[go: up one dir, main page]

CN103944571B - High-speed configurable assembly line analog-to-digital converter - Google Patents

High-speed configurable assembly line analog-to-digital converter Download PDF

Info

Publication number
CN103944571B
CN103944571B CN201310023113.9A CN201310023113A CN103944571B CN 103944571 B CN103944571 B CN 103944571B CN 201310023113 A CN201310023113 A CN 201310023113A CN 103944571 B CN103944571 B CN 103944571B
Authority
CN
China
Prior art keywords
circuit
level circuit
mos transistor
level
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310023113.9A
Other languages
Chinese (zh)
Other versions
CN103944571A (en
Inventor
朱樟明
刘术彬
张翼飞
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310023113.9A priority Critical patent/CN103944571B/en
Publication of CN103944571A publication Critical patent/CN103944571A/en
Application granted granted Critical
Publication of CN103944571B publication Critical patent/CN103944571B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

本发明提供一种高速可配置流水线模数转换器,包括:顺序连接的第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器;与上述各级电路连接的冗余校准电路;第一级电路通过第一开关与冗余校准电路连接;第二级电路通过第二开关与冗余校准电路连接;第一开关和第二开关均为闭合时,第一级电路至第十级电路以及快闪模数子转换器全部工作,实现第一频率的工作模式;第一开关和第二开关均为断开时,第一级电路和第二电路断开,第三级电路至第十级电路以及快闪模数子转换器工作,实现第二频率的工作模式。本发明具有高速、采样速率可调、可配置、位数可选的优点。

The present invention provides a high-speed configurable pipeline analog-to-digital converter, comprising: a first-level circuit, a second-level circuit, a third-level circuit, a fourth-level circuit, a fifth-level circuit, a sixth-level circuit, and a first-level circuit connected in sequence. The seven-level circuit, the eighth-level circuit, the ninth-level circuit, the tenth-level circuit, and a two-bit flash analog-to-digital sub-converter; a redundant calibration circuit connected to the above-mentioned levels of circuits; the first-level circuit passes through the first The switch is connected to the redundant calibration circuit; the second level circuit is connected to the redundant calibration circuit through the second switch; when both the first switch and the second switch are closed, the first level circuit to the tenth level circuit and the flash modulus sub All the converters work to realize the working mode of the first frequency; when both the first switch and the second switch are turned off, the first-stage circuit and the second circuit are disconnected, and the third-stage circuit to the tenth-stage circuit and the flash mode The digital converter works to realize the working mode of the second frequency. The invention has the advantages of high speed, adjustable sampling rate, configurable and optional number of digits.

Description

一种高速可配置流水线模数转换器A High-Speed Configurable Pipelined Analog-to-Digital Converter

技术领域technical field

本发明涉及集成电路领域,特别是指一种高速可配置流水线模数转换器。背景技术The invention relates to the field of integrated circuits, in particular to a high-speed configurable pipeline analog-to-digital converter. Background technique

随着无线通信技术的快速发展,多种协议标准的共存变得不可避免,由于不同协议标准对传输速度、传输质量有不同要求,它们所允许的输入信号频率范围、带宽、动态范围也存在较大差异,因此对于多标准终端设备来说,其需要不同分辨率和不同采样速率的AD(模数)转换器。With the rapid development of wireless communication technology, the coexistence of multiple protocol standards has become inevitable. Since different protocol standards have different requirements for transmission speed and transmission quality, there are also differences in the frequency range, bandwidth, and dynamic range of input signals that they allow. Therefore, for multi-standard terminal equipment, it requires AD (analog-to-digital) converters with different resolutions and different sampling rates.

为实现分辨率、采样速率可变的模数转换器,目前业内有两种传统方案:方案一是将几种专用的ADC(模数转换器)并行地集成于一体,每种通信协议一种ADC,该方案的优点是低功耗,一种ADC工作时其它ADC关闭,每种协议都有优化过的专用ADC,缺点是面积大,研发周期长,多种专用ADC研发需要大量投入。In order to realize an analog-to-digital converter with variable resolution and sampling rate, there are currently two traditional solutions in the industry: The first solution is to integrate several dedicated ADCs (analog-to-digital converters) in parallel, one for each communication protocol ADC, the advantage of this solution is low power consumption. When one ADC is working, the other ADCs are turned off. Each protocol has an optimized dedicated ADC. The disadvantage is that the area is large, the development cycle is long, and the development of various dedicated ADCs requires a lot of investment.

方案二是采用统一的ADC。该通用ADC按照所有通信协议中的最坏情况进行设计。该方案的优点是面积小、低成本,对于不同的通信协议,都依靠一个ADC来解决,缺点是性能过剩,在多协议下耗费过多的能量,并且对很大范围的性能要求来说,技术上很难实现。The second option is to use a unified ADC. This general-purpose ADC is designed for worst-case scenarios across all communication protocols. The advantages of this solution are small area and low cost. For different communication protocols, they all rely on an ADC to solve the problem. The disadvantage is that the performance is excessive, and it consumes too much energy under multiple protocols, and for a wide range of performance requirements. Technically difficult to achieve.

鉴于以上原因,一种低面积、低功耗、能避免性能过剩的可配置A/D转换器就成了需求。In view of the above reasons, a configurable A/D converter with low area, low power consumption and avoiding excess performance becomes a demand.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种高速、采样速率可调的、可配置、位数可选的模数转换器。The technical problem to be solved by the present invention is to provide an analog-to-digital converter with high speed, adjustable sampling rate, configurable and optional bits.

为解决上述技术问题,本发明的实施例提供一种高速可配置流水线模数转换器,包括:In order to solve the above technical problems, an embodiment of the present invention provides a high-speed configurable pipeline analog-to-digital converter, including:

顺序连接的第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器;The first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit connected in sequence stage circuit and a two-bit flash analog-to-digital sub-converter;

与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的冗余校准电路;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit stage circuit and a redundant calibration circuit connected to a two-bit flash analog-to-digital sub-converter;

其中,所述第一级电路通过第一开关与所述冗余校准电路连接;所述第二级电路通过第二开关与所述冗余校准电路连接;Wherein, the first stage circuit is connected to the redundant calibration circuit through a first switch; the second stage circuit is connected to the redundant calibration circuit through a second switch;

所述第一开关和所述第二开关均为闭合时,所述第一级电路至所述第十级电路以及所述快闪模数子转换器全部工作,实现第一频率的工作模式;When both the first switch and the second switch are closed, all the circuits from the first stage to the tenth stage and the flash analog-to-digital sub-converter work to realize the working mode of the first frequency;

所述第一开关和所述第二开关均为断开时,所述第一级电路和所述第二电路断开,所述第三级电路至所述第十级电路以及所述快闪模数子转换器工作,实现第二频率的工作模式。When both the first switch and the second switch are turned off, the first stage circuit and the second stage circuit are turned off, the third stage circuit to the tenth stage circuit and the flash The analog-to-digital sub-converter works to realize the working mode of the second frequency.

其中,与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电压产生电路,给每一级电路提供稳定的参考电压。Wherein, with the first-level circuit, the second-level circuit, the third-level circuit, the fourth-level circuit, the fifth-level circuit, the sixth-level circuit, the seventh-level circuit, the eighth-level circuit, the ninth-level circuit, The reference voltage generation circuit connected to the tenth stage circuit and a two-bit flash analog-to-digital sub-converter provides a stable reference voltage for each stage circuit.

其中,与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的时钟产生电路,给每一级电路提供精确的时钟电路。Wherein, with the first-level circuit, the second-level circuit, the third-level circuit, the fourth-level circuit, the fifth-level circuit, the sixth-level circuit, the seventh-level circuit, the eighth-level circuit, the ninth-level circuit, The clock generation circuit connected to the tenth stage circuit and a two-bit flash analog-to-digital sub-converter provides an accurate clock circuit for each stage circuit.

其中,上述模数转换器,还包括:Wherein, the above-mentioned analog-to-digital converter also includes:

与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电流产生电路,以及与所述参考电流产生电路连接的频率电流转换器。and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit A reference current generating circuit connected to a stage circuit and a two-bit flash analog-to-digital sub-converter, and a frequency-to-current converter connected to the reference current generating circuit.

其中,所述频率电流转换器包括:运算放大器,至少1个MOS管,去耦合电容以及开关电容电路;Wherein, the frequency-to-current converter includes: an operational amplifier, at least one MOS transistor, a decoupling capacitor and a switched capacitor circuit;

其中,运算放大器的输入端连接Vbg和至少3个MOS管中的第一个MOS管的漏极,输出连接到所述至少1个MOS管中的每个MOS的栅极,构成单位增益结构;Wherein, the input terminal of the operational amplifier is connected to Vbg and the drain of the first MOS transistor in the at least 3 MOS transistors, and the output is connected to the gate of each MOS in the at least 1 MOS transistor, forming a unity gain structure;

所述第一个MOS管的漏极同时连接到所述去耦合电容,以及由时钟控制的开关电容电路。The drain of the first MOS transistor is simultaneously connected to the decoupling capacitor and the switched capacitor circuit controlled by a clock.

其中,所述第一级电路至所述第十级电路的每级电路均包括:Wherein, each stage circuit of the first stage circuit to the tenth stage circuit includes:

由第一时钟信号控制的第一CMOS传输门开关、第二CMOS传输门开关、第三CMOS传输门开关以及第四CMOS传输门开关;a first CMOS transmission gate switch, a second CMOS transmission gate switch, a third CMOS transmission gate switch, and a fourth CMOS transmission gate switch controlled by a first clock signal;

与所述第一CMOS传输门开关连接的第一采样电容,与所述第二CMOS传输门开关连接的第二采样电容,与所述第三CMOS传输门开关连接的第三采样电容,与所述第四CMOS传输门开关连接的第四采样电容;The first sampling capacitor connected to the first CMOS transmission gate switch, the second sampling capacitor connected to the second CMOS transmission gate switch, the third sampling capacitor connected to the third CMOS transmission gate switch, and the The fourth sampling capacitor connected to the fourth CMOS transmission gate switch;

由第二时钟信号控制的第五CMOS传输门开关和第六CMOS传输门开关,所述第五CMOS传输门开关的一端与所述第一采样电容连接,另一端与余量放大器的输出端连接;所述第六CMOS传输门开关的一端与所述第四采样电容连接,另一端与所述余量放大器的输出端连接;The fifth CMOS transmission gate switch and the sixth CMOS transmission gate switch controlled by the second clock signal, one end of the fifth CMOS transmission gate switch is connected to the first sampling capacitor, and the other end is connected to the output end of the residual amplifier ; One end of the sixth CMOS transmission gate switch is connected to the fourth sampling capacitor, and the other end is connected to the output end of the residual amplifier;

第一子模数转换器,与所述第一子模数转换器连接的第一子数模转换器,,所述第一子数模转换器还与所述第二采样电容以及所述第三采样电容连接;The first sub-ADC, the first sub-DAC connected to the first sub-ADC, the first sub-DAC is further connected to the second sampling capacitor and the first sub-ADC Three sampling capacitor connections;

共模反馈单元,与所述余量放大器的输出端连接;a common-mode feedback unit connected to the output terminal of the residual amplifier;

所述余量放大器还与所述频率电流转换器的输出端连接。The surplus amplifier is also connected to the output terminal of the frequency-to-current converter.

其中,所述第一子数模转换器还与参考电压连接;Wherein, the first sub-digital-to-analog converter is also connected to a reference voltage;

所述余量放大器的第一输入端还与所述第一采样电容和所述第二采样电容连接;The first input terminal of the residual amplifier is also connected to the first sampling capacitor and the second sampling capacitor;

所述余量放大器的第二输入端还与所述第三采样电容和所述第四采样电容连接;The second input terminal of the residual amplifier is also connected to the third sampling capacitor and the fourth sampling capacitor;

所述余量放大器的第一输入端和第二输入端通过第三时钟控制的第七CMOS传输门开关连接。The first input terminal and the second input terminal of the residual amplifier are connected through a seventh CMOS transmission gate switch controlled by a third clock.

其中,所述第一子数模转换器中运算放大器电路包括:Wherein, the operational amplifier circuit in the first sub-digital-to-analog converter includes:

第十三MOS管(M13),第十四MOS管(M14),第十五MOS管(M15),第十六MOS管的(M16),第十七MOS管(M17)作为各个支路的尾电流源;The thirteenth MOS tube (M13), the fourteenth MOS tube (M14), the fifteenth MOS tube (M15), the sixteenth MOS tube (M16), and the seventeenth MOS tube (M17) as each branch tail current source;

第三MOS管(M3),第四MOS管(M4)是输入级差分对管,输入端连接差分输入信号,漏端分别连接到第五MOS管(M5)和第六MOS管(M6)的漏极;The third MOS tube (M3) and the fourth MOS tube (M4) are the input stage differential pair tubes, the input end is connected to the differential input signal, and the drain end is respectively connected to the fifth MOS tube (M5) and the sixth MOS tube (M6) Drain;

且第五MOS管(M5)~第十MOS管(M10)分别首尾相连,构成共源共栅结构;And the fifth MOS transistor (M5) to the tenth MOS transistor (M10) are respectively connected end to end to form a cascode structure;

第七MOS管(M7)和第八MOS管(M8)的漏极分别连接到所述第一MOS管(M1)和第二MOS管(M2)的栅极;The drains of the seventh MOS transistor (M7) and the eighth MOS transistor (M8) are respectively connected to the gates of the first MOS transistor (M1) and the second MOS transistor (M2);

同时第一弥勒补偿电容(C0)连接到第九MOS管(M9)的源端与第十一MOS管(M11)的漏端,第二弥勒补偿电容(C1)通过开关T1连接到第九MOS管(M9)的源端与第十一MOS管(M11)的漏端;At the same time, the first Maitreya compensation capacitor (C0) is connected to the source terminal of the ninth MOS transistor (M9) and the drain terminal of the eleventh MOS transistor (M11), and the second Maitreya compensation capacitor (C1) is connected to the ninth MOS transistor through the switch T1. The source end of the tube (M9) and the drain end of the eleventh MOS tube (M11);

第三弥勒补偿电容(C2)连接到第十MOS管(M10)的源端与第十二MOS管(M12)的漏端,第四弥勒补偿电容(C3)通过开关T2连接到第十MOS管(M10)的源端与第十二MOS管(M12)的漏端;The third Maitreya compensation capacitor (C2) is connected to the source terminal of the tenth MOS transistor (M10) and the drain terminal of the twelfth MOS transistor (M12), and the fourth Maitreya compensation capacitor (C3) is connected to the tenth MOS transistor through the switch T2 The source terminal of (M10) and the drain terminal of the twelfth MOS transistor (M12);

第十一MOS管(M11)、第十二MOS管(M12)、第一MOS管(M1)和第二MOS管(M2)、第十六MOS管(M16)构成输出级差分运放;The eleventh MOS tube (M11), the twelfth MOS tube (M12), the first MOS tube (M1), the second MOS tube (M2), and the sixteenth MOS tube (M16) form an output stage differential op amp;

第十七MOS管(M17),第十八MOS管(M18),第十九MOS管(M19),第二十MOS管(M20),第二十一MOS管(M21),第二十二MOS管(M22)分别与第五MOS管(M5),第六MOS管(M6),第十一MOS管(M11),第十二MOS管(M12),第十四MOS管(M14),第十五MOS管(M15)并联,栅极由通用串行总线SPI端口信号控制的第一子开关T0和第二子开关T决定是否与偏置电压Vbias1相连;The seventeenth MOS tube (M17), the eighteenth MOS tube (M18), the nineteenth MOS tube (M19), the twenty MOS tube (M20), the twenty-first MOS tube (M21), the twenty-second The MOS tube (M22) is respectively connected with the fifth MOS tube (M5), the sixth MOS tube (M6), the eleventh MOS tube (M11), the twelfth MOS tube (M12), the fourteenth MOS tube (M14), The fifteenth MOS transistor (M15) is connected in parallel, and the gate is controlled by the first sub-switch T0 and the second sub-switch T of the universal serial bus SPI port signal to determine whether it is connected to the bias voltage Vbias1;

第三子开关T1和第四子开关T2分别连接于第二弥勒补偿电容(C1)和第四弥勒补偿电容(C3)输出节点之间,用于控制相位裕度。The third sub-switch T1 and the fourth sub-switch T2 are respectively connected between the output nodes of the second Miller compensation capacitor ( C1 ) and the fourth Miller compensation capacitor ( C3 ) for controlling the phase margin.

其中,通过MOS管以及电容的配置,所述模数转换器还具有如下工作模式:Wherein, through the configuration of MOS transistors and capacitors, the analog-to-digital converter also has the following working modes:

11级电路都关断的关断模式;Shutdown mode in which all 11 circuits are shut down;

11级电路都关断,参考电压产生电路、时钟产生电路也关断,仅参考电流产生电路打开的预备模式;The 11-level circuits are all turned off, the reference voltage generating circuit and the clock generating circuit are also turned off, and only the reference current generating circuit is turned on for the preparation mode;

11级电路都工作,采样速率远远小于100兆的低速模式,参考电流产生电路、参考电压产生电路、时钟产生电路正常工作;All 11-level circuits are working, the sampling rate is much lower than the low-speed mode of 100M, and the reference current generation circuit, reference voltage generation circuit, and clock generation circuit are working normally;

所述模数转换器内部的参考电流产生电路关断,每级的参考电流由外部提供的外部提供参考电流模式;The internal reference current generation circuit of the analog-to-digital converter is turned off, and the reference current of each stage is provided by an external reference current mode;

所述模数转换器内部的参考电压产生电路关断,每级的参考电压由外部提供的外部提供参考电压模式;The internal reference voltage generating circuit of the analog-to-digital converter is turned off, and the reference voltage of each stage is provided by an external reference voltage mode;

所述模数转换器内部的时钟产生电路关断,每级电路的时钟由外部提供的外部提供时钟模式。The clock generation circuit inside the analog-to-digital converter is turned off, and the clock of each stage circuit is provided by an external clock mode.

本发明的上述技术方案的有益效果如下:The beneficial effects of above-mentioned technical scheme of the present invention are as follows:

上述方案中,通过第一开关和第二开关的设置,提供了一种位数可选(第一频率模式或第二频率模式)模数转换器,且该模数转换器的采样速率可调的(32MSPS到100MSPS)可配置,且还适用于不同的应用场合和工作状态。In the above solution, through the setting of the first switch and the second switch, an analog-to-digital converter with optional digits (first frequency mode or second frequency mode) is provided, and the sampling rate of the analog-to-digital converter is adjustable (32MSPS to 100MSPS) is configurable, and is also suitable for different applications and working conditions.

附图说明Description of drawings

图1为本发明的模数转换器的流水线结构图;Fig. 1 is the pipeline structure diagram of analog-to-digital converter of the present invention;

图2为图1所示的模数转换器的每一级流水线电路结构图;Fig. 2 is each stage pipeline circuit structure diagram of analog-to-digital converter shown in Fig. 1;

图3为图2所示的电路中的数模转换器的结构图;Fig. 3 is the structural diagram of the digital-to-analog converter in the circuit shown in Fig. 2;

图4为图2所示的电路中的运算放大器的结构图。FIG. 4 is a structural diagram of an operational amplifier in the circuit shown in FIG. 2 .

具体实施方式detailed description

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.

如图1所示,本发明的实施例提供一种模数转换器,包括:顺序连接的第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器;As shown in FIG. 1 , an embodiment of the present invention provides an analog-to-digital converter, including: a first-level circuit, a second-level circuit, a third-level circuit, a fourth-level circuit, a fifth-level circuit, and a first-level circuit connected in sequence. A sixth-level circuit, a seventh-level circuit, an eighth-level circuit, a ninth-level circuit, a tenth-level circuit, and a two-bit flash analog-to-digital sub-converter;

与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的冗余校准电路;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit stage circuit and a redundant calibration circuit connected to a two-bit flash analog-to-digital sub-converter;

其中,所述第一级电路通过第一开关K1与所述冗余校准电路连接;所述第二级电路通过第二开关K2与所述冗余校准电路连接;Wherein, the first stage circuit is connected to the redundant calibration circuit through a first switch K1; the second stage circuit is connected to the redundant calibration circuit through a second switch K2;

所述第一开关K1和所述第二开关K2均为闭合时,所述第一级电路至所述第十级电路以及所述快闪模数子转换器全部工作,实现第一频率的工作模式,如分辨率12的高分辨率工作模式,采样速率为100兆或接近100兆,11级流水线级都工作,参考电流产生电路、参考电压产生电路、时钟产生电路等其它电路模块也正常工作;When both the first switch K1 and the second switch K2 are closed, all the circuits from the first stage to the tenth stage and the flash analog-to-digital sub-converter work to realize the operation of the first frequency mode, such as the high-resolution working mode with a resolution of 12, the sampling rate is 100M or close to 100M, all 11 pipeline stages are working, and other circuit modules such as the reference current generation circuit, the reference voltage generation circuit, and the clock generation circuit are also working normally ;

所述第一开关K1和所述第二开关K2均为断开时,所述第一级电路和所述第二电路断开,所述第三级电路至所述第十级电路以及所述快闪模数子转换器工作,实现第二频率的工作模式,如分辨率为10的低分辨率工作模式。When both the first switch K1 and the second switch K2 are turned off, the first stage circuit and the second stage circuit are turned off, and the third stage circuit to the tenth stage circuit and the The flash analog-to-digital sub-converter works to realize the working mode of the second frequency, such as the low-resolution working mode with a resolution of 10.

其中,上述模数转换器中,还包括:Among them, the above-mentioned analog-to-digital converter also includes:

与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电压产生电路,给每一级电路提供稳定的参考电压。and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit The reference voltage generation circuit connected to the two-stage circuit and a two-bit flash analog-to-digital sub-converter provides a stable reference voltage for each stage circuit.

其中,上述模数转换器中,还包括:与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的时钟产生电路,给每一级电路提供精确时钟的时钟电路。Wherein, the above-mentioned analog-to-digital converter also includes: the first-level circuit, the second-level circuit, the third-level circuit, the fourth-level circuit, the fifth-level circuit, the sixth-level circuit, the seventh-level circuit, The eighth stage circuit, the ninth stage circuit, the tenth stage circuit and a two-bit flash analog-to-digital sub-converter are all connected to a clock generation circuit to provide each stage circuit with an accurate clock clock circuit.

其中,上述模数转换器中,还包括:Among them, the above-mentioned analog-to-digital converter also includes:

与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电流产生电路,以及与所述参考电流产生电路连接的频率电流转换器。该参考电流产生电路给每一级电路提供随频率自适应的偏置电流,该频率电流转换器(FCC),产生随频率变化而变化的参考电流,当采样速率降低时,每级运放的偏置电流也减小,进而在保证转换器性能不变的同时,降低整体的功耗,实现模数转换器的功耗随频率降低而减小的目的。and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit A reference current generating circuit connected to a stage circuit and a two-bit flash analog-to-digital sub-converter, and a frequency-to-current converter connected to the reference current generating circuit. The reference current generating circuit provides each stage circuit with an adaptive bias current with frequency. The frequency current converter (FCC) generates a reference current that varies with frequency. When the sampling rate is reduced, the op amp of each stage The bias current is also reduced, thereby reducing the overall power consumption while keeping the performance of the converter unchanged, and achieving the purpose of reducing the power consumption of the analog-to-digital converter as the frequency decreases.

如图3所示,所述频率电流转换器包括:运算放大器,至少1个MOS管,去耦合电容以及开关电容电路;As shown in Figure 3, the frequency-to-current converter includes: an operational amplifier, at least one MOS transistor, a decoupling capacitor and a switched capacitor circuit;

其中,运算放大器的输入端连接Vbg和至少3个MOS管中的第一个MOS管的漏极,输出连接到所述至少1个MOS管中的每个MOS的栅极,构成单位增益结构;Wherein, the input terminal of the operational amplifier is connected to Vbg and the drain of the first MOS transistor in the at least 3 MOS transistors, and the output is connected to the gate of each MOS in the at least 1 MOS transistor, forming a unity gain structure;

所述第一个MOS管的漏极同时连接到所述去耦合电容,以及由时钟控制的开关电容电路。The drain of the first MOS transistor is simultaneously connected to the decoupling capacitor and the switched capacitor circuit controlled by a clock.

如图2所示,所述第一级电路至所述第十级电路的每级电路均包括:As shown in Figure 2, each stage circuit of the first stage circuit to the tenth stage circuit includes:

由第一时钟信号CLK1控制的第一CMOS传输门开关L1、第二CMOS传输门开关L2、第三CMOS传输门开关L3以及第四CMOS传输门开关L4;The first CMOS transmission gate switch L1, the second CMOS transmission gate switch L2, the third CMOS transmission gate switch L3 and the fourth CMOS transmission gate switch L4 controlled by the first clock signal CLK1;

与所述第一CMOS传输门开关L1连接的第一采样电容C11,与所述第二CMOS传输门开关L2连接的第二采样电容C12,与所述第三CMOS传输门开关L3连接的第三采样电容C13,与所述第四CMOS传输门开关L4连接的第四采样电容C14;The first sampling capacitor C11 connected to the first CMOS transmission gate switch L1, the second sampling capacitor C12 connected to the second CMOS transmission gate switch L2, the third sampling capacitor C12 connected to the third CMOS transmission gate switch L3 A sampling capacitor C13, a fourth sampling capacitor C14 connected to the fourth CMOS transmission gate switch L4;

由第二时钟信号CLK2控制的第五CMOS传输门开关L5和第六CMOS传输门开关L6,所述第五CMOS传输门开关L5的一端与所述第一采样电容C11连接,另一端与余量放大器AMP的输出端连接;所述第六CMOS传输门开关L6的一端与所述第四采样电容C14连接,另一端与所述余量放大器AMP的输出端连接;The fifth CMOS transmission gate switch L5 and the sixth CMOS transmission gate switch L6 controlled by the second clock signal CLK2, one end of the fifth CMOS transmission gate switch L5 is connected to the first sampling capacitor C11, and the other end is connected to the margin The output end of the amplifier AMP is connected; one end of the sixth CMOS transmission gate switch L6 is connected to the fourth sampling capacitor C14, and the other end is connected to the output end of the residual amplifier AMP;

第一子模数转换器(Sub_ADC),与所述第一子模数转换器(Sub_ADC)连接的第一子数模转换器(DAC),所述第一子数模转换器(DAC)还与所述第二采样电容C12以及所述第三采样电容C13连接;A first sub-analog-to-digital converter (Sub_ADC), a first sub-digital-to-analog converter (DAC) connected to the first sub-analog-to-digital converter (Sub_ADC), the first sub-digital-to-analog converter (DAC) connected to the second sampling capacitor C12 and the third sampling capacitor C13;

共模反馈单元CMFB,与所述余量放大器AMP的输出端连接;a common mode feedback unit CMFB connected to the output end of the margin amplifier AMP;

所述余量放大器AMP还与所述频率电流转换器(FCC)的输出端连接。The residual amplifier AMP is also connected to the output of the frequency current converter (FCC).

其中,所述第一子数模转换器(DAC)还与参考电压Vref连接;Wherein, the first sub-digital-to-analog converter (DAC) is also connected to the reference voltage Vref;

所述余量放大器AMP的第一输入端还与所述第一采样电容C11和所述第二采样电容C12连接;The first input end of the residual amplifier AMP is also connected to the first sampling capacitor C11 and the second sampling capacitor C12;

所述余量放大器AMP的第二输入端还与所述第三采样电容C13和所述第四采样电容C14连接;The second input terminal of the residual amplifier AMP is also connected to the third sampling capacitor C13 and the fourth sampling capacitor C14;

所述余量放大器AMP的第一输入端和第二输入端通过第三时钟CLK1a控制的第七CMOS传输门开关L7连接。The first input terminal and the second input terminal of the residual amplifier AMP are connected through a seventh CMOS transmission gate switch L7 controlled by the third clock CLK1a.

其中,如图4所示,所述第一子数模转换器(DAC)中CMOS运算放大器电路包括:Wherein, as shown in FIG. 4, the CMOS operational amplifier circuit in the first sub-digital-to-analog converter (DAC) includes:

第十三MOS管M13,第十四MOS管M14,第十五MOS管M15,第十六MOS管的M16,第十七MOS管M17作为各个支路的尾电流源;The thirteenth MOS tube M13, the fourteenth MOS tube M14, the fifteenth MOS tube M15, the sixteenth MOS tube M16, and the seventeenth MOS tube M17 serve as tail current sources for each branch;

第三MOS管M3,第四MOS管M4是输入级差分对管,输入端连接差分输入信号,漏端分别连接到第五MOS管M5和第六MOS管M6的漏极;The third MOS transistor M3 and the fourth MOS transistor M4 are input stage differential pair transistors, the input end is connected to the differential input signal, and the drain end is respectively connected to the drains of the fifth MOS transistor M5 and the sixth MOS transistor M6;

且第五MOS管M5~第十MOS管M10分别首尾相连,构成共源共栅结构;And the fifth MOS transistor M5 to the tenth MOS transistor M10 are respectively connected end to end to form a cascode structure;

第七MOS管M7和第八MOS管M8的漏极分别连接到所述第一MOS管M1和第二MOS管M2的栅极;The drains of the seventh MOS transistor M7 and the eighth MOS transistor M8 are respectively connected to the gates of the first MOS transistor M1 and the second MOS transistor M2;

同时第一弥勒补偿电容C0连接到第九MOS管M9的源端与第十一MOS管M11的漏端,第二弥勒补偿电容C1通过开关T1连接到第九MOS管M9的源端与第十一MOS管M11的漏端;At the same time, the first Maitreya compensation capacitor C0 is connected to the source end of the ninth MOS transistor M9 and the drain end of the eleventh MOS transistor M11, and the second Maitreya compensation capacitor C1 is connected to the source end of the ninth MOS transistor M9 and the drain end of the eleventh MOS transistor M11 through a switch T1. A drain terminal of the MOS transistor M11;

第三弥勒补偿电容C2连接到第十MOS管M10的源端与第十二MOS管M12的漏端,第四弥勒补偿电容C3通过开关T2连接到第十MOS管M10的源端与第十二MOS管M12的漏端;The third Maitreya compensation capacitor C2 is connected to the source end of the tenth MOS transistor M10 and the drain end of the twelfth MOS transistor M12, and the fourth Maitreya compensation capacitor C3 is connected to the source end of the tenth MOS transistor M10 and the drain end of the twelfth MOS transistor M12 through a switch T2. The drain end of the MOS tube M12;

第十一MOS管M11、第十二MOS管M12、第一MOS管M1和第二MOS管M2、第十六MOS管M16构成输出级差分运放;The eleventh MOS transistor M11, the twelfth MOS transistor M12, the first MOS transistor M1, the second MOS transistor M2, and the sixteenth MOS transistor M16 form an output stage differential operational amplifier;

第十七MOS管M17,第十八MOS管M18,第十九MOS管M19,第二十MOS管M20,第二十一MOS管M21,第二十二MOS管M22分别与第五MOS管M5,第六MOS管M6,第十一MOS管M11,第十二MOS管M12,第十四MOS管M14,第十五MOS管M15并联,栅极由通用串行总线SPI端口信号控制的第一子开关T0和第二子开关T决定是否与偏置电压Vbias1相连;The seventeenth MOS tube M17, the eighteenth MOS tube M18, the nineteenth MOS tube M19, the twenty MOS tube M20, the twenty-first MOS tube M21, the twenty-second MOS tube M22 and the fifth MOS tube M5 respectively , the sixth MOS transistor M6, the eleventh MOS transistor M11, the twelfth MOS transistor M12, the fourteenth MOS transistor M14, and the fifteenth MOS transistor M15 are connected in parallel, and the gate is controlled by the first universal serial bus SPI port signal The sub-switch T0 and the second sub-switch T determine whether to connect to the bias voltage Vbias1;

第三子开关T1和第四子开关T2连接于第二弥勒补偿电容C1和第四弥勒补偿电容C3输出节点之间,用于控制相位裕度。The third sub-switch T1 and the fourth sub-switch T2 are connected between the output nodes of the second Miller compensation capacitor C1 and the fourth Miller compensation capacitor C3 for controlling the phase margin.

该实施例中,转换器在晶体管级采用可编程设计,每级的运算放大器为可编程运放,负载管接入的个数通过数字开关T0,T进行设置,米勒补偿电容亦通过相同的方式可调,当采样速率变化时,运放的偏置电流也变化,通过数字开关的微调,在保证运放稳定性的同时,使运放的直流增益、小信号带宽、压摆率满足该频率的要求,进而使转换器工作在最佳状态。In this embodiment, the converter adopts a programmable design at the transistor level, and the operational amplifier of each stage is a programmable operational amplifier. The number of connected load tubes is set through digital switches T0 and T, and the Miller compensation capacitor is also set through the same The method is adjustable. When the sampling rate changes, the bias current of the operational amplifier also changes. Through the fine-tuning of the digital switch, while ensuring the stability of the operational amplifier, the DC gain, small signal bandwidth, and slew rate of the operational amplifier can meet the requirements. Frequency requirements, so that the converter works at its best.

通过上述两点可配置原理,本发明的上述模数转换器除上述正常工作的第一频率工作模式,以及第二频率工作模式外,还具有如下六种工作模式:Through the configurable principle of the above two points, the above-mentioned analog-to-digital converter of the present invention has the following six working modes in addition to the above-mentioned first frequency working mode and the second frequency working mode of normal operation:

1:关断模式。此时,11级流水线级都关断,其它电路模块也关断,转换器功耗为最小值,此时,如图1中的开关Ta,Tb,Tc全部关断,数字编码输出统一为零。1: Shutdown mode. At this time, all 11 pipeline stages are turned off, and other circuit modules are also turned off, and the power consumption of the converter is the minimum value. At this time, the switches Ta, Tb, and Tc in Figure 1 are all turned off, and the digital code output is uniformly zero. .

2:预备模式。此时,11流水线级都关断,参考电压产生电路、时钟产生电路等模块也关断,仅参考电流产生电路打开,即Ta,Tb关断,Tc导通。采用该模式的目的是减小转换器的启动时间(参考电流产生电路的启动需要一定时间)。该模式消耗的功耗大于关断模式,小于其他工作模式。2: Preparatory mode. At this time, all 11 pipeline stages are turned off, the reference voltage generation circuit, the clock generation circuit and other modules are also turned off, and only the reference current generation circuit is turned on, that is, Ta and Tb are turned off, and Tc is turned on. The purpose of using this mode is to reduce the start-up time of the converter (the start-up of the reference current generation circuit takes a certain amount of time). This mode consumes more power than shutdown mode and less than other operating modes.

3:低速模式。此时,11级流水线级都工作,采样速率远远小于100兆,通过运放的微调,使每级工作于合适的状态,转换器在该频率下具有最佳性能,此时参考电流产生电路、参考电压产生电路、时钟产生电路正常工作,即Ta,Tb,Tc全部导通。3: Low speed mode. At this time, all 11 pipeline stages are working, and the sampling rate is far less than 100 megabytes. Through the fine-tuning of the operational amplifier, each stage can work in a suitable state. The converter has the best performance at this frequency. At this time, the reference current generation circuit , The reference voltage generating circuit and the clock generating circuit work normally, that is, Ta, Tb, and Tc are all turned on.

4:外部提供参考电流模式。此时,转换器虽已启动,但内部的参考电流产生电路关断,即Tc关断,Ta,Tb全部导通,每级的参考电流由外部提供。4: Externally provided reference current mode. At this time, although the converter has been started, the internal reference current generation circuit is turned off, that is, Tc is turned off, Ta and Tb are all turned on, and the reference current of each stage is provided externally.

5:外部提供参考电压模式。此时,转换器内部的参考电压产生电路关断,即Tb关断,Ta,Tc全部导通,每级的参考电压由外部提供。5: The reference voltage mode is provided externally. At this time, the reference voltage generation circuit inside the converter is turned off, that is, Tb is turned off, Ta and Tc are all turned on, and the reference voltage of each stage is provided externally.

6:外部提供时钟模式。此时,转换器内部的时钟产生电路关断,即Ta关断,Tb,Tc全部导通,每级的时钟由外部提供。6: Externally provided clock mode. At this time, the clock generation circuit inside the converter is turned off, that is, Ta is turned off, Tb and Tc are all turned on, and the clock of each stage is provided externally.

另外,在上述由第一开关K1和第二开关K2控制的第一分辨率的工作模式时,模数转换器的分辨率可以为12,采样速率为100兆或接近100兆,11级流水线级都工作,参考电流产生电路、参考电压产生电路、时钟产生电路等其它电路模块也正常工作。In addition, in the above-mentioned working mode of the first resolution controlled by the first switch K1 and the second switch K2, the resolution of the analog-to-digital converter can be 12, the sampling rate is 100 Mbits or close to 100 Mbits, and the 11-stage pipeline stage All work, and other circuit modules such as the reference current generation circuit, the reference voltage generation circuit, and the clock generation circuit also work normally.

在上述由第一开关K1和第二开关K2控制的第二分辨率的工作模式时,模数转换器的分辨率可以为10,此时,11级流水线级中,前两级关断,后九级正常工作,位数为10,采样速率为100兆或接近100兆,此时参考电流产生电路、参考电压产生电路、时钟产生电路正常工作。In the above-mentioned second resolution working mode controlled by the first switch K1 and the second switch K2, the resolution of the analog-to-digital converter can be 10. At this time, among the 11 pipeline stages, the first two stages are turned off, and the latter stages are turned off. Level nine works normally, the number of digits is 10, and the sampling rate is 100 megabytes or close to 100 megabytes. At this time, the reference current generation circuit, reference voltage generation circuit, and clock generation circuit work normally.

本发明的上述模数转换器,在体系结构上采用可重构设计,最高两位具有关断功能,实现位数可选(10位或12位的转换)、采样速率可调的(32MSPS到100MSPS)可配置A/D转化器,其包含八种工作模式,适用于不同的应用场合和工作状态。The above-mentioned analog-to-digital converter of the present invention adopts a reconfigurable design on the system structure, and the highest two bits have a shutdown function, which realizes the optional number of bits (10-bit or 12-bit conversion) and adjustable sampling rate (32MSPS to 100MSPS) configurable A/D converter, which contains eight working modes, suitable for different applications and working states.

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (5)

1.一种高速可配置流水线模数转换器,其特征在于,包括:1. A high-speed configurable pipeline analog-to-digital converter, characterized in that, comprising: 顺序连接的第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器;The first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit connected in sequence stage circuit and a two-bit flash analog-to-digital sub-converter; 与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的冗余校准电路;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit stage circuit and a redundant calibration circuit connected to a two-bit flash analog-to-digital sub-converter; 其中,所述第一级电路通过第一开关与所述冗余校准电路连接;所述第二级电路通过第二开关与所述冗余校准电路连接;Wherein, the first stage circuit is connected to the redundant calibration circuit through a first switch; the second stage circuit is connected to the redundant calibration circuit through a second switch; 所述第一开关和所述第二开关均为闭合时,所述第一级电路至所述第十级电路以及所述快闪模数子转换器全部工作,实现第一频率的工作模式;When both the first switch and the second switch are closed, all the circuits from the first stage to the tenth stage and the flash analog-to-digital sub-converter work to realize the working mode of the first frequency; 所述第一开关和所述第二开关均为断开时,所述第一级电路和所述第二级电路断开,所述第三级电路至所述第十级电路以及所述快闪模数子转换器工作,实现第二频率的工作模式;When both the first switch and the second switch are turned off, the first stage circuit and the second stage circuit are turned off, and the third stage circuit to the tenth stage circuit and the fast The flash-to-analog-digital sub-converter works to realize the working mode of the second frequency; 与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电压产生电路,给每一级电路提供稳定的参考电压;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit A reference voltage generation circuit connected to the two-stage circuit and a two-bit flash analog-to-digital sub-converter provides a stable reference voltage for each stage circuit; 与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的时钟产生电路,给每一级电路提供精确的时钟电路;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit The clock generation circuit connected to the two-stage circuit and a two-bit flash analog-to-digital sub-converter provides an accurate clock circuit for each stage circuit; 与所述第一级电路、第二级电路、第三级电路、第四级电路、第五级电路、第六级电路、第七级电路、第八级电路、第九级电路、第十级电路以及一个两位的快闪模数子转换器均连接的参考电流产生电路,以及与所述参考电流产生电路连接的频率电流转换器;and the first level circuit, the second level circuit, the third level circuit, the fourth level circuit, the fifth level circuit, the sixth level circuit, the seventh level circuit, the eighth level circuit, the ninth level circuit, the tenth level circuit A reference current generating circuit connected to a stage circuit and a two-bit flash analog-to-digital sub-converter, and a frequency-to-current converter connected to the reference current generating circuit; 所述频率电流转换器包括:运算放大器,至少1个MOS管,去耦合电容以及开关电容电路;The frequency-to-current converter includes: an operational amplifier, at least one MOS transistor, a decoupling capacitor and a switched capacitor circuit; 其中,运算放大器的输入端连接Vbg和至少3个MOS管中的第一个MOS管的漏极,输出连接到所述至少1个MOS管中的每个MOS的栅极,构成单位增益结构;Wherein, the input terminal of the operational amplifier is connected to Vbg and the drain of the first MOS transistor in the at least 3 MOS transistors, and the output is connected to the gate of each MOS in the at least 1 MOS transistor, forming a unity gain structure; 所述第一个MOS管的漏极同时连接到所述去耦合电容,以及由时钟控制的开关电容电路。The drain of the first MOS transistor is simultaneously connected to the decoupling capacitor and the switched capacitor circuit controlled by a clock. 2.根据权利要求1所述的模数转换器,其特征在于,所述第一级电路至所述第十级电路的每级电路均包括:2. The analog-to-digital converter according to claim 1, wherein each stage of the circuit from the first stage circuit to the tenth stage circuit comprises: 由第一时钟信号控制的第一CMOS传输门开关、第二CMOS传输门开关、第三CMOS传输门开关以及第四CMOS传输门开关;a first CMOS transmission gate switch, a second CMOS transmission gate switch, a third CMOS transmission gate switch, and a fourth CMOS transmission gate switch controlled by a first clock signal; 与所述第一CMOS传输门开关连接的第一采样电容,与所述第二CMOS传输门开关连接的第二采样电容,与所述第三CMOS传输门开关连接的第三采样电容,与所述第四CMOS传输门开关连接的第四采样电容;The first sampling capacitor connected to the first CMOS transmission gate switch, the second sampling capacitor connected to the second CMOS transmission gate switch, the third sampling capacitor connected to the third CMOS transmission gate switch, and the The fourth sampling capacitor connected to the fourth CMOS transmission gate switch; 由第二时钟信号控制的第五CMOS传输门开关和第六CMOS传输门开关,所述第五CMOS传输门开关的一端与所述第一采样电容连接,另一端与余量放大器的输出端连接;所述第六CMOS传输门开关的一端与所述第四采样电容连接,另一端与所述余量放大器的输出端连接;The fifth CMOS transmission gate switch and the sixth CMOS transmission gate switch controlled by the second clock signal, one end of the fifth CMOS transmission gate switch is connected to the first sampling capacitor, and the other end is connected to the output end of the residual amplifier ; One end of the sixth CMOS transmission gate switch is connected to the fourth sampling capacitor, and the other end is connected to the output end of the residual amplifier; 第一子模数转换器,与所述第一子模数转换器连接的第一子数模转换器,所述第一子数模转换器还与所述第二采样电容以及所述第三采样电容连接;The first sub-ADC, the first sub-DAC connected to the first sub-ADC, the first sub-DAC is also connected to the second sampling capacitor and the third Sampling capacitor connection; 共模反馈单元,与所述余量放大器的输出端连接;a common-mode feedback unit connected to the output terminal of the residual amplifier; 所述余量放大器还与所述频率电流转换器的输出端连接。The surplus amplifier is also connected to the output terminal of the frequency-to-current converter. 3.根据权利要求2所述的模数转换器,其特征在于,所述第一子数模转换器还与参考电压连接;3. The analog-to-digital converter according to claim 2, wherein the first sub-digital-to-analog converter is also connected to a reference voltage; 所述余量放大器的第一输入端还与所述第一采样电容和所述第二采样电容连接;The first input terminal of the residual amplifier is also connected to the first sampling capacitor and the second sampling capacitor; 所述余量放大器的第二输入端还与所述第三采样电容和所述第四采样电容连接;The second input terminal of the residual amplifier is also connected to the third sampling capacitor and the fourth sampling capacitor; 所述余量放大器的第一输入端和第二输入端通过第三时钟控制的第七CMOS传输门开关连接。The first input terminal and the second input terminal of the residual amplifier are connected through a seventh CMOS transmission gate switch controlled by a third clock. 4.根据权利要求2或3所述的模数转换器,其特征在于,所述第一子数模转换器中运算放大器电路包括:4. The analog-to-digital converter according to claim 2 or 3, wherein the operational amplifier circuit in the first sub-digital-to-analog converter comprises: 第十三MOS管(M13),第十四MOS管(M14),第十五MOS管(M15),第十六MOS管的(M16),第十七MOS管(M17)作为各个支路的尾电流源;The thirteenth MOS tube (M13), the fourteenth MOS tube (M14), the fifteenth MOS tube (M15), the sixteenth MOS tube (M16), and the seventeenth MOS tube (M17) are used as each branch tail current source; 第三MOS管(M3),第四MOS管(M4)是输入级差分对管,输入端连接差分输入信号,漏端分别连接到第五MOS管(M5)和第六MOS管(M6)的漏极;The third MOS transistor (M3) and the fourth MOS transistor (M4) are input stage differential pair transistors, the input end is connected to the differential input signal, and the drain end is respectively connected to the fifth MOS transistor (M5) and the sixth MOS transistor (M6) Drain; 且第五MOS管(M5)~第十MOS管(M10)分别首尾相连,构成共源共栅结构;And the fifth MOS transistor (M5) to the tenth MOS transistor (M10) are respectively connected end to end to form a cascode structure; 第七MOS管(M7)和第八MOS管(M8)的漏极分别连接到所述第一MOS管(M1)和第二MOS管(M2)的栅极;The drains of the seventh MOS transistor (M7) and the eighth MOS transistor (M8) are respectively connected to the gates of the first MOS transistor (M1) and the second MOS transistor (M2); 同时第一弥勒补偿电容(C0)连接到第九MOS管(M9)的源端与第十一MOS管(M11)的漏端,第二弥勒补偿电容(C1)通过第三子开关(T1)连接到第九MOS管(M9)的源端与第十一MOS管(M11)的漏端;At the same time, the first Maitreya compensation capacitor (C0) is connected to the source end of the ninth MOS transistor (M9) and the drain end of the eleventh MOS transistor (M11), and the second Maitreya compensation capacitor (C1) passes through the third sub-switch (T1) connected to the source end of the ninth MOS transistor (M9) and the drain end of the eleventh MOS transistor (M11); 第三弥勒补偿电容(C2)连接到第十MOS管(M10)的源端与第十二MOS管(M12)的漏端,第四弥勒补偿电容(C3)通过第四子开关(T2)连接到第十MOS管(M10)的源端与第十二MOS管(M12)的漏端;The third Maitreya compensation capacitor (C2) is connected to the source end of the tenth MOS transistor (M10) and the drain end of the twelfth MOS transistor (M12), and the fourth Maitreya compensation capacitor (C3) is connected through the fourth sub-switch (T2) to the source end of the tenth MOS transistor (M10) and the drain end of the twelfth MOS transistor (M12); 第十一MOS管(M11)、第十二MOS管(M12)、第一MOS管(M1)和第二MOS管(M2)、第十六MOS管(M16)构成输出级差分运放;The eleventh MOS transistor (M11), the twelfth MOS transistor (M12), the first MOS transistor (M1), the second MOS transistor (M2), and the sixteenth MOS transistor (M16) form an output stage differential operational amplifier; 第十七MOS管(M17),第十八MOS管(M18),第十九MOS管(M19),第二十MOS管(M20),第二十一MOS管(M21),第二十二MOS管(M22)分别与第五MOS管(M5),第六MOS管(M6),第十一MOS管(M11),第十二MOS管(M12),第十四MOS管(M14),第十五MOS管(M15)并联,栅极由通用串行总线SPI端口信号控制的第一子开关(T0)和第二子开关(T)决定是否与偏置电压Vbias1相连;The seventeenth MOS tube (M17), the eighteenth MOS tube (M18), the nineteenth MOS tube (M19), the twentieth MOS tube (M20), the twenty-first MOS tube (M21), the twenty-second The MOS tube (M22) is respectively connected with the fifth MOS tube (M5), the sixth MOS tube (M6), the eleventh MOS tube (M11), the twelfth MOS tube (M12), the fourteenth MOS tube (M14), The fifteenth MOS tube (M15) is connected in parallel, and the gate is controlled by the first sub-switch (T0) and the second sub-switch (T) of the universal serial bus SPI port signal to determine whether it is connected to the bias voltage Vbias1; 第三子开关(T1)和第四子开关(T2)分别连接于第二弥勒补偿电容(C1)和第四弥勒补偿电容(C3)输出节点之间,用于控制相位裕度。The third sub-switch ( T1 ) and the fourth sub-switch ( T2 ) are respectively connected between the output nodes of the second Maitreya compensation capacitor ( C1 ) and the fourth Maitreya compensation capacitor ( C3 ) for controlling the phase margin. 5.根据权利要求4所述的模数转换器,其特征在于,通过MOS管以及电容的配置,所述模数转换器还具有如下工作模式:5. The analog-to-digital converter according to claim 4, characterized in that, through the configuration of the MOS tube and the capacitor, the analog-to-digital converter also has the following operating modes: 11级电路都关断的关断模式;Shutdown mode in which all 11 circuits are turned off; 11级电路都关断,参考电压产生电路、时钟产生电路也关断,仅参考电流产生电路打开的预备模式;The 11-level circuits are all turned off, the reference voltage generating circuit and the clock generating circuit are also turned off, and only the reference current generating circuit is turned on for the preparation mode; 11级电路都工作,采样速率远远小于100兆的低速模式,参考电流产生电路、参考电压产生电路、时钟产生电路正常工作;All 11-level circuits are working, the sampling rate is much lower than the low-speed mode of 100M, and the reference current generation circuit, reference voltage generation circuit, and clock generation circuit are working normally; 所述模数转换器内部的参考电流产生电路关断,每级的参考电流由外部提供的外部提供参考电流模式;The internal reference current generation circuit of the analog-to-digital converter is turned off, and the reference current of each stage is provided by an external reference current mode; 所述模数转换器内部的所述参考电压产生电路关断,每级的参考电压由外部提供的外部提供参考电压模式;The reference voltage generation circuit inside the analog-to-digital converter is turned off, and the reference voltage of each stage is provided by an external reference voltage mode; 所述模数转换器内部的所述时钟产生电路关断,每级电路的时钟由外部提供的外部提供时钟模式。The clock generation circuit inside the analog-to-digital converter is turned off, and the clock of each stage circuit is provided by an external clock mode.
CN201310023113.9A 2013-01-22 2013-01-22 High-speed configurable assembly line analog-to-digital converter Active CN103944571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310023113.9A CN103944571B (en) 2013-01-22 2013-01-22 High-speed configurable assembly line analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310023113.9A CN103944571B (en) 2013-01-22 2013-01-22 High-speed configurable assembly line analog-to-digital converter

Publications (2)

Publication Number Publication Date
CN103944571A CN103944571A (en) 2014-07-23
CN103944571B true CN103944571B (en) 2017-05-24

Family

ID=51192088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310023113.9A Active CN103944571B (en) 2013-01-22 2013-01-22 High-speed configurable assembly line analog-to-digital converter

Country Status (1)

Country Link
CN (1) CN103944571B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266767A (en) * 2014-09-22 2015-01-07 电子科技大学 Substrate temperature compensation's infrared focal plane array detector read-out circuit
CN105846788B (en) * 2016-03-25 2019-05-07 南京德睿智芯电子科技有限公司 A kind of operational amplifier
CN106657908B (en) * 2016-12-16 2019-07-16 浙江大华技术股份有限公司 A kind of video signal processing method and device of number bus exception
CN106911333A (en) * 2017-03-06 2017-06-30 中国电子科技集团公司第二十四研究所 Production line analog-digital converter and conversion method based on sampling capacitance randomization
TWI678882B (en) * 2018-03-08 2019-12-01 瑞鼎科技股份有限公司 Amplifier circuit and buffer amplifier
CN110166030B (en) * 2018-12-12 2024-09-03 北京集创北方科技股份有限公司 Switching circuit and signal acquisition system
CN117439602A (en) * 2023-12-21 2024-01-23 上海维安半导体有限公司 Operational amplifier sharing multiple digital-to-analog conversion circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465658A (en) * 2007-12-20 2009-06-24 雷凌科技股份有限公司 Wireless Receiver System with Adaptively Configurable Analog-to-Digital Converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465658A (en) * 2007-12-20 2009-06-24 雷凌科技股份有限公司 Wireless Receiver System with Adaptively Configurable Analog-to-Digital Converter

Also Published As

Publication number Publication date
CN103944571A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103944571B (en) High-speed configurable assembly line analog-to-digital converter
US6967611B2 (en) Optimized reference voltage generation using switched capacitor scaling for data converters
CN101917195B (en) High-precision and low-offset charge comparator circuit
CN102142840B (en) Folding analog-to-digital converter
CN101640539B (en) Sigma-delta analog-to-digital converter
CN109787633B (en) ΣΔADC with Chopper Stabilization for Hybrid ADC Architectures
WO2017091928A1 (en) High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier
CN104734649B (en) The parallel comparison means of row based on low-voltage digital CMOS device
CN104967451A (en) Successive Approximation Analog-to-Digital Converter
CN111585518B (en) High-Speed Low-Power Differential Dynamic Operational Amplifier for Noise-Shaping ADCs
TWI508459B (en) 1-bit cell circuit for pipeline analog-to-digital converters
US8952836B2 (en) Pipeline analog-to-digital converter
CN104270150B (en) High-speed low-power-consumption reference voltage output buffer applied to production line analog-digital converter
CN104168025B (en) A kind of charge type streamline gradual approaching A/D converter
CN104092466B (en) Assembly line successive approximation analog-to-digital converter
CN111446965B (en) A high-efficiency full-dynamic comparator for SAR ADC
CN105071809B (en) Complementary current circuit, on-off circuit and the current mode digital-to-analog converter of Background calibration
CN116667795A (en) Low-voltage floating inverting amplifier and switched capacitor analog-to-digital converter
CN101217280B (en) Successive Approximation Analog-to-Digital Converter Using Switching Op Amps
CN106357269A (en) Input buffer for high-speed time-interleaved analog-digital converter
CN101217282A (en) An Analog-to-Digital Converter Using a Hybrid Two-Layer Folding Circuit
CN108233931B (en) Sample-hold and compare latch circuit
CN103746694B (en) Slope conversion circuit applied to two-step type integral analog-to-digital converter
CN101980446A (en) A High Performance and Low Power Consumption Pipelined Analog-to-Digital Converter
CN201766574U (en) A High Speed Common Mode Insensitive Charge Comparator Circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant