效应管NM2的漏极。第八P型金属氧化物场效应管PM8的栅极、第十P型金属氧化物场效应管PM10的漏极和电阻R0的一端的连接。第九P型金属氧化物场效应管PM9的栅极、第十P型金属氧化物场效应管PM10的栅极、第十一P型金属氧化物场效应管PM11的栅极和第十二P型金属氧化物场效应管PM12的栅极连接。第九P型金属氧化物场效应管PM9的漏极、第三N型金属氧化物场效应管NM3的漏极、第三N型金属氧化物场效应管NM3的栅极、第四N型金属氧化物场效应管NM4的栅极连接。第十P型金属氧化物场效应管PM10的漏极通过电阻R0连接第五P型金属氧化物场效应管PM5的漏极和第四P型金属氧化物场效应管PM4的漏极。第十一P型金属氧化物场效应管PM11的漏极、第六N型金属氧化物场效应管NM6的栅极、第六N型金属氧化物场效应管NM6的漏极和第五N型金属氧化物场效应管NM5的栅极连接。第十二P型金属氧化物场效应管PM12的漏极连接参考电流源Iref的输入端。第四N型金属氧化物场效应管NM4的漏极、第五N型金属氧化物场效应管NM5的漏极、主跨导放大器Gm的反相输入端和主跨导放大器Gm的同相输出端连接。Among them, the source of the first P-type MOSFET PM1, the source of the second P-type MOSFET PM2, the source of the third P-type MOSFET PM3, the fourth PMOSFET The source of the P-type Mosfet PM4, the source of the fifth P-type Mosfet PM5 and the source of the sixth P-type Mosfet PM6 are connected and connected to the power supply. The gate of the first P-type metal oxide field effect transistor PM1, the gate of the second P-type metal oxide field effect transistor PM2, the gate of the third P-type metal oxide field effect transistor PM3, the fourth P-type metal oxide field effect transistor The gate of the MOSFET PM4, the gate of the fifth PMOSFET PM5 and the gate of the sixth PMOSFET PM6 are connected. The drain of the first PMOSFET PM1, the source of the seventh PMOSFET PM7 and the source of the eighth PMOSFET PM8 are connected. The drain of the second PMOSFET PM2 is connected to the source of the ninth PMOSFET PM9. The drain of the third PMOSFET PM3 is connected to the non-inverting input terminal and the inverting output terminal of the main transconductance amplifier Gm. The drain of the fourth PMOSFET PM4 is connected to the source of the tenth PMOSFET PM10 . The drain of the fifth PMOSFET PM5 is connected to the source of the eleventh PMOSFET PM11. The drain of the sixth PMOSFET PM6, the gate of the sixth PMOSFET PM6 and the source of the twelfth PMOSFET PM12 are connected. The drain of the seventh PMOSFET PM7, the drain of the first NMOSFET NM1, the gate of the first NMOSFET NM1 and the second NMOSFET Gate connection of oxide field effect transistor NM2. The gate of the seventh PMOSFET PM7 is connected to the non-inverting input terminal and the inverting output terminal of the transconductance amplifier Gm. The drain of the eighth PMOSFET PM8 is connected to the drain of the second NMOSFET NM2 . The gate of the eighth PMOSFET PM8, the drain of the tenth PMOSFET PM10 are connected to one end of the resistor R0. The gate of the ninth P-type metal oxide field effect transistor PM9, the gate of the tenth P-type metal oxide field effect transistor PM10, the gate of the eleventh P-type metal oxide field effect transistor PM11, and the grid of the twelfth P-type metal oxide field effect transistor Type metal oxide field effect transistor PM12 gate connection. The drain of the ninth P-type metal oxide field effect transistor PM9, the drain of the third N-type metal oxide field effect transistor NM3, the gate of the third N-type metal oxide field effect transistor NM3, the fourth N-type metal oxide field effect transistor Gate connection of oxide field effect transistor NM4. The drain of the tenth PMOSFET PM10 is connected to the drain of the fifth PMOSFET PM5 and the drain of the fourth PMOSFET PM4 through the resistor R0 . The drain of the eleventh P-type metal oxide field effect transistor PM11, the gate of the sixth N-type metal oxide field effect transistor NM6, the drain of the sixth N-type metal oxide field effect transistor NM6 and the fifth N-type metal oxide field effect transistor Gate connection of Mosfet NM5. The drain of the twelfth PMOSFET PM12 is connected to the input terminal of the reference current source Iref. The drain of the fourth N-type metal oxide field effect transistor NM4, the drain of the fifth N-type metal oxide field effect transistor NM5, the inverting input terminal of the main transconductance amplifier Gm, and the non-inverting output terminal of the main transconductance amplifier Gm connect.

第一N型金属氧化物场效应管NM1的源极、第二N型金属氧化物场效应管NM2的源极、第三N型金属氧化物场效应管NM3的源极、第四N型金属氧化物场效应管NM4的源极、第五N型金属氧化物场效应管NM5的源极、第六N型金属氧化物场效应管NM6的源极和参考电流源Iref的输出端均接地。第二N型金属氧化物场效应管NM2的漏极连接主跨导放大器Gm的电压控制端口和Gm-C滤波器中从跨导放大器的电压控制端口。The source of the first NMOSFET NM1, the source of the second NMOSFET NM2, the source of the third NMOSFET NM3, the fourth NMOSFET The source of the MOSFET NM4 , the source of the fifth NMOSFET NM5 , the source of the sixth NMOSFET NM6 and the output terminal of the reference current source Iref are all grounded. The drain of the second NMOSFET NM2 is connected to the voltage control port of the master transconductance amplifier Gm and the voltage control port of the slave transconductance amplifier in the Gm-C filter.

还包括RC振荡电路,RC振荡电路包括第一倒相放大器Inv0、第二倒相放大器Inv1、第三倒相放大器Inv2、可变电容C0、第一电阻R1和第二电阻R2,第一倒相放大器Inv0、第二倒相放大器Inv1和第三倒相放大器Inv2依次首尾相接,第一倒相放大器Inv0和第三倒相放大器Inv2之间设置有第一电阻R1和第二电阻R2,第一电阻R1和第二电阻R2串联连接。可变电容C0的一端连接第二倒相放大器Inv1和第三倒相放大器Inv2的连接点,可变电容C0的另一端连接第一电阻R1和第二电阻R2的连接点。采用低功耗的RC频率检测电路,通过调整电容值来校准滤波器的时间常数。RC振荡电路相比压控振荡器VCO不存在输入限幅和稳定性问题,同时功耗低,这种校准电路非常适合应用于低功耗、低成本的Gm-C滤波器中。可有效节约功耗,节约电路结构。Also includes an RC oscillating circuit, the RC oscillating circuit includes a first inverting amplifier Inv0, a second inverting amplifier Inv1, a third inverting amplifier Inv2, a variable capacitor C0, a first resistor R1 and a second resistor R2, the first inverting The amplifier Inv0, the second inverting amplifier Inv1 and the third inverting amplifier Inv2 are sequentially connected end to end, the first resistor R1 and the second resistor R2 are arranged between the first inverting amplifier Inv0 and the third inverting amplifier Inv2, the first The resistor R1 and the second resistor R2 are connected in series. One end of the variable capacitor C0 is connected to the connection point of the second inverting amplifier Inv1 and the third inverting amplifier Inv2, and the other end of the variable capacitor C0 is connected to the connection point of the first resistor R1 and the second resistor R2. A low-power RC frequency detection circuit is used to calibrate the time constant of the filter by adjusting the capacitance value. Compared with the voltage-controlled oscillator VCO, the RC oscillator circuit has no input limit and stability problems, and has low power consumption. This calibration circuit is very suitable for low-power, low-cost Gm-C filters. It can effectively save power consumption and save circuit structure.

还包括数字逻辑电路,RC振荡电路连接数字逻辑电路,跨导放大器主从控制电路和数字逻辑电路分别连接Gm-C滤波器中从跨导放大器的电压控制端口和电容控制端口,数字逻辑电路用于检测RC振荡电路的频率并调整可调电容值,使振荡频率稳定在固定范围内,矫正时间常数RC,最后将校准后的电容值送给Gm-C滤波器。数字逻辑电路为现有技术中常见的功能模块,本发明未对其进行改进。It also includes a digital logic circuit, the RC oscillator circuit is connected to the digital logic circuit, the transconductance amplifier master-slave control circuit and the digital logic circuit are respectively connected to the voltage control port and the capacitance control port of the slave transconductance amplifier in the Gm-C filter, and the digital logic circuit is used It is used to detect the frequency of the RC oscillator circuit and adjust the adjustable capacitance value to stabilize the oscillation frequency within a fixed range, correct the time constant RC, and finally send the calibrated capacitance value to the Gm-C filter. The digital logic circuit is a common functional module in the prior art, which is not improved in the present invention.

发明原理:Invention principle:

本发明的校准电路核心是跨导放大器主从控制电路如图3所示,包括主跨导放大器、电流源ib、ig、电阻R0和误差放大器:为保证输入输出共模电平相等,主跨导放大器接成负反馈形式;电流源ib流过电阻R0,产生固定电压差V′p-Vn=ibR,跨导放大器的反相输入接电阻一端电压固定为Vn,同相输入端与电阻的另一端分别接误差放大器的输入,从而使跨导放大器的输入电压等于电阻两端的电压差ibR。电流源ig从跨导放大器的输出灌入/抽取电流ig。由于跨导放大器的输入电压与输出电流固定,其跨导值为电流源由基准镜像得到,其误差很小,跨导放大器的跨导值与电阻R成反比,其精度也由电阻决定。The core of the calibration circuit of the present invention is the transconductance amplifier master-slave control circuit as shown in Figure 3, including the master transconductance amplifier, current source ib , ig, resistance R0 and error amplifier: in order to ensure that the input and output common mode levels are equal, the master The transconductance amplifier is connected in the form of negative feedback; the current source i b flows through the resistor R0 to generate a fixed voltage difference V′ p -V n =i b R, the inverting input of the transconductance amplifier is connected to the resistor and the voltage at one end is fixed at Vn, and the non-inverting input The terminal and the other end of the resistor are respectively connected to the input of the error amplifier, so that the input voltage of the transconductance amplifier is equal to the voltage difference i b R between the two ends of the resistor. The current source ig sinks/sinks current ig from the output of the transconductance amplifier. Since the input voltage and output current of the transconductance amplifier are fixed, its transconductance value is The current source is obtained from the reference image, and its error is very small. The transconductance value of the transconductance amplifier is inversely proportional to the resistance R, and its precision is also determined by the resistance.

主从结构控制Gm-C滤波器中的跨导放大器,使其跨导值Gm与主从控制电路中的电阻R精确成反比关系(Gm=k1/R,k1为常数),从而使得决定Gm-C滤波器频率特性(包括带宽、中心频率等)f的时间常数由C/Gm转变为RC,用表达式表示为f∝Gm/C=k1/RC。RC振荡电路振荡频率f0与时间常数RC成反比(f0=k2/RC),其中电阻R和电容C分别与主从控制电路中的电阻和Gm-C滤波器中的电容相匹配,因此Gm-C滤波器的频率特性正比于RC振荡器的振荡频率即f∝f0=k2/RC。数字逻辑电路检测振荡电路的频率并调整可调电容值,使振荡频率稳定在固定范围内,实现时间常数RC的矫正,最后将校准后的电容值送给Gm-C滤波器,最终实现了Gm-C滤波器的频率校准。The master-slave structure controls the transconductance amplifier in the Gm-C filter, so that its transconductance value Gm is precisely inversely proportional to the resistance R in the master-slave control circuit (G m = k 1 /R, k 1 is a constant), so The time constant that determines the frequency characteristics of the Gm-C filter (including bandwidth, center frequency, etc.) f changes from C/Gm to RC, expressed as f∝G m /C=k 1 /RC. The oscillation frequency f 0 of the RC oscillator circuit is inversely proportional to the time constant RC (f 0 =k 2 /RC), where the resistance R and capacitance C match the resistance in the master-slave control circuit and the capacitance in the Gm-C filter respectively, Therefore, the frequency characteristic of the Gm-C filter is proportional to the oscillation frequency of the RC oscillator, ie f∝f 0 =k 2 /RC. The digital logic circuit detects the frequency of the oscillating circuit and adjusts the adjustable capacitor value to stabilize the oscillating frequency within a fixed range, realize the correction of the time constant RC, and finally send the calibrated capacitor value to the Gm-C filter, and finally realize the Gm - Frequency calibration of the C filter.

相比于传统的基于锁相环的Gm-C滤波器频率校准电路如图2,该校准电路除主从控制电路消耗一定的静态电流外,其余模块均为数字电路并只在校准结束后可关闭,具有功耗低的特点,RC振荡电路相比压控振荡器VCO不存在输入限幅和稳定性问题,同时功耗低,这种校准电路非常适合应用于低功耗、低成本的Gm-C滤波器中。Compared with the traditional phase-locked loop-based Gm-C filter frequency calibration circuit shown in Figure 2, except for the master-slave control circuit that consumes a certain amount of quiescent current, the other modules of the calibration circuit are all digital circuits and can only be activated after calibration. Closed, has the characteristics of low power consumption. Compared with the voltage-controlled oscillator VCO, the RC oscillator circuit has no input limit and stability problems, and at the same time has low power consumption. This calibration circuit is very suitable for low-power, low-cost Gm -C filter.

如图4所示,采用本发明的频率校准电路后Gm-C低通滤波器在不同工艺角下校准前后的幅频特性曲线。其中M0为理想的幅频特性曲线,带宽为244KHz;M1、M2分别为校准前FF和SS工艺角下的幅频特性,带宽分别为335KHz、174KHz,频率误差近30%;M3、M4分别为FF和SS工艺角下校准后的幅频特性,带宽分别为250KHz、237KHz,频率误差缩减到了5%以内,可见本发明的校准电路实现了频率校准功能。As shown in FIG. 4 , the amplitude-frequency characteristic curves of the Gm-C low-pass filter before and after calibration at different process angles after using the frequency calibration circuit of the present invention. Among them, M0 is the ideal amplitude-frequency characteristic curve with a bandwidth of 244KHz; M1 and M2 are the amplitude-frequency characteristics under the FF and SS process angles before calibration, respectively, and the bandwidths are 335KHz and 174KHz respectively, and the frequency error is nearly 30%; M3 and M4 are respectively The calibrated amplitude-frequency characteristics under the FF and SS process corners have bandwidths of 250KHz and 237KHz respectively, and the frequency error is reduced to within 5%. It can be seen that the calibration circuit of the present invention realizes the frequency calibration function.

本发明基于这种跨导放大器主从控制思想,融合有源RC滤波器的频率校准电路,提出了一种新的用于Gm-C滤波器的主从结构频率校准电路频率校准电路,电路结构简单、功耗低、稳定性好,真正符合了Gm-C滤波器的低功耗低成本的特点。Based on the master-slave control idea of the transconductance amplifier, the present invention combines the frequency calibration circuit of the active RC filter, and proposes a new master-slave structure frequency calibration circuit frequency calibration circuit for the Gm-C filter, the circuit structure Simple, low power consumption, and good stability, it really meets the characteristics of low power consumption and low cost of the Gm-C filter.

相比于传统的基于锁相环的Gm-C滤波器频率校准电路,该校准电路除主从控制电路消耗一定的静态电流外,其余模块均为数字电路并只在校准结束后可关闭,具有功耗低的特点,RC振荡电路相比压控振荡器VCO不存在输入限幅和稳定性问题,同时功耗低,这种校准电路非常适合应用于低功耗、低成本的Gm-C滤波器中。Compared with the traditional Gm-C filter frequency calibration circuit based on phase-locked loop, except the master-slave control circuit consumes a certain quiescent current, the other modules of the calibration circuit are all digital circuits and can be closed only after the calibration is completed. The characteristics of low power consumption, compared with the voltage-controlled oscillator VCO, the RC oscillator circuit has no input limit and stability problems, and at the same time has low power consumption. This calibration circuit is very suitable for low-power, low-cost Gm-C filtering device.

其中,该校准电路包含跨导放大器主从控制电路、RC振荡电路和数字逻辑电路,跨导放大器主从控制电路中的主跨导放大器与Gm-C滤波器中的从跨导放大器相匹配,由相同的偏置电压控制;主从控制电路将跨导放大器的跨导值Gm转变为与控制电路中的电阻R成反比关系,RC振荡电路中的电阻R与主从结构跨导放大器中的电阻R相匹配,可调电容C与Gm-C滤波器中的可调电容C相匹配;数字逻辑电路检测RC振荡器的振荡频率并调整可调电容C使振荡频率稳定在固定范围内,并将可调电容的稳定值送给Gm-C滤波器。该校准电路中采用主从结构控制Gm-C滤波器中的跨导放大器,使其跨导值Gm与主从控制电路中的电阻R精确成反比关系,跨导放大器的工艺误差转变为电阻R的工艺误差,从而使得决定Gm-C滤波器频率特性的时间常数由C/Gm转变为与有源RC滤波器相同的RC。RC振荡电路中的电阻R和电容C分别与主从控制电路中的电阻和Gm-C滤波器中的电容相匹配,从而精确反应滤波器的频率特性。数字逻辑电路检测振荡电路的输出频率并调整可调电容值,最后将校准后的电容值送给Gm-C滤波器,从而实现了Gm-C滤波器的频率校准。相比于传统的Gm-C滤波器的频率校准电路具有结构简单、功耗低、鲁棒性好的特点。Wherein, the calibration circuit includes a transconductance amplifier master-slave control circuit, an RC oscillator circuit and a digital logic circuit, the master transconductance amplifier in the transconductance amplifier master-slave control circuit matches the slave transconductance amplifier in the Gm-C filter, Controlled by the same bias voltage; the master-slave control circuit converts the transconductance value Gm of the transconductance amplifier into an inversely proportional relationship with the resistance R in the control circuit, and the resistance R in the RC oscillator circuit is inversely proportional to the resistance R in the master-slave structure transconductance amplifier The resistor R matches, and the adjustable capacitor C matches the adjustable capacitor C in the Gm-C filter; the digital logic circuit detects the oscillation frequency of the RC oscillator and adjusts the adjustable capacitor C to stabilize the oscillation frequency within a fixed range, and Send the stable value of the adjustable capacitor to the Gm-C filter. In this calibration circuit, a master-slave structure is used to control the transconductance amplifier in the Gm-C filter, so that the transconductance value Gm is precisely inversely proportional to the resistance R in the master-slave control circuit, and the process error of the transconductance amplifier is transformed into resistance R The process error, so that the time constant that determines the frequency characteristics of the Gm-C filter is changed from C/Gm to the same RC as the active RC filter. The resistor R and capacitor C in the RC oscillating circuit are respectively matched with the resistors in the master-slave control circuit and the capacitor in the Gm-C filter, so as to accurately reflect the frequency characteristics of the filter. The digital logic circuit detects the output frequency of the oscillating circuit and adjusts the adjustable capacitance value, and finally sends the calibrated capacitance value to the Gm-C filter, thereby realizing the frequency calibration of the Gm-C filter. Compared with the traditional Gm-C filter, the frequency calibration circuit has the characteristics of simple structure, low power consumption and good robustness.

本发明的用于Gm-C滤波器的主从结构频率校准电路提供了一种用于Gm-C滤波器的频率校准电路。Gm-C滤波器的频率误差主要受跨导放大器的跨导值和电容的工艺误差和温度影响,影响跨导放大器的跨导值Gm的因素很多,因此需要一种准确控制跨导值的电路。该校准电路使用了跨导放大器的主从控制结构,将跨导放大器的误差转变为电阻的工艺偏差,稳定性更高。The master-slave structure frequency calibration circuit for Gm-C filter of the present invention provides a frequency calibration circuit for Gm-C filter. The frequency error of the Gm-C filter is mainly affected by the transconductance value of the transconductance amplifier and the process error and temperature of the capacitor. There are many factors affecting the transconductance value Gm of the transconductance amplifier, so a circuit that accurately controls the transconductance value is required . The calibration circuit uses the master-slave control structure of the transconductance amplifier, which converts the error of the transconductance amplifier into the process deviation of the resistance, and has higher stability.

Claims (3)

1.一种用于Gm-C滤波器的主从结构频率校准电路,其特征在于,包括跨导放大器主从控制电路,所述跨导放大器主从控制电路包括第一P型金属氧化物场效应管(PM1)、第二P型金属氧化物场效应管(PM2)、第三P型金属氧化物场效应管(PM3)、第四P型金属氧化物场效应管(PM4)、第五P型金属氧化物场效应管(PM5)、第六P型金属氧化物场效应管(PM6)、第七P型金属氧化物场效应管(PM7)、第八P型金属氧化物场效应管(PM8)、第九P型金属氧化物场效应管(PM9)、第十P型金属氧化物场效应管(PM10)、第十一P型金属氧化物场效应管(PM11)、第十二P型金属氧化物场效应管(PM12)、第一N型金属氧化物场效应管(NM1)、第二N型金属氧化物场效应管(NM2)、第三N型金属氧化物场效应管(NM3)、第四N型金属氧化物场效应管(NM4)、第五N型金属氧化物场效应管(NM5)、第六N型金属氧化物场效应管(NM6)以及电阻(R0)和主跨导放大器(Gm);1. a kind of master-slave structure frequency calibration circuit for Gm-C filter, it is characterized in that, comprise transconductance amplifier master-slave control circuit, described transconductance amplifier master-slave control circuit comprises the first P-type metal oxide field Effect transistor (PM1), second P-type MOSFET (PM2), third P-type MOSFET (PM3), fourth P-type MOSFET (PM4), fifth P-type MOSFET (PM5), sixth P-type MOSFET (PM6), seventh P-type MOSFET (PM7), eighth P-type MOSFET (PM8), the ninth P-type MOSFET (PM9), the tenth P-type MOSFET (PM10), the eleventh P-type MOSFET (PM11), the twelfth P-type MOSFET (PM12), first N-type MOSFET (NM1), second N-type MOSFET (NM2), third N-type MOSFET (NM3), the fourth NMOSFET (NM4), the fifth NMOSFET (NM5), the sixth NMOSFET (NM6) and the resistor (R0) and main transconductance amplifier (Gm); 所述第一P型金属氧化物场效应管(PM1)的源极、所述第二P型金属氧化物场效应管(PM2)的源极、所述第三P型金属氧化物场效应管(PM3)的源极、所述第四P型金属氧化物场效应管(PM4)的源极、所述第五P型金属氧化物场效应管(PM5)的源极和所述第六P型金属氧化物场效应管(PM6)的源极连接并接电源;The source of the first P-type metal oxide field effect transistor (PM1), the source electrode of the second P-type metal oxide field effect transistor (PM2), and the third P-type metal oxide field effect transistor (PM3), the source of the fourth P-type MOSFET (PM4), the source of the fifth P-type MOSFET (PM5), and the sixth PMOS The source of the metal oxide field effect transistor (PM6) is connected and connected to the power supply; 所述第一P型金属氧化物场效应管(PM1)的栅极、所述第二P型金属氧化物场效应管(PM2)的栅极、所述第三P型金属氧化物场效应管(PM3)的栅极、所述第四P型金属氧化物场效应管(PM4)的栅极、所述第五P型金属氧化物场效应管(PM5)的栅极和所述第六P型金属氧化物场效应管(PM6)的栅极连接;The gate of the first P-type metal oxide field effect transistor (PM1), the gate gate of the second P-type metal oxide field effect transistor (PM2), the third P-type metal oxide field effect transistor (PM3), the grid of the fourth PMOSFET (PM4), the grid of the fifth PMOSFET (PM5), and the sixth PMOSFET The gate connection of the metal oxide field effect transistor (PM6); 所述第一P型金属氧化物场效应管(PM1)的漏极、所述第七P型金属氧化物场效应管(PM7)的源极和所述第八P型金属氧化物场效应管(PM8)的源极连接;The drain of the first P-type metal oxide field effect transistor (PM1), the source of the seventh P-type metal oxide field effect transistor (PM7), and the eighth P-type metal oxide field effect transistor (PM8) source connection; 所述第二P型金属氧化物场效应管(PM2)的漏极和所述第九P型金属氧化物场效应管(PM9)的源极连接;The drain of the second P-type MOSFET (PM2) is connected to the source of the ninth P-type MOSFET (PM9); 所述第三P型金属氧化物场效应管(PM3)的漏极连接所述主跨导放大器(Gm)的同相输入端与反相输出端;The drain of the third P-type metal oxide field effect transistor (PM3) is connected to the non-inverting input terminal and the inverting output terminal of the main transconductance amplifier (Gm); 所述第四P型金属氧化物场效应管(PM4)的漏极连接所述第十P型金属氧化物场效应管(PM10)的源极;The drain of the fourth P-type MOSFET (PM4) is connected to the source of the tenth P-type MOSFET (PM10); 所述第五P型金属氧化物场效应管(PM5)的漏极连接所述第十一P型金属氧化物场效应管(PM11)的源极;The drain of the fifth P-type MOSFET (PM5) is connected to the source of the eleventh P-type MOSFET (PM11); 所述第六P型金属氧化物场效应管(PM6)的漏极、所述第六P型金属氧化物场效应管(PM6)的栅极和所述第十二P型金属氧化物场效应管(PM12)的源极连接;The drain of the sixth P-type metal oxide field effect transistor (PM6), the gate of the sixth P-type metal oxide field effect transistor (PM6), and the twelfth P-type metal oxide field effect transistor The source connection of the tube (PM12); 所述第七P型金属氧化物场效应管(PM7)的漏极、所述第一N型金属氧化物场效应管(NM1)的漏极、所述第一N型金属氧化物场效应管(NM1)的栅极和所述第二N型金属氧化物场效应管(NM2)的栅极连接;The drain of the seventh P-type metal oxide field effect transistor (PM7), the drain electrode of the first N-type metal oxide field effect transistor (NM1), the first N-type metal oxide field effect transistor The gate of (NM1) is connected to the gate of the second NMOSFET (NM2); 所述同相输入端第七P型金属氧化物场效应管(PM7)的栅极连接所述跨导放大器(Gm)的同相输入端和反相输出端;The gate of the seventh P-type metal oxide field effect transistor (PM7) of the non-inverting input terminal is connected to the non-inverting input terminal and the inverting output terminal of the transconductance amplifier (Gm); 所述第八P型金属氧化物场效应管(PM8)的漏极连接所述第二N型金属氧化物场效应管(NM2)的漏极;The drain of the eighth P-type MOSFET (PM8) is connected to the drain of the second N-type MOSFET (NM2); 所述第八P型金属氧化物场效应管(PM8)的栅极、所述第十P型金属氧化物场效应管(PM10)的漏极和电阻(R0)的一端的连接;A connection between the gate of the eighth PMOSFET (PM8), the drain of the tenth PMOSFET (PM10) and one end of the resistor (R0); 所述第九P型金属氧化物场效应管(PM9)的栅极、所述第十P型金属氧化物场效应管(PM10)的栅极、所述第十一P型金属氧化物场效应管(PM11)的栅极和所述第十二P型金属氧化物场效应管(PM12)的栅极连接;The gate of the ninth P-type metal oxide field effect transistor (PM9), the gate of the tenth P-type metal oxide field effect transistor (PM10), the eleventh P-type metal oxide field effect transistor The grid of the tube (PM11) is connected to the grid of the twelfth P-type metal oxide field effect transistor (PM12); 所述第九P型金属氧化物场效应管(PM9)的漏极、所述第三N型金属氧化物场效应管(NM3)的漏极、所述第三N型金属氧化物场效应管(NM3)的栅极、所述第四N型金属氧化物场效应管(NM4)的栅极连接;The drain of the ninth P-type metal oxide field effect transistor (PM9), the drain electrode of the third N-type metal oxide field effect transistor (NM3), the third N-type metal oxide field effect transistor The gate of (NM3) is connected to the gate of the fourth NMOSFET (NM4); 所述第十P型金属氧化物场效应管(PM10)的漏极通过所述电阻(R0)连接所述第五P型金属氧化物场效应管(PM5)的漏极和第四P型金属氧化物场效应管(PM4)的漏极;The drain of the tenth P-type metal oxide field effect transistor (PM10) is connected to the drain of the fifth P-type metal oxide field effect transistor (PM5) and the fourth P-type metal oxide field effect transistor (PM5) through the resistor (R0). The drain of the oxide field effect transistor (PM4); 所述第十一P型金属氧化物场效应管(PM11)的漏极、所述第六N型金属氧化物场效应管(NM6)的栅极、所述第六N型金属氧化物场效应管(NM6)的漏极和所述第五N型金属氧化物场效应管(NM5)的栅极连接;The drain of the eleventh P-type metal oxide field effect transistor (PM11), the gate of the sixth N-type metal oxide field effect transistor (NM6), the sixth N-type metal oxide field effect transistor The drain of the tube (NM6) is connected to the gate of the fifth NMOSFET (NM5); 所述第十二P型金属氧化物场效应管(PM12)的漏极连接参考电流源(Iref)的输入端;The drain of the twelfth P-type MOSFET (PM12) is connected to the input terminal of the reference current source (Iref); 所述第四N型金属氧化物场效应管(NM4)的漏极、所述第五N型金属氧化物场效应管(NM5)的漏极、所述主跨导放大器(Gm)的反相输入端和所述主跨导放大器(Gm)的同相输出端连接;The drain of the fourth NMOSFET (NM4), the drain of the fifth NMOSFET (NM5), and the inverting phase of the main transconductance amplifier (Gm) The input terminal is connected with the same phase output terminal of the main transconductance amplifier (Gm); 所述第一N型金属氧化物场效应管(NM1)的源极、所述第二N型金属氧化物场效应管(NM2)的源极、所述第三N型金属氧化物场效应管(NM3)的源极、所述第四N型金属氧化物场效应管(NM4)的源极、所述第五N型金属氧化物场效应管(NM5)的源极、所述第六N型金属氧化物场效应管(NM6)的源极和所述参考电流源(Iref)的输出端均接地;The source of the first NMOSFET (NM1), the source of the second NMOSFET (NM2), and the third NMOSFET (NM3), the source of the fourth NMOSFET (NM4), the fifth NMOSFET (NM5), the sixth NMOSFET The source of the Type Mosfet (NM6) and the output end of the reference current source (Iref) are all grounded; 所述第二N型金属氧化物场效应管(NM2)的漏极连接所述主跨导放大器(Gm)的电压控制端口和Gm-C滤波器中从跨导放大器的电压控制端口。The drain of the second NMOSFET (NM2) is connected to the voltage control port of the main transconductance amplifier (Gm) and the voltage control port of the slave transconductance amplifier in the Gm-C filter. 2.如权利要求1所述的用于Gm-C滤波器的主从结构频率校准电路,其特征在于,还包括RC振荡电路,所述RC振荡电路包括第一倒相放大器(Inv0)、第二倒相放大器(Inv1)、第三倒相放大器(Inv2)、可变电容(C0)、第一电阻(R1)和第二电阻(R2),所述第一倒相放大器(Inv0)、第二倒相放大器(Inv1)和第三倒相放大器(Inv2)依次首尾相接,所述第一倒相放大器(Inv0)和第三倒相放大器(Inv2)之间设置有所述第一电阻(R1)和第二电阻(R2),所述第一电阻(R1)和第二电阻(R2)串联连接;所述可变电容(C0)的一端连接所述第二倒相放大器(Inv1)和第三倒相放大器(Inv2)的连接点,所述可变电容(C0)的另一端连接所述第一电阻(R1)和第二电阻(R2)的连接点。2. the master-slave structure frequency calibration circuit for Gm-C filter as claimed in claim 1, is characterized in that, also comprises RC oscillation circuit, and described RC oscillation circuit comprises the first inverting amplifier (Inv0), the first Two inverting amplifiers (Inv1), a third inverting amplifier (Inv2), a variable capacitor (C0), a first resistor (R1) and a second resistor (R2), the first inverting amplifier (Inv0), the Two inverting amplifiers (Inv1) and the third inverting amplifier (Inv2) are connected end to end in sequence, and the first resistor ( R1) and the second resistor (R2), the first resistor (R1) and the second resistor (R2) are connected in series; one end of the variable capacitor (C0) is connected to the second inverting amplifier (Inv1) and The connection point of the third inverting amplifier (Inv2), the other end of the variable capacitor (C0) is connected to the connection point of the first resistor (R1) and the second resistor (R2). 3.如权利要求1所述的用于Gm-C滤波器的主从结构频率校准电路,其特征在于,还包括RC振荡电路和数字逻辑电路,所述RC振荡电路连接所述数字逻辑电路,所述跨导放大器主从控制电路和数字逻辑电路分别连接所述Gm-C滤波器中从跨导放大器的电压控制端口和电容控制端口,所述数字逻辑电路用于检测所述RC振荡电路的频率并调整可调电容值,使振荡频率稳定在固定范围内,矫正时间常数RC,最后将校准后的电容值送给所述Gm-C滤波器。3. the master-slave structure frequency calibration circuit for Gm-C filter as claimed in claim 1, is characterized in that, also comprises RC oscillatory circuit and digital logic circuit, described RC oscillatory circuit connects described digital logic circuit, The master-slave control circuit of the transconductance amplifier and the digital logic circuit are respectively connected to the voltage control port and the capacitance control port of the transconductance amplifier in the Gm-C filter, and the digital logic circuit is used to detect the voltage of the RC oscillator circuit Frequency and adjust the adjustable capacitor value to stabilize the oscillation frequency within a fixed range, correct the time constant RC, and finally send the calibrated capacitor value to the Gm-C filter.
CN201410085525.XA 2014-03-10 2014-03-10 A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter Expired - Fee Related CN103905037B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410085525.XA CN103905037B (en) 2014-03-10 2014-03-10 A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410085525.XA CN103905037B (en) 2014-03-10 2014-03-10 A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter

Publications (2)

Publication Number Publication Date
CN103905037A CN103905037A (en) 2014-07-02
CN103905037B true CN103905037B (en) 2016-08-17

Family

ID=50996213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410085525.XA Expired - Fee Related CN103905037B (en) 2014-03-10 2014-03-10 A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter

Country Status (1)

Country Link
CN (1) CN103905037B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712125B2 (en) * 2015-02-15 2017-07-18 Skyworks Solutions, Inc. Power amplification system with shared common base biasing
CN104660216B (en) * 2015-03-02 2017-05-10 东南大学 High-precision frequency calibration circuit for Gm-C filter
CN112491369B (en) * 2020-11-23 2021-09-21 苏州森斯微电子技术有限公司 Sensor signal processing circuit
CN114024526B (en) * 2021-11-08 2024-11-08 东南大学 A frequency self-calibration circuit for complex transconductance capacitor filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679234A (en) * 2002-09-05 2005-10-05 皇家飞利浦电子股份有限公司 Self calibration of continuous-time filters and systems comprising such filters
CN1725636A (en) * 2005-02-17 2006-01-25 威盛电子股份有限公司 A circuit for tuning the time constant of conductance capacitance
CN1972121A (en) * 2005-11-23 2007-05-30 联发科技股份有限公司 Adjustment method, adjustment device and transduction copy circuit for adjustment filter
CN101674081A (en) * 2009-10-15 2010-03-17 凌阳科技股份有限公司 Frequency synthesis system with self-correcting loop stability and bandwidth
CN202663367U (en) * 2012-06-26 2013-01-09 武汉大学 Self-adaptive tuning system for continuous time filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679234A (en) * 2002-09-05 2005-10-05 皇家飞利浦电子股份有限公司 Self calibration of continuous-time filters and systems comprising such filters
CN1725636A (en) * 2005-02-17 2006-01-25 威盛电子股份有限公司 A circuit for tuning the time constant of conductance capacitance
CN1972121A (en) * 2005-11-23 2007-05-30 联发科技股份有限公司 Adjustment method, adjustment device and transduction copy circuit for adjustment filter
CN101674081A (en) * 2009-10-15 2010-03-17 凌阳科技股份有限公司 Frequency synthesis system with self-correcting loop stability and bandwidth
CN202663367U (en) * 2012-06-26 2013-01-09 武汉大学 Self-adaptive tuning system for continuous time filter

Also Published As

Publication number Publication date
CN103905037A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN104660216B (en) High-precision frequency calibration circuit for Gm-C filter
JP5080651B2 (en) Dual path current amplifier
CN106406408B (en) LDO circuit
CN106656122B (en) Device and method for adjusting the duty ratio in clock signal
CN103905037B (en) A kind of host-guest architecture frequency calibration circuit for Gm-C wave filter
US20160099682A1 (en) Crystal oscillator
CN109586673B (en) An Oscillating Circuit with Dynamic Temperature Correction
CN109194328B (en) High-precision on-chip oscillator
CN206193580U (en) LDO circuit
CN107395164A (en) The continuously adjustable Real-time Delay line circuit of high-precision wide band
CN104135277B (en) Reference clock produces circuit and method on a kind of piece
CN115622540A (en) A duty cycle calibration circuit
CN103580649A (en) Low-detuning low-temperature-drift RC oscillator circuit with high power supply rejection ratio
CN102571018A (en) Automatic frequency tuning circuit of on-chip filter
CN104811189A (en) Charge pump circuit in charge pump phase-locked loop
CN102545779B (en) Crystal-oscillation-free clock circuit
CN113008410B (en) Temperature sensor for integrated circuit
US20130301753A1 (en) Circuit device and electronic apparatus
CN101330284A (en) Time constant correction device and related method thereof
CN101609349B (en) Clock generator
JP5078393B2 (en) Calibration loop, filter circuit and related method capable of automatically calibrating center frequency of filter
CN117081570A (en) On-chip resistor calibration circuit
CN112787625B (en) Reconfigurable transconductance conversion bias circuit and tuning method using the circuit
CN104300972A (en) A Ring Voltage Controlled Oscillator Circuit Combining Coarse Tuning and Fine Tuning
CN203326954U (en) High-power-supply-rejection-ratio LC-VCO (LC-Voltage Controlled Oscillator) device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20210310

CF01 Termination of patent right due to non-payment of annual fee