CN103926572B - A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side - Google Patents
A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side Download PDFInfo
- Publication number
- CN103926572B CN103926572B CN201410123524.XA CN201410123524A CN103926572B CN 103926572 B CN103926572 B CN 103926572B CN 201410123524 A CN201410123524 A CN 201410123524A CN 103926572 B CN103926572 B CN 103926572B
- Authority
- CN
- China
- Prior art keywords
- clutter
- doppler
- vector
- dimensional
- distribution curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 230000001629 suppression Effects 0.000 title claims abstract description 18
- 230000006978 adaptation Effects 0.000 title claims 5
- 238000001228 spectrum Methods 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims description 28
- 238000004422 calculation algorithm Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 14
- 238000010606 normalization Methods 0.000 claims description 7
- 238000005457 optimization Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 230000003595 spectral effect Effects 0.000 claims description 5
- 230000001427 coherent effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 7
- 230000017105 transposition Effects 0.000 claims 5
- 238000006243 chemical reaction Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 16
- 230000003044 adaptive effect Effects 0.000 abstract description 11
- 230000000295 complement effect Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 3
- 238000012549 training Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- BJHIKXHVCXFQLS-PUFIMZNGSA-N D-psicose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C(=O)CO BJHIKXHVCXFQLS-PUFIMZNGSA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2923—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
- G01S7/2928—Random or non-synchronous interference pulse cancellers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明属于雷达技术领域,公开了一种机载非正侧阵雷达用自适应子空间的杂波抑制方法,其首先通过拟合回波数据估计的杂波功率谱与理论杂波曲线来估计杂波二维分布曲线的未知构型参数,在拟合的过程中采用LTS方法提高参数估计的稳健性,然后利用估计出的构型参数计算杂波子空间,再将数据向杂波子空间对应的正交补空间进行投影来抑制杂波。其仿真实验结果表明本发明的参数估计方法具有稳健性和准确性,利用估计参数计算的权值向量可以取得较好的杂波抑制效果。
The invention belongs to the field of radar technology, and discloses a clutter suppression method for an airborne non-frontal array radar using an adaptive subspace, which firstly estimates by fitting the clutter power spectrum estimated by echo data and the theoretical clutter curve For the unknown configuration parameters of the two-dimensional distribution curve of clutter, the LTS method is used in the fitting process to improve the robustness of parameter estimation, and then the estimated configuration parameters are used to calculate the clutter subspace, and then the data is transferred to the corresponding clutter subspace Orthogonal complement space for projection to suppress clutter. The simulation experiment results show that the parameter estimation method of the present invention is robust and accurate, and the weight vector calculated by using the estimated parameters can obtain better clutter suppression effect.
Description
技术领域technical field
本发明属于雷达技术领域,涉及提供一种机载非正侧阵雷达用自适应子空间的杂波抑制方法,具体地说是通过估计杂波二维分布曲线的未知构型参数来计算待检测距离单元的杂波子空间,再将数据向杂波子空间对应的正交补空间进行投影来抑制杂波。The invention belongs to the field of radar technology, and relates to a method for suppressing clutter in an adaptive subspace for an airborne non-frontal array radar. The clutter subspace of the distance unit, and then project the data to the orthogonal complement space corresponding to the clutter subspace to suppress the clutter.
背景技术Background technique
机载雷达主要处于下视工作状态,不可避免的要观测到许多地杂波,同时由于载机运动,杂波谱大大展宽,传统的脉冲多普勒技术不再有效。空时自适应处理(spacetimeadaptiveprocessing,STAP)技术可以有效的抑制地杂波,提高运动目标的检测性能。STAP技术通常选取待检测距离单元的邻近距离单元作为训练样本来计算自适应权值,当训练样本满足独立同分布(independentidenticallydistributed,IID)的条件时,随着样本数目的增多自适应处理的性能逐渐收敛于最优。实际中机载雷达为了实现全方位搜索,通常在机身同时架设多个阵列天线,每个天线负责一定的方位扫描,此时各个天线阵列的轴向和载机速度方向就会存在一定的夹角,出现阵列为非正侧放置的情况。非正侧阵结构会导致杂波角度多普勒特性随距离变化,使训练样本不再满足独立同分布条件,严重影响了协方差矩阵的估计精度,使空时自适应处理性能降低。The airborne radar is mainly in the working state of looking down, and it is inevitable to observe a lot of ground clutter. At the same time, due to the movement of the aircraft, the clutter spectrum is greatly expanded, and the traditional pulse Doppler technology is no longer effective. Space-time adaptive processing (spacetime adaptive processing, STAP) technology can effectively suppress ground clutter and improve the detection performance of moving targets. STAP technology usually selects the adjacent distance unit of the distance unit to be detected as the training sample to calculate the adaptive weight. When the training sample satisfies the independent identically distributed (IID) condition, the performance of adaptive processing gradually increases with the number of samples. converges to the optimum. In practice, in order to realize all-round search, airborne radar usually sets up multiple array antennas on the fuselage at the same time, and each antenna is responsible for a certain azimuth scanning. corner, the array is placed on the non-positive side. The non-positive side array structure will cause the Doppler characteristics of the clutter angle to change with the distance, so that the training samples no longer meet the independent and identical distribution conditions, which seriously affects the estimation accuracy of the covariance matrix and reduces the performance of space-time adaptive processing.
对于杂波角度多普勒特性随距离变化的非平稳问题(即杂波距离非平稳性),国内外学者已提出多种解决方法。Zatman提出导数更新法(derivative-basedupdating,DBU),该方法假定权矢量是距离的一次函数,但当杂波距离非平稳性十分剧烈时,以上假设不再成立。Melvin和Davis提出角度多普勒补偿的方法(angledopplercompensation,ADW),该方法对主瓣杂波中心进行补偿,对旁瓣杂波的补偿则不是十分理想。Ries和Lapierre等提出基于配准的补偿方法(registration-basedcompensation,RBC),该方法基于杂波分布曲线,将不同距离单元的杂波功率谱进行配准处理来解决杂波的距离非平稳性问题,但配准时不同距离单元曲线的映射关系难以确定。Friedlander等提出基于杂波子空间的算法,该方法直接利用杂波二维分布曲线的构型参数计算待检测距离单元的杂波子空间,然后将回波数据向杂波子空间对应的正交补空间进行投影来抑制掉杂波分量。该方法无需利用训练样本,避免了样本随距离变化的非平稳问题。但杂波子空间的计算需要利用杂波二维分布曲线的构型参数,而杂波二维分布曲线的构型参数和雷达系统参数、载机运动参数等有关,实际中这些参数不一定全部已知。For the non-stationary problem of clutter angle Doppler characteristics changing with distance (that is, clutter distance non-stationarity), domestic and foreign scholars have proposed a variety of solutions. Zatman proposed a derivative-based updating method (derivative-basedupdating, DBU), which assumes that the weight vector is a function of the distance, but when the clutter distance is very non-stationary, the above assumption is no longer valid. Melvin and Davis proposed an angle Doppler compensation method (angledoppler compensation, ADW), which compensates the center of the main lobe clutter, but the compensation for the side lobe clutter is not very ideal. Ries and Lapierre proposed a registration-based compensation method (registration-based compensation, RBC), which is based on the clutter distribution curve and performs registration processing on the clutter power spectra of different distance units to solve the problem of non-stationary range of clutter , but it is difficult to determine the mapping relationship of different distance unit curves during registration. Friedlander et al. proposed an algorithm based on the clutter subspace. This method directly uses the configuration parameters of the clutter two-dimensional distribution curve to calculate the clutter subspace of the range unit to be detected, and then transfers the echo data to the orthogonal complement space corresponding to the clutter subspace. Projection to suppress the clutter component. This method does not need to use training samples and avoids the non-stationary problem of samples changing with distance. However, the calculation of the clutter subspace needs to use the configuration parameters of the two-dimensional distribution curve of the clutter, and the configuration parameters of the two-dimensional distribution curve of the clutter are related to the parameters of the radar system and the movement parameters of the aircraft. Know.
发明内容Contents of the invention
针对机载非正侧阵雷达的杂波距离非平稳性和子空间方法需要利用杂波二维分布曲线的构型参数这一问题,本发明的目的在于提供一种机载非正侧阵雷达用自适应子空间的杂波抑制方法,无需利用训练样本而且杂波抑制性能优异。Aiming at the problem that the clutter distance non-stationarity of airborne non-frontal array radar and the subspace method need to utilize the configuration parameters of the two-dimensional distribution curve of clutter, the purpose of the present invention is to provide an airborne non-frontal array radar. The adaptive subspace clutter suppression method does not need to use training samples and has excellent clutter suppression performance.
为了达到上述目的,本发明采用以下技术方案予以实现。In order to achieve the above object, the present invention adopts the following technical solutions to achieve.
一种机载非正侧阵雷达用自适应子空间的杂波抑制方法,其特征在于,包括以下步骤:A kind of clutter suppressing method for airborne non-frontal array radar with self-adaptive subspace, it is characterized in that, comprises the following steps:
步骤1,建立机载非正侧阵雷达信号模型,其中,雷达工作波长为λ,相干处理间隔内发射M个脉冲,脉冲重复频率为fr,天线阵列是N个阵元组成的等距线阵,阵元间距为d,载机高度为H,载机速度为v,载机速度方向与天线阵列轴向的夹角为ψ,地面杂波散射体的俯仰角与方位角分别为θ和,载机与地面杂波散射体的斜距为R;Step 1, establish the signal model of the airborne non-frontal array radar, where the operating wavelength of the radar is λ, M pulses are transmitted within the coherent processing interval, the pulse repetition frequency is f r , and the antenna array is an equidistant line composed of N array elements The distance between array elements is d, the height of the carrier aircraft is H, the speed of the carrier aircraft is v, the angle between the direction of the carrier speed direction and the axis of the antenna array is ψ, and the pitch angle and azimuth angle of the ground clutter scatterer are θ and , the slant distance between the carrier aircraft and the ground clutter scatterer is R;
其回波信号可以表示为Its echo signal can be expressed as
式中n为噪声分量,xc为杂波分量,Nc为斜距为R的地面杂波环中独立的杂波块数目,αl为杂波环第l个杂波块的幅度,且不同杂波块之间相互独立,ul为杂波环第l个杂波块的空时导向矢量;where n is the noise component, x c is the clutter component, N c is the number of independent clutter blocks in the ground clutter ring with a slant distance of R, α l is the amplitude of the lth clutter block in the clutter ring, and Different clutter blocks are independent of each other, u l is the space-time steering vector of the lth clutter block in the clutter ring;
其杂波环的杂波二维分布曲线为The clutter two-dimensional distribution curve of its clutter ring is
上式的简化函数表达式The simplified function expression of the above formula
C=Γ(η(λ,d,fr,v,ψ,θ))C= Γ (η(λ,d,fr ,v,ψ,θ))
式中C为杂波曲线,Γ为通过参数矢量计算杂波二维分布曲线的算子,η为杂波二维分布曲线的参数矢量,其中杂波二维分布曲线的参数矢量η中,λ、d、fr为雷达系统已知参数,v、ψ、θ为未知量;In the formula, C is the clutter curve, Γ is the operator for calculating the two-dimensional distribution curve of clutter through the parameter vector, and η is the parameter vector of the two-dimensional distribution curve of clutter, where in the parameter vector η of the two-dimensional distribution curve of clutter, λ , d, f r are known parameters of radar system, v, ψ, θ are unknown quantities;
步骤2,对回波信号进行角度多普勒平面离散化,再做加权空域和时域的二维傅立叶变换得到傅立叶谱Pb,然后对傅立叶谱Pb取绝对值的平方,得到对应的杂波功率谱;Step 2, discretize the echo signal on the Angle Doppler plane, and then perform weighted two-dimensional Fourier transform in the space domain and time domain to obtain the Fourier spectrum P b , and then take the square of the absolute value of the Fourier spectrum P b to obtain the corresponding noise wave power spectrum;
设置第一门限,滤除杂波二维分布曲线外的网格单元,利用得到的杂波二维分布曲线上的网格单元构造搜索子矩阵根据回波信号在角度多普勒平面对应网格单元上的复幅度γ具有稀疏特性,通过稀疏算法
根据杂波二维分布曲线上网格单元的复幅度γ,设置第二门限,滤除杂波二维分布曲线上较小幅值|γi|的次要网格单元,得到反映杂波的功率谱分布在对应空时二维平面分布的典型网格单元;According to the complex amplitude γ of the grid unit on the two-dimensional distribution curve of clutter, set the second threshold, filter out the secondary grid units with smaller amplitude |γ i | on the two-dimensional distribution curve of clutter, and obtain the power reflecting the clutter The spectral distribution is in a typical grid cell corresponding to the space-time two-dimensional plane distribution;
步骤3,对杂波环的杂波二维分布曲线Step 3, the two-dimensional distribution curve of clutter for the clutter ring
进行变换整理,写成矢量形式为y=aTβ,式中β=[1/v2cosψ/vsin2ψcos2θ]T,a=[(frλwd/2)2-λ2frwswd/d-1]T,其中β与η中未知参数v、ψ、θ有关,a,y与η中已知参数λ、d、fr及杂波的空时二维频率有关;T表示转置操作。Carry out transformation and arrangement, and write it in vector form as y=a T β, where β=[1/v 2 cosψ/vsin 2 ψcos 2 θ]T, a=[(f r λw d /2) 2 -λ 2 f r w s w d /d-1] T , Among them, β is related to the unknown parameters v, ψ, and θ in η, and a, y are related to the known parameters λ, d, f r in η and the space-time two-dimensional frequency of clutter; T represents the transpose operation.
然后将步骤2得到的超过第二门限的P2个典型网格单元的空时二维频率及已知构型参数代入y=aTβ的a,y中,可以得到以下方程组Then, substituting the space-time two-dimensional frequencies and known configuration parameters of P2 typical grid cells exceeding the second threshold obtained in step 2 into a, y of y=a T β, the following equations can be obtained
式中P2个网格单元对应y的实测值
步骤4,采用最小截取二乘方法求解步骤3得到的方程组得到β的估计值进而求解得到杂波二维分布曲线的构型参数v、ψ、θ对应的估计值 Step 4, using the least intercept squares method to solve the system of equations obtained in step 3 Get an estimate of β Then solve the estimated values corresponding to the configuration parameters v, ψ, and θ of the two-dimensional distribution curve of clutter
步骤5,利用估计出来的杂波二维分布曲线的构型参数与已知参数λ、d、fr,计算出杂波二维分布曲线的对应的杂波空时导向矢量矩阵子空间正交投影算子和滤波权值向量W;Step 5, using the configuration parameters of the estimated two-dimensional distribution curve of clutter With the known parameters λ, d, f r , calculate the corresponding clutter space-time steering vector matrix of the clutter two-dimensional distribution curve Subspace Orthographic Projection Operator And filter weight vector W;
步骤6,根据滤波权值向量W构造相应的空时滤波器,抑制回波信号X中的杂波,得到当前杂波块杂波抑制后的最终多普勒谱:Z=WHX。Step 6: Construct a corresponding space-time filter according to the filter weight vector W to suppress the clutter in the echo signal X, and obtain the final Doppler spectrum of the current clutter block after clutter suppression: Z=W H X.
具体地,利用第k个多普勒通道滤波权值向量Wk构造相应的空时滤波器,抑制回波信号X中的杂波,得到当前杂波块、第k个多普勒通道的输出为:k=1,2…K,K为多普勒通道数,H表示共轭转置操作;得到当前杂波块杂波抑制后的最终多普勒谱:Z=[Z1,Z2,…,ZK]T,T表示转置操作。Specifically, use the k-th Doppler channel filter weight vector W k to construct a corresponding space-time filter to suppress the clutter in the echo signal X, and obtain the output of the current clutter block and the k-th Doppler channel for: k=1,2...K, K is the number of Doppler channels, H represents the conjugate transpose operation; get the final Doppler spectrum of the current clutter block after clutter suppression: Z=[Z 1 ,Z 2 ,… ,Z K ] T , T represents the transpose operation.
本发明的技术方案的特点和进一步改进在于:The features and further improvements of the technical solution of the present invention are:
(1)步骤2的具体子步骤为:(1) The specific sub-steps of step 2 are:
2a)将角度多普勒平面离散化,多普勒频率对应的网格单元数目为Nd,空域频率对应的网格单元数目为Ns;2a) Discretize the angular Doppler plane, the number of grid cells corresponding to the Doppler frequency is N d , and the number of grid cells corresponding to the spatial frequency is N s ;
基于杂波块中的网格单元建立空时导向矢量搜索矩阵Φ,具体形式
则回波信号X表示为X=Φγ,为回波信号在角度多普勒平面对应网格单元上的复幅度,其中T表示转置操作;Then the echo signal X is expressed as X=Φγ, is the complex amplitude of the echo signal on the grid cell corresponding to the angle Doppler plane, where T represents the transpose operation;
2b)对角度多普勒平面离散化回波信号做加权空域和时域的二维傅立叶变换,其形式为式中Pb为傅立叶谱,tw为空域和时域的加权系数,为Hadamard积,得到傅立叶谱Pb;2b) Perform weighted two-dimensional Fourier transform in the spatial domain and time domain on the angular Doppler plane discretized echo signal, in the form of where P b is the Fourier spectrum, t w is the weighting coefficient in the space domain and time domain, is the Hadamard product to get the Fourier spectrum P b ;
2c)对加权空域和时域二维傅立叶变换后得到的傅立叶谱Pb取绝对值的平方,得到对应的杂波功率谱,并对其进行第一门限检测,检测出功率超过第一门限值TH1的P1个网格单元,其对应的空时二维频率为
2d)回波信号在角度多普勒平面对应网格单元上的复幅度γ具有稀疏特性,通过稀疏算法
2e)估计出网格单元上的复幅度γ的幅值后,按照幅值|γi|≥TH2,i=1,…NdNs,式中TH2为设定的第二门限值,滤除杂波二维分布曲线上较小幅值|γi|的次要网格单元,得到反映杂波的功率谱分布在对应空时二维平面分布的典型网格单元;2e) After estimating the amplitude of the complex amplitude γ on the grid unit, according to the amplitude |γ i |≥TH2, i=1,...N d N s , where TH2 is the set second threshold value, Filter out the secondary grid units with smaller amplitude |γ i | on the two-dimensional distribution curve of clutter, and obtain the typical grid unit reflecting the power spectrum distribution of clutter in the corresponding space-time two-dimensional plane distribution;
2f)检测出的P2个典型网格单元对应的空时二维频率为2f) The space-time two-dimensional frequency corresponding to the detected P2 typical grid units is
(2)步骤4的具体子步骤为:(2) The specific sub-steps of step 4 are:
4a)采用最小截取二乘方法求解优化问题4a) Solve the optimization problem using the least intercept squares method
式中zi表示标志位,zi=1表示该数据为正常点,zi=0表示该数据为干扰点,e表示全1矢量,Q为z中非零元素的个数,且Q<P;In the formula, z i represents the flag bit, z i =1 indicates that the data is a normal point, z i =0 indicates that the data is an interference point, e represents a vector of all 1s, Q is the number of non-zero elements in z, and Q<P;
4b)对上面的优化问题求解得到β的估计值进而分别计算得到v、ψ、θ对应的估计值其计算公式如下4b) Solve the above optimization problem to get the estimated value of β Then calculate the estimated values corresponding to v, ψ, and θ respectively Its calculation formula is as follows
(3)步骤5具体子步骤为:(3) The specific sub-steps of step 5 are:
5a)将得到的估计构型参数和已知参数λ、d、fr,代入归一化多普勒频率和归一化空间频率中,得到第l个杂波块对应的估计的时域导向矢量
5b)按下式计算正交于杂波子空间的投影算子5b) Calculate the projection operator orthogonal to the clutter subspace according to the following formula
式中μ是正数,以保证矩阵可逆;⊥表示正交投影算子,Η表示共轭转置操作,()-1表示矩阵求逆,I表示单位阵;where μ is a positive number to ensure that the matrix Reversible; ⊥ means orthogonal projection operator, Η means conjugate transpose operation, () -1 means matrix inversion, I means identity matrix;
5c)利用目标空时导向矢量即s=[s1,s2,…,sk,…sK]和步骤5b估计出来的正交于杂波子空间的投影算子计算得到第k个多普勒通道的空时滤波器的滤波权值向量k=1,2…K,K为多普勒通道数。滤波权值向量 5c) Utilize the target space-time steering vector That is, s=[s 1 ,s 2 ,…,s k ,…s K ] and the projection operator estimated in step 5b is orthogonal to the clutter subspace Calculate the filter weight vector of the space-time filter of the kth Doppler channel k=1,2...K, K is the number of Doppler channels. filter weight vector
其中
本发明的机载非正侧阵雷达用自适应子空间的杂波抑制方法,首先通过拟合回波数据估计的杂波功率谱与理论杂波曲线来估计杂波二维分布曲线的未知构型参数,在拟合的过程中采用LTS方法提高参数估计的稳健性,然后利用估计出的构型参数计算杂波子空间,再将数据向杂波子空间对应的正交补空间进行投影来抑制杂波。其仿真实验结果表明本发明的参数估计方法具有稳健性和准确性,利用估计参数计算的权值向量可以取得较好的杂波抑制效果。The clutter suppression method for airborne non-frontal array radar with self-adaptive subspace first estimates the unknown structure of the clutter two-dimensional distribution curve by fitting the clutter power spectrum estimated from the echo data and the theoretical clutter curve In the fitting process, the LTS method is used to improve the robustness of parameter estimation, and then the estimated configuration parameters are used to calculate the clutter subspace, and then the data is projected to the orthogonal complement space corresponding to the clutter subspace to suppress the clutter. Wave. The simulation experiment results show that the parameter estimation method of the present invention is robust and accurate, and the weight vector calculated by using the estimated parameters can obtain better clutter suppression effect.
实际中,由于惯导的精度问题及地形高程知识的缺乏,将导致杂波二维分布曲线的构型参数不准确,此时就需要利用接收回波数据来估计这些未知构型参数。由于杂波的功率谱在角度多普勒平面的轨迹由杂波二维分布曲线决定,本发明通过拟合杂波功率谱与杂波二维分布曲线,来估计相应的构型参数。In practice, due to the accuracy of inertial navigation and the lack of terrain elevation knowledge, the configuration parameters of the two-dimensional distribution curve of clutter will be inaccurate. At this time, it is necessary to use the received echo data to estimate these unknown configuration parameters. Since the trajectory of the power spectrum of the clutter on the angular Doppler plane is determined by the two-dimensional distribution curve of the clutter, the present invention estimates the corresponding configuration parameters by fitting the power spectrum of the clutter and the two-dimensional distribution curve of the clutter.
为了减小杂波的功率谱的扩散,本发明利用杂波在角度多普勒平面的稀疏性,采用稀疏算法估计回波数据的功率谱。实际上雷达回波数据中不仅有杂波信号,还可能有目标信号(主瓣目标或者旁瓣目标)。当目标信号信噪比较大时,通过稀疏算法求解后,对应于目标的角度多普勒平面的网格单元也将通过门限检测。这些目标点为干扰点,将严重影响最小二乘(LS)方法的参数估计精度;为了解决这个问题,本发明采用最小截取二乘(leasttrimmedsquares,LTS)方法代替LS方法来求解。In order to reduce the spread of the power spectrum of the clutter, the present invention utilizes the sparsity of the clutter in the angle Doppler plane, and uses a sparse algorithm to estimate the power spectrum of the echo data. In fact, there are not only clutter signals in radar echo data, but also target signals (main lobe target or side lobe target). When the signal-to-noise ratio of the target signal is large, the grid cells corresponding to the angular Doppler plane of the target will also pass the threshold detection after being solved by the sparse algorithm. These target points are interference points, which will seriously affect the parameter estimation accuracy of the least squares (LS) method; in order to solve this problem, the present invention uses the least trimmed squares (LTS) method instead of the LS method to solve the problem.
本发明中,通过拟合回波数据估计的功率谱与理论杂波曲线来估计杂波二维分布曲线的未知构型参数,在拟合的过程中采用LTS方法,提高了参数估计的准确性和稳健性。In the present invention, the unknown configuration parameters of the two-dimensional distribution curve of the clutter are estimated by fitting the power spectrum estimated by the echo data and the theoretical clutter curve, and the LTS method is used in the fitting process to improve the accuracy of parameter estimation and robustness.
本发明中,直接利用构型参数计算待检测单元的杂波子空间,然后将数据向杂波子空间对应的正交补空间进行投影来抑制掉杂波分量。该方法无需利用训练样本,避免了样本的非平稳问题。In the present invention, the configuration parameters are directly used to calculate the clutter subspace of the unit to be detected, and then the data is projected to the orthogonal complement space corresponding to the clutter subspace to suppress the clutter component. This method does not need to use training samples and avoids the problem of non-stationary samples.
附图说明Description of drawings
下面结合附图及具体实施方式对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明的机载非正侧阵雷达杂波抑制流程图。Fig. 1 is a flow chart of airborne non-frontal array radar clutter suppression in the present invention.
图2是本发明的机载雷达几何结构图。Fig. 2 is a geometric structure diagram of the airborne radar of the present invention.
图3a是本发明在无干扰点时真实杂波曲线与最小二乘法(LS)和最小截取二乘(LTS)拟合结果示意图;横坐标表示归一化多普勒频率,纵坐标表示归一化空间频率。Figure 3a is a schematic diagram of the fitting results of the real clutter curve and the least squares (LS) and least truncated squares (LTS) of the present invention when there is no interference point; the abscissa indicates the normalized Doppler frequency, and the ordinate indicates the normalized the spatial frequency.
图3b是本发明在有干扰点时真实杂波曲线与最小二乘法(LS)和最小截取二乘(LTS)拟合结果示意图;横坐标表示归一化多普勒频率,纵坐标表示归一化空间频率。Figure 3b is a schematic diagram of the fitting results of the real clutter curve and least squares (LS) and least truncated squares (LTS) in the presence of interference points in the present invention; the abscissa represents the normalized Doppler frequency, and the ordinate represents normalization the spatial frequency.
图4是最优处理、采样协方差、本发明方法(自适应子空间)的信杂噪比损失曲线示意图;横坐标表示归一化多普勒频率,纵坐标表示信杂噪比损失(dB)。Fig. 4 is optimal processing, sampling covariance, SNR loss curve schematic diagram of the inventive method (adaptive subspace); Abscissa represents normalized Doppler frequency, and ordinate represents SNR loss (dB ).
具体实施方式detailed description
参照图1,说明本发明的机载非正侧阵雷达用自适应子空间的杂波抑制方法,其具体步骤如下:With reference to Fig. 1, illustrate that airborne non-positive side array radar of the present invention uses the clutter suppressing method of adaptive subspace, its concrete steps are as follows:
步骤1,建立机载非正侧阵雷达信号模型,其杂波环的杂波二维分布曲线Step 1. Establish the airborne non-frontal array radar signal model, and the two-dimensional clutter distribution curve of its clutter ring
上式的简化函数表达式The simplified function expression of the above formula
C=Γ(η(λ,d,fr,v,ψ,θ))C= Γ (η(λ,d,fr ,v,ψ,θ))
式中C为杂波曲线,Γ为通过参数矢量计算杂波二维分布曲线的算子,η为杂波二维分布曲线的参数矢量,其中杂波二维分布曲线的参数矢量η中,λ、d、fr为雷达系统已知参数,v、ψ、θ为未知量。In the formula, C is the clutter curve, Γ is the operator for calculating the two-dimensional distribution curve of clutter through the parameter vector, and η is the parameter vector of the two-dimensional distribution curve of clutter, where in the parameter vector η of the two-dimensional distribution curve of clutter, λ , d, f r are known parameters of the radar system, v, ψ, θ are unknown quantities.
具体举例说明如下:其中,机载非正侧阵雷达结构如附图2所示,雷达工作波长为λ,相干处理间隔内发射M个脉冲,脉冲重复频率为fr,天线阵列是N个阵元组成的等距线阵,阵元间距为d,载机高度为H,载机速度为v,载机速度方向与天线阵列轴向的夹角为ψ,地面杂波散射体的俯仰角与方位角分别为θ和载机与地面杂波散射体的斜距为R。按照以上信号模型,回波信号可以表示为The specific example is as follows: Among them, the structure of the airborne non-frontal array radar is shown in Figure 2, the radar operating wavelength is λ, M pulses are transmitted in the coherent processing interval, the pulse repetition frequency is f r , and the antenna array is N arrays An equidistant linear array composed of elements, the distance between the array elements is d, the height of the aircraft is H, the speed of the aircraft is v, the angle between the speed direction of the aircraft and the axis of the antenna array is ψ, the pitch angle of the ground clutter scatterer and The azimuth angles are θ and The slant distance between the carrier aircraft and the ground clutter scatterer is R. According to the above signal model, the echo signal can be expressed as
式中n为噪声分量,xc为杂波分量,Nc为斜距为R的地面杂波环中独立的杂波块数目,αl为杂波环第l个杂波块的幅度,且不同杂波块之间相互独立,ul为杂波环第l个杂波块的空时导向矢量。where n is the noise component, x c is the clutter component, N c is the number of independent clutter blocks in the ground clutter ring with a slant distance of R, α l is the amplitude of the lth clutter block in the clutter ring, and Different clutter blocks are independent of each other, u l is the space-time steering vector of the lth clutter block in the clutter ring.
不失一般性,杂波块的空时导向矢量可以表示为Without loss of generality, the space-time steering vector of a clutter block can be expressed as
式中为Kronecker积,ut(wd)和us(ws)分别为杂波块的时域导向矢量和空域导向矢量;In the formula is the Kronecker product, u t (w d ) and u s (w s ) are the time-domain steering vector and the spatial-domain steering vector of the clutter block, respectively;
式中为归一化多普勒频率,为归一化空间频率,T表示转置操作。In the formula is the normalized Doppler frequency, To normalize the spatial frequency, T represents the transpose operation.
利用wd与ws之间的关系进行变换整理可以得到杂波环在角度多普勒域的二维分布曲线为The two-dimensional distribution curve of the clutter ring in the angle Doppler domain can be obtained by transforming the relationship between w d and w s :
此时任意一个杂波环的杂波二维分布曲线可以表示为At this time, the two-dimensional clutter distribution curve of any clutter ring can be expressed as
C=Γ(η(λ,d,fr,v,ψ,θ))C= Γ (η(λ,d,fr ,v,ψ,θ))
式中C为杂波曲线,Γ为通过参数矢量计算杂波二维分布曲线的算子,η为杂波二维分布曲线的参数矢量,其中杂波二维分布曲线的参数矢量η中,λ、d、fr为雷达系统已知参数,v、ψ、θ为未知量。In the formula, C is the clutter curve, Γ is the operator for calculating the two-dimensional distribution curve of clutter through the parameter vector, and η is the parameter vector of the two-dimensional distribution curve of clutter, where in the parameter vector η of the two-dimensional distribution curve of clutter, λ , d, f r are known parameters of the radar system, v, ψ, θ are unknown quantities.
步骤2,对回波信号进行角度多普勒平面离散化,再做加权空域和时域的二维傅立叶变换得到傅立叶谱Pb,然后对傅立叶谱Pb取绝对值的平方,得到对应的杂波功率谱;Step 2, discretize the echo signal on the Angle Doppler plane, and then perform weighted two-dimensional Fourier transform in the space domain and time domain to obtain the Fourier spectrum P b , and then take the square of the absolute value of the Fourier spectrum P b to obtain the corresponding noise wave power spectrum;
设置第一门限,滤除杂波二维分布曲线外的网格单元,利用得到的杂波二维分布曲线上的网格单元构造搜索子矩阵根据回波信号在角度多普勒平面对应网格单元上的复幅度γ具有稀疏特性,通过稀疏算法
根据杂波二维分布曲线上网格单元的复幅度γ,设置第二门限,滤除杂波二维分布曲线上较小幅值|γi|的次要网格单元,得到反映杂波的功率谱分布在对应空时二维平面分布的典型网格单元。According to the complex amplitude γ of the grid unit on the two-dimensional distribution curve of clutter, set the second threshold, filter out the secondary grid units with smaller amplitude |γ i | on the two-dimensional distribution curve of clutter, and obtain the power reflecting the clutter The spectral distribution is in a typical grid cell corresponding to a space-time two-dimensional planar distribution.
具体子步骤说明如下:The specific sub-steps are described as follows:
2a)将角度多普勒平面离散化,多普勒频率对应的网格单元数目为Nd,空域频率对应的网格单元数目为Ns。2a) The angular Doppler plane is discretized, the number of grid cells corresponding to the Doppler frequency is N d , and the number of grid cells corresponding to the spatial frequency is N s .
基于杂波块中的网格单元建立空时导向矢量搜索矩阵Φ,具体形式
则回波信号X可以表示为X=Φγ,为回波信号在角度多普勒平面对应网格单元上的复幅度,其中T表示转置。Then the echo signal X can be expressed as X=Φγ, is the complex amplitude of the echo signal on the grid cell corresponding to the angular Doppler plane, where T represents the transpose.
2b)对角度多普勒平面离散化回波信号做加权空域和时域的二维傅立叶变换,其形式为式中Pb为傅立叶谱,tw为空域和时域的加权系数,为Hadamard积,得到傅立叶谱Pb。2b) Perform weighted two-dimensional Fourier transform in the spatial domain and time domain on the angular Doppler plane discretized echo signal, in the form of where P b is the Fourier spectrum, t w is the weighting coefficient in the space domain and time domain, For the Hadamard product, the Fourier spectrum P b is obtained.
2c)对空域和时域二维傅立叶变换后得到的傅立叶谱Pb取绝对值的平方,得到对应的杂波功率谱,并对其进行第一门限检测,假定检测出共有P1个网格单元的功率超过第一门限值TH1,TH1为设定的第一门限值,一般设定为5-10dB。仿真实验中取8dB。2c) Take the square of the absolute value of the Fourier spectrum Pb obtained after the two-dimensional Fourier transform in the space domain and time domain to obtain the corresponding clutter power spectrum, and perform the first threshold detection on it, assuming that there are a total of P1 grid units detected The power exceeds the first threshold value TH1, TH1 is the set first threshold value, generally set to 5-10dB. Take 8dB in the simulation experiment.
这些网格单元对应的空时二维频率为
根据这些网格单元构建一个新的搜索子矩阵
2d)由于杂波功率谱沿杂波二维分布曲线分布,且杂波分量相对于噪声分量在回波信号中占据主要成分。这就意味着估计的功率谱只在靠近杂波二维分布曲线附近的少数网格单元上幅值较大,而在其它位置的网格单元上幅值很小并接近于零。2d) Since the power spectrum of the clutter is distributed along the two-dimensional distribution curve of the clutter, and the clutter component occupies the main component in the echo signal relative to the noise component. This means that the estimated power spectrum only has large amplitudes on a few grid cells near the clutter two-dimensional distribution curve, while the amplitudes on other grid cells are small and close to zero.
即回波信号在角度多普勒平面对应网格单元上的复幅度γ具有稀疏特性,故可以通过稀疏算法
为了降低运算量,采用2c)得到的搜索子矩阵代替稀疏算法中的Φ,即改进的稀疏算法为
2e)估计出网格单元上的复幅度γ的幅值后,按照过门限准则来提取大的幅值分量|γi|≥TH2,i=1,…NdNs,式中TH2为设定的第二门限值,一般为10-20dB,仿真实验取16dB。2e) After estimating the amplitude of the complex amplitude γ on the grid unit, extract the large amplitude component |γ i |≥TH2 according to the threshold criterion, i=1,...N d N s , where TH2 is set The second threshold value is generally 10-20dB, and the simulation experiment takes 16dB.
这样,我们就滤除杂波二维分布曲线上较小幅值|γi|的次要网格单元,得到反映杂波的功率谱分布在对应空时二维平面分布的典型网格单元。In this way, we filter out the minor grid units with smaller amplitude |γ i | on the two-dimensional distribution curve of clutter, and obtain typical grid units that reflect the power spectrum distribution of clutter in the corresponding space-time two-dimensional plane distribution.
2f)假定检测出共有P2个典型网格单元的幅值|γi|超过第二门限值TH2,这些典型网格单元对应的空时二维频率为
步骤3,对杂波环的杂波二维分布曲线Step 3, the two-dimensional distribution curve of clutter for the clutter ring
进行变换整理,写成矢量形式为y=aTβ,式中β=[1/v2cosψ/vsin2ψcos2θ]T,a=[(frλwd/2)2-λ2frwswd/d-1]T,其中β与η中未知参数v、ψ、θ有关,a,y与η中已知参数λ、d、fr及杂波的空时二维频率有关;Carry out transformation and arrangement, and write it in vector form as y=a T β, where β=[1/v 2 cosψ/vsin 2 ψcos 2 θ] T , a=[(f r λw d /2) 2 -λ 2 f r w s w d /d-1] T , Among them, β is related to the unknown parameters v, ψ, and θ in η, and a, y are related to the known parameters λ, d, f r in η and the space-time two-dimensional frequency of clutter;
然后将步骤2得到的超过第二门限的P2个典型网格单元的空时二维频率及已知构型参数代入y=aTβ的a,y中,可以得到以下方程组Then, substituting the space-time two-dimensional frequencies and known configuration parameters of P2 typical grid cells exceeding the second threshold obtained in step 2 into a, y of y=a T β, the following equations can be obtained
式中P2个网格单元对应y的实测值
步骤4,采用最小截取二乘方法求解步骤3得到的方程组得到β的估计值进而求解得到杂波二维分布曲线的构型参数v、ψ、θ对应的估计值值。Step 4, using the least intercept squares method to solve the system of equations obtained in step 3 Get an estimate of β Then solve the estimated values corresponding to the configuration parameters v, ψ, and θ of the two-dimensional distribution curve of clutter value.
具体的子步骤说明如下:The specific sub-steps are described as follows:
4a)LTS是一种稳健的回归方法,可以表示成以下优化问题4a) LTS is a robust regression method that can be formulated as the following optimization problem
式中zi表示标志位,zi=1表示该数据为正常点,zi=0表示该数据为干扰点,e表示全1矢量,Q表示z中非零元素的个数,且Q<P。In the formula, z i represents the flag bit, z i =1 indicates that the data is a normal point, z i =0 indicates that the data is an interference point, e represents a vector of all 1s, Q represents the number of non-zero elements in z, and Q< p.
4b)对上面的优化问题求解得到β的估计值进而可以分别计算得到v、ψ、θ对应的估计值其计算公式如下4b) Solve the above optimization problem to get the estimated value of β In turn, the estimated values corresponding to v, ψ, and θ can be calculated separately Its calculation formula is as follows
步骤5,利用估计出来的杂波二维分布曲线的构型参数与已知参数λ、d、fr,计算出杂波二维分布曲线的对应的杂波空时导向矢量矩阵子空间正交投影算子和滤波权值向量W。Step 5, using the configuration parameters of the estimated two-dimensional distribution curve of clutter With the known parameters λ, d, f r , calculate the corresponding clutter space-time steering vector matrix of the clutter two-dimensional distribution curve Subspace Orthographic Projection Operator And filter weight vector W.
具体的子步骤说明如下:The specific sub-steps are described as follows:
5a)将得到的估计构型参数和已知参数λ、d、fr,代入归一化多普勒频率和归一化空间频率中,得到第l个杂波块对应的估计的时域导向矢量
5b)按下式计算正交于杂波子空间的投影算子5b) Calculate the projection operator orthogonal to the clutter subspace according to the following formula
式中μ是正数,以保证矩阵可逆;⊥表示正交投影算子,Η表示共轭转置操作,()-1表示矩阵求逆,I表示单位阵;where μ is a positive number to ensure that the matrix Reversible; ⊥ means orthogonal projection operator, Η means conjugate transpose operation, () -1 means matrix inversion, I means identity matrix;
5c)利用目标空时导向矢量即s=[s1,s2,…,sk,…sK]和步骤5b估计出来的正交于杂波子空间的投影算子计算得到第k个多普勒通道的空时滤波器的滤波权值向量k=1,2…K,K为多普勒通道数。滤波权值向量 5c) Utilize the target space-time steering vector That is, s=[s 1 ,s 2 ,…,s k ,…s K ] and the projection operator estimated in step 5b is orthogonal to the clutter subspace Calculate the filter weight vector of the space-time filter of the kth Doppler channel k=1,2...K, K is the number of Doppler channels. filter weight vector
其中
步骤6,根据滤波权值向量W构造相应的空时滤波器,抑制回波信号X中的杂波,得到当前杂波块杂波抑制后的最终多普勒谱:Z=WHX。Step 6: Construct a corresponding space-time filter according to the filter weight vector W to suppress the clutter in the echo signal X, and obtain the final Doppler spectrum of the current clutter block after clutter suppression: Z=W H X.
具体地,利用第k个多普勒通道滤波权值向量Wk构造相应的空时滤波器,抑制回波信号X中的杂波,得到当前杂波块、第k个多普勒通道的输出为:k=1,2…K,K为多普勒通道数,H表示共轭转置操作;得到当前杂波块杂波抑制后的最终多普勒谱:Z=[Z1,Z2,…,ZK]T,T表示转置操作。Specifically, use the k-th Doppler channel filter weight vector W k to construct a corresponding space-time filter to suppress the clutter in the echo signal X, and obtain the output of the current clutter block and the k-th Doppler channel for: k=1,2...K, K is the number of Doppler channels, H represents the conjugate transpose operation; get the final Doppler spectrum of the current clutter block after clutter suppression: Z=[Z 1 ,Z 2 ,… ,Z K ] T , T represents the transpose operation.
下面通过仿真实验,对本发明的杂波抑制方法的性能进行详细说明。The performance of the clutter suppression method of the present invention will be described in detail below through simulation experiments.
(1)仿真实验1验证本发明参数估计的稳健性(1) Simulation experiment 1 verifies the robustness of the parameter estimation of the present invention
(1.1)仿真参数(1.1) Simulation parameters
仿真参数如表1所示,待检测单元斜距为7km,杂噪比为50dB,加入两个干扰点,分别代表主瓣目标与旁瓣目标,对应的空时二维频率为(-0.40.0)、(0.2-0.25),信噪比为20dB。The simulation parameters are shown in Table 1. The slant distance of the unit to be detected is 7km, and the noise-to-noise ratio is 50dB. Two interference points are added to represent the main lobe target and the side lobe target respectively. The corresponding space-time two-dimensional frequency is (-0.40. 0), (0.2-0.25), the signal-to-noise ratio is 20dB.
表1机载雷达系统参数Table 1 Airborne Radar System Parameters
(1.2)仿真数据处理结果及分析(1.2) Simulation data processing results and analysis
附图3a和图3b分别给出了无干扰点和有干扰点时最小二乘(leastsquare,LS)和LTS这两种方法的杂波曲线拟合结果。图中‘○’对应杂波点迹,‘*’对应目标点迹。由图3a可以看出无干扰点时两种方法估计的杂波曲线与真实杂波曲线基本重合,表明了两种方法在无干扰点时均可以取得较高的参数估计精度。由图3b可以看出在存在干扰点时LS估计的杂波曲线明显偏离真实杂波曲线,这是因为LS方法通过最小化所有数据的剩余误差平方来求解系数矢量,未考虑干扰点的影响。LTS估计的杂波曲线仍然和真实杂波曲线基本重合,这是因为LTS假定数据中存在干扰点,通过优化选取正常数据进行计算,所以可以取得较好的参数估计效果。Figures 3a and 3b show the clutter curve fitting results of the least square (LS) and LTS methods when there are no interference points and interference points, respectively. In the figure, '○' corresponds to the clutter trace, and '*' corresponds to the target trace. It can be seen from Figure 3a that the clutter curves estimated by the two methods basically coincide with the real clutter curve when there are no interference points, which shows that both methods can achieve high parameter estimation accuracy when there are no interference points. It can be seen from Figure 3b that the clutter curve estimated by LS deviates significantly from the real clutter curve when there are interference points. This is because the LS method solves the coefficient vector by minimizing the residual error square of all data, without considering the influence of interference points. The clutter curve estimated by LTS still basically coincides with the real clutter curve. This is because LTS assumes that there are interference points in the data and selects normal data for calculation through optimization, so better parameter estimation results can be obtained.
(2)仿真实验2验证本发明参数估计的稳健性(2) Simulation experiment 2 verifies the robustness of the parameter estimation of the present invention
(2.1)仿真参数(2.1) Simulation parameters
仿真参数同仿真实验1,重复进行100次蒙特卡罗实验,得到LTS方法参数估计的均方根误差(rootmeansquareerror,RMSE)如表2所示。The simulation parameters are the same as the simulation experiment 1, and the Monte Carlo experiment is repeated 100 times, and the root mean square error (root mean square error, RMSE) of the parameter estimation of the LTS method is obtained as shown in Table 2.
表2参数估计RMSETable 2 parameter estimation RMSE
(2.2)仿真数据处理结果及分析(2.2) Simulation data processing results and analysis
由表2可以看出LTS方法估计的均方根误差较小,估计参数接近于真值。这是由于稀疏谱估计的杂波谱位置较为准确,由图3a和图3b可以看出杂波点迹基本位于真实杂波谱线附近,而且LTS方法通过加权抑制了干扰点的影响。It can be seen from Table 2 that the root mean square error estimated by the LTS method is small, and the estimated parameters are close to the true value. This is because the position of the clutter spectrum estimated by the sparse spectrum is relatively accurate. It can be seen from Fig. 3a and Fig. 3b that the clutter trace is basically located near the real clutter spectral line, and the LTS method suppresses the influence of the interference point by weighting.
(3)仿真实验3验证本发明的杂波抑制性能(3) Simulation experiment 3 verifies the clutter suppression performance of the present invention
(3.1)实验方法(3.1) Experimental method
以信杂噪比损失为准则验证算法的性能,信杂噪比损失定义为The performance of the algorithm is verified by using the SNR loss as the criterion, and the SNR loss is defined as
式中分别表示单阵元单脉冲的目标功率与噪声功率,为目标的相关矩阵,R为理论的杂波加噪声协方差矩阵。In the formula Respectively represent the target power and noise power of a single pulse of a single array element, is the target correlation matrix, and R is the theoretical clutter plus noise covariance matrix.
(3.2)仿真数据处理结果及分析(3.2) Simulation data processing results and analysis
附图4给出了最优处理、采样协方差、本文方法(自适应子空间)的信杂噪比损失曲线。由图4可以看出采样协方差相对于最优处理性能明显下降,这是因为采样协方差利用距离样本平均得到的协方差矩阵估计Ravg为R的有偏估计。本发明的自适应子空间方法性能明显优于采样协方差方法,这是因为子空间方法直接利用构型参数计算杂波子空间投影算子,避免了样本非平稳问题。Figure 4 shows the SNR loss curves of optimal processing, sampling covariance, and the method in this paper (adaptive subspace). It can be seen from Figure 4 that the sampling covariance is significantly lower than the optimal processing performance. This is because the sampling covariance uses the covariance matrix estimate R avg obtained from the average distance sample to be a biased estimate of R. The performance of the self-adaptive subspace method of the present invention is obviously better than that of the sampling covariance method, because the subspace method directly uses configuration parameters to calculate the clutter subspace projection operator, avoiding the problem of non-stationary samples.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410123524.XA CN103926572B (en) | 2014-03-28 | 2014-03-28 | A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410123524.XA CN103926572B (en) | 2014-03-28 | 2014-03-28 | A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103926572A CN103926572A (en) | 2014-07-16 |
| CN103926572B true CN103926572B (en) | 2016-06-29 |
Family
ID=51144861
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410123524.XA Expired - Fee Related CN103926572B (en) | 2014-03-28 | 2014-03-28 | A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103926572B (en) |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104408278A (en) * | 2014-10-09 | 2015-03-11 | 哈尔滨工程大学 | A method for forming steady beam based on interfering noise covariance matrix estimation |
| CN104777460B (en) * | 2015-04-27 | 2017-07-07 | 武汉滨湖电子有限责任公司 | A kind of double wave shape phase code self-adapting clutter in PD radars offsets method |
| CN105022040A (en) * | 2015-07-08 | 2015-11-04 | 西安电子科技大学 | Array element error estimation method based on clutter data combined fitting |
| CN105738887B (en) * | 2016-01-29 | 2018-03-06 | 西安电子科技大学 | The optimization method of airborne radar clutter power spectrum based on the division of Doppler's passage |
| CN106970358B (en) * | 2017-04-28 | 2019-12-24 | 西安电子科技大学 | An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar |
| CN107219505B (en) * | 2017-05-18 | 2019-11-22 | 西安电子科技大学 | Space-time reconstruction method of 3D heterogeneous array based on space-time equivalence of clutter |
| CN107255797B (en) * | 2017-06-27 | 2020-06-16 | 电子科技大学 | Airborne radar clutter suppression method based on emission space-time weight optimization and KA-STAP |
| CN108199735B (en) * | 2018-02-06 | 2019-09-17 | 成都纳雷科技有限公司 | It is a kind of for the Adaptive Suppression method of transmitting radar antenna crosstalk, filter |
| CN109061551B (en) * | 2018-08-02 | 2022-03-15 | 西北工业大学 | Grid-free sparse spectrum estimation method based on polynomial root finding |
| CN109324322B (en) * | 2018-10-31 | 2020-11-20 | 中国运载火箭技术研究院 | A Direction Finding and Target Recognition Method Based on Passive Phased Array Antenna |
| CN111220977B (en) * | 2020-01-16 | 2022-04-08 | 深圳大学 | Likelihood MUSIC low elevation angle estimation method based on angle and frequency domain filtering |
| CN112255613B (en) * | 2020-12-23 | 2021-04-30 | 北京海兰信数据科技股份有限公司 | Method and system for automatically suppressing navigation radar sea clutter |
| CN112904298B (en) * | 2021-01-20 | 2022-11-04 | 西安电子科技大学 | A Space-Time Adaptive Processing Method for Grid Deviation Based on Local Grid Splitting |
| CN113093098B (en) * | 2021-04-09 | 2023-05-16 | 河南理工大学 | Axial inconsistent vector hydrophone array direction finding method based on lp norm compensation |
| CN115201760B (en) * | 2022-05-23 | 2025-03-25 | 哈尔滨工业大学 | Strong sea clutter suppression method based on multi-domain combination |
| CN115412413B (en) * | 2022-07-14 | 2023-07-25 | 南京信息工程大学 | A 5G OFDM signal-based radar clutter suppression method for external radiation sources |
| CN117092600B (en) * | 2023-10-18 | 2024-01-02 | 中国人民解放军63961部队 | Array channel multiplexing interference cancellation method |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7109911B1 (en) * | 2002-04-01 | 2006-09-19 | Cataldo Thomas J | Dual synthetic aperture radar system |
| CN103176168A (en) * | 2013-02-05 | 2013-06-26 | 西安电子科技大学 | Short-range cluster cancellation method for airborne non-side-looking array radar |
| CN103364764A (en) * | 2013-06-25 | 2013-10-23 | 西安电子科技大学 | Airborne radar non-stationary clutter suppression method |
| CN103383449A (en) * | 2013-07-14 | 2013-11-06 | 西安电子科技大学 | ESPRIT algorithm based short-range clutter suppression method for airborne radar |
| CN103605114A (en) * | 2013-12-03 | 2014-02-26 | 西安电子科技大学 | Non-broadside array airborne radar short range clutter suppression method based on multiple frequencies |
-
2014
- 2014-03-28 CN CN201410123524.XA patent/CN103926572B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7109911B1 (en) * | 2002-04-01 | 2006-09-19 | Cataldo Thomas J | Dual synthetic aperture radar system |
| CN103176168A (en) * | 2013-02-05 | 2013-06-26 | 西安电子科技大学 | Short-range cluster cancellation method for airborne non-side-looking array radar |
| CN103364764A (en) * | 2013-06-25 | 2013-10-23 | 西安电子科技大学 | Airborne radar non-stationary clutter suppression method |
| CN103383449A (en) * | 2013-07-14 | 2013-11-06 | 西安电子科技大学 | ESPRIT algorithm based short-range clutter suppression method for airborne radar |
| CN103605114A (en) * | 2013-12-03 | 2014-02-26 | 西安电子科技大学 | Non-broadside array airborne radar short range clutter suppression method based on multiple frequencies |
Non-Patent Citations (2)
| Title |
|---|
| Range dependentclutterrejectionusingrange-recursivespace-time adaptiveprocessing(STAP)algorithms;Sophie Beau等;《Signal Processing 90(2010)》;20101231;57-68 * |
| 弹载俯冲非正侧阵雷达杂波特性与抑制方法;许京伟等;《系统工程与电子技术》;20130831;第35卷(第8期);1631-1637 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103926572A (en) | 2014-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103926572B (en) | A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side | |
| CN104035095B (en) | Based on the low level wind shear velocity estimation method of optimal processor during sky | |
| CN103364764B (en) | Airborne radar non-stationary clutter suppression method | |
| CN105223560B (en) | Airborne radar object detection method based on the sparse recovery of clutter pitching azimuth spectrum | |
| CN105738879B (en) | Radar clutter space-time adaptive pre-filtering method based on sparse recovery | |
| CN105445701B (en) | The pulse angle estimating method of DDMA MIMO radar targets | |
| CN107991659B (en) | Altimetry method for low-elevation targets of meter-wave radar based on dictionary learning | |
| CN102879767B (en) | A method of jamming target detection for space-time adaptive processing | |
| CN103760529B (en) | Efficient cascading space-time adaptive processing method based on passive detection | |
| CN106483516A (en) | Radar clutter space-time adaptive processing method based on priori | |
| CN107167783B (en) | Sparse reconstruction method of conformal array clutter covariance matrix | |
| CN103353595A (en) | Meter wave radar height measurement method based on array interpolation compression perception | |
| CN109212500A (en) | A kind of miscellaneous covariance matrix high-precision estimation method of making an uproar of KA-STAP based on sparse reconstruct | |
| CN112612006B (en) | Deep learning-based non-uniform clutter suppression method for airborne radar | |
| CN109324322A (en) | A Direction Finding and Target Recognition Method Based on Passive Phased Array Antenna | |
| CN106872982A (en) | Waterfall flow center wind estimation method is hit under dimensionality reduction STAP based on Doppler's pre-filtering is micro- | |
| CN102608587B (en) | Air Maneuvering Target Detection Method Based on Nonlinear Least Squares | |
| CN103852749A (en) | Robust waveform optimization method for improving MIMO-STAP detection performance | |
| CN105487054A (en) | Steady waveform design method for improving STAP worst detection performance based on MIMO-OFDM radar | |
| CN109061598B (en) | STAP clutter covariance matrix estimation method | |
| CN104020459A (en) | Waveform optimization method for improving MIMO-STAP detection performance | |
| CN104793210B (en) | Compressed sensing based onboard phased array radar low-altitude wind shear wind speed estimation method | |
| CN103760540B (en) | Based on moving target detect and the method for parameter estimation of reconstruction signal and 1-norm | |
| CN106054195B (en) | The turbulent flow spectrum width method of estimation of optimal processor during based on sky | |
| CN100585429C (en) | A Passive Channel Correction Method Based on Nonlinear Antenna Array |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160629 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |