CN103928327B - Fin formula field effect transistor and forming method thereof - Google Patents
Fin formula field effect transistor and forming method thereof Download PDFInfo
- Publication number
- CN103928327B CN103928327B CN201310009265.3A CN201310009265A CN103928327B CN 103928327 B CN103928327 B CN 103928327B CN 201310009265 A CN201310009265 A CN 201310009265A CN 103928327 B CN103928327 B CN 103928327B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- field effect
- forming
- effect transistor
- fin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000005669 field effect Effects 0.000 title claims abstract description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000005530 etching Methods 0.000 claims abstract description 20
- 125000006850 spacer group Chemical group 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 30
- 238000002955 isolation Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910004129 HfSiO Inorganic materials 0.000 claims description 7
- -1 hydrogen ions Chemical class 0.000 claims description 7
- 230000000873 masking effect Effects 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 6
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 230000003071 parasitic effect Effects 0.000 abstract description 19
- 239000003989 dielectric material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 125000001475 halogen functional group Chemical group 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
一种鳍式场效应晶体管及其形成方法,其中所述鳍式场效应晶体管的形成方法包括:提供半导体衬底,所述半导体衬底表面具有凸起的鳍部,位于所述鳍部上的栅极结构,所述栅极结构覆盖部分所述鳍部的顶部和侧壁;形成覆盖所述栅极结构的第一介质层;形成覆盖所述第一介质层的第二介质层,所述第二介质层的介电常数小于所述第一介质层的介电常数;回刻蚀所述第二介质层,形成第二侧墙;以所述第二侧墙为掩膜刻蚀所述第一介质层,形成第一侧墙,所述第一侧墙具有水平部分和垂直部分,所述第一侧墙覆盖的部分鳍部构成负遮盖区。本发明的鳍式场效应晶体管栅极结构与源区和漏区的导电插塞之间的寄生电容小。
A Fin Field Effect Transistor and its forming method, wherein the forming method of the Fin Field Effect Transistor comprises: providing a semiconductor substrate, the surface of the semiconductor substrate has raised fins, and the fins located on the fins a gate structure, the gate structure covers part of the top and sidewalls of the fin; forming a first dielectric layer covering the gate structure; forming a second dielectric layer covering the first dielectric layer, the The dielectric constant of the second dielectric layer is smaller than the dielectric constant of the first dielectric layer; etching back the second dielectric layer to form a second spacer; using the second sidewall as a mask to etch the The first dielectric layer forms a first side wall, the first side wall has a horizontal part and a vertical part, and the part of the fin covered by the first side wall forms a negative cover area. The parasitic capacitance between the gate structure of the fin field effect transistor of the present invention and the conductive plugs in the source region and the drain region is small.
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种鳍式场效应晶体管及其形成方法。The invention relates to the technical field of semiconductors, in particular to a fin field effect transistor and a forming method thereof.
背景技术Background technique
MOS晶体管通过在栅极施加电压,调节通过沟道区域的电流来产生开关信号。随着半导体技术的发展,传统的平面式MOS晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括具有凸出于半导体衬底表面的半导体鳍部,覆盖部分所述鳍部的顶部和侧壁的栅极结构,位于所述栅极结构两侧的鳍部内的源区和漏区。MOS transistors generate switching signals by regulating the current through the channel region by applying a voltage to the gate. With the development of semiconductor technology, the control ability of the traditional planar MOS transistor on the channel current becomes weaker, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a semiconductor fin protruding from the surface of the semiconductor substrate, and a gate structure covering part of the top and side walls of the fin, A source region and a drain region are located in the fins on both sides of the gate structure.
但在20纳米节点以下,鳍式场效应晶体管鳍部的厚度极小,短沟道效应明显,如阈值电压对沟道长度变化敏感、载流子速度饱和效应、热载流子效应和亚阈值特性退化等。为解决上述问题,现有技术提出了一种具有负遮盖区的鳍式场效应晶体管(FinFETs withunderlaps)。请参考图1,为具有负遮盖区的鳍式场效应晶体管的剖面结构示意图,包括:半导体衬底100;位于所述半导体衬底100上的凸出的鳍部101,所述鳍部101通过对所述半导体衬底100刻蚀形成;覆盖部分所述鳍部101表面的栅介质层103;位于所述栅介质层103上的栅电极层104;位于所述栅介质层103和所述栅电极层104两侧的侧墙105;位于所述栅电极层104两侧的鳍部101内的源区和漏区102;位于所述侧墙105下方的鳍部101内的负遮盖区106,所述负遮盖区106的掺杂浓度与所述鳍式场效应晶体管沟道区域(未示出)的掺杂浓度相同。But below the 20nm node, the thickness of the fin field effect transistor fin is extremely small, and the short channel effect is obvious, such as the threshold voltage is sensitive to the channel length change, the carrier velocity saturation effect, the hot carrier effect and the subthreshold characteristic degradation, etc. In order to solve the above problems, the prior art proposes FinFETs with underlaps. Please refer to FIG. 1, which is a schematic cross-sectional structure diagram of a fin field effect transistor with a negative cover region, including: a semiconductor substrate 100; a protruding fin 101 located on the semiconductor substrate 100, and the fin 101 passes through The semiconductor substrate 100 is etched to form; the gate dielectric layer 103 covering part of the surface of the fin portion 101; the gate electrode layer 104 located on the gate dielectric layer 103; the gate dielectric layer 103 and the gate electrode layer 104 sidewalls 105 on both sides of the electrode layer 104; source and drain regions 102 in the fins 101 on both sides of the gate electrode layer 104; negative cover regions 106 in the fins 101 below the sidewalls 105, The doping concentration of the negative cover region 106 is the same as the doping concentration of the FinFET channel region (not shown).
在上述具有负遮盖区106的鳍式场效应晶体管中,由于为对所述负遮盖区106没有进行轻掺杂漏区注入(LDD)和晕环注入(Halo Implantation),所述负遮盖区106的掺杂浓度与所述鳍式场效应晶体管沟道区域的掺杂浓度相同,增大了有效沟道区域长度,缓解了短沟道效应。但是由于所述负遮盖区106的存在,沟道电阻增大,导致鳍式场效应晶体管的驱动电流下降,因此,在具有负遮盖区106的鳍式场效应晶体管中,所述侧墙105通常采用具有较高介电常数的介质材料形成,通过提高负遮盖区106的电容值来达到提升鳍式场效应晶体管驱动电流的目的。In the above-mentioned fin field effect transistor with the negative cover region 106, because the negative cover region 106 is not subjected to lightly doped drain implantation (LDD) and halo implantation (Halo Implantation), the negative cover region 106 The doping concentration of the doping concentration is the same as that of the channel region of the fin field effect transistor, which increases the length of the effective channel region and alleviates the short channel effect. However, due to the existence of the negative cover region 106, the channel resistance increases, resulting in a decrease in the driving current of the FinFET. Therefore, in the FinFET with the negative cover region 106, the sidewall 105 is usually It is formed by using a dielectric material with a relatively high dielectric constant, and the purpose of increasing the driving current of the FinFET is achieved by increasing the capacitance value of the negative covering region 106 .
但是,现有技术具有负遮盖区的鳍式场效应晶体管的侧墙采用高介电常数材料形成,增大了栅电极和后续形成的源区和漏区导电插塞之间的寄生电容,影响晶体管性能。However, in the prior art, the sidewalls of fin field effect transistors with negative cover regions are formed with high dielectric constant materials, which increases the parasitic capacitance between the gate electrode and the subsequently formed conductive plugs in the source region and drain region, affecting Transistor performance.
其他有关具有负遮盖区的鳍式场效应晶体管的形成方法还可以参考公开号为US2005/0275045A1的美国专利申请。For other methods of forming FinFETs with negative capping regions, reference can also be made to US Patent Application Publication No. US2005/0275045A1.
发明内容Contents of the invention
本发明解决的问题是现有技术具有负遮盖区的鳍式场效应晶体管的栅电极与源区和漏区导电插塞之间的寄生电容大。The problem solved by the invention is that the parasitic capacitance between the gate electrode and the conductive plugs in the source region and the drain region of the fin field effect transistor with the negative covering region in the prior art is large.
为解决上述问题,本发明提供了一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有凸起的鳍部,位于所述鳍部上的栅极结构,所述栅极结构覆盖部分所述鳍部的顶部和侧壁;形成覆盖所述栅极结构的第一介质层;形成覆盖所述第一介质层的第二介质层,所述第二介质层的介电常数小于所述第一介质层的介电常数;回刻蚀所述第二介质层,形成第二侧墙;以所述第二侧墙为掩膜刻蚀所述第一介质层,形成第一侧墙,所述第一侧墙具有水平部分和垂直部分,所述第一侧墙覆盖的部分鳍部构成负遮盖区(Gate under lap)。In order to solve the above problems, the present invention provides a method for forming a fin field effect transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has raised fins, and a gate structure located on the fins , the gate structure covers part of the top and sidewall of the fin; forming a first dielectric layer covering the gate structure; forming a second dielectric layer covering the first dielectric layer, the second dielectric layer The dielectric constant of the layer is smaller than the dielectric constant of the first dielectric layer; etching back the second dielectric layer to form a second spacer; etching the first dielectric layer using the second side wall as a mask layer, forming a first side wall, the first side wall has a horizontal part and a vertical part, and the part of the fin covered by the first side wall constitutes a negative cover area (Gate under lap).
可选的,所述负遮盖区的掺杂浓度与鳍式场效应晶体管的沟道区域掺杂浓度相同。Optionally, the doping concentration of the negative covering region is the same as that of the channel region of the FinFET.
可选的,所述负遮盖区的长度范围为300埃~500埃。Optionally, the length of the negative masking region ranges from 300 angstroms to 500 angstroms.
可选的,所述负遮盖区的长度范围为10埃~50埃。Optionally, the length of the negative masking region ranges from 10 angstroms to 50 angstroms.
可选的,还包括:形成覆盖所述鳍部的隔离介质层,所述隔离介质层的上表面与所述栅极结构的上表面齐平。Optionally, further comprising: forming an isolation dielectric layer covering the fin, the upper surface of the isolation dielectric layer being flush with the upper surface of the gate structure.
可选的,还包括:对所述第一侧墙的垂直部分进行离子注入,减小所述第一侧墙的垂直部分的介电常数。Optionally, the method further includes: performing ion implantation on the vertical portion of the first sidewall to reduce the dielectric constant of the vertical portion of the first sidewall.
可选的,所述离子注入工艺的注入离子为氢离子。Optionally, the implanted ions in the ion implantation process are hydrogen ions.
可选的,还包括:在所述第二介质层上形成第三介质层,回刻蚀所述第三介质层后,形成第三侧墙。Optionally, the method further includes: forming a third dielectric layer on the second dielectric layer, and forming a third spacer after etching back the third dielectric layer.
可选的,所述第三介质层的材料为氮化硅。Optionally, the material of the third dielectric layer is silicon nitride.
可选的,还包括在所述栅极结构两侧的鳍部内形成嵌入式源区和漏区。Optionally, it also includes forming embedded source and drain regions in the fins on both sides of the gate structure.
可选的,所述嵌入式源区和漏区的材料为硅、锗硅或者碳化硅。Optionally, the material of the embedded source region and drain region is silicon, silicon germanium or silicon carbide.
可选的,所述嵌入式源区和漏区掺杂有N型或者P型杂质。Optionally, the embedded source region and drain region are doped with N-type or P-type impurities.
可选的,所述第一介质层的材料为HfO2、Al2O3、ZrO2、HfSiO、HfSiON、HfTaO和HfZrO中的一种或几种。Optionally, the material of the first dielectric layer is one or more of HfO 2 , Al 2 O 3 , ZrO 2 , HfSiO, HfSiON, HfTaO and HfZrO.
可选的,所述第二介质层的材料为SiCN、SiCON、SiBCN和SiBOCN中的一种或几种。Optionally, the material of the second dielectric layer is one or more of SiCN, SiCON, SiBCN and SiBOCN.
可选的,所述栅极结构为伪栅极。Optionally, the gate structure is a dummy gate.
可选的,还包括:去除所述伪栅极,形成第二开口,并在所述第二开口内形成高介电常数栅介质层和金属栅极。Optionally, the method further includes: removing the dummy gate, forming a second opening, and forming a high dielectric constant gate dielectric layer and a metal gate in the second opening.
对应的,本发明还提供了一种鳍式场效应晶体管,包括:半导体衬底,所述半导体衬底表面具有凸起的鳍部;位于所述鳍部上的栅极结构,所述栅极结构覆盖部分所述鳍部的顶部和侧壁;位于所述栅极结构两侧的第一侧墙,所述第一侧墙具有水平部分和垂直部分;位于所述第一侧墙两侧的第二侧墙,所述第二侧墙位于所述第一侧墙的水平部分上,所述第二侧墙的介电常数小于所述第一侧墙的介电常数;位于所述第一侧墙下的部分鳍部内的负遮盖区。Correspondingly, the present invention also provides a Fin Field Effect Transistor, comprising: a semiconductor substrate having raised fins on the surface of the semiconductor substrate; a gate structure located on the fins, the gate The structure covers part of the top and sidewalls of the fin; the first sidewalls on both sides of the gate structure, the first sidewalls have horizontal parts and vertical parts; the first sidewalls on both sides of the first sidewall The second side wall, the second side wall is located on the horizontal part of the first side wall, the dielectric constant of the second side wall is smaller than the dielectric constant of the first side wall; Negative shaded area in part of the fin below the side wall.
可选的,所述负遮盖区的掺杂浓度与鳍式场效应晶体管的沟道区域掺杂浓度相同。Optionally, the doping concentration of the negative covering region is the same as that of the channel region of the FinFET.
可选的,所述第一侧墙的材料为HfO2、Al2O3、ZrO2、HfSiO、HfSiON、HfTaO和HfZrO中的一种或几种,所述第二侧墙的材料为SiCN、SiCON、SiBCN和SiBOCN中的一种或几种。Optionally, the material of the first sidewall is one or more of HfO 2 , Al 2 O 3 , ZrO 2 , HfSiO, HfSiON, HfTaO and HfZrO, and the material of the second sidewall is SiCN, One or more of SiCON, SiBCN and SiBOCN.
可选的,还包括位于所述第二侧墙两侧的第三侧墙,所述第三侧墙的材料为氮化硅。Optionally, third sidewalls located on both sides of the second sidewalls are further included, and the material of the third sidewalls is silicon nitride.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明实施例的鳍式场效应晶体管的形成方法中,形成覆盖所述栅极结构的第一介质层和位于所述第一介质层上的第二介质层,回刻蚀所述第二介质层形成第二侧墙,以所述第二侧墙为掩膜刻蚀所述第一介质层,形成第一侧墙,使所述第一侧墙具有水平部分和垂直部分。由于所述第一侧墙具有水平部分,且所述第一侧墙具有较高的介电常数,可以提高负遮盖区的电容值,以提升鳍式场效应晶体管的驱动电流。另外,由于所述第二侧墙的介电常数小于所述第一侧墙的介电常数,在后续形成源区和漏区的导电插塞后,可以减少栅极结构与源区和漏区导电插塞之间的寄生电容。即本发明实施例的第一侧墙和第二侧墙结构可以在增大负遮盖区电容值的同时,减小栅极结构与源区和漏区之间的寄生电容。In the method for forming a fin field effect transistor according to an embodiment of the present invention, a first dielectric layer covering the gate structure and a second dielectric layer on the first dielectric layer are formed, and the second dielectric layer is etched back. layer to form a second sidewall, and using the second sidewall as a mask to etch the first dielectric layer to form a first sidewall, so that the first sidewall has a horizontal portion and a vertical portion. Since the first sidewall has a horizontal portion and the first sidewall has a higher dielectric constant, the capacitance value of the negative cover area can be increased to increase the driving current of the FinFET. In addition, since the dielectric constant of the second spacer is smaller than that of the first spacer, after the subsequent formation of conductive plugs in the source region and the drain region, the gate structure and the source region and the drain region can be reduced. Parasitic capacitance between conductive plugs. That is, the first spacer and the second sidewall structure of the embodiment of the present invention can reduce the parasitic capacitance between the gate structure and the source region and the drain region while increasing the capacitance value of the negative cover region.
进一步的,本发明实施例中,在形成隔离介质层后,对所述第一侧墙的垂直部分进行离子注入,所述离子注入工艺的注入离子为氢离子,由于氢离子可以与高介电常数的介质层材料发生反应,生成含氢的介质材料层,降低第一侧墙垂直部分的介电常数,可以进一步的减小栅极结构与源区和漏区导电插塞的寄生电容。且由于所述第一离子注入仅针对第一侧墙的垂直部分,不会减小第一侧墙的水平部分的介电常数,因此不会影响负遮盖区的电容值。Further, in the embodiment of the present invention, after the isolation dielectric layer is formed, ion implantation is performed on the vertical part of the first sidewall, and the implanted ions in the ion implantation process are hydrogen ions, because hydrogen ions can be combined with high dielectric The constant dielectric layer material reacts to form a hydrogen-containing dielectric material layer, which reduces the dielectric constant of the vertical part of the first sidewall, and can further reduce the parasitic capacitance between the gate structure and the conductive plugs in the source region and the drain region. And because the first ion implantation is only for the vertical part of the first sidewall, it will not reduce the dielectric constant of the horizontal part of the first sidewall, so it will not affect the capacitance value of the negative covering area.
对应的,本发明实施例的鳍式场效应晶体管也具有减小栅极结构与源区和漏区的导电插塞之间寄生电容的优点。Correspondingly, the FinFET according to the embodiment of the present invention also has the advantage of reducing the parasitic capacitance between the gate structure and the conductive plugs in the source region and the drain region.
附图说明Description of drawings
图1是现有技术的鳍式场效应晶体管的立体结构示意图;1 is a schematic diagram of a three-dimensional structure of a fin field effect transistor in the prior art;
图2至图9是本发明实施例的鳍式场效应晶体管的形成过程的结构示意图。2 to 9 are structural schematic diagrams of the formation process of the fin field effect transistor according to the embodiment of the present invention.
具体实施方式detailed description
由背景技术可知,现有技术形成的具有负遮盖区的鳍式场效应晶体管的栅电极与源区和漏区导电插塞之间的寄生电容大。It can be seen from the background art that the parasitic capacitance between the gate electrode and the conductive plugs in the source region and the drain region of the fin field effect transistor with the negative cover region formed in the prior art is large.
本发明的发明人通过研究现有技术具有负遮盖区的鳍式场效应晶体管的形成方法,发现高介电常数的侧墙是导致栅电极与源区和漏区导电插塞之间寄生电容大的主要原因。由公式C=εS/4πkd可知,在平板电容中,电容大小C与极板间距d成反比,与极板间介质层的介电常数ε成反比,因此可以通过减小侧墙材料的介电常数来减小栅电极与源区和漏区之间的寄生电容。但由于在具有负遮盖区的鳍式场效应晶体管中,所述侧墙采用高介电常数介质层的目的是为了增大负遮盖区的电容,以提高鳍式场效应晶体管的驱动电流,因此,不能简单将所述侧墙替换为低介电常数的材料,而需要采用合理的侧墙结构,在不减小负遮盖区电容的同时,减小栅电极与源区和漏区之间的寄生电容。The inventors of the present invention have studied the formation method of the fin field effect transistor with the negative cover region in the prior art, and found that the high dielectric constant sidewalls lead to large parasitic capacitance between the gate electrode and the conductive plugs in the source region and the drain region. the main reason. It can be seen from the formula C=εS/4πkd that in a flat plate capacitor, the capacitance C is inversely proportional to the distance d between the plates, and is inversely proportional to the dielectric constant ε of the dielectric layer between the plates, so it can be reduced by reducing the dielectric of the sidewall material constant to reduce the parasitic capacitance between the gate electrode and the source and drain regions. However, in the fin field effect transistor with a negative cover area, the purpose of using a high dielectric constant dielectric layer for the sidewall is to increase the capacitance of the negative cover area to increase the driving current of the fin field effect transistor, so , the sidewalls cannot simply be replaced by materials with low dielectric constants, but a reasonable sidewall structure needs to be adopted to reduce the distance between the gate electrode and the source and drain regions without reducing the capacitance of the negative cover region. parasitic capacitance.
基于以上研究,本发明的发明人提出了一种鳍式场效应晶体管的形成方法,首先在所述栅极结构上形成第一介质层和位于第一介质层上的第二介质层,所述第二侧墙的介电常数小于所述第一侧墙的介电常数,回刻蚀所述第二介质层形成第二侧墙,以所述第二侧墙为掩膜刻蚀所述第一介质层,形成第一侧墙,使所述第一侧墙具有水平部分和垂直部分。所述第一侧墙的水平部分具有较高的介电常数,可以提高负遮盖区的介电常数。所述第二侧墙和所述第一侧墙的垂直部分,位于所述栅极结构与源区和漏区的导电插塞之间,由于所述第二侧墙的介电常数较小,可以减小栅极结构与源区和漏区导电插塞之间的寄生电容。Based on the above studies, the inventors of the present invention proposed a method for forming a fin field effect transistor. First, a first dielectric layer and a second dielectric layer on the first dielectric layer are formed on the gate structure, and the The dielectric constant of the second spacer is smaller than that of the first sidewall, etching back the second dielectric layer to form a second spacer, and etching the first sidewall by using the second sidewall as a mask. A dielectric layer forms a first side wall, such that the first side wall has a horizontal portion and a vertical portion. The horizontal portion of the first side wall has a higher dielectric constant, which can increase the dielectric constant of the negative covering area. The vertical part of the second sidewall and the first sidewall is located between the gate structure and the conductive plugs in the source region and the drain region. Since the dielectric constant of the second sidewall is small, The parasitic capacitance between the gate structure and the conductive plugs in the source and drain regions can be reduced.
下面结合附图详细地描述具体实施例,上述的目的和本发明的优点将更加清楚。The specific embodiments will be described in detail below in conjunction with the accompanying drawings, and the above-mentioned purpose and advantages of the present invention will be more clear.
图2至图9是本发明实施例的鳍式场效应晶体管的形成过程的结构示意图。2 to 9 are structural schematic diagrams of the formation process of the fin field effect transistor according to the embodiment of the present invention.
请参考图2,提供半导体衬底200,所述半导体衬底200表面具有凸起的鳍部202,位于所述鳍部202上的栅极结构204,所述栅极结构204覆盖部分所述鳍部202的顶部和侧壁。2, a semiconductor substrate 200 is provided, the surface of the semiconductor substrate 200 has a raised fin 202, a gate structure 204 located on the fin 202, the gate structure 204 covers part of the fin The top and side walls of section 202.
所述半导体衬底200可以是硅或者绝缘体上硅(SOI),所述半导体衬底200也可以是锗、锗硅、砷化镓或者绝缘体上锗。所述半导体衬底200表面具有凸起的鳍部202,所述鳍部202与所述半导体衬底200的连接方式可以是一体的,例如所述鳍部202是通过对所述半导体衬底200刻蚀后形成的凸起结构。The semiconductor substrate 200 may be silicon or silicon-on-insulator (SOI), and the semiconductor substrate 200 may also be germanium, silicon germanium, gallium arsenide, or germanium-on-insulator. The surface of the semiconductor substrate 200 has a raised fin 202, and the connection between the fin 202 and the semiconductor substrate 200 can be integrated, for example, the fin 202 is connected to the semiconductor substrate 200 The raised structure formed after etching.
所述栅极结构204位于所述鳍部202上,所述栅极结构204覆盖部分所述鳍部202的顶部和侧壁。本实施例中,所述栅极结构204为伪栅极,所述伪栅极204的材料为多晶硅。所述伪栅极204在高介电常数栅介质层和金属栅极(HKMG)的后栅形成工艺中,用于减小后续形成的高介电常数栅介质层和金属栅极的热预算,有利于调节MOS晶体管的阈值电压。后续工艺中去除所述伪栅极204后,在伪栅极204的位置依次形成高介电常数的栅介质层和金属栅极。The gate structure 204 is located on the fin 202 , and the gate structure 204 covers part of the top and sidewall of the fin 202 . In this embodiment, the gate structure 204 is a dummy gate, and the material of the dummy gate 204 is polysilicon. The dummy gate 204 is used to reduce the thermal budget of the subsequently formed high dielectric constant gate dielectric layer and metal gate during the gate-last formation process of the high dielectric constant gate dielectric layer and metal gate (HKMG), It is beneficial to adjust the threshold voltage of the MOS transistor. After the dummy gate 204 is removed in a subsequent process, a gate dielectric layer with a high dielectric constant and a metal gate are sequentially formed at the position of the dummy gate 204 .
在另一实施例中,所述栅极结构包括栅介质层和栅电极层,所述栅介质层的材料氧化硅,所述栅电极层的材料为多晶硅。In another embodiment, the gate structure includes a gate dielectric layer and a gate electrode layer, the gate dielectric layer is made of silicon oxide, and the gate electrode layer is made of polysilicon.
本实施例中,还包括位于所述半导体衬底200表面,且覆盖部分所述鳍部202侧壁的浅沟槽隔离结构201(STI),用于将所述半导体衬底200内的不同鳍部隔离,所述浅沟槽隔离结构201的材料为氧化硅,所述浅沟槽隔离结构201的形成方法可以参考现有工艺,在此不再赘述。In this embodiment, a shallow trench isolation structure 201 (STI) located on the surface of the semiconductor substrate 200 and covering part of the sidewalls of the fins 202 is also included, which is used to separate different fins in the semiconductor substrate 200 part isolation, the material of the shallow trench isolation structure 201 is silicon oxide, the formation method of the shallow trench isolation structure 201 can refer to the existing process, and will not be repeated here.
请参考图3,图3为在图2的基础上形成鳍式场效应晶体管的过程中,沿AA1方向的剖面结构示意图,形成覆盖所述栅极结构204的第一介质层205。Please refer to FIG. 3 . FIG. 3 is a schematic cross-sectional structure view along the AA1 direction during the process of forming the FinFET based on FIG. 2 , and the first dielectric layer 205 covering the gate structure 204 is formed.
具体的,采用物理气相沉积、化学气相沉积或者原子层沉积工艺在所述栅极结构204上形成第一介质层205。所述第一介质层205在后续工艺中用于形成第一侧墙。所述第一介质层205的材料具有较高的介电常数,例如所述第一介质层的材料为HfO2、Al2O3、ZrO2、HfSiO、HfSiON、HfTaO和HfZrO中的一种或几种。由于所述第一介质层205具有较高的介电常数,后续形成第一侧墙后,可以增大负遮盖区(Gate under lap)的电容值,提高鳍式场效应晶体管的驱动电流。Specifically, the first dielectric layer 205 is formed on the gate structure 204 by physical vapor deposition, chemical vapor deposition or atomic layer deposition. The first dielectric layer 205 is used to form first sidewalls in subsequent processes. The material of the first dielectric layer 205 has a relatively high dielectric constant, for example, the material of the first dielectric layer is one of HfO 2 , Al 2 O 3 , ZrO 2 , HfSiO, HfSiON, HfTaO and HfZrO or Several kinds. Since the first dielectric layer 205 has a relatively high dielectric constant, after the subsequent formation of the first spacer, the capacitance value of the negative cover region (Gate under lap) can be increased to increase the driving current of the FinFET.
请参考图4,形成覆盖所述第一介质层205的第二介质层206,所述第二介质层206的介电常数小于所述第一介质层205的介电常数。Referring to FIG. 4 , a second dielectric layer 206 covering the first dielectric layer 205 is formed, and the dielectric constant of the second dielectric layer 206 is smaller than that of the first dielectric layer 205 .
具体的,采用物理气相沉积、化学气相沉积或者原子层沉积工艺在所述第一介质层205上形成第二介质层206。所述第二介质层206在后续工艺中用于形成第二侧墙。所述第二介质层206的材料具有较低的介电常数,例如所述第二介质层的材料为SiCN、SiCON、SiBCN和SiBOCN中的一种或几种。由于所述第二介质层206具有较低的介电常数,后续形成第二侧墙后,可以减小栅极结构204与源区和漏区导电插塞之间的寄生电容。Specifically, the second dielectric layer 206 is formed on the first dielectric layer 205 by physical vapor deposition, chemical vapor deposition or atomic layer deposition. The second dielectric layer 206 is used to form second sidewalls in subsequent processes. The material of the second dielectric layer 206 has a relatively low dielectric constant, for example, the material of the second dielectric layer is one or more of SiCN, SiCON, SiBCN and SiBOCN. Since the second dielectric layer 206 has a lower dielectric constant, the parasitic capacitance between the gate structure 204 and the conductive plugs in the source and drain regions can be reduced after the subsequent formation of the second spacer.
在本发明的另一实施例中,在形成覆盖所述第一介质层的第二介质层后,还在所述第二介质层上形成第三介质层,所述第三介质层的材料为氮化硅,后续回刻蚀所述第三介质层形成第三侧墙。所述第三侧墙可以在后续形成源区和漏区的插塞过程中,作为通孔刻蚀的刻蚀阻挡层,减小刻蚀工艺对栅极结构的损伤。In another embodiment of the present invention, after forming the second dielectric layer covering the first dielectric layer, a third dielectric layer is further formed on the second dielectric layer, and the material of the third dielectric layer is silicon nitride, and subsequently etch back the third dielectric layer to form a third sidewall. The third sidewall can be used as an etch barrier layer for via hole etching in the subsequent process of forming the plugs of the source region and the drain region, so as to reduce damage to the gate structure caused by the etching process.
请参考图5,回刻蚀所述第二介质层206(参考图4),形成第二侧墙207。Referring to FIG. 5 , the second dielectric layer 206 (refer to FIG. 4 ) is etched back to form a second spacer 207 .
具体的,采用干法刻蚀工艺回刻蚀所述第二介质层206,本实施例中采用反应离子刻蚀工艺回刻蚀所述第二介质层206。由于反应离子刻蚀具有较好的方向性,无需形成掩膜,回刻蚀所述第二介质层206后,仅位于所述栅极结构204两侧的第二介质层206保留形成第二侧墙207,位于所述栅极结构204顶部和其余区域的第二介质层206被去除。一方面,所述第二侧墙207的介电常数较低,可以减小栅极结构204与源区和漏区导电插塞之间的寄生电容;另一方面,所述侧墙207位于所述第一介质层205之上,在后续刻蚀第一介质层205形成第一侧墙时,可以作为刻蚀掩膜,使形成的第二侧墙具有水平部分和垂直部分。Specifically, the second dielectric layer 206 is etched back using a dry etching process, and in this embodiment, the second dielectric layer 206 is etched back using a reactive ion etching process. Since reactive ion etching has good directionality, no mask is required, and after etching back the second dielectric layer 206, only the second dielectric layer 206 located on both sides of the gate structure 204 remains to form the second side The wall 207, the second dielectric layer 206 on the top of the gate structure 204 and the rest of the area are removed. On the one hand, the dielectric constant of the second spacer 207 is low, which can reduce the parasitic capacitance between the gate structure 204 and the conductive plugs in the source and drain regions; on the other hand, the spacer 207 is located at the Above the first dielectric layer 205, when the first dielectric layer 205 is subsequently etched to form the first sidewall, it can be used as an etching mask so that the formed second sidewall has a horizontal portion and a vertical portion.
请参考图6,以所述第二侧墙207为掩膜刻蚀所述第一介质层205(参考图5),形成第一侧墙208,所述第一侧墙208具有水平部分208a和垂直部分208b。Referring to FIG. 6, the first dielectric layer 205 is etched using the second sidewall 207 as a mask (refer to FIG. 5) to form a first sidewall 208. The first sidewall 208 has a horizontal portion 208a and Vertical section 208b.
具体的,采用干法刻蚀工艺回刻蚀所述第一介质层205,本实施例中采用反应离子刻蚀工艺刻蚀所述第一介质层205。由于所述第一介质层205的部分表面被所述第二侧墙207覆盖,因此,以所述第二侧墙207为掩膜刻蚀所述第一介质层205形成第二侧墙208后,位于所述栅极结构204两侧的第一介质层205构成第二侧墙208的垂直部分208b,位于所述第二侧墙207下方的第一介质层205构成第二侧墙208的水平部分208a。Specifically, the first dielectric layer 205 is etched back using a dry etching process, and in this embodiment, the first dielectric layer 205 is etched using a reactive ion etching process. Since part of the surface of the first dielectric layer 205 is covered by the second sidewall 207, after the second sidewall 208 is formed by etching the first dielectric layer 205 using the second sidewall 207 as a mask , the first dielectric layer 205 located on both sides of the gate structure 204 forms the vertical portion 208b of the second sidewall 208, and the first dielectric layer 205 located below the second sidewall 207 forms the horizontal portion of the second sidewall 208 Section 208a.
需要说明的是,刻蚀所述第二介质层形成第二侧墙和刻蚀所述第一介质层形成第一侧墙的工艺可以在同一步刻蚀工艺中完成,也可以分两步刻蚀工艺完成。It should be noted that the process of etching the second dielectric layer to form the second spacer and etching the first dielectric layer to form the first spacer can be completed in the same etching process, or can be divided into two steps. The etching process is completed.
形成所述第一侧墙208后,所述第一侧墙208覆盖的部分鳍部202构成负遮盖区209(Gate under lap),所述负遮盖区209的掺杂浓度与后续形成的鳍式场效应晶体管的沟道区域(未示出)掺杂浓度相同。由于所述负遮盖区209后续工艺中不会进行轻掺杂漏区注入和晕环注入,所述负遮盖区209的掺杂浓度较低,可以增大鳍式场效应晶体管有效沟道区域长度,缓解短沟道效应。After the first sidewall 208 is formed, the part of the fin 202 covered by the first sidewall 208 forms a negative cover region 209 (Gate under lap), and the doping concentration of the negative cover region 209 is the same as that of the subsequently formed fin. The channel regions (not shown) of the field effect transistors have the same doping concentration. Since lightly doped drain region implantation and halo implantation will not be performed in the subsequent process of the negative cover region 209, the doping concentration of the negative cover region 209 is relatively low, which can increase the effective channel region length of the FinFET , to alleviate the short channel effect.
为了解决负遮盖区209掺杂浓度低,导致鳍式场效应晶体管驱动电流降低,现有技术中,通常需要采用高介电常数的侧墙来提高负遮盖区的电容值,但高介电常数的侧墙带来栅极结构与源区和漏区导电插塞之间寄生电容增大的不利影响。在本实施例中,采用了第一侧墙208和第二侧墙207的双侧墙结构,所述第二侧墙207的介电常数小于所述第一侧墙208的介电常数,且所述第一侧墙208具有水平部分208a和垂直部分208b。本实施例的第一侧墙208和第二侧墙207可以通过一次刻蚀工艺实现,工艺简单;所述第二侧墙207具有较小的介电常数可以减小栅极结构204与后续形成的源区和漏区的导电插塞之间的寄生电容;所述第一侧墙208的水平部分208a具有较高的介电常数,可以提高负遮盖区209的电容值,提升鳍式场效应晶体管的驱动电流;In order to solve the low doping concentration of the negative cover region 209, which leads to the reduction of the driving current of the fin field effect transistor, in the prior art, it is usually necessary to use sidewalls with a high dielectric constant to increase the capacitance value of the negative cover region, but the high dielectric constant The sidewalls have the adverse effect of increasing the parasitic capacitance between the gate structure and the conductive plugs in the source and drain regions. In this embodiment, a double sidewall structure of the first sidewall 208 and the second sidewall 207 is adopted, the dielectric constant of the second sidewall 207 is smaller than the dielectric constant of the first sidewall 208, and The first side wall 208 has a horizontal portion 208a and a vertical portion 208b. The first sidewall 208 and the second sidewall 207 of this embodiment can be realized by one etching process, and the process is simple; The parasitic capacitance between the conductive plugs of the source region and the drain region; the horizontal portion 208a of the first spacer 208 has a higher dielectric constant, which can increase the capacitance value of the negative cover region 209 and enhance the fin field effect The driving current of the transistor;
本实施例中,所述负遮盖区209的长度范围为10埃~50埃。由于所述负遮盖区209的宽度与后续形成的鳍式场效应晶体管的阈值电压有关,因此当所述负遮盖区209的长度较小时,后续形成的鳍式场效应晶体管的阈值电压较小,常用于作为逻辑区域的晶体管使用,以减小功耗。所述负遮盖区209的长度与所述第一介质层和第二介质层的厚度的和相近,因此所述负遮盖区209的长度范围可以通过控制沉积第一介质层和第二介质层的厚度来调节,获得长度较小的负遮盖区209。In this embodiment, the length of the negative masking region 209 ranges from 10 angstroms to 50 angstroms. Since the width of the negative cover region 209 is related to the threshold voltage of the fin field effect transistor formed subsequently, when the length of the negative cover region 209 is small, the threshold voltage of the fin field effect transistor formed subsequently is small, Often used as transistors in logic areas to reduce power consumption. The length of the negative masking area 209 is close to the sum of the thicknesses of the first dielectric layer and the second dielectric layer, so the length range of the negative masking area 209 can be controlled by depositing the first dielectric layer and the second dielectric layer The thickness is adjusted to obtain a negative mask region 209 with a smaller length.
在另一实施例中,所述第一介质层和第二介质层的厚度较厚,所形成的负遮盖区209的长度范围为300埃~500埃。后续形成的鳍式场效应晶体管具有较高的阈值电压,常用于输入/输入区域的晶体管使用,使其具有较高的阈值电压和击穿电压。In another embodiment, the thickness of the first dielectric layer and the second dielectric layer is relatively thick, and the length of the formed negative masking region 209 ranges from 300 angstroms to 500 angstroms. The subsequently formed fin field effect transistor has a higher threshold voltage, and is often used as a transistor in the input/input area, so that it has a higher threshold voltage and breakdown voltage.
请参考图7,在所述栅极结构204两侧鳍部202内形成嵌入式源区和漏区210。Referring to FIG. 7 , embedded source and drain regions 210 are formed in the fins 202 on both sides of the gate structure 204 .
具体的,刻蚀所述栅极结构204两侧的鳍部202,形成第一开口(未示出),并在所述第一开口内采用选择性外延工艺形成嵌入式源区和漏区210,所述的选择性外延工艺可以为化学气相沉积或者分子束外延。Specifically, the fins 202 on both sides of the gate structure 204 are etched to form a first opening (not shown), and embedded source and drain regions 210 are formed in the first opening using a selective epitaxy process. , the selective epitaxy process may be chemical vapor deposition or molecular beam epitaxy.
在本实施例中,所述嵌入式源区和漏区210的材料为硅或者碳化硅,用于NMOS鳍式场效应晶体管,所述的硅或者碳化硅掺杂有N型杂质。当所述的嵌入式源区和漏区210的材料为硅时,形成的嵌入式源区和漏区体积大于被刻蚀的鳍部202的体积,有利于后续源区和漏区上导电插塞的形成,防止由于鳍部202体积过小导致金属插塞与源区和漏区的接触不良。当所述嵌入式源区和漏区210的材料为碳化硅时,形成的嵌入式源区和漏区210不仅有利于后续源区和漏区上导电插塞的形成,还由于碳化硅材料的晶格常数小于硅材料的晶格常数,可以在NMOS鳍式场效应晶体管的沟道区域引入拉伸应力,提高电子迁移率。In this embodiment, the material of the embedded source region and drain region 210 is silicon or silicon carbide, which is used for NMOS fin field effect transistors, and the silicon or silicon carbide is doped with N-type impurities. When the material of the embedded source region and drain region 210 is silicon, the volume of the formed embedded source region and drain region is larger than the volume of the etched fin portion 202, which is conducive to the subsequent conductive insertion of the source region and drain region. The formation of the plug prevents poor contact between the metal plug and the source region and the drain region due to the too small volume of the fin portion 202 . When the material of the embedded source region and drain region 210 is silicon carbide, the formed embedded source region and drain region 210 are not only conducive to the formation of conductive plugs on the subsequent source region and drain region, but also due to the silicon carbide material The lattice constant is smaller than that of the silicon material, and tensile stress can be introduced in the channel region of the NMOS fin field effect transistor to improve electron mobility.
在另一实施例中,所述嵌入式源区和漏区210的材料为硅或者锗硅,用于PMOS鳍式场效应晶体管,所述的硅或者锗硅掺杂有P型杂质。当所述嵌入式源区和漏区210的材料为硅时,形成的嵌入式源区和漏区210的体积大于被刻蚀的鳍部202的体积,有利于后续源区和漏区上导电插塞的形成,防止由于鳍部202的体积过小导致导电插塞与源区和漏区的接触不良。当所述嵌入式源区和漏区210的材料为锗硅时,形成的嵌入式源区和漏区210还可以在PMOS晶体管的沟道区域引入压缩应力,提高空穴迁移率。In another embodiment, the material of the embedded source region and drain region 210 is silicon or silicon germanium, which is used for a PMOS fin field effect transistor, and the silicon or silicon germanium is doped with P-type impurities. When the material of the embedded source region and drain region 210 is silicon, the volume of the formed embedded source region and drain region 210 is larger than the volume of the etched fin portion 202, which is conducive to conduction on the subsequent source region and drain region. The formation of the plug prevents poor contact between the conductive plug and the source region and the drain region due to the too small volume of the fin portion 202 . When the material of the embedded source region and drain region 210 is silicon germanium, the formed embedded source region and drain region 210 can also introduce compressive stress in the channel region of the PMOS transistor to improve hole mobility.
请参考图8,形成覆盖所述嵌入式源区和漏区210的隔离介质层211,所述隔离介质层211的上表面与所述栅极结构204的上表面齐平。Referring to FIG. 8 , an isolation dielectric layer 211 covering the embedded source region and drain region 210 is formed, and the upper surface of the isolation dielectric layer 211 is flush with the upper surface of the gate structure 204 .
本实施例中,采用物理气相沉积或者化学气相沉积的工艺形成覆盖所述嵌入式源区和漏区210的隔离介质材料层。采用化学机械抛光工艺抛光所述隔离介质材料层,以所述栅极结构204的上表面为抛光停止层,使所述隔离介质材料层的表面与所述栅极结构204的上表面齐平,所述隔离介质材料层构成隔离介质层211。所述隔离介质层211用于将所述鳍式场效应晶体管与外部器件隔离。In this embodiment, a physical vapor deposition or chemical vapor deposition process is used to form an isolation dielectric material layer covering the embedded source region and drain region 210 . Using a chemical mechanical polishing process to polish the isolation dielectric material layer, using the upper surface of the gate structure 204 as a polishing stop layer, so that the surface of the isolation dielectric material layer is flush with the upper surface of the gate structure 204, The isolation dielectric material layer constitutes the isolation dielectric layer 211 . The isolation dielectric layer 211 is used to isolate the FinFET from external devices.
在另一实施例中,还包括在形成所述隔离介质层后,对所述第一侧墙的垂直部分进行离子注入,减小所述第一侧墙的垂直部分的介电常数。所述离子注入工艺的注入离子为氢离子,由于氢离子可以与高介电常数的介质材料层发生反应,生成介电常数较低的含氢的介质材料层。例如当所述第一侧墙的材料为HfO2时,氢离子与发生反应,生成Hf或者HfOxHy,Hf和HfOxHy的介电常数小于HfO2。由于所述第一侧墙的垂直部分的介电常数降低,可以进一步的减小栅极结构与后续形成的源区和漏区上的导电插塞之间的寄生电容。In another embodiment, after forming the isolation dielectric layer, performing ion implantation on the vertical part of the first sidewall to reduce the dielectric constant of the vertical part of the first sidewall. The implanted ions in the ion implantation process are hydrogen ions, because the hydrogen ions can react with the dielectric material layer with high dielectric constant to form a dielectric material layer containing hydrogen with a lower dielectric constant. For example, when the material of the first side wall is HfO 2 , hydrogen ions react with HfO x H y to generate Hf or HfO x H y , and the dielectric constant of Hf and HfO x H y is smaller than that of HfO 2 . Since the dielectric constant of the vertical portion of the first spacer is reduced, the parasitic capacitance between the gate structure and the conductive plugs formed subsequently on the source region and the drain region can be further reduced.
请参考图9,去除所述栅极结构204(参考图8),形成第二开口(未示出),在所述第二开口内形成高介电常数栅介质层212和金属栅极213。Referring to FIG. 9 , the gate structure 204 (refer to FIG. 8 ) is removed to form a second opening (not shown), and a high dielectric constant gate dielectric layer 212 and a metal gate 213 are formed in the second opening.
本实施例中,所述栅极结构204为伪栅极,去除所述伪栅极后,形成第二开口。采用化学气相沉积工艺或者原子层沉积工艺在所述第二开口内形成高介电常数的栅介质材料层,所述高介电常数栅介质材料层的材料为HfO2、Al2O3、ZrO2、HfSiO、HfSiON、HfTaO和HfZrO中的一种或几种。在所述高介电常数的栅介质材料层上形成金属栅极材料层,所述金属栅极材料层的材料为W、Al,Cu,Ti,Ta,TaN,NiSi,CoSi,TiN,TiAl和TaSiN中的一种或几种。采用化学机械抛光工艺抛光所述金属栅极材料层和高介电常数栅介质材料层,以所述隔离介质层211为抛光停止层,形成高介电常数栅介质层212和金属栅极213。In this embodiment, the gate structure 204 is a dummy gate, and after removing the dummy gate, a second opening is formed. A high dielectric constant gate dielectric material layer is formed in the second opening by chemical vapor deposition process or atomic layer deposition process, and the material of the high dielectric constant gate dielectric material layer is HfO 2 , Al 2 O 3 , ZrO 2. One or more of HfSiO, HfSiON, HfTaO and HfZrO. A metal gate material layer is formed on the high dielectric constant gate dielectric material layer, and the material of the metal gate material layer is W, Al, Cu, Ti, Ta, TaN, NiSi, CoSi, TiN, TiAl and One or several kinds of TaSiN. The metal gate material layer and the high dielectric constant gate dielectric material layer are polished by a chemical mechanical polishing process, and the isolation dielectric layer 211 is used as a polishing stop layer to form a high dielectric constant gate dielectric layer 212 and a metal gate 213 .
在另一实施例中,所述栅极结构包括了栅介质层和栅电极层,采用先栅工艺(Gatefirst)形成,无需去除所述栅极结构。In another embodiment, the gate structure includes a gate dielectric layer and a gate electrode layer, which are formed using a gate-first process (Gatefirst), without removing the gate structure.
后续在所述隔离介质层中形成暴露所述嵌入式源区和漏区表面的通孔,在所述通孔中形成源区和漏区的导电插塞。由于所述第二侧墙的介电常数较低,减小了栅极结构与源区和漏区的导电插塞之间的寄生电容。Subsequently, a via hole exposing the surface of the embedded source region and the drain region is formed in the isolation dielectric layer, and a conductive plug of the source region and the drain region is formed in the through hole. Due to the low dielectric constant of the second spacer, the parasitic capacitance between the gate structure and the conductive plugs of the source region and the drain region is reduced.
对应的,请参考图9,本实施例还提供了一种鳍式场效应晶体管,包括:半导体衬底200,所述半导体衬底表面具有凸起的鳍部202;位于所述鳍部202上的栅极结构,所述栅极结构覆盖部分所述鳍部202的顶部和侧壁,所述栅极结构包括栅介质层212和位于所述栅介质层212上的栅电极层213;位于所述栅极结构两侧的第一侧墙208,所述第一侧墙具有水平部分208a和垂直部分208b;位于所述第一侧墙208两侧的第二侧墙207,所述第二侧墙位207于所述第一侧墙的水平部分208a上,所述第二侧墙207的介电常数小于所述第一侧墙208的介电常数;位于所述第一侧墙208下的部分鳍部202内的负遮盖区209。Correspondingly, please refer to FIG. 9 , this embodiment also provides a fin field effect transistor, including: a semiconductor substrate 200, the surface of the semiconductor substrate has a raised fin 202; The gate structure, the gate structure covers part of the top and sidewall of the fin portion 202, the gate structure includes a gate dielectric layer 212 and a gate electrode layer 213 on the gate dielectric layer 212; The first sidewall 208 on both sides of the gate structure, the first sidewall has a horizontal portion 208a and a vertical portion 208b; the second sidewall 207 on both sides of the first sidewall 208, the second sidewall The wall position 207 is on the horizontal portion 208a of the first side wall, the dielectric constant of the second side wall 207 is smaller than the dielectric constant of the first side wall 208; Negative shadow area 209 within part of fin 202 .
本实施例中,所述负遮盖区209的掺杂浓度与鳍式场效应晶体管的沟道区域(未示出)掺杂浓度相同。In this embodiment, the doping concentration of the negative covering region 209 is the same as that of the channel region (not shown) of the FinFET.
本实施例中,所述第一侧墙208的材料为HfO2、Al2O3、ZrO2、HfSiO、HfSiON、HfTaO和HfZrO中的一种或几种,所述第二侧墙207的材料为SiCN、SiCON、SiBCN和SiBOCN中的一种或几种。In this embodiment, the material of the first side wall 208 is one or more of HfO 2 , Al 2 O 3 , ZrO 2 , HfSiO, HfSiON, HfTaO and HfZrO, and the material of the second side wall 207 One or more of SiCN, SiCON, SiBCN and SiBOCN.
在另一实施例中,所述鳍式场效应晶体管还包括位于所述第二侧墙两侧的第三侧墙,所述第三侧墙的材料为氮化硅。In another embodiment, the FinFET further includes third sidewalls located on both sides of the second sidewalls, and the material of the third sidewalls is silicon nitride.
对应的,本实施例的鳍式场效应晶体管采用上述鳍式场效应晶体管的形成方法所形成,因此本实施例的鳍式场效应晶体管也具有减小栅极结构与源区和漏区上的导电插塞之间寄生电容的优点。Correspondingly, the fin field effect transistor of this embodiment is formed by using the method for forming the fin field effect transistor described above, so the fin field effect transistor of this embodiment also has the ability to reduce the gap between the gate structure and the source region and the drain region. Advantages of parasitic capacitance between conductive plugs.
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can utilize the methods and techniques disclosed above to analyze the technical aspects of the present invention without departing from the spirit and scope of the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not depart from the content of the technical solution of the present invention, all belong to the protection of the technical solution of the present invention. scope.
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310009265.3A CN103928327B (en) | 2013-01-10 | 2013-01-10 | Fin formula field effect transistor and forming method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310009265.3A CN103928327B (en) | 2013-01-10 | 2013-01-10 | Fin formula field effect transistor and forming method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103928327A CN103928327A (en) | 2014-07-16 |
| CN103928327B true CN103928327B (en) | 2017-07-14 |
Family
ID=51146509
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310009265.3A Active CN103928327B (en) | 2013-01-10 | 2013-01-10 | Fin formula field effect transistor and forming method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103928327B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105322013B (en) | 2014-07-17 | 2020-04-07 | 联华电子股份有限公司 | Semiconductor device and method for forming the same |
| CN105632933B (en) * | 2015-03-31 | 2019-08-20 | 中国科学院微电子研究所 | Method for forming sidewall and semiconductor device including sidewall |
| CN107039520B (en) * | 2016-02-03 | 2020-05-08 | 中芯国际集成电路制造(上海)有限公司 | Fin field effect transistor and method of forming the same |
| CN107346730B (en) * | 2016-05-05 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | Improve the method for performance of semiconductor device |
| CN107919324B (en) * | 2016-10-10 | 2020-05-08 | 中芯国际集成电路制造(上海)有限公司 | Method of forming a semiconductor device |
| CN106783568A (en) * | 2016-12-27 | 2017-05-31 | 株洲中车时代电气股份有限公司 | A kind of power device grid curb wall preparation method |
| US9853028B1 (en) * | 2017-04-17 | 2017-12-26 | International Business Machines Corporation | Vertical FET with reduced parasitic capacitance |
| US10490452B2 (en) * | 2017-06-30 | 2019-11-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for fabricating a semiconductor device |
| CN109390235B (en) * | 2017-08-02 | 2021-11-12 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| US11101364B2 (en) * | 2019-03-08 | 2021-08-24 | Globalfoundries U.S. Inc. | Field-effect transistors with diffusion blocking spacer sections |
| CN112151376B (en) * | 2019-06-28 | 2024-03-01 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| CN113764279B (en) * | 2020-06-03 | 2024-11-01 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| CN115148814A (en) * | 2021-03-30 | 2022-10-04 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming semiconductor structure |
| CN116936473A (en) * | 2022-04-06 | 2023-10-24 | 华为技术有限公司 | Chip and preparation method thereof, terminal |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4237448B2 (en) * | 2002-05-22 | 2009-03-11 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
| US7009265B2 (en) * | 2004-06-11 | 2006-03-07 | International Business Machines Corporation | Low capacitance FET for operation at subthreshold voltages |
| US7948307B2 (en) * | 2009-09-17 | 2011-05-24 | International Business Machines Corporation | Dual dielectric tri-gate field effect transistor |
-
2013
- 2013-01-10 CN CN201310009265.3A patent/CN103928327B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN103928327A (en) | 2014-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103928327B (en) | Fin formula field effect transistor and forming method thereof | |
| US8614468B2 (en) | Mask-less and implant free formation of complementary tunnel field effect transistors | |
| CN102222692B (en) | Semiconductor device and method for manufacturing the same | |
| CN102315269B (en) | Semiconductor device and forming method thereof | |
| US9679962B2 (en) | FinFET and method of manufacturing the same | |
| CN103730363B (en) | Semiconductor structure and manufacturing method thereof | |
| CN103489779B (en) | Semiconductor structure and manufacturing method thereof | |
| CN102263131B (en) | Semiconductor device and forming method thereof | |
| CN103377946B (en) | Semiconductor structure and manufacturing method thereof | |
| US20150270399A1 (en) | Semiconductor structure and method for manufacturing the same | |
| US11171062B2 (en) | Semiconductor structure and method for the forming same | |
| CN103943502B (en) | Fin formula field effect transistor and forming method thereof | |
| CN102543745B (en) | Method of forming semiconductor device | |
| CN102315267B (en) | Semiconductor device and forming method thereof | |
| CN104064467B (en) | The forming method of fin formula field effect transistor | |
| CN103378129B (en) | Semiconductor structure and manufacturing method thereof | |
| CN102842616B (en) | Semiconductor structure and manufacturing method thereof | |
| CN111627814B (en) | Semiconductor structure and forming method thereof | |
| CN113053751A (en) | Semiconductor structure and forming method thereof | |
| CN103915387B (en) | The forming method of CMOS transistor | |
| CN104064453B (en) | Method for forming fin field-effect transistor | |
| CN104576381B (en) | Asymmetric ultrathin SOIMOS transistor structure and manufacturing method thereof | |
| US9653550B2 (en) | MOSFET structure and manufacturing method thereof | |
| CN102842615B (en) | Semiconductor structure and manufacturing method thereof | |
| CN103247624B (en) | Semiconductor structure and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |