CN103927538B - Threshold selection method for improving spectral angle mapping precision - Google Patents
Threshold selection method for improving spectral angle mapping precision Download PDFInfo
- Publication number
- CN103927538B CN103927538B CN201410099909.7A CN201410099909A CN103927538B CN 103927538 B CN103927538 B CN 103927538B CN 201410099909 A CN201410099909 A CN 201410099909A CN 103927538 B CN103927538 B CN 103927538B
- Authority
- CN
- China
- Prior art keywords
- rad
- spectral
- target image
- threshold
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 100
- 238000013507 mapping Methods 0.000 title claims abstract description 23
- 238000010187 selection method Methods 0.000 title claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000001228 spectrum Methods 0.000 claims description 11
- 238000010183 spectrum analysis Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 description 2
- 206010061274 Malocclusion Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Analysis (AREA)
Abstract
本发明属于遥感信息科学技术领域,具体公开一种提高光谱角填图精度的阈值选取方法:获取目标影像纯净端元波谱曲线;对端元波谱曲线分类,构建每类地物的波谱曲线集合;计算不同种类的地物之间光谱角弧度相似值;获取地物两两之间光谱角弧度相似值集合的最大值;根据光谱角弧度相似值集合的最大值,获取地物的提取阈值的上限值;计算同类别地物光谱角弧度相似值;根据同类别地物光谱角弧度相似值,获取每类地物弧度相似值集合的最小值;根据每类地物弧度相似值集合的最小值,获取地物的提取阈值的下限值;比较上限值和下限值的大小,选择提取阈值,保证地物信息提取的准确性和完整性。该方法能够保证目标影像地物信息提取的准确性和完整性。The invention belongs to the field of remote sensing information science and technology, and specifically discloses a threshold selection method for improving the accuracy of spectral angle mapping: obtaining pure endmember spectral curves of target images; classifying endmember spectral curves, and constructing spectral curve sets for each type of ground object; Calculate the spectral angle arc similarity value between different types of ground objects; obtain the maximum value of the spectral angle arc similarity value set between two ground objects; according to the maximum value of the spectral angle arc similarity value set, obtain the upper threshold value of the ground object extraction Limit value; Calculate the arc similarity value of the spectral angle of the same type of feature; According to the similar value of the spectral angle arc of the same type of feature, obtain the minimum value of the arc similar value set of each type of feature; according to the minimum value of the arc similar value set of each type of feature , to obtain the lower limit value of the extraction threshold of the ground feature; compare the upper limit value and the lower limit value, select the extraction threshold value, and ensure the accuracy and completeness of the ground feature information extraction. This method can ensure the accuracy and completeness of object information extraction from imagery.
Description
技术领域technical field
本发明属于遥感信息科学技术领域。具体涉及一种光谱角填图方法的阈值选取方法。The invention belongs to the field of remote sensing information science and technology. In particular, the invention relates to a threshold value selection method of a spectral angle mapping method.
背景技术Background technique
光谱角填图方法是成像光谱图像处理技术中,对地物进行识别的主要方法之一。该算法是将图像波谱直接同参考波谱匹配的一种交互式分类方法,是一种比较图像波谱与地物波谱或波谱库中地物波谱的自动分类方法。该方法充分利用了光谱维的信息,强调了光谱的形状特征,大大减少了特征信息。The spectral angle mapping method is one of the main methods to identify ground objects in imaging spectral image processing technology. This algorithm is an interactive classification method that directly matches the image spectrum with the reference spectrum, and is an automatic classification method that compares the image spectrum with the ground object spectrum or the ground object spectrum in the spectrum library. This method makes full use of the information of the spectral dimension, emphasizes the shape characteristics of the spectrum, and greatly reduces the characteristic information.
当前,光谱角填图方法已经成功的应用到了多个领域的地物识别中,主要是因为该方法主要关注于光谱的形态,减少了光谱特征增益和漂移的影响。在光谱角填图技术中,阈值的选择至关重要。阈值小了,信息提取结果有缺失,阈值大了,提取的准确性降低。因此,需要一种新的方法来选取阈值,用以提高光谱角填图结果的准确性和完整性。At present, the spectral angle mapping method has been successfully applied to ground object recognition in many fields, mainly because this method mainly focuses on the shape of the spectrum and reduces the influence of spectral feature gain and drift. In the spectral angle mapping technique, the selection of the threshold is very important. If the threshold is small, the information extraction results will be missing, and if the threshold is large, the accuracy of extraction will decrease. Therefore, a new method is needed to select the threshold to improve the accuracy and completeness of the spectral angle mapping results.
发明内容Contents of the invention
本发明的目的在于针对光谱角的阈值的设定缺陷,提供一种提高光谱角填图精度的阈值选取方法,该方法能够保证目标影像地物信息提取的准确性和完整性。The purpose of the present invention is to provide a threshold selection method that improves the accuracy of spectral angle mapping for the defect of threshold value setting of spectral angle.
为实现上述目的,本发明的技术方案如下:一种提高光谱角填图精度的阈值选取方法,该方法包括以下步骤:In order to achieve the above object, the technical solution of the present invention is as follows: a threshold selection method for improving spectral angle mapping accuracy, the method comprises the following steps:
步骤1,获取目标影像地物的纯净端元波谱曲线;Step 1, obtain the pure endmember spectral curve of the target image object;
步骤2,根据波谱曲线的形态和特征位置,对上述步骤(1)中获取的目标影像地物的纯净端元波谱曲线进行分类,确定目标影像的地物种类数,并构建每类目标影像地物的波谱曲线集合;Step 2. According to the shape and characteristic position of the spectral curve, classify the pure endmember spectral curve of the target image object obtained in the above step (1), determine the number of object types in the target image, and construct each type of target image feature. Spectral curve collection of objects;
步骤3,利用光谱分析工具,分别计算不同种类的目标影像地物A、B、C之间光谱角弧度相似值rad,其中,rad(A,B)、rad(A,C)、rad(B,C)分别表示A和B、A和C、B和C三类目标影像两类地物之间光谱角弧度相似值集合;Step 3, use the spectral analysis tool to calculate the similarity value rad of the spectral angle radian among different types of target image objects A, B, C, among them, rad(A,B), rad(A,C), rad(B , C) Respectively represent the sets of spectral angle radian similarity values between the three types of target images, A and B, A and C, B and C, and two types of ground objects;
步骤4,获取上述步骤3中A和B、A和C、B和C三类目标影像地物两两之间的光谱角弧度相似值集合rad(A,B)、rad(A,C)、rad(B,C)的最大值δAB、δAC、δBC;Step 4, obtain the spectral angle radian similarity value sets rad(A,B), rad(A,C), The maximum value of rad(B,C) δ AB , δ AC , δ BC ;
步骤5,根据上述步骤4中得到的光谱角弧度相似值集合的最大值δAB、δAC、δBC,获取目标影像地物A、B、C的提取阈值Athreshold、Bthreshold、Cthreshold的上限值Athresholdmax、Bthresholdmax、Cthresholdmax;Step 5, according to the maximum value δ AB , δ AC , δ BC of the spectral angle radian similar value set obtained in the above step 4, obtain the extraction thresholds A threshold , B threshold , C threshold of the target image features A, B, C Upper limit A thresholdmax , B thresholdmax , C thresholdmax ;
步骤6,利用光谱分析工具,计算同类别目标影像地物光谱角弧度相似值rad(A,A)、rad(B,B)、rad(C,C);Step 6, use the spectral analysis tool to calculate the radian similarity values rad(A,A), rad(B,B), rad(C,C) of the spectral angle of the object image of the same category of objects;
步骤7:根据上述步骤6中得到的同类别目标影像地物光谱角的弧度相似值rad(A,A)、rad(B,B)、rad(C,C),获取每类目标影像地物光谱角弧度相似值集合的最小值βAA、βBB、βCC;Step 7: According to the radian similarity values rad(A,A), rad(B,B) and rad(C,C) of the spectral angles of the target images of the same category obtained in the above step 6, obtain each type of target image features The minimum value β AA , β BB , β CC of the set of spectral angle radian similarity values;
步骤8,根据上述步骤7中得到的每类目标影像地物弧度相似值集合的最小值βAA、βBB、βCC,获取目标影像地物A、B、C的提取阈值Athreshold、Bthreshold、Cthreshold的下限值Athresholdmin、Bthresholdmin、Cthresholdmin;Step 8, according to the minimum value β AA , β BB , β CC of the radian similarity value set of each type of target image features obtained in the above step 7, obtain the extraction thresholds A threshold , B threshold of the target image features A, B, C , the lower limit of C threshold A thresholdmin , B thresholdmin , C thresholdmin ;
步骤9:比较上述步骤5中得到的提取阈值上限值Athresholdmax、Bthresholdmax、Cthresholdmax和上述步骤8中得到的下限值Athresholdmin、Bthresholdmin、Cthresholdmin的大小,从而选择提取阈值,保证目标影像地物信息提取的准确性和完整性。Step 9: Compare the extraction threshold upper limit values A thresholdmax , B thresholdmax , C thresholdmax obtained in the above step 5 with the lower limit values A thresholdmin , B thresholdmin , and C thresholdmin obtained in the above step 8, so as to select the extraction threshold and ensure Accuracy and completeness of target image feature information extraction.
所述的步骤1中采用沙漏方法、或者连续最大角凸锥的方法获取目标影像地物纯净端元波谱曲线。In the step 1, the hourglass method or the continuous maximum angle convex cone method is used to obtain the pure endmember spectral curve of the target image object.
所述的步骤2的具体步骤:影像目标地物种类有三种分别为A、B、C,则每类目标影像地物A、B、C的波谱曲线集合分别表示为SA={a1、a2、a3…ai},SB={b1、b2、b3…bj},SC={c1、c2、c3…ck}。The specific steps of the above step 2: there are three types of image target features, namely A, B, and C, and the spectral curve sets of each type of target image features A, B, and C are expressed as SA={a 1 , a 2 , a 3 ...a i }, SB={b 1 , b 2 , b 3 ...b j }, SC={c 1 , c 2 , c 3 ...c k }.
所述的步骤3中的rad(A,B)、rad(A,C)、rad(B,C)的具体公式分别如下:The specific formulas of rad(A, B), rad(A, C), and rad(B, C) in the step 3 are as follows:
所述的步骤4中的δAB、δAC、δBC的具体公式分别如下:The specific formulas of δ AB , δ AC , and δ BC in the step 4 are as follows:
δAB=max(rad(A,B))=max{rad(a1,b1),rad(a1,b2),rad(a1,b3)...rad(ai,bj)}δ AB =max(rad(A,B))=max{rad(a 1 ,b 1 ),rad(a 1 ,b 2 ),rad(a 1 ,b 3 )...rad(a i ,b j )}
δAC=max(rad(A,C))=max{rad(a1,c1),rad(a1,c2),rad(a1,c3)...rad(ai,ck)}δ AC =max(rad(A,C))=max{rad(a 1 ,c 1 ),rad(a 1 ,c 2 ),rad(a 1 ,c 3 )...rad(a i ,c k )}
δBC=max(rad(B,C))=max{rad(b1,c1),rad(b1,c2),rad(b1,c3)...rad(bj,ck)}。δ BC =max(rad(B,C))=max{rad(b 1 ,c 1 ),rad(b 1 ,c 2 ),rad(b 1 ,c 3 )...rad(b j ,c k )}.
所述的步骤5中的Athresholdmax、Bthresholdmax、Cthresholdmax的具体公式分别如下:The concrete formulas of A thresholdmax , B thresholdmax , C thresholdmax in the described step 5 are as follows respectively:
Athresholdmax=1-Max(δAB,δAC)A thresholdmax =1-Max(δ AB ,δ AC )
Bthresholdmax=1-Max(δAB,δBC)B thresholdmax =1-Max(δ AB ,δ BC )
Cthresholdmax=1-Max(δAC,δBC)。C thresholdmax = 1-Max(δ AC , δ BC ).
所述的步骤6中的rad(A,A)、rad(B,B)、rad(C,C)的具体公式分别如下:The concrete formulas of rad(A, A), rad(B, B), rad(C, C) in the described step 6 are as follows respectively:
rad(A,A)={rad(an,am),其中,n=1,2,…i-1,m=n+1,n+2,…i且n≠m}rad(A,A)={rad(a n ,a m ), where n=1,2,…i-1, m=n+1,n+2,…i and n≠m}
rad(B,B)={rad(bn,bm),其中,n=1,2,…j-1,m=n+1,n+2,…j且n≠m}rad(B,B)={rad(b n ,b m ), where n=1,2,...j-1, m=n+1,n+2,...j and n≠m}
rad(C,C)={rad(cn,cm),其中,n=1,2,…k-1,m=n+1,n+2,…k且n≠m}rad(C,C)={rad(c n ,c m ), where n=1,2,...k-1, m=n+1,n+2,...k and n≠m}
所述的步骤7中的βAA、βBB、βCC的具体公式分别如下:The specific formulas of β AA , β BB , and β CC in the step 7 are as follows:
βAA=min(rad(A,A))=min{rad(an,am),其中,n=1,2,…i-1,m=n+1,n+2,…i且n≠m}β AA =min(rad(A,A))=min{rad(a n , am ), where n=1,2,...i-1, m=n+1,n+2,...i and n≠m}
βBB=min(rad(B,B))=min{rad(bn,bm),其中,n=1,2,…j-1,m=n+1,n+2,…j且n≠m}β BB =min(rad(B,B))=min{rad(b n ,b m ), where n=1,2,...j-1, m=n+1,n+2,...j and n≠m}
βCC=min(rad(C,C))=min{rad(cn,cm),其中,n=1,2,…k-1,m=n+1,n+2,…k且n≠m}。β CC =min(rad(C,C))=min{rad(c n ,c m ), where n=1,2,...k-1, m=n+1,n+2,...k and n≠m}.
所述的步骤(8)中的Athresholdmin、Bthresholdmin、Cthresholdmin的具体公式分别如下:The specific formulas of A thresholdmin , B thresholdmin , C thresholdmin in the described step (8) are as follows respectively:
Athresholdmin=1-βAA A thresholdmin = 1-β AA
Bthresholdmin=1-βBB B thresholdmin = 1-β BB
Cthresholdmin=1-βCC。C thresholdmin = 1 - β CC .
所述的步骤9中具体包括以下两种情况:The step 9 specifically includes the following two situations:
(9.1)当某类目标影像地物的提取阈值的上限值小于下限值时,无法同时保证该类目标影像地物信息提取的准确性和完整性;(9.1) When the upper limit value of the extraction threshold of a certain type of target image feature is less than the lower limit value, the accuracy and completeness of the extraction of this type of target image feature information cannot be guaranteed at the same time;
(9.2)当某类目标影像地物的上限值大于等于下限值时,该类目标影像地物的光谱角填图的阈值等于这两个值或取上限值和下限值中区间中的任意值,能够同时保证该类目标影像地物信息提取的完整性和准确性。(9.2) When the upper limit value of a certain type of target image feature is greater than or equal to the lower limit value, the threshold value of the spectral angle mapping of this type of target image feature is equal to these two values or takes the interval between the upper limit value and the lower limit value Any value in , can guarantee the completeness and accuracy of this kind of target image feature information extraction at the same time.
本发明的有益效果如下:本发明的方法通过选取光谱角填图方法中的阈值的上限值和下限值,并判断上限值与下限值的大小,能够保证所提取目标地物不存在混有其他地物的情况,提高目标影像地物的光谱角填图结果的准确性和完整性,弥补因阈值选择不合适而存在漏提和误提的现象,从而提高目标影像地物信息提取的精度。The beneficial effects of the present invention are as follows: the method of the present invention can ensure that the extracted target features are not In the case of other ground objects mixed in, the accuracy and completeness of the spectral angle mapping results of the target image and ground objects can be improved, and the phenomenon of omission and wrong extraction due to inappropriate selection of the threshold can be compensated, thereby improving the information of the target image and ground features. Extraction accuracy.
具体实施方式detailed description
下面结合附图和实施案例对本发明做进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and examples of implementation.
本发明所提供的一种适用于提高光谱角填图精度的阈值选取方法,包括如下步骤:A threshold selection method suitable for improving the accuracy of spectral angle mapping provided by the present invention comprises the following steps:
步骤1,获取目标影像纯净端元波谱曲线Step 1. Obtain the pure endmember spectral curve of the target image
获取目标影像纯净端元波谱曲线的目的是在不降低分类精度的前提下,最大程度的减少后期的运算量。通常一幅影像像元数为数以千计或更大,而纯净端元波谱数一般小于100。The purpose of obtaining the pure endmember spectral curve of the target image is to minimize the amount of computation in the later stage without reducing the classification accuracy. Usually the number of pixels in an image is thousands or more, and the number of pure endmember spectra is generally less than 100.
可以采用沙漏方法、或者连续最大角凸锥的方法获取实际影像中的目标地物纯净端元波谱曲线。The hourglass method or the continuous maximum angle convex cone method can be used to obtain the pure endmember spectral curve of the target object in the actual image.
步骤2,根据波谱曲线的形态和特征位置,对上述步骤(1)中获取的目标影像地物的端元波谱曲线进行分类,确定目标影像的地物种类数,并构建每类目标影像地物的波谱曲线集合。Step 2. According to the shape and characteristic position of the spectral curve, classify the endmember spectral curves of the target image features obtained in the above step (1), determine the number of target image types, and construct each type of target image feature collection of spectral curves.
假设步骤(1)中获取的纯净波谱端元数为50,实际影像目标地物种类有三种分别为A、B、C,则每类影像目标地物A、B、C的波谱曲线集合分别表示为SA={a1、a2、a3…ai},SB={b1、b2、b3…bj},SC={c1、c2、c3…ck}。其中a、b、c分别为目标影像地物A、B、C的二维波谱散点曲线,a1代表地物A的第一条曲线,依次类推,i、j、k分别为目标影像地物A、B、C的波曲线数。0<i<50,0<j<50,0<k<50,且三者之和等于50。Assuming that the number of pure spectrum endmembers obtained in step (1) is 50, and there are three types of actual image target objects, A, B, and C, the spectral curve sets of each type of image target objects A, B, and C represent respectively SA={a 1 , a 2 , a 3 ...a i }, SB={b 1 , b 2 , b 3 ...b j }, SC={c 1 , c 2 , c 3 ...c k }. Among them, a, b, and c are the two-dimensional spectral scatter curves of the target image objects A, B, and C respectively, a 1 represents the first curve of the object A, and so on, and i, j, and k are the target image ground objects respectively. The number of wave curves of objects A, B, and C. 0<i<50, 0<j<50, 0<k<50, and the sum of the three is equal to 50.
步骤3,利用光谱分析工具,分别计算不同种类的目标影像地物A、B、C之间光谱角弧度相似值(Radians Similarity简写为rad)Step 3, use spectral analysis tools to calculate the similarity values of spectral angles between different types of target image features A, B, and C (Radians Similarity is abbreviated as rad)
rad的取值范围为(0,1),保留小数点后两位。值越大两条光谱曲线的相似程度越高,完全相同的两条光谱曲线的弧度相似值为1。The value range of rad is (0,1), with two decimal places reserved. The larger the value is, the higher the similarity between the two spectral curves is, and the radian similarity value of two completely identical spectral curves is 1.
rad(A,B)、rad(A,C)、rad(B,C)分别表示A和B、A和C、B和C三类目标影像两类地物之间光谱角弧度相似值集合,rad(A,B)、rad(A,C)、rad(B,C)的具体公式分别如下:rad(A,B), rad(A,C), and rad(B,C) respectively represent the sets of spectral angle radian similarity values between the three types of target images of A and B, A and C, B and C, and two types of ground objects. The specific formulas of rad(A,B), rad(A,C), and rad(B,C) are as follows:
rad(a1,b1)表示A、B两类地物中第一条波谱曲线两两之间的光谱角弧度相似值,且rad(a1,b1)=rad(b1,a1)。上述公式中的i、j、k含义与步骤(2)中相同。rad(a 1 ,b 1 ) represents the similarity value of the spectral angle radian between the first spectral curves in the two types of surface features A and B, and rad(a 1 ,b 1 )=rad(b 1 ,a 1 ). The meanings of i, j, and k in the above formula are the same as those in step (2).
两类目标地物光谱曲线的光谱角弧度相似值越小,表明这两类目标影像地物可分性越大,即这两类地物光谱曲线形态差异较大;光谱角弧度相似值越大,证明这两类目标影像地物可分性越小,即这两类地物光谱曲线形态差异较小。The smaller the similarity value of the spectral angle radian of the two types of target object spectral curves, the greater the separability of the two types of target image objects, that is, the greater the difference in the shape of the spectral curves of the two types of object objects; the larger the similarity value of the spectral angle radian , which proves that the smaller the separability of the two types of target images, that is, the smaller the difference in the shape of the spectral curves of the two types of objects.
采用ENVI光谱分析工具直接计算两条波谱曲线的光谱角弧度相似值。Using the ENVI spectral analysis tool to directly calculate the similarity value of the spectral angle radian of the two spectral curves.
步骤4,获取上述步骤(3)中A和B、A和C、B和C三类目标影像地物两两之间的光谱角弧度相似值集合rad(A,B)、rad(A,C)、rad(B,C)的最大值δAB、δAC、δBC,具体公式分别如下:Step 4, obtain the spectral angle radian similarity value sets rad(A,B), rad(A,C ), the maximum value of rad(B,C) δ AB , δ AC , δ BC , the specific formulas are as follows:
δAB=max(rad(A,B))=max{rad(a1,b1),rad(a1,b2),rad(a1,b3)...rad(ai,bj)}δ AB =max(rad(A,B))=max{rad(a 1 ,b 1 ),rad(a 1 ,b 2 ),rad(a 1 ,b 3 )...rad(a i ,b j )}
δAC=max(rad(A,C))=max{rad(a1,c1),rad(a1,c2),rad(a1,c3)...rad(ai,ck)}δ AC =max(rad(A,C))=max{rad(a 1 ,c 1 ),rad(a 1 ,c 2 ),rad(a 1 ,c 3 )...rad(a i ,c k )}
δBC=max(rad(B,C))=max{rad(b1,c1),rad(b1,c2),rad(b1,c3)...rad(bj,ck)}δ BC =max(rad(B,C))=max{rad(b 1 ,c 1 ),rad(b 1 ,c 2 ),rad(b 1 ,c 3 )...rad(b j ,c k )}
其中,δAB、δAC、δBC分别代表了每两类目标影像地物之间的光谱弧度相似度。对于A类地物提取阈值,当δAB>δAC,则说明A类地物与C类地物的可分性更大,提取A类地物的阈值不应大于1-δAB,否则提取结果会混入部分B类地物,提取的准确度降低;同理当δAB<δAC,则说明A类地物与B类地物的可分性更大,提取A类地物的阈值不应大于1-δAC,否则提取结果会混入部分C类地物,提取的准确度降低。其它地物提取准确度依次类推,上述公式中的i、j、k含义与步骤(2)中相同。Among them, δ AB , δ AC , and δ BC represent the spectral arc similarity between each two types of target image features, respectively. For the extraction threshold of type A ground object, when δ AB > δ AC , it means that the separation of type A ground object and C type ground object is greater, and the threshold for extracting type A ground object should not be greater than 1-δ AB , otherwise the extraction The results will be mixed with some type B features, and the extraction accuracy will be reduced; similarly, when δ AB < δ AC , it means that the separability between type A and type B features is greater, and the threshold for extracting type A features should not be If it is greater than 1-δ AC , otherwise the extraction result will be mixed with some C-type objects, and the extraction accuracy will decrease. The accuracy of other feature extraction can be deduced by analogy, and the meanings of i, j, and k in the above formula are the same as those in step (2).
步骤5,根据上述步骤(4)中得到的光谱角弧度相似值集合的最大值δAB、δAC、δBC,获取目标影像地物A、B、C的提取阈值Athreshold、Bthreshold、Cthreshold的上限值Athresholdmax、Bthresholdmax、Cthresholdmax,Athresholdmax、Bthresholdmax、Cthresholdmax的具体公式分别如下:Step 5, according to the maximum value δ AB , δ AC , δ BC of the spectral angle radian similarity value set obtained in the above step (4), obtain the extraction thresholds A threshold , B threshold , C of the target image features A, B, C The upper limit of the threshold A thresholdmax , B thresholdmax , C thresholdmax , the specific formulas of A thresholdmax , B thresholdmax , and C thresholdmax are as follows:
Athresholdmax=1-Max(δAB,δAC)A thresholdmax =1-Max(δ AB ,δ AC )
Bthresholdmax=1-Max(δAB,δBC)B thresholdmax =1-Max(δ AB ,δ BC )
Cthresholdmax=1-Max(δAC,δBC)C thresholdmax =1-Max(δ AC ,δ BC )
假设上述公式中的δAB、δAC、δBC分别为0.83、0.91、0.88,通过计算得到Athresholdmax=0.09、Bthresholdmax=0.12、Cthresholdmax=0.09。如果不计算提取阈值上限值,而直接采用ENVI软件中缺省阈值(Maximum radians)0.1来提取目标地物,则会将与目标地物光谱曲线弧度相似度大于等于0.9的像元都被作为目标地物提取出来。Assuming that δ AB , δ AC , and δ BC in the above formula are 0.83, 0.91, and 0.88 respectively, A thresholdmax =0.09, B thresholdmax =0.12, and C thresholdmax =0.09 are obtained through calculation. If the upper limit value of the extraction threshold is not calculated, and the default threshold (Maximum radians) of 0.1 in the ENVI software is used directly to extract the target features, the pixels whose arc similarity with the spectral curve of the target features is greater than or equal to 0.9 will be taken as The target features are extracted.
提取A类地物时,与A相似度为0.91的C类像元被当作A类地物提取出来。提取B类地物时,不存在有其它地物类别的地物被当作B类地物提取出来的情况;提取C类地物时,与C相似度为0.91的A类像元被当作C类地物提取出来。When extracting type A ground objects, the pixels of type C with a similarity of 0.91 to A are extracted as type A ground objects. When extracting type B ground objects, there is no case where other types of ground objects are extracted as type B ground objects; when extracting type C ground objects, pixels of type A with a similarity of 0.91 to C are taken Class C features are extracted.
步骤6,利用光谱分析工具,计算同类别目标影像地物光谱角弧度相似值rad(A,A)、rad(B,B)、rad(C,C),rad(A,A)、rad(B,B)、rad(C,C)分别表示A、B、C三类目标影像地物类间光谱曲线的光谱角弧度相似值集合,具体公式分别如下:Step 6. Use the spectral analysis tool to calculate the arc similarity values of the spectral angles of the object images of the same category rad(A,A), rad(B,B), rad(C,C), rad(A,A), rad( B, B), rad(C, C) represent the similar value sets of spectral angle radians of the spectral curves among the three types of target imagery objects of A, B, and C, respectively, and the specific formulas are as follows:
rad(A,A)={rad(an,am),其中,n=1,2,…i-1,m=n+1,n+2,…i且n≠m}rad(A,A)={rad(a n ,a m ), where n=1,2,…i-1, m=n+1,n+2,…i and n≠m}
rad(B,B)={rad(bn,bm),其中,n=1,2,…j-1,m=n+1,n+2,…j且n≠m}rad(B,B)={rad(b n ,b m ), where n=1,2,...j-1, m=n+1,n+2,...j and n≠m}
rad(C,C)={rad(cn,cm),其中,n=1,2,…k-1,m=n+1,n+2,…k且n≠m}rad(C,C)={rad(c n ,c m ), where n=1,2,...k-1, m=n+1,n+2,...k and n≠m}
上述公式中的i、j、k含义与步骤(2)中相同,m、n是一个整数变量,在不同的地物种类中取值范围不同。The meanings of i, j, and k in the above formula are the same as those in step (2), and m, n are integer variables with different value ranges for different types of ground objects.
光谱角的弧度相似值rad(A,A)、rad(B,B)、rad(C,C)表示类间地物光谱曲线的变异程度,光谱角的弧度相似值越大,表明每类地物光谱曲线的变异越小,反之则越大。The radian similarity values of spectral angles rad(A,A), rad(B,B), and rad(C,C) indicate the degree of variation of the spectral curves of ground objects between classes, and the greater the radian similarity value of spectral angles, it indicates The smaller the variation of the spectral curve of the object is, the greater it is vice versa.
步骤7:根据上述步骤(6)中得到的同类别目标影像地物光谱角的弧度相似值rad(A,A)、rad(B,B)、rad(C,C),获取每类目标影像地物弧度相似值集合的最小值βAA、βBB、βCC,具体公式分别如下:Step 7: According to the radian similarity values rad(A,A), rad(B,B), and rad(C,C) of the same category of target images obtained in the above step (6), obtain each type of target image The minimum values β AA , β BB , and β CC of the radian similarity value set of ground features are as follows:
βAA=min(rad(A,A))=min{rad(an,am),其中,n=1,2,…i-1,m=n+1,n+2,…i且n≠m}β AA =min(rad(A,A))=min{rad(a n , am ), where n=1,2,...i-1, m=n+1,n+2,...i and n≠m}
βBB=min(rad(B,B))=min{rad(bn,bm),其中,n=1,2,…j-1,m=n+1,n+2,…j且n≠m}β BB =min(rad(B,B))=min{rad(b n ,b m ), where n=1,2,...j-1, m=n+1,n+2,...j and n≠m}
βCC=min(rad(C,C))=min{rad(cn,cm),其中,n=1,2,…k-1,m=n+1,n+2,…k且n≠m}β CC =min(rad(C,C))=min{rad(c n ,c m ), where n=1,2,...k-1, m=n+1,n+2,...k and n≠m}
公式中的i、j、k、m、n含义与步骤(6)中相同。The meanings of i, j, k, m and n in the formula are the same as those in step (6).
上述三个值βAA、βBB、βCC分别代表了每类目标影像地物中光谱弧度的近似度,值越小代表该类地物的波谱变异越大,提取每类地物的阈值设定值应大于等于1-β时才能保证地物提取结果不存在漏提的现象。The above three values β AA , β BB , and β CC respectively represent the approximation of the spectral radian in each type of target image object. The smaller the value, the greater the spectral variation of this type of object. The threshold value setting for extracting each type of object is The fixed value should be greater than or equal to 1-β to ensure that there is no missing phenomenon in the extraction results of ground objects.
步骤8,根据上述步骤(7)中得到的每类目标影像地物弧度相似值集合的最小值βAA、βBB、βCC,获取目标影像地物A、B、C的提取阈值Athreshold、Bthreshold、Cthreshold的下限值Athresholdmin、Bthresholdmin、Cthresholdmin,Athresholdmin、Bthresholdmin、Cthresholdmin的具体公式分别如下:Step 8: Obtain the extraction thresholds A threshold , The lower limit values of B threshold and C threshold are A thresholdmin , B thresholdmin and C thresholdmin , and the specific formulas of A thresholdmin , B thresholdmin and C thresholdmin are as follows:
Athresholdmin=1-βAA A thresholdmin = 1-β AA
Bthresholdmin=1-βBB B thresholdmin = 1-β BB
Cthresholdmin=1-βCC C thresholdmin = 1-β CC
假设上述公式中的βAA、β BB 、β CC 分别为0.93、0.88、0.89,通过计算得到Athresholdmin=0.07、Bthresholdmin=0.12、Cthresholdmin=0.11。如果不计算提取阈值下限值,直接根据步骤(5)中的上限值Athresholdmax=0.09、Bthresholdmax=0.12、Cthresholdmax=0.09随意设定满足条件的阈值即Athreshold=0.05、Bthreshold=0.05、Cthreshold=0.05,这三个阈值能保证每类提取的准确性,但却无法保证提取结果的完整性。Assuming that β AA , β BB , and β CC in the above formula are 0.93, 0.88, and 0.89 respectively, A thresholdmin =0.07, B thresholdmin =0.12, and C thresholdmin =0.11 are obtained through calculation. If the lower limit value of the extraction threshold is not calculated, directly set the thresholds satisfying the conditions arbitrarily according to the upper limit values A thresholdmax = 0.09, B thresholdmax = 0.12, C thresholdmax = 0.09 in step (5), that is, A threshold = 0.05, B threshold = 0.05, C threshold =0.05, these three thresholds can guarantee the accuracy of each type of extraction, but cannot guarantee the integrity of the extraction results.
提取A类地物时,与A类标准曲线相似度大于等于0.95的目标像元被提取出来,而与之相似程度为0.93~0.95的目标像元未被提取出来;提取B类地物时,与B类标准曲线相似度大于等于0.95的目标像元被提取出来,而与之相似程度为0.88~0.95的目标像元未被提取出来;提取C类地物时,与B类标准曲线相似度大于等于0.95的目标像元被提取出来,而与之相似程度为0.89~0.95的目标像元未被提取出来;所以单纯依据阈值上限值只能提高光谱角分类的准确性,无法保证光谱角分类的完整性。When extracting type A ground objects, the target pixels with a similarity greater than or equal to 0.95 to the type A standard curve are extracted, while the target pixels with a similarity between 0.93 and 0.95 are not extracted; when extracting type B ground objects, The target pixels whose similarity with the Class B standard curve is greater than or equal to 0.95 are extracted, while the target pixels with a similarity between 0.88 and 0.95 are not extracted; when extracting Class C ground objects, the similarity with the Class B standard curve The target pixels greater than or equal to 0.95 are extracted, but the target pixels with a similarity between 0.89 and 0.95 are not extracted; therefore, simply relying on the upper threshold value can only improve the accuracy of spectral angle classification, but cannot guarantee the spectral angle. completeness of classification.
步骤9:比较上述步骤5中得到的提取阈值上限值Athresholdmax、Bthresholdmax、Cthresholdmax和上述步骤8中得到的下限值Athresholdmin、Bthresholdmin、Cthresholdmin的大小,从而选择提取阈值,保证目标影像地物信息提取的准确性和完整性。Step 9: Compare the extraction threshold upper limit values A thresholdmax , B thresholdmax , C thresholdmax obtained in the above step 5 with the lower limit values A thresholdmin , B thresholdmin , and C thresholdmin obtained in the above step 8, so as to select the extraction threshold and ensure Accuracy and completeness of target image feature information extraction.
(9.1)当某类目标影像地物的提取阈值的上限值小于下限值时,无法同时保证该类目标影像地物信息提取的准确性和完整性。(9.1) When the upper limit value of the extraction threshold of a certain type of target image feature is less than the lower limit value, the accuracy and completeness of the extraction of this type of target image feature information cannot be guaranteed at the same time.
例如,步骤(5)和步骤(8)中的C类地物提取阈值即存在上述情况即Cthresholdmin=0.11,Cthresholdmax=0.09,Cthresholdmin>Cthresholdmax,在提取过程中只能满足C类地物信息提取的完整性,即Cthreshold=0.11;或者满足C类地物信息提取的准确性,即Cthreshold=0.09。For example, the above-mentioned situation exists in the extraction threshold of C-type ground features in step (5) and step (8), that is, C thresholdmin =0.11, C thresholdmax =0.09, C thresholdmin >C thresholdmax , and only C-type ground features can be satisfied during the extraction process. Integrity of object information extraction, that is, C threshold =0.11; or meet the accuracy of class C object information extraction, that is, C threshold =0.09.
(9.2)当某类目标影像地物的上限值大于等于下限值时,能够同时保证该类目标影像地物信息提取的完整性和准确性;(9.2) When the upper limit value of a certain type of target image feature is greater than or equal to the lower limit value, the completeness and accuracy of the information extraction of this type of target image feature information can be guaranteed at the same time;
当某类目标影像地物的上限值等于下限值时,该类目标影像地物的光谱角填图的阈值等于这两个值。例如,步骤(5)和步骤(8)中的B类地物提取阈值即存在上述情况即Bthresholdmin=0.12,Bthresholdmax=0.12,Bthresholdmin=Bthresholdmax,在提取过程中通常设定阈值Bthreshold=0.12,能够保证B类地物提取结果不存在遗漏和误提的现象,即能够保证B类地物信息提取的完整性;同时又能保证B类地物信息提取的准确性。When the upper limit value of a certain type of target image feature is equal to the lower limit value, the threshold value of the spectral angle mapping of this type of target image feature is equal to these two values. For example, the above-mentioned situation exists in the extraction threshold of B-type feature in step (5) and step (8), that is, B thresholdmin =0.12, B thresholdmax =0.12, B thresholdmin =B thresholdmax , and the threshold value B threshold is usually set in the extraction process = 0.12, it can ensure that there are no omissions and false mentions in the extraction results of Class B features, that is, it can ensure the integrity of the information extraction of Class B features; at the same time, it can ensure the accuracy of the information extraction of Class B features.
当某类目标影像地物的上限值大于下限值时,光谱角填图的阈值为上限值和下限值中区间中的任意值。例如,步骤(5)和步骤(8)中的A类地物提取阈值即存在上述情况,即Athresholdmin=0.07,Athresholdmax=0.09,Athresholdmin<Athresholdmax,在提取过程如果设定阈值Athreshold=0.08,则能保证提取结果不存在遗漏和误提的现象,即能够保证A类地物信息提取的完整性;同时又能保证A类地物提取的完整性和准确性。When the upper limit value of a certain type of target image features is greater than the lower limit value, the threshold for spectral angle mapping is any value between the upper limit value and the lower limit value. For example, the above-mentioned situation exists in the extraction threshold of A-type feature in step (5) and step (8), that is, A thresholdmin = 0.07, A thresholdmax = 0.09, A thresholdmin < A thresholdmax , if the threshold A threshold is set during the extraction process =0.08, it can ensure that there is no omission and misrepresentation in the extraction results, that is, it can ensure the integrity of the information extraction of Class A ground features; at the same time, it can ensure the completeness and accuracy of the extraction of Class A ground features.
上面结合实施例子对本发明作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。本发明中未作详细描述的内容均可以采用现有技术。The present invention has been described in detail above in conjunction with the implementation examples, but the present invention is not limited to the above-mentioned embodiments, and various changes can also be made without departing from the gist of the present invention within the scope of knowledge possessed by those of ordinary skill in the art . The content that is not described in detail in the present invention can adopt the prior art.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410099909.7A CN103927538B (en) | 2014-03-18 | 2014-03-18 | Threshold selection method for improving spectral angle mapping precision |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410099909.7A CN103927538B (en) | 2014-03-18 | 2014-03-18 | Threshold selection method for improving spectral angle mapping precision |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103927538A CN103927538A (en) | 2014-07-16 |
| CN103927538B true CN103927538B (en) | 2017-05-10 |
Family
ID=51145754
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410099909.7A Active CN103927538B (en) | 2014-03-18 | 2014-03-18 | Threshold selection method for improving spectral angle mapping precision |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103927538B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106846291A (en) * | 2015-12-04 | 2017-06-13 | 核工业北京地质研究院 | A kind of method that threshold value is chosen in spectral modeling matching |
| CN105372672B (en) * | 2015-12-07 | 2017-09-15 | 广州地理研究所 | Southern winter kind crops planting area extracting method based on time series data |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6940999B2 (en) * | 2000-06-13 | 2005-09-06 | American Gnc Corp. | Method for target detection and identification by using proximity pixel information |
| CN101950361A (en) * | 2010-09-06 | 2011-01-19 | 中国科学院遥感应用研究所 | Adaptive extraction method of remote sensing image thematic information based on spectrum matching degree |
| CN102708544A (en) * | 2012-04-21 | 2012-10-03 | 西北工业大学 | Spectral angle mapping method used for correcting negative correlation of hyperspectral remote sensing image by wavebands |
| CN103559493A (en) * | 2013-10-21 | 2014-02-05 | 中国农业大学 | Method for extracting linear ground objects |
-
2014
- 2014-03-18 CN CN201410099909.7A patent/CN103927538B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6940999B2 (en) * | 2000-06-13 | 2005-09-06 | American Gnc Corp. | Method for target detection and identification by using proximity pixel information |
| CN101950361A (en) * | 2010-09-06 | 2011-01-19 | 中国科学院遥感应用研究所 | Adaptive extraction method of remote sensing image thematic information based on spectrum matching degree |
| CN102708544A (en) * | 2012-04-21 | 2012-10-03 | 西北工业大学 | Spectral angle mapping method used for correcting negative correlation of hyperspectral remote sensing image by wavebands |
| CN103559493A (en) * | 2013-10-21 | 2014-02-05 | 中国农业大学 | Method for extracting linear ground objects |
Non-Patent Citations (2)
| Title |
|---|
| 基于三维光谱角统计的光谱图像信息提取方法;冯维一等;《光谱学与光谱分析》;20130515;第33卷(第5期);第1285-1289页 * |
| 基于多波段分析的无阈值自动光谱角制图分类法;樊彦国等;《地理与地理信息科学》;20100315;第26卷(第2期);第38-40页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103927538A (en) | 2014-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8718356B2 (en) | Method and apparatus for 2D to 3D conversion using scene classification and face detection | |
| WO2015197029A1 (en) | Human face similarity recognition method and system | |
| CN105096347B (en) | Image processing apparatus and method | |
| US10380853B1 (en) | Presence detection and detection localization | |
| CN104408708B (en) | A kind of image well-marked target detection method based on global and local low-rank | |
| US20150356372A1 (en) | Character recognition method | |
| JP2015191334A5 (en) | ||
| JP2016110232A (en) | Object recognition device, object recognition method, and program | |
| CN102881160B (en) | Outdoor traffic sign identification method under low-illumination scene | |
| JP2011138500A (en) | Method and system for determining disparity search range in stereo video | |
| TWI567660B (en) | Multi-class object classifying method and system | |
| CN105809651A (en) | Image saliency detection method based on edge non-similarity comparison | |
| CN107958255A (en) | Target detection method and device based on image | |
| CN105139417A (en) | Method for real-time multi-target tracking under video surveillance | |
| CN104933397A (en) | Image description and image recognition method thereof | |
| WO2020022329A1 (en) | Object detection/recognition device, method, and program | |
| CN104867139A (en) | Remote sensing image cloud and shadow detection method based on radiation field | |
| CN103927538B (en) | Threshold selection method for improving spectral angle mapping precision | |
| JP6338429B2 (en) | Subject detection apparatus, subject detection method, and program | |
| CN101034440A (en) | Identification method for spherical fruit and vegetables | |
| CN107274361A (en) | Landsat TM remote sensing image data cloud removal method and system | |
| CN105160311B (en) | Algorism of Matching Line Segments method and device | |
| JP6104115B2 (en) | Image processing device | |
| CN105809177A (en) | Method used for actuating remote sensing image classification | |
| JP2019095932A (en) | Abnormality determination method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |