CN103956266A - A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method - Google Patents
A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method Download PDFInfo
- Publication number
- CN103956266A CN103956266A CN201410146863.XA CN201410146863A CN103956266A CN 103956266 A CN103956266 A CN 103956266A CN 201410146863 A CN201410146863 A CN 201410146863A CN 103956266 A CN103956266 A CN 103956266A
- Authority
- CN
- China
- Prior art keywords
- tio
- energy storage
- storage density
- high energy
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 86
- 239000003990 capacitor Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000010408 film Substances 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 67
- 229910052751 metal Inorganic materials 0.000 claims abstract description 67
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000004544 sputter deposition Methods 0.000 claims abstract description 34
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 33
- 239000000919 ceramic Substances 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000010703 silicon Substances 0.000 claims abstract description 20
- 239000010409 thin film Substances 0.000 claims abstract description 9
- 239000007772 electrode material Substances 0.000 claims abstract description 3
- 229910052737 gold Inorganic materials 0.000 claims abstract description 3
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 3
- 229910052709 silver Inorganic materials 0.000 claims abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 54
- 229910052786 argon Inorganic materials 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 25
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 18
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 18
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 18
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 9
- 238000011065 in-situ storage Methods 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 9
- 238000005477 sputtering target Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 238000000498 ball milling Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 4
- 238000011056 performance test Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
本发明涉及一种无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器及其制备方法,包括衬底硅片上溅射金属下电极、溅射Bi0.5Na0.5TiO3基高储能密度薄膜中间层、薄膜上溅射金属上电极形成三层结构。Bi0.5Na0.5TiO3基高储能密度薄膜层具体由(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xK0.5Na0.5NbO3(0.01≤x≤0.1)组成;金属上、下电极材料为金属Ag、Au、Pt中的一种。先制备(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xK0.5Na0.5NbO3陶瓷靶材,然后采用磁控溅射工艺将其溅射到已溅射有金属下电极的硅片衬底上形成Bi0.5Na0.5TiO3基高储能密度薄膜层;再在薄膜上使用溅射工艺制备金属上电极。本发明制备的高储能密度薄膜电容器体积小,薄膜层厚度0.5~1.5μm,其储能密度为20~45J/cm3。The invention relates to a lead-free Bi 0.5 Na 0.5 TiO 3 -based high energy storage density film capacitor and a preparation method thereof, comprising sputtering a metal lower electrode on a substrate silicon chip, sputtering a Bi 0.5 Na 0.5 TiO 3 -based high energy storage density The middle layer of the film and the sputtered metal upper electrode on the film form a three-layer structure. The Bi 0.5 Na 0.5 TiO 3 -based high energy storage density film layer is specifically composed of (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-xK 0.5 Na 0.5 NbO 3 (0.01≤x≤0.1); The upper and lower electrode materials are one of metal Ag, Au and Pt. Prepare the (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-xK 0.5 Na 0.5 NbO 3 ceramic target first, and then use the magnetron sputtering process to sputter it onto the sputtered metal lower electrode A Bi 0.5 Na 0.5 TiO 3 -based high energy storage density thin film layer is formed on a silicon wafer substrate; and then a metal upper electrode is prepared on the thin film by sputtering process. The high-energy-storage-density film capacitor prepared by the invention has a small volume, a film layer thickness of 0.5-1.5 μm, and an energy-storage density of 20-45J/cm 3 .
Description
技术领域technical field
本发明属于储能电容器制造领域,具体涉及到一种无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器及其制备方法。The invention belongs to the field of energy storage capacitor manufacturing, and in particular relates to a lead-free Bi 0.5 Na 0.5 TiO 3 -based film capacitor with high energy storage density and a preparation method thereof.
背景技术Background technique
根据经典电磁学理论的定义,材料的储能密度是指单位体积所容纳的电能,普通使用的单位为J/cm3。在电场强度为E的电场下,电位移D的微小变化量dD引起的能量变化量为EdD。储能密度可以用式(1)表示:According to the definition of classical electromagnetic theory, the energy storage density of a material refers to the electric energy contained in a unit volume, and the commonly used unit is J/cm 3 . Under the electric field whose electric field strength is E, the energy change caused by the small change dD of the electric displacement D is EdD. The energy storage density can be expressed by formula (1):
式中:J为储能密度,Dmax为饱和场强下电位移。In the formula: J is the energy storage density, and Dmax is the electric displacement under the saturation field strength.
对于铁电、反铁电电介质而言,其储能密度取决于击穿场强的大小、剩余极化强度和饱和极化强度之间的差值以及电滞回线的闭合面积。因此,要使得材料电滞回线的上方段饱和极化强度Ps尽量大(即E尽量高),剩余极化值Pr尽量小,从而提高储能值。对于电滞回线表现为近似一根直线的电介质,此时储能密度为:For ferroelectric and antiferroelectric dielectrics, the energy storage density depends on the size of the breakdown field strength, the difference between the remnant polarization and the saturation polarization, and the closed area of the hysteresis loop. Therefore, it is necessary to make the saturation polarization P s of the upper section of the hysteresis loop of the material as large as possible (that is, E as high as possible), and the remanent polarization P r as small as possible, so as to increase the energy storage value. For the dielectric in which the hysteresis loop is approximately a straight line, the energy storage density is:
公式(2)意味着对电滞回线近似线性的储能材料,其介电常数越大,耐电压E越大,储能密度也就越高。因此,高储能密度材料应具有高的介电常数、高耐压、电滞回线上方段大的面积、损耗低的特点。Formula (2) means that the energy storage material whose hysteresis loop is approximately linear, the greater the dielectric constant, the greater the withstand voltage E, and the higher the energy storage density. Therefore, high energy storage density materials should have the characteristics of high dielectric constant, high withstand voltage, large area above the hysteresis loop, and low loss.
高密度储能电容器具有储能密度高、充放电速度快、抗循环老化、适用于高温高压等极端环境和性能稳定的优点,符合新能源开发和利用的要求,广泛应用于电子电力设备,并且在脉冲电源系统特别是高能激光产生的大光束激发系统中扮演着越来越重要的角色。高储能密度电介质材料的开发和应用已有50多年的历史,并在军事应用领域如激光坦克、定向能武器、电气化发射平台以及综合全电力推进舰艇等方面进行了一定的应用。民用方面,风能、太阳能等新能源发电系统以及混合动力汽车的逆变设备中高密度储能电容器也是不可或缺的组成部分,但由于现有电介质材料储能密度低,使得储能电容器占整个逆变设备体积相当大。为适应未来轻量化、微型化、高度集成化电子设备的需要,意味着必须开发储存密度更高的储能电容器来满足军事和民用领域。High-density energy storage capacitors have the advantages of high energy storage density, fast charge and discharge speed, anti-cycle aging, suitable for extreme environments such as high temperature and high pressure, and stable performance. They meet the requirements of new energy development and utilization, and are widely used in electronic power equipment. It plays an increasingly important role in the pulse power system, especially the large beam excitation system generated by high-energy laser. The development and application of high energy storage density dielectric materials has a history of more than 50 years, and has been used in military applications such as laser tanks, directed energy weapons, electrified launch platforms, and comprehensive all-electric propulsion ships. In terms of civil use, high-density energy storage capacitors are also an indispensable part of new energy power generation systems such as wind energy and solar energy, and inverter equipment for hybrid vehicles. However, due to the low energy storage density of existing dielectric materials, energy storage capacitors account for the entire inverter. The volume of the variable equipment is quite large. In order to meet the needs of future lightweight, miniaturized and highly integrated electronic equipment, it means that energy storage capacitors with higher storage density must be developed to meet military and civilian applications.
当前研究与开发的高密度储能电容器中,陶瓷、玻璃以及陶瓷有机复合体三类居多,然而这三类都属于体相材料,尽管耐压高,但实现的储能密度低于5J/cm3,难于实现小器件高功率驱动的工业需求。基于此,研究人员开发了高密度储能薄膜电容器,采用反铁电体Pb(Zr,Ti)O3体系为薄膜电介质基体,初步实现了近60J/cm3的高储能密度值。然而,铅的高毒性也意味着它难于在民用领域应用,因而需要寻找新的具有高储能密度值的无铅材料作为薄膜的制备基体。Among the high-density energy storage capacitors currently researched and developed, ceramics, glass, and ceramic organic composites are mostly three types. However, these three types are all bulk materials. Although the withstand voltage is high, the energy storage density achieved is lower than 5J/cm 3. It is difficult to realize the industrial demand for high-power drive of small devices. Based on this, the researchers developed a high-density energy storage film capacitor, using the antiferroelectric Pb(Zr,Ti)O 3 system as the film dielectric matrix, and initially achieved a high energy storage density value of nearly 60J/cm 3 . However, the high toxicity of lead also means that it is difficult to be used in the civilian field, so it is necessary to find new lead-free materials with high energy storage density as the substrate for the preparation of thin films.
发明内容Contents of the invention
本发明的目的在于提供一种无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器及其制备方法,该电容器中间薄膜层厚度介于0.5~1.5μm之间,储能密度可达20~45J/cm3。The object of the present invention is to provide a lead-free Bi 0.5 Na 0.5 TiO 3 based high energy storage density film capacitor and its preparation method, the thickness of the middle film layer of the capacitor is between 0.5-1.5 μm, and the energy storage density can reach 20-20 μm. 45J/cm 3 .
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器,由顺序叠接在衬底材料上的溅射金属下电极、溅射Bi0.5Na0.5TiO3基高储能密度薄膜中间层和薄膜上溅射金属上电极三层结构组成。A lead-free Bi 0.5 Na 0.5 TiO 3 based high energy storage density thin film capacitor consists of a sputtered metal lower electrode sequentially stacked on the substrate material, a sputtered Bi 0.5 Na 0.5 TiO 3 based high energy storage density thin film intermediate layer It consists of a three-layer structure of a metal upper electrode sputtered on a thin film.
所述的Bi0.5Na0.5TiO3基高储能密度薄膜具体成分为(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xK0.5Na0.5NbO3,其中摩尔比x的值为0.01≤x≤0.1,薄膜厚度介于0.5~1.5μm之间。The specific composition of the Bi 0.5 Na 0.5 TiO 3 -based high energy storage density film is (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-xK 0.5 Na 0.5 NbO 3 , wherein the value of the molar ratio x 0.01≤x≤0.1, and the thickness of the film is between 0.5 and 1.5 μm.
所述的金属上、下电极材料是金属Ag、Au、Pt中的一种,其厚度为200nm至500nm。The metal upper and lower electrode materials are one of metal Ag, Au and Pt, and the thickness thereof is 200nm to 500nm.
一种无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器的制备方法,包括如下步骤:A method for preparing a lead-free Bi 0.5 Na 0.5 TiO 3 based high energy storage density film capacitor, comprising the steps of:
1)溅射用(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.235(1-x):(1-x):[0.235(1-x)+0.25x]:0.06(1-x):0.25x:0.5x的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3陶瓷靶材;1) Preparation of (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , and Nb 2 O 5 powders are used as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.235(1-x):(1-x):[0.235(1-x)+0.25x]:0.06(1-x):0.25x:0.5x molar ratio mixing, and then fully mixed in a high energy ball mill , taken out, dried, ground, and kept at 900°C for 4 hours to synthesize (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 powder; Secondary ball milling in the ball mill, drying, adding 5wt% polyvinyl alcohol (PVA) as a binder, drying, pressing on a hydraulic press to form a green body with a diameter of 80mm and a thickness of 5mm, and keeping the green body at 1100°C for 12 Sintering at high temperature for 1 hour to obtain a highly dense (1-x) (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 ceramic target for sputtering;
2)将清洗干净的衬底硅片和金属靶材放入磁控溅射仪,直流磁控溅射金属靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极厚度为200nm到500nm;2) Put the cleaned substrate silicon wafer and metal target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is room temperature. The thickness of the bottom electrode is 200nm to 500nm;
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。溅射制备的(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3薄膜的厚度为0.5~1.5μm。最后,将原位薄膜在空气中退火,温度500~800℃范围内,时间60分钟,然后得结晶态(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3高储能密度薄膜;3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer that has sputtered the lower electrode and put it into the sputtering chamber, use RF power 150W, argon The gas pressure is 0.6Pa, and the substrate temperature is 300°C. The (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 film prepared by sputtering has a thickness of 0.5-1.5 μm. Finally, the in-situ film is annealed in air at a temperature ranging from 500 to 800°C for 60 minutes, and then the crystalline state (1-x) (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 high energy storage density film;
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-x K0.5Na0.5NbO3高储能密度薄膜的表面制备金属上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极厚度为200nm到500nm,最终形成金属下电极/Bi0.5Na0.5TiO3基高储能密度薄膜/金属上电极三层结构的无铅Bi0.5Na0.5TiO3基高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the magnetron sputtering is used in (1-x)(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-x K 0.5 Na 0.5 NbO 3 high energy storage Prepare the metal upper electrode on the surface of the density film, the DC power is 80W, the argon pressure is 0.8Pa, the substrate temperature is room temperature, the thickness of the upper electrode is 200nm to 500nm, and finally the metal lower electrode/Bi 0.5 Na 0.5 TiO 3 base with high energy storage density is formed Lead-free Bi 0.5 Na 0.5 TiO 3 -based high energy storage density film capacitor with film/metal top electrode three-layer structure.
本发明的优点是:本发明制备的高储能密度薄膜电容器体积小,薄膜层厚度0.5~1.5μm,其储能密度为20~45J/cm3。The advantages of the invention are: the high energy storage density film capacitor prepared by the invention has small volume, the thickness of the film layer is 0.5-1.5 μm, and the energy storage density is 20-45J/cm 3 .
具体实施方式Detailed ways
以下基于七个具体实施例来说明本发明。本领域的技术人员能够理解,这些实施例仅用于说明本发明的目的,而不是限制本发明的范围。The present invention is described below based on seven specific embodiments. Those skilled in the art can understand that these examples are only for the purpose of illustrating the present invention, rather than limiting the scope of the present invention.
实施例1:Example 1:
1)溅射用0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.23265:0.99:0.23515:0.0594:0.0025:0.005的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.99(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.01K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.23265:0.99 : 0.23515: 0.0594: 0.0025: 0.005 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.99 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.01K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.99(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.01K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Pt靶材放入磁控溅射仪,直流磁控溅射金属Pt靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Pt厚度为220nm。2) Put the cleaned substrate silicon wafer and the metal Pt target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Pt target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Pt thickness of the bottom electrode is 220nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Pt下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度800℃,时间60分钟,然后得结晶态0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Pt lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 800°C for 60 minutes, and then a crystalline 0.99(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.01K 0.5 Na 0.5 NbO 3 high energy storage density film was obtained .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Ag上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Ag厚度为250nm。最终形成金属Pt下电极/0.99(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.01K0.5Na0.5NbO3高储能密度薄膜/金属Ag上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and magnetron sputtering is used on the surface of the 0.99(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.01K 0.5 Na 0.5 NbO 3 high energy storage density film The metal Ag upper electrode was prepared, the DC power was 80W, the argon pressure was 0.8Pa, the substrate temperature was room temperature, and the Ag thickness of the upper electrode was 250nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Pt bottom electrode/0.99 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.01K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Ag top electrode is formed.
性能测试结果:薄膜厚度约0.5μm,储能密度约26J/cm3。Performance test results: the thickness of the film is about 0.5 μm, and the energy storage density is about 26J/cm 3 .
实施例2:Example 2:
1)溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.22795:0.97:0.23545:0.0582:0.0075:0.015的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.22795:0.97 : 0.23545: 0.0582: 0.0075: 0.015 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.97 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.03K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Pt靶材放入磁控溅射仪,直流磁控溅射金属Pt靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Pt厚度为360nm。2) Put the cleaned substrate silicon wafer and the metal Pt target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Pt target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Pt thickness of the bottom electrode is 360nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Pt下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度650℃,时间60分钟,然后得结晶态0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Pt lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 650°C for 60 minutes to obtain a crystalline 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Au上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Au厚度为310nm。最终形成金属Pt下电极/0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜/金属Au上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the surface of the 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film is sputtered by magnetron The metal Au upper electrode was prepared, the DC power was 80W, the argon pressure was 0.8Pa, the substrate temperature was room temperature, and the Au thickness of the upper electrode was 310nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Pt bottom electrode/0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Au top electrode is formed.
性能测试结果:薄膜厚度约1.5μm,储能密度约45J/cm3。Performance test results: the thickness of the film is about 1.5 μm, and the energy storage density is about 45J/cm 3 .
实施例3:Example 3:
1)溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.22795:0.97:0.23545:0.0582:0.0075:0.015的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.22795:0.97 : 0.23545: 0.0582: 0.0075: 0.015 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.97 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.03K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Pt靶材放入磁控溅射仪,直流磁控溅射金属Pt靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Pt厚度为360nm。2) Put the cleaned substrate silicon wafer and the metal Pt target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Pt target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Pt thickness of the bottom electrode is 360nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Pt下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度650℃,时间60分钟,然后得结晶态0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Pt lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 650°C for 60 minutes to obtain a crystalline 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Pt上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Pt厚度为310nm。最终形成金属Pt下电极/0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜/金属Pt上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the surface of the 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film is sputtered by magnetron The metal Pt upper electrode was prepared, the DC power was 80W, the argon pressure was 0.8Pa, the substrate temperature was room temperature, and the Pt thickness of the upper electrode was 310nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Pt bottom electrode/0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Pt top electrode is formed.
性能测试结果:薄膜厚度约0.82μm,储能密度约39J/cm3。Performance test results: The thickness of the film is about 0.82μm, and the energy storage density is about 39J/cm 3 .
实施例4:Example 4:
1)溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.22795:0.97:0.23545:0.0582:0.0075:0.015的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.22795:0.97 : 0.23545: 0.0582: 0.0075: 0.015 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.97 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.03K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Au靶材放入磁控溅射仪,直流磁控溅射金属Au靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Au厚度为350nm。2) Put the cleaned substrate silicon wafer and the metal Au target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Au target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Au thickness of the lower electrode is 350nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Au下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度700℃,时间60分钟,然后得结晶态0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Au lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 700°C for 60 minutes to obtain a crystalline 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Ag上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Ag厚度为500nm。最终形成金属Au下电极/0.97(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.03K0.5Na0.5NbO3高储能密度薄膜/金属Ag上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the surface of the 0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film is sputtered by magnetron The metal Ag upper electrode was prepared, the DC power was 80W, the argon gas pressure was 0.8Pa, the substrate temperature was room temperature, and the Ag thickness of the upper electrode was 500nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Au bottom electrode/0.97(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.03K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Ag top electrode is formed.
性能测试结果:薄膜厚度约0.64μm,储能密度约34J/cm3。Performance test results: The thickness of the film is about 0.64μm, and the energy storage density is about 34J/cm 3 .
实施例5:Example 5:
1)溅射用0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.2256:0.94:0.2356:0.0576:0.01:0.02的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.96(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.04K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.2256:0.94 : 0.2356: 0.0576: 0.01: 0.02 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.96 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.04K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.96(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.04K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Au靶材放入磁控溅射仪,直流磁控溅射金属Au靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Au厚度为230nm。2) Put the cleaned substrate silicon wafer and the metal Au target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Au target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Au thickness of the bottom electrode is 230nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Au下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度650℃,时间60分钟,然后得结晶态0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Au lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 650°C for 60 minutes to obtain a crystalline 0.96(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.04K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Ag上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Ag厚度为320nm。最终形成金属Au下电极/0.96(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.04K0.5Na0.5NbO3高储能密度薄膜/金属Ag上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the surface of the 0.96(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.04K 0.5 Na 0.5 NbO 3 high energy storage density film is deposited by magnetron sputtering The metal Ag upper electrode was prepared, the DC power was 80W, the argon gas pressure was 0.8Pa, the substrate temperature was room temperature, and the Ag thickness of the upper electrode was 320nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Au lower electrode/0.96(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.04K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Ag upper electrode is formed.
性能测试结果:薄膜厚度约0.96μm,储能密度约28J/cm3。Performance test results: the thickness of the film is about 0.96μm, and the energy storage density is about 28J/cm 3 .
实施例6:Embodiment 6:
1)溅射用0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.2162:0.92:0.2326:0.0552:0.02:0.04的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.92(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.08K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.2162:0.92 : 0.2326: 0.0552: 0.02: 0.04 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900°C for 4 hours to synthesize 0.92 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.08K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense 0.92(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.08K 0.5 Na 0.5 NbO 3 for sputtering Ceramic target.
2)将清洗干净的衬底硅片和金属Au靶材放入磁控溅射仪,直流磁控溅射金属Au靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Au厚度为270nm。2) Put the cleaned substrate silicon wafer and the metal Au target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Au target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Au thickness of the bottom electrode is 270nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Au下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度600℃,时间60分钟,然后得结晶态0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Au lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 600°C for 60 minutes to obtain a crystalline 0.92(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.08K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Au上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Au厚度为280nm。最终形成金属Au下电极/0.92(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.08K0.5Na0.5NbO3高储能密度薄膜/金属Au上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the circular hole is 1mm, and magnetron sputtering is used on the surface of the 0.92(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.08K 0.5 Na 0.5 NbO 3 high energy storage density film The metal Au upper electrode was prepared, the DC power was 80W, the argon pressure was 0.8Pa, the substrate temperature was room temperature, and the Au thickness of the upper electrode was 280nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Au lower electrode/0.92(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.08K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Au upper electrode is formed.
性能测试结果:薄膜厚度约0.85μm,储能密度约22J/cm3。Performance test results: the thickness of the film is about 0.85μm, and the energy storage density is about 22J/cm 3 .
实施例7:Embodiment 7:
1)溅射用0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3陶瓷靶材制备:选择高纯度(≧99.8%)的Bi2O3、TiO2、Na2CO3、BaCO3、K2CO3、Nb2O5粉末为原料,按照Bi2O3:TiO2:Na2CO3:BaCO3:K2CO3:Nb2O5=0.2115:0.9:0.2365:0.054:0.025:0.05的摩尔比例混合,然后在高能球磨机中充分混合,取出烘干,研磨,在900℃下保温4小时合成0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3粉体;把所得粉体在高能球磨机中二次球磨,烘干,加入5wt%的聚乙烯醇(PVA)作为粘接剂,烘干,在液压机上压制成直径80mm、厚度5mm的生坯,将生坯在1100℃下保温12小时进行高温烧结,得到高致密的溅射用0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3陶瓷靶材。1) Preparation of 0.9(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.1K 0.5 Na 0.5 NbO 3 ceramic target for sputtering: select high-purity (≧99.8%) Bi 2 O 3 , TiO 2 , Na 2 CO 3 , BaCO 3 , K 2 CO 3 , Nb 2 O 5 powder as raw materials, according to Bi 2 O 3 : TiO 2 : Na 2 CO 3 : BaCO 3 : K 2 CO 3 : Nb 2 O 5 =0.2115:0.9 : 0.2365: 0.054: 0.025: 0.05 molar ratio mixed, then fully mixed in a high-energy ball mill, taken out, dried, ground, and kept at 900 ° C for 4 hours to synthesize 0.9 (0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )- 0.1K 0.5 Na 0.5 NbO 3 powder; mill the resulting powder in a high-energy ball mill for a second time, dry it, add 5wt% polyvinyl alcohol (PVA) as a binder, dry it, and press it into a diameter of 80mm on a hydraulic press , a green body with a thickness of 5mm, and the green body was sintered at 1100°C for 12 hours at a high temperature to obtain a highly dense sputtering 0.9(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.1K 0.5 Na 0.5 NbO 3 Ceramic target.
2)将清洗干净的衬底硅片和金属Ag靶材放入磁控溅射仪,直流磁控溅射金属Ag靶材制备下电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,下电极Ag厚度为270nm。2) Put the cleaned substrate silicon wafer and the metal Ag target into the magnetron sputtering apparatus, and prepare the lower electrode by DC magnetron sputtering the metal Ag target. The DC power is 80W, the argon pressure is 0.8Pa, and the substrate temperature is At room temperature, the Ag thickness of the bottom electrode is 270nm.
3)将机加工的溅射靶材(Φ60×3mm)装入磁控溅射仪,对已溅射Ag下电极的衬底硅片进行清洗并放入溅射腔体,采用射频功率150W,氩气压力0.6Pa,衬底温度为300℃。最后,将原位薄膜在空气中退火,温度500℃,时间60分钟,然后得结晶态0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3高储能密度薄膜。3) Put the machined sputtering target (Φ60×3mm) into the magnetron sputtering apparatus, clean the substrate silicon wafer on which the Ag lower electrode has been sputtered and put it into the sputtering chamber, using a radio frequency power of 150W, The argon pressure is 0.6Pa, and the substrate temperature is 300°C. Finally, the in-situ film was annealed in air at a temperature of 500°C for 60 minutes to obtain a crystalline 0.9(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.1K 0.5 Na 0.5 NbO 3 high energy storage density film .
4)使用金属掩膜版,圆孔的直径为1mm,采用磁控溅射在0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3高储能密度薄膜的表面制备金属Pt上电极,直流功率80W,氩气压力0.8Pa,衬底温度为室温,上电极Pt厚度为290nm。最终形成金属Ag下电极/0.9(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.1K0.5Na0.5NbO3高储能密度薄膜/金属Pt上电极三层结构的高储能密度薄膜电容器。4) Using a metal mask, the diameter of the round hole is 1mm, and the surface of the 0.9(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.1K 0.5 Na 0.5 NbO 3 high energy storage density film is sputtered by magnetron The metal Pt upper electrode was prepared, the DC power was 80W, the argon pressure was 0.8Pa, the substrate temperature was room temperature, and the Pt thickness of the upper electrode was 290nm. Finally, a high energy storage density film capacitor with a three-layer structure of metal Ag bottom electrode/0.9(0.94Bi 0.5 Na 0.5 TiO 3 -0.06BaTiO 3 )-0.1K 0.5 Na 0.5 NbO 3 high energy storage density film/metal Pt top electrode is formed.
性能测试结果:薄膜厚度约0.78μm,储能密度约20J/cm3。Performance test results: the thickness of the film is about 0.78μm, and the energy storage density is about 20J/cm 3 .
虽然本发明已以较佳实例公开如上,但并非限定本发明,任何本领域的技术人员在不脱离本发明的精神和范围内,可做适当改进,因此,本发明保护范围以权利要求所界定的范围为准。Although the present invention has been disclosed above with preferred examples, it does not limit the present invention, and any person skilled in the art can make appropriate improvements without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention is defined by the claims range prevails.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410146863.XA CN103956266A (en) | 2014-04-14 | 2014-04-14 | A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410146863.XA CN103956266A (en) | 2014-04-14 | 2014-04-14 | A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103956266A true CN103956266A (en) | 2014-07-30 |
Family
ID=51333527
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410146863.XA Pending CN103956266A (en) | 2014-04-14 | 2014-04-14 | A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103956266A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105060883A (en) * | 2015-07-30 | 2015-11-18 | 天津大学 | Preparation method of high density BNT target for magnetron sputtering |
| CN105810435A (en) * | 2016-04-13 | 2016-07-27 | 东莞市联洲知识产权运营管理有限公司 | A kind of film capacitor with high voltage resistance and high energy storage and preparation method thereof |
| JP2017014095A (en) * | 2015-06-29 | 2017-01-19 | 太陽誘電株式会社 | Dielectric ceramic composition and dielectric element having the same |
| CN107215895A (en) * | 2017-06-23 | 2017-09-29 | 宁夏大学 | A method for preparing Bi0.5Na0.5TiO3 by chemical precipitation |
| CN110660582A (en) * | 2018-06-29 | 2020-01-07 | 浙江清华柔性电子技术研究院 | Flexible energy storage film, preparation method thereof and film capacitor |
| CN117737676A (en) * | 2024-02-19 | 2024-03-22 | 中国科学院长春光学精密机械与物理研究所 | Insulator film in MIM capacitor and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101236835A (en) * | 2008-01-07 | 2008-08-06 | 天津大学 | Ceramic capacitor dielectric with wide operating temperature range and preparation method thereof |
| CN102216239A (en) * | 2008-11-17 | 2011-10-12 | 埃普科斯股份有限公司 | Ceramic material, method for producing said ceramic material and component comprising said ceramic material |
| CN103219153A (en) * | 2013-03-26 | 2013-07-24 | 欧阳俊 | High-voltage-resistant and high-energy-density capacitor and preparation method thereof |
-
2014
- 2014-04-14 CN CN201410146863.XA patent/CN103956266A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101236835A (en) * | 2008-01-07 | 2008-08-06 | 天津大学 | Ceramic capacitor dielectric with wide operating temperature range and preparation method thereof |
| CN102216239A (en) * | 2008-11-17 | 2011-10-12 | 埃普科斯股份有限公司 | Ceramic material, method for producing said ceramic material and component comprising said ceramic material |
| CN103219153A (en) * | 2013-03-26 | 2013-07-24 | 欧阳俊 | High-voltage-resistant and high-energy-density capacitor and preparation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| Z.H.ZHOU等: "Ferroelectric and electrical behavior of (Na0.5Bi0.5)TiO3 thin films", 《APPLIED PHYSICS LETTERS》 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017014095A (en) * | 2015-06-29 | 2017-01-19 | 太陽誘電株式会社 | Dielectric ceramic composition and dielectric element having the same |
| CN105060883A (en) * | 2015-07-30 | 2015-11-18 | 天津大学 | Preparation method of high density BNT target for magnetron sputtering |
| CN105810435A (en) * | 2016-04-13 | 2016-07-27 | 东莞市联洲知识产权运营管理有限公司 | A kind of film capacitor with high voltage resistance and high energy storage and preparation method thereof |
| CN107215895A (en) * | 2017-06-23 | 2017-09-29 | 宁夏大学 | A method for preparing Bi0.5Na0.5TiO3 by chemical precipitation |
| CN107215895B (en) * | 2017-06-23 | 2019-03-26 | 宁夏大学 | A method for preparing Bi0.5Na0.5TiO3 by chemical precipitation |
| CN110660582A (en) * | 2018-06-29 | 2020-01-07 | 浙江清华柔性电子技术研究院 | Flexible energy storage film, preparation method thereof and film capacitor |
| CN117737676A (en) * | 2024-02-19 | 2024-03-22 | 中国科学院长春光学精密机械与物理研究所 | Insulator film in MIM capacitor and preparation method thereof |
| CN117737676B (en) * | 2024-02-19 | 2024-04-16 | 中国科学院长春光学精密机械与物理研究所 | Insulator film in MIM capacitor and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics | |
| Zheng et al. | Enhanced energy storage properties in La (Mg1/2Ti1/2) O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range | |
| Zhu et al. | Composition and strain engineered AgNbO 3-based multilayer capacitors for ultra-high energy storage capacity | |
| CN103956266A (en) | A lead-free Bi0.5Na0.5TiO3 based film capacitor with high energy storage density and its preparation method | |
| CN110540423A (en) | Sodium bismuth titanate-based ceramics with high energy storage density and power density, preparation method and application | |
| CN108439981B (en) | Silver niobate-based antiferroelectric material with wide temperature zone dielectric stability and high energy storage density and preparation method thereof | |
| Puli et al. | Review on energy storage in lead‐free ferroelectric films | |
| CN108623300B (en) | Barium titanate-bismuth niobate-based lead-free relaxor ferroelectric energy storage ceramic and preparation method thereof | |
| JP2010053024A (en) | Metal oxide and piezoelectric material | |
| CN111205087B (en) | A kind of high energy storage density ceramic with bismuth-based sandwich structure and preparation method thereof | |
| CN110590352A (en) | Production of high voltage bismuth ferrite-barium titanate based piezoelectric ceramics with low polarization field strength and its preparation | |
| CN112876247B (en) | Wide-temperature-stability high-energy-storage-density strontium sodium niobate-based tungsten bronze ceramic and preparation method thereof | |
| CN107602115B (en) | Lead-free high-energy-storage-density wide-temperature-range stable ceramic material and preparation method thereof | |
| Kumar et al. | Increased energy-storage density and superior electric field and thermally stable energy efficiency of aerosol-deposited relaxor (Pb0. 89La0. 11)(Zr0. 70Ti0. 30) O3 films | |
| CN111170739A (en) | High-energy-storage silver niobate-based lead-free antiferroelectric ceramic and preparation method thereof | |
| Cheng et al. | Excellent energy storage performance in NaNbO3-based relaxor antiferroeic ceramics under a low electric field | |
| CN103224390B (en) | Piezoelectric composition and piezoelectric element | |
| CN104591729B (en) | Preparation method of PBZ target for preparing PBZ thin film by virtue of magnetron sputtering method | |
| JP6398771B2 (en) | Piezoelectric composition and piezoelectric element | |
| CN104671778B (en) | A kind of big strain of High-Field and high energy storage density lead-free ceramics and preparation method thereof | |
| Montecillo et al. | Ultrahigh energy storage in multilayer BiFeO 3–BaTiO 3–NaTaO 3 relaxor ferroelectric ceramics | |
| CN112521145A (en) | Barium strontium titanate-based ceramic with high energy storage density and power density and preparation method thereof | |
| CN108117385A (en) | Titania based medium ceramic material of a kind of high electric strength of large scale and its preparation method and application | |
| CN111253151B (en) | Bismuth ferrite barium titanate-based ceramics with high energy storage density and high power density and preparation method thereof | |
| WO2012176714A1 (en) | Ceramic powder, semiconductor ceramic capacitor and method for manufacturing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140730 |
|
| WD01 | Invention patent application deemed withdrawn after publication |