CN103972050A - Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate - Google Patents
Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate Download PDFInfo
- Publication number
- CN103972050A CN103972050A CN201410203194.5A CN201410203194A CN103972050A CN 103972050 A CN103972050 A CN 103972050A CN 201410203194 A CN201410203194 A CN 201410203194A CN 103972050 A CN103972050 A CN 103972050A
- Authority
- CN
- China
- Prior art keywords
- amorphous silicon
- thin film
- polysilicon
- silicon membrane
- salt solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6745—Polycrystalline or microcrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明实施例提供了一种多晶硅薄膜、多晶硅薄膜晶体管及阵列基板的制备方法,涉及显示技术领域,可使多晶硅结晶均匀,并增大晶粒尺寸,使结晶质量提高,从而使得薄膜晶体管的电学性能得到提升。该多晶硅薄膜的制备方法包括:在衬底基板上形成非晶硅薄膜;采用准分子激光退火方法对非晶硅薄膜进行处理,使非晶硅薄膜晶化为多晶硅薄膜;进一步的在形成非晶硅薄膜之后,采用准分子激光退火方法对非晶硅薄膜进行处理之前,所述方法还包括:对非晶硅薄膜的表面进行镍盐溶液处理,使镍盐溶液均匀涂于非晶硅薄膜的表面。用于需要提高多晶硅结晶均匀,并增大晶粒尺寸,使结晶质量提高的多晶硅薄膜、低温多晶硅薄膜晶体管及阵列基板的制备。
The embodiment of the present invention provides a method for preparing a polysilicon thin film, a polysilicon thin film transistor, and an array substrate, which relates to the field of display technology, can make polysilicon crystallize uniformly, increase the grain size, improve the crystallization quality, and thereby improve the electrical properties of the thin film transistor. Performance is improved. The preparation method of the polysilicon thin film comprises: forming an amorphous silicon thin film on a substrate; using an excimer laser annealing method to process the amorphous silicon thin film to crystallize the amorphous silicon thin film into a polysilicon thin film; further forming the amorphous silicon thin film After the silicon thin film, before adopting the excimer laser annealing method to process the amorphous silicon thin film, the method also includes: treating the surface of the amorphous silicon thin film with a nickel salt solution, so that the nickel salt solution is evenly coated on the amorphous silicon thin film surface. It is used for the preparation of polysilicon thin films, low-temperature polysilicon thin film transistors and array substrates that need to improve the uniformity of polysilicon crystallization, increase the grain size, and improve the crystal quality.
Description
技术领域technical field
本发明涉及显示技术领域,尤其涉及一种多晶硅薄膜的制备方法、低温多晶硅薄膜晶体管的制备方法及阵列基板的制备方法。The invention relates to the field of display technology, in particular to a method for preparing a polysilicon thin film, a method for preparing a low-temperature polysilicon thin film transistor, and a method for preparing an array substrate.
背景技术Background technique
低温多晶硅薄膜晶体管(Low Temperature Poly-Silicon-ThinFilm Transistor,简称LTPS-TFT)显示器具有高分辨率、反应速度快、高亮度、高开口率等优点,加上由于LTPS的特点,使得其具有高的电子移动率;此外,还可以将外围驱动电路同时制作在玻璃基板上,达到系统整合的目标、节省空间及驱动IC的成本,并可减少产品不良率。Low Temperature Poly-Silicon-Thin Film Transistor (LTPS-TFT) display has the advantages of high resolution, fast response, high brightness, high aperture ratio, etc., and because of the characteristics of LTPS, it has high Electron mobility; in addition, the peripheral drive circuit can also be produced on the glass substrate at the same time to achieve the goal of system integration, save space and cost of the drive IC, and reduce product defect rate.
目前,所述低温多晶硅薄膜晶体管包括设置在衬底基板上的有源层、栅绝缘层、栅电极、源电极和漏电极;所述有源层包括源极区域、漏极区域以及位于所述源极区域和漏极区域之间的沟道区等。At present, the low-temperature polysilicon thin film transistor includes an active layer, a gate insulating layer, a gate electrode, a source electrode, and a drain electrode arranged on a substrate; the active layer includes a source region, a drain region, and a Channel region between source region and drain region etc.
其中,有源层是通过对多晶硅层进行离子注入工艺后得到的,所述多晶硅层一般通过在衬底基板上形成非晶硅薄膜,之后采用准分子激光退火方法将非晶硅转化为多晶硅,然后通过构图工艺使多晶硅薄膜形成特定图案的多晶硅层。Wherein, the active layer is obtained by performing an ion implantation process on the polysilicon layer, and the polysilicon layer is generally formed by forming an amorphous silicon thin film on the substrate, and then using an excimer laser annealing method to convert the amorphous silicon into polysilicon, Then, the polysilicon film is formed into a polysilicon layer with a specific pattern through a patterning process.
然而,准分子激光作为一种气体激光,其稳定性比较差,所制备得到的多晶硅晶粒均匀性比较差,从而造成薄膜晶体管的电学特性均匀性较差。此外,通常的准分子激光晶化工艺在很短的时间内使非晶硅熔融再结晶,其晶粒尺寸较小,且结晶质量也不高,限制了薄膜晶体管器件电学性能的提升。However, as a gas laser, the excimer laser has relatively poor stability, and the prepared polysilicon grains have relatively poor uniformity, resulting in poor uniformity of electrical characteristics of the thin film transistor. In addition, the usual excimer laser crystallization process melts and recrystallizes amorphous silicon in a short period of time. The grain size is small and the crystal quality is not high, which limits the improvement of the electrical performance of thin film transistor devices.
发明内容Contents of the invention
本发明的实施例提供一种多晶硅薄膜、多晶硅薄膜晶体管及阵列基板的制备方法,可使多晶硅结晶均匀,并增大晶粒尺寸,使结晶质量提高,从而使得薄膜晶体管的电学性能得到提升。Embodiments of the present invention provide a method for preparing a polysilicon film, a polysilicon thin film transistor, and an array substrate, which can make the polysilicon crystallize uniformly, increase the grain size, improve the crystallization quality, and improve the electrical performance of the thin film transistor.
为达到上述目的,本发明的实施例采用如下技术方案:In order to achieve the above object, embodiments of the present invention adopt the following technical solutions:
一方面,提供一种多晶硅薄膜的制备方法,包括:在衬底基板上形成非晶硅薄膜;采用准分子激光退火方法对所述非晶硅薄膜进行处理,使所述非晶硅薄膜晶化为多晶硅薄膜;进一步的,在形成所述非晶硅薄膜之后,采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,所述方法还包括:对所述非晶硅薄膜的表面进行镍盐溶液处理,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。On the one hand, a method for preparing a polysilicon thin film is provided, comprising: forming an amorphous silicon thin film on a base substrate; using an excimer laser annealing method to process the amorphous silicon thin film to crystallize the amorphous silicon thin film It is a polysilicon film; further, after forming the amorphous silicon film, before using the excimer laser annealing method to treat the amorphous silicon film, the method also includes: performing Nickel salt solution treatment, so that the nickel salt solution is evenly coated on the surface of the amorphous silicon film.
另一方面,提供一种多晶硅薄膜晶体管的制备方法,包括:在衬底基板上形成有源层、位于所述有源层上方的栅绝缘层、栅电极、源电极和漏电极;所述有源层包括源极区、漏极区、位于所述源极区和所述漏极区之间的沟道区;其中,所述有源层是通过对多晶硅层的与所述源极区和所述漏极区相对应的区域进行掺杂工艺形成;所述多晶硅层为上述的多晶硅薄膜进行构图工艺得到。In another aspect, a method for preparing a polysilicon thin film transistor is provided, comprising: forming an active layer, a gate insulating layer above the active layer, a gate electrode, a source electrode and a drain electrode on a base substrate; The source layer includes a source region, a drain region, and a channel region between the source region and the drain region; wherein, the active layer is connected to the polysilicon layer and the source region and The region corresponding to the drain region is formed by a doping process; the polysilicon layer is obtained by performing a patterning process on the above-mentioned polysilicon film.
再一方面,提供一种阵列基板的制备方法,包括:形成薄膜晶体管和像素电极;其中,所述薄膜晶体管通过上述的多晶硅薄膜晶体管的制备方法形成。In yet another aspect, a method for preparing an array substrate is provided, including: forming a thin film transistor and a pixel electrode; wherein, the thin film transistor is formed by the above method for preparing a polysilicon thin film transistor.
本发明实施例提供了一种多晶硅薄膜、多晶硅薄膜晶体管及阵列基板的制备方法,所述多晶硅薄膜的制备方法包括在衬底基板上形成非晶硅薄膜;采用准分子激光退火方法对所述非晶硅薄膜进行处理,使所述非晶硅薄膜晶化为多晶硅薄膜;进一步的,在形成所述非晶硅薄膜之后,采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,所述方法还包括:对所述非晶硅薄膜的表面进行镍盐溶液处理,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。The embodiment of the present invention provides a method for preparing a polysilicon thin film, a polysilicon thin film transistor, and an array substrate. The method for preparing the polysilicon thin film includes forming an amorphous silicon thin film on a substrate; Crystalline silicon film is processed to crystallize the amorphous silicon film into a polysilicon film; further, after forming the amorphous silicon film, before using the excimer laser annealing method to process the amorphous silicon film, the The method further includes: treating the surface of the amorphous silicon film with a nickel salt solution, so that the nickel salt solution is evenly coated on the surface of the amorphous silicon film.
由于在采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,对非晶硅薄膜的表面进行了镍盐溶液处理,会残留镍在非晶硅薄膜的表面,经过准分子激光退火处理,镍与硅形成的镍硅化物作为非晶硅晶化的籽晶,可以促进非晶硅向多晶硅转变,并且使得多晶硅结晶均匀,晶粒尺寸大,结晶质量高,从而使制备的薄膜晶体管的电学性能得到提升。Because before adopting excimer laser annealing method to described amorphous silicon thin film is processed, the surface of amorphous silicon thin film has been carried out nickel salt solution treatment, can remain nickel on the surface of amorphous silicon thin film, after excimer laser annealing treatment , the nickel silicide formed by nickel and silicon is used as the seed crystal of amorphous silicon, which can promote the transformation of amorphous silicon to polysilicon, and make the crystallization of polysilicon uniform, with large grain size and high crystal quality, so that the prepared thin film transistor The electrical performance is improved.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例提供的一种多晶硅薄膜晶体管的制备方法的流程示意图;FIG. 1 is a schematic flow diagram of a method for preparing a polysilicon thin film transistor provided by an embodiment of the present invention;
图2-7为本发明实施例提供的一种制备多晶硅薄膜晶体管的过程示意图;2-7 are schematic diagrams of a process for preparing a polysilicon thin film transistor according to an embodiment of the present invention;
图8为本发明实施例提供的一种阵列基板的结构示意图一;FIG. 8 is a first structural schematic diagram of an array substrate provided by an embodiment of the present invention;
图9为本发明实施例提供的一种阵列基板的结构示意图二。FIG. 9 is a second structural schematic diagram of an array substrate provided by an embodiment of the present invention.
附图标记:Reference signs:
10-衬底基板;20-缓冲层;30-多晶硅层;301-非晶硅薄膜;302-多晶硅薄膜;40-栅绝缘层;50-栅电极;60-有源层;601-源极区;602-漏极区;603-沟道区;70-层间绝缘层;801-源电极;802-漏电极;90-平坦化层;100-像素电极;110-钝化层;120-公共电极。10-substrate substrate; 20-buffer layer; 30-polysilicon layer; 301-amorphous silicon film; 302-polysilicon film; 40-gate insulating layer; 50-gate electrode; 60-active layer; 601-source region ; 602-drain region; 603-channel region; 70-interlayer insulating layer; 801-source electrode; 802-drain electrode; 90-planarization layer; 100-pixel electrode; 110-passivation layer; 120-public electrode.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供了一种多晶硅薄膜的制备方法,包括:在衬底基板上形成非晶硅薄膜;采用准分子激光退火方法对所述非晶硅薄膜进行处理,使所述非晶硅薄膜晶化为多晶硅薄膜;进一步的,在形成所述非晶硅薄膜之后,采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,所述方法还包括:对所述非晶硅薄膜的表面进行镍盐溶液处理,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。An embodiment of the present invention provides a method for preparing a polysilicon thin film, comprising: forming an amorphous silicon thin film on a base substrate; using an excimer laser annealing method to treat the amorphous silicon thin film, so that the amorphous silicon thin film crystallized into a polysilicon film; further, after forming the amorphous silicon film, before adopting the excimer laser annealing method to process the amorphous silicon film, the method also includes: The surface is treated with a nickel salt solution, so that the nickel salt solution is evenly coated on the surface of the amorphous silicon film.
其中,采用准分子激光退火方法对所述非晶硅薄膜进行处理,使所述非晶硅薄膜晶化为多晶硅薄膜通过如下过程实现,即:采用准分子激光照射处理,在约50~150ns时间内使非晶硅薄膜表面瞬间达到1000℃以上的高温而变成熔融状态;然后对熔融状态的非晶硅进行退火,使之晶化形成多晶硅薄膜。Wherein, the amorphous silicon thin film is processed by excimer laser annealing method, and the crystallization of the amorphous silicon thin film into a polysilicon thin film is realized through the following process, namely: adopting excimer laser irradiation treatment, within about 50-150 ns The surface of the amorphous silicon film reaches a high temperature of more than 1000 ℃ in an instant to become a molten state; then the molten amorphous silicon is annealed to crystallize it to form a polysilicon film.
在此过程中,还可以保证玻璃衬底基板的温度在400℃左右或以下。其机理是:激光脉冲首先在非晶硅薄膜中激发出热电子-空穴对,之后电子-空穴对再以非辐射复合的方式将能量传递给晶格原子,从而实现非晶硅薄膜的瞬间加热。其中,由于激光脉冲的瞬间能量被非晶硅薄膜吸收并转化为相变能,因此不会有过多的热能传导到玻璃衬底基板,可以避免一般炉退火中使玻璃衬底基板温度升高而产生变形的问题。During this process, it can also be ensured that the temperature of the glass substrate is around or below 400°C. The mechanism is: the laser pulse first excites hot electron-hole pairs in the amorphous silicon film, and then the electron-hole pairs transfer energy to the lattice atoms in a non-radiative recombination manner, thereby realizing the formation of the amorphous silicon film. Heats up instantly. Among them, since the instantaneous energy of the laser pulse is absorbed by the amorphous silicon film and converted into phase transition energy, there will not be too much thermal energy conducted to the glass substrate, which can avoid the temperature rise of the glass substrate during general furnace annealing resulting in deformation problems.
在上述基础上,由于在采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,对非晶硅薄膜的表面进行了镍(Ni)盐溶液处理,会残留镍在非晶硅薄膜的表面,因而,经过准分子激光退火处理,镍与硅会发生反应,生成镍-硅键,形成镍-硅的混合体。由于硅晶化态的自由能比非晶态低,镍-硅键的断裂与重组这一热平衡过程促进了非晶硅到多晶硅局域晶格重组。其中,镍与硅形成的镍硅化物(SiN2)在350℃很容易形成,其晶格常数与硅的晶格常数仅相差0.4%,非常适合作为非晶硅晶化的籽晶,一方面可以促进非晶硅向多晶硅转变,另一方面由于有较均匀的形核中心(籽晶),可以使多晶硅结晶均匀,且由于有镍的催化作用,在同样的温度时间下,催化长出来的晶粒尺寸更大,因而使得结晶质量更高。On the basis of the above, since the surface of the amorphous silicon film has been treated with nickel (Ni) salt solution before adopting the excimer laser annealing method to process the amorphous silicon film, nickel will remain on the surface of the amorphous silicon film. The surface, therefore, undergoes excimer laser annealing, where nickel and silicon react to form nickel-silicon bonds, forming a nickel-silicon mixture. Since the free energy of the crystalline silicon state is lower than that of the amorphous state, the thermal equilibrium process of breaking and recombining the nickel-silicon bond promotes the local lattice reorganization from amorphous silicon to polysilicon. Among them, nickel silicide (SiN 2 ) formed by nickel and silicon is easy to form at 350°C, and its lattice constant is only 0.4% different from that of silicon, which is very suitable as a seed crystal for the crystallization of amorphous silicon. On the one hand, It can promote the transformation of amorphous silicon to polysilicon. On the other hand, due to the relatively uniform nucleation center (seed crystal), it can make polysilicon crystallize uniformly, and due to the catalytic effect of nickel, at the same temperature and time, it catalyzes the growth. The larger grain size results in higher crystalline quality.
本发明实施例提供一种多晶硅薄膜的制备方法,包括:在衬底基板上形成非晶硅薄膜;采用准分子激光退火方法对所述非晶硅薄膜进行处理,使所述非晶硅薄膜晶化为多晶硅薄膜;进一步的,在形成所述非晶硅薄膜之后,采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,所述方法还包括:对所述非晶硅薄膜的表面进行镍盐溶液处理,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。由于在采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,对非晶硅薄膜的表面进行了镍盐溶液处理,会残留镍在非晶硅薄膜的表面,经过准分子激光退火处理,镍与硅形成的镍硅化物作为非晶硅晶化的籽晶,可以促进非晶硅向多晶硅转变,并且使得多晶硅结晶均匀,晶粒尺寸大,结晶质量高;当该多晶硅薄膜用于制备薄膜晶体管的有源层时,可使薄膜晶体管的电学性能得到提升。An embodiment of the present invention provides a method for preparing a polysilicon thin film, comprising: forming an amorphous silicon thin film on a base substrate; using an excimer laser annealing method to treat the amorphous silicon thin film to make the amorphous silicon thin film into a polycrystalline silicon film; further, after forming the amorphous silicon film, before adopting the excimer laser annealing method to process the amorphous silicon film, the method also includes: treating the surface of the amorphous silicon film Nickel salt solution treatment is carried out so that the nickel salt solution is evenly coated on the surface of the amorphous silicon film. Because before adopting excimer laser annealing method to described amorphous silicon thin film is processed, the surface of amorphous silicon thin film has been carried out nickel salt solution treatment, can remain nickel on the surface of amorphous silicon thin film, after excimer laser annealing treatment , the nickel silicide formed by nickel and silicon is used as the seed crystal of amorphous silicon, which can promote the transformation of amorphous silicon to polysilicon, and make polysilicon crystallize uniformly, with large grain size and high crystal quality; when the polysilicon film is used for the preparation of When used as the active layer of the thin film transistor, the electrical performance of the thin film transistor can be improved.
可选的,可以采用浸泡或喷溅的方法,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。Optionally, the nickel salt solution can be uniformly coated on the surface of the amorphous silicon film by soaking or spraying.
考虑到镍盐溶液中镍的浓度过大时会造成较多的镍金属离子进入非晶硅层,导致形核中心太多而影响晶粒的生长,使得晶粒尺寸减小,同时,也有可能造成金属离子污染;因此,本发明实施例中的镍盐溶液只需采用含微量镍的溶液,优选采用镍的浓度为1~1000μg/mg的溶液。Considering that when the concentration of nickel in the nickel salt solution is too high, more nickel metal ions will enter the amorphous silicon layer, resulting in too many nucleation centers and affecting the growth of grains, reducing the grain size. At the same time, it is also possible Cause metal ion pollution; therefore, the nickel salt solution in the embodiment of the present invention only needs to use a solution containing a small amount of nickel, preferably a solution with a nickel concentration of 1-1000 μg/mg.
基于上述的描述,为了避免在采用准分子激光退火方法对所述非晶硅薄膜进行处理时,产生爆氢的问题。本发明实施例中优选在对所述非晶硅薄膜的表面进行镍盐溶液处理之后,采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,对所述非晶硅薄膜进行脱氢工艺处理,使所述非晶硅薄膜中的氢含量在3%以下。Based on the above description, in order to avoid the problem of hydrogen explosion when the excimer laser annealing method is used to process the amorphous silicon thin film. In the embodiment of the present invention, it is preferable to dehydrogenate the amorphous silicon film after the surface of the amorphous silicon film is treated with a nickel salt solution and before the amorphous silicon film is treated by an excimer laser annealing method. Process treatment, so that the hydrogen content in the amorphous silicon film is below 3%.
此处,脱氢温度可以在400~600℃,处理时间可在20~120分钟。Here, the dehydrogenation temperature may be 400-600° C., and the treatment time may be 20-120 minutes.
需要说明的是,若采用其他方法使非晶硅薄膜中氢含量已经控制在3%以下,则此步骤可以省略,具体可根据实际情况进行。It should be noted that if other methods are used to control the hydrogen content in the amorphous silicon film below 3%, this step can be omitted, and it can be performed according to the actual situation.
本发明实施例还提供了一种多晶硅薄膜晶体管的制备方法,包括:在衬底基板上形成有源层、位于所述有源层上方的栅绝缘层、栅电极、源电极和漏电极;所述有源层包括源极区、漏极区、位于所述源极区和所述漏极区之间的沟道区;其中,所述有源层是通过对多晶硅层的与所述源极区和所述漏极区相对应的区域进行掺杂工艺形成;所述多晶硅层为对上述得到的多晶硅薄膜进行构图工艺得到。The embodiment of the present invention also provides a method for preparing a polysilicon thin film transistor, comprising: forming an active layer, a gate insulating layer above the active layer, a gate electrode, a source electrode and a drain electrode on a base substrate; The active layer includes a source region, a drain region, and a channel region between the source region and the drain region; wherein, the active layer is connected to the source through the polysilicon layer The region corresponding to the drain region is formed by a doping process; the polysilicon layer is obtained by patterning the polysilicon film obtained above.
由于在采用准分子激光退火方法对所述非晶硅薄膜进行处理之前,对非晶硅薄膜的表面进行了镍盐溶液处理,会残留镍在非晶硅薄膜的表面,经过准分子激光退火处理,镍与硅形成的镍硅化物作为非晶硅晶化的籽晶,可以促进非晶硅向多晶硅转变,并且使得多晶硅结晶均匀,晶粒尺寸大,结晶质量高,使薄膜晶体管的电学性能得到提升。Because before adopting excimer laser annealing method to described amorphous silicon thin film is processed, the surface of amorphous silicon thin film has been carried out nickel salt solution treatment, can remain nickel on the surface of amorphous silicon thin film, after excimer laser annealing treatment , the nickel silicide formed by nickel and silicon is used as the seed crystal of amorphous silicon, which can promote the transformation of amorphous silicon to polysilicon, and make the crystallization of polysilicon uniform, with large grain size and high crystal quality, so that the electrical properties of thin film transistors can be improved. promote.
优选的,所述多晶硅层的厚度为 Preferably, the thickness of the polysilicon layer is
优选的,所述多晶硅层为对多晶硅薄膜进行构图工艺得到,具体可以通过如下步骤实现:Preferably, the polysilicon layer is obtained by patterning the polysilicon film, which can be achieved through the following steps:
S101、形成有多晶硅薄膜的基板上,形成光刻胶薄膜。S101, forming a photoresist film on the substrate on which the polysilicon film is formed.
S102、采用普通掩模板对形成有所述光刻胶薄膜的基板进行曝光,显影后形成光刻胶完全保留部分和光刻胶完全去除部分;其中,所述光刻胶完全保留部分与所述多晶硅层对应,光刻胶完全去除部分对应其余部分。S102. Exposing the substrate on which the photoresist thin film is formed by using a common mask, and forming a photoresist completely retained part and a photoresist completely removed part after development; wherein, the photoresist completely retained part and the The polysilicon layer corresponds, and the part where the photoresist is completely removed corresponds to the rest.
S103、采用干法刻蚀去除所述光刻胶完全去除部分的所述多晶硅薄膜,形成所述多晶硅层。S103, using dry etching to remove the polysilicon film in the part where the photoresist is completely removed, to form the polysilicon layer.
其中,干法刻蚀可选用等离子刻蚀、反应离子刻蚀、电感耦合等离子体刻蚀等方法,刻蚀气体可选择含氟、氯的气体,如四氟化碳(CF4)、三氟甲烷(CHF3)、六氟化硫(SF6)、二氟二氯甲烷(CCl2F2)等或者这些气体与氧气(O2)的混合气体。Among them, plasma etching, reactive ion etching, inductively coupled plasma etching and other methods can be used for dry etching, and the etching gas can be selected from gases containing fluorine and chlorine, such as carbon tetrafluoride (CF 4 ), trifluorine Methane (CHF 3 ), sulfur hexafluoride (SF 6 ), difluorodichloromethane (CCl 2 F 2 ), etc., or a mixed gas of these gases and oxygen (O 2 ).
S104、采用剥离工艺将所述光刻胶完全保留部分去除。S104, using a lift-off process to remove the completely remaining part of the photoresist.
本发明实施例中采用干法刻蚀形成所述多晶硅层,是因为干法刻蚀可以非常好的控制形成的所述多晶硅层的侧壁剖面,即可以控制所述多晶硅层的两侧侧壁能垂直衬底基板,这样,使最终形成的有源层的性能更好,避免了对薄膜晶体管性能的影响。In the embodiment of the present invention, the polysilicon layer is formed by dry etching, because dry etching can control the sidewall profile of the formed polysilicon layer very well, that is, it can control the sidewalls on both sides of the polysilicon layer. The base substrate can be vertical, so that the performance of the finally formed active layer is better, and the influence on the performance of the thin film transistor is avoided.
在上述基础上,考虑到玻璃衬底基板中包含有害物质,如碱金属离子,可对多晶硅层性能造成影响,因此,本发明实施优选为:在形成所述多晶硅薄膜之前,在所述衬底基板表面形成缓冲层。On the basis of the above, considering that the glass substrate contains harmful substances, such as alkali metal ions, which may affect the performance of the polysilicon layer, the implementation of the present invention is preferably: before forming the polysilicon film, the A buffer layer is formed on the surface of the substrate.
基于上述对多晶硅薄膜晶体管的制备方法的描述,本发明实施例提供一具体实施例,以详细描述所述多晶硅薄膜晶体管的制备方法。如图1所示,该方法包括如下步骤:Based on the above description of the preparation method of the polysilicon thin film transistor, the embodiment of the present invention provides a specific embodiment to describe the preparation method of the polysilicon thin film transistor in detail. As shown in Figure 1, the method includes the following steps:
S201、如图2所示,在衬底基板10上形成缓冲层20。S201 , as shown in FIG. 2 , forming a buffer layer 20 on the base substrate 10 .
具体的,在经过预先清洗的玻璃等透明衬底基板10上,以等离子体增强化学气相沉积(PECVD)、低压化学气相沉积(LPCVD)、大气压化学气相沉积(APCVD)、电子回旋谐振化学气相沉积(ECR-CVD)或者溅射等方法形成缓冲层20,用于阻挡玻璃中所含的杂质扩散进入有源层中,防止对薄膜晶体管元件的阈值电压和漏电流等特性产生影响。Specifically, on a pre-cleaned transparent substrate 10 such as glass, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD) or sputtering and other methods to form the buffer layer 20, which is used to prevent impurities contained in the glass from diffusing into the active layer, so as to prevent the influence on the characteristics such as threshold voltage and leakage current of the thin film transistor element.
其中,该缓冲层20可以为单层的氧化硅、氮化硅或者二者的叠层。所述缓冲层20的厚度可以为优选厚度为 Wherein, the buffer layer 20 may be a single layer of silicon oxide, silicon nitride or a stack of both. The thickness of the buffer layer 20 can be The preferred thickness is
在采用沉积方法形成所述缓冲层20时,沉积温度控制在600℃或更低温度下。When the buffer layer 20 is formed by a deposition method, the deposition temperature is controlled at 600° C. or lower.
此外,因传统碱玻璃中铝、钡和钠等金属杂质含量较高,容易在高温处理工艺中发生金属杂质的扩散,因此,本发明实施例中的玻璃衬底基板优选采用无碱玻璃。In addition, due to the high content of metal impurities such as aluminum, barium, and sodium in traditional alkali glass, the diffusion of metal impurities is easy to occur in the high-temperature treatment process. Therefore, the glass substrate in the embodiment of the present invention is preferably an alkali-free glass.
S202、如图2所示,在完成S201的基础上,在所述缓冲层20上形成非晶硅薄膜301。S202 , as shown in FIG. 2 , on the basis of completing S201 , forming an amorphous silicon thin film 301 on the buffer layer 20 .
具体的,可以采用PECVD、LPCVD或者溅射方法形成所述非晶硅薄膜301。在采用沉积方法形成所述非晶硅薄膜301时,沉积温度控制在600℃以下。Specifically, the amorphous silicon film 301 can be formed by PECVD, LPCVD or sputtering. When the amorphous silicon thin film 301 is formed by a deposition method, the deposition temperature is controlled below 600°C.
其中,非晶硅薄膜301厚度可以为优选厚度为 Wherein, the thickness of the amorphous silicon film 301 can be The preferred thickness is
S203、在完成S202的基础上,以镍盐溶液对所述非晶硅薄膜进行浸泡或喷溅处理,使所述镍盐溶液均匀涂于所述非晶硅薄膜的表面。S203 , on the basis of completing S202 , soaking or sputtering the amorphous silicon film with a nickel salt solution, so that the nickel salt solution is evenly coated on the surface of the amorphous silicon film.
具体的,优选采用镍浓度为1~1000μg/mg的镍盐溶液对所述非晶硅薄膜进行浸泡或喷溅处理。Specifically, the amorphous silicon thin film is preferably soaked or sputtered with a nickel salt solution having a nickel concentration of 1-1000 μg/mg.
S204、在完成S203的基础上,将形成有非晶硅薄膜的基板置于退火炉中进行脱氢处理。S204. After completing S203, place the substrate formed with the amorphous silicon thin film in an annealing furnace for dehydrogenation treatment.
具体的,将该基板置于退火炉中保温一定时间,使非晶硅中的氢含量减少,通常需控制在3%以下,以避免在后续进行激光退火工艺时产生氢爆的问题。Specifically, the substrate is kept in an annealing furnace for a certain period of time to reduce the hydrogen content in the amorphous silicon, which usually needs to be controlled below 3%, so as to avoid hydrogen explosion during the subsequent laser annealing process.
其中,脱氢温度可在400~600℃,处理时间可在20~120分钟。Wherein, the dehydrogenation temperature may be 400-600° C., and the treatment time may be 20-120 minutes.
S205、在完成S204的基础上,采用准分子激光退火方法对所述非晶硅薄膜301进行处理,使所述非晶硅薄膜301晶化为如图3所示的多晶硅薄膜302。S205 , on the basis of completing S204 , using an excimer laser annealing method to process the amorphous silicon film 301 to crystallize the amorphous silicon film 301 into a polysilicon film 302 as shown in FIG. 3 .
本步骤可采用的激光器有:ArF、KrF和XeCl,相应的激光波长分别为193nm、248nm和308nm,脉宽在10~50ns之间。由于XeCl激光器的激光波长较长,激光能量注入非晶硅薄膜较深,晶化效果较好,因此,本发明实施例优选采用XeCl激光器。The lasers that can be used in this step are: ArF, KrF and XeCl, the corresponding laser wavelengths are 193nm, 248nm and 308nm respectively, and the pulse width is between 10-50ns. Since the laser wavelength of the XeCl laser is longer, the laser energy is injected deeper into the amorphous silicon film, and the crystallization effect is better, therefore, the embodiment of the present invention preferably uses the XeCl laser.
S206、在完成S205的基础上,对多晶硅薄膜302进行构图工艺处理,形成如图4所示的多晶硅层30。S206 , on the basis of completing S205 , patterning the polysilicon film 302 to form the polysilicon layer 30 as shown in FIG. 4 .
具体的,在所述多晶硅薄膜302上形成光刻胶薄膜;并采用普通掩模板对形成有所述光刻胶薄膜的基板进行曝光,显影后形成光刻胶完全保留部分和光刻胶完全去除部分;其中,所述光刻胶完全保留部分与所述多晶硅层对应,光刻胶完全去除部分对应其余部分;采用干法刻蚀去除所述光刻胶完全去除部分的所述多晶硅薄膜,形成所述多晶硅层;采用剥离工艺将所述光刻胶完全保留部分去除。Specifically, a photoresist film is formed on the polysilicon film 302; and a common mask is used to expose the substrate on which the photoresist film is formed, and after development, a photoresist is completely retained and a photoresist is completely removed part; wherein, the part where the photoresist is completely retained corresponds to the polysilicon layer, and the part where the photoresist is completely removed corresponds to the remaining part; dry etching is used to remove the polysilicon film in the part where the photoresist is completely removed, forming The polysilicon layer; using a stripping process to completely retain and partially remove the photoresist.
其中,干法刻蚀可选用等离子刻蚀、反应离子刻蚀、电感耦合等离子体刻蚀等方法,刻蚀气体可选择含氟、氯的气体,如CF4、CHF3、SF6、CCl2F2等或者这些气体与O2的混合气体。Among them, plasma etching, reactive ion etching, inductively coupled plasma etching and other methods can be used for dry etching, and the etching gas can be selected from gases containing fluorine and chlorine, such as CF 4 , CHF 3 , SF 6 , CCl 2 F2 , etc. or a mixture of these gases with O2 .
S207、如图5所示,在完成S206的基础上,形成栅绝缘层40和栅电极50。S207 , as shown in FIG. 5 , on the basis of completing S206 , forming a gate insulating layer 40 and a gate electrode 50 .
具体的,可以采用PECVD、LPCVD、APCVD或ECR-CVD等方法沉积栅绝缘层40。然后采用溅射、热蒸发或PECVD、LPCVD、APCVD、ECR-CVD等方法在栅绝缘层40上形成栅金属层,并通过构图工艺形成所述栅电极50。Specifically, the gate insulating layer 40 may be deposited by methods such as PECVD, LPCVD, APCVD or ECR-CVD. Then, a gate metal layer is formed on the gate insulating layer 40 by sputtering, thermal evaporation or methods such as PECVD, LPCVD, APCVD, ECR-CVD, and the gate electrode 50 is formed by a patterning process.
其中,该栅绝缘层40可以为单层的氧化硅、氮化硅或者二者的叠层。栅绝缘层40的厚度可以为优选厚度为 Wherein, the gate insulating layer 40 may be a single layer of silicon oxide, silicon nitride or a stack of both. The thickness of the gate insulating layer 40 can be The preferred thickness is
栅电极50可以由金属、金属合金如钼、钼合金等导电材料构成。厚度可以为优选厚度为 The gate electrode 50 can be made of metal, metal alloy such as molybdenum, molybdenum alloy and other conductive materials. Thickness can be The preferred thickness is
S208、在完成S207的基础上,对多晶硅层30的与所述源极区和所述漏极区相对应的区域进行离子注入工艺,形成如图6所示的有源层60。所述有源层60包括源极区601、漏极区602、位于所述源极区601和所述漏极区602之间的沟道区603。S208 , on the basis of completing S207 , perform an ion implantation process on the region of the polysilicon layer 30 corresponding to the source region and the drain region, to form the active layer 60 as shown in FIG. 6 . The active layer 60 includes a source region 601 , a drain region 602 , and a channel region 603 between the source region 601 and the drain region 602 .
具体的,离子注入可采用具有质量分析仪的离子注入、不具有质量分析仪的离子云式注入、等离子注入或者固态扩散式注入等方法,可根据设计需要采用含硼如B2H6/H2,或者含磷如PH3/H2的混合气体进行注入,离子注入能量可为10~200keV,优选能量在40~100keV,注入剂量可在1x1011~1x1020atoms/cm3范围内,优选剂量在1x1013~8x1015atoms/cm3。Specifically, ion implantation can adopt methods such as ion implantation with a mass analyzer, ion cloud implantation without a mass analyzer, plasma implantation, or solid-state diffusion implantation, and boron-containing materials such as B 2 H 6 /H can be used according to design requirements. 2 , or a mixed gas containing phosphorus such as PH 3 /H 2 for implantation, the ion implantation energy can be 10-200keV, preferably 40-100keV, and the implantation dose can be within the range of 1x10 11-1x10 20 atoms/cm 3 , preferably The dose is 1x10 13 -8x10 15 atoms/cm 3 .
此外,在离子注入之后可通过快速热退火、激光退火或炉退火的方法进行激活。其中,炉退火的方法较为经济、简单,均匀性较佳,在本发明实施例中优选采用在退火炉中以300~600℃进行0.5~4小时(最好为1~3小时)的激活热处理。In addition, activation may be performed by rapid thermal annealing, laser annealing, or furnace annealing after ion implantation. Among them, the furnace annealing method is more economical, simple, and has better uniformity. In the embodiment of the present invention, it is preferred to use an activation heat treatment at 300-600° C. for 0.5-4 hours (preferably 1-3 hours) in the annealing furnace. .
S209、如图7所示,在完成S208的基础上,形成层间绝缘层70,并在所述层间绝缘层70上形成源电极801和漏电极802。其中,所述源电极801和漏电极802分别通过形成在所述层间绝缘层70和所述栅绝缘层40上的过孔与所述源极区601和漏极区602接触。S209 , as shown in FIG. 7 , on the basis of completing S208 , an interlayer insulating layer 70 is formed, and a source electrode 801 and a drain electrode 802 are formed on the interlayer insulating layer 70 . Wherein, the source electrode 801 and the drain electrode 802 are respectively in contact with the source region 601 and the drain region 602 through via holes formed on the interlayer insulating layer 70 and the gate insulating layer 40 .
具体的,可以采用PECVD、LPCVD、APCVD或ECR-CVD等方法在600℃以下的温度下沉积所述层间绝缘层70。然后采用溅射、热蒸发或PECVD、LPCVD、APCVD、ECR-CVD等方法在栅绝缘层上形成源漏金属层,并通过构图工艺形成所述源电极801和漏电极802。Specifically, the interlayer insulating layer 70 may be deposited at a temperature below 600° C. by using methods such as PECVD, LPCVD, APCVD or ECR-CVD. Then use sputtering, thermal evaporation or methods such as PECVD, LPCVD, APCVD, ECR-CVD to form a source-drain metal layer on the gate insulating layer, and form the source electrode 801 and drain electrode 802 through a patterning process.
其中,该层间绝缘层70可以为单层的氧化硅、或者氧化硅和氮化硅的叠层。层间绝缘层70的厚度可以为优选厚度为 Wherein, the interlayer insulating layer 70 may be a single layer of silicon oxide, or a stack of silicon oxide and silicon nitride. The thickness of the interlayer insulating layer 70 may be The preferred thickness is
在形成所述层间绝缘层70上的过孔时,可采用干法刻蚀,即:可选用等离子刻蚀、反应离子刻蚀、电感耦合等离子体刻蚀等方法,刻蚀气体可选择含氟、氯的气体,如CF4、CHF3、SF6、CCl2F2等或者这些气体与O2的混合气体。When forming the via holes on the interlayer insulating layer 70, dry etching can be used, that is, methods such as plasma etching, reactive ion etching, and inductively coupled plasma etching can be used, and the etching gas can be selected to contain Fluorine and chlorine gases, such as CF 4 , CHF 3 , SF 6 , CCl 2 F 2 , etc., or the mixed gas of these gases and O 2 .
源电极801和漏电极802可以由金属、金属合金如钼、钼合金、铝、铝合金、钛等导电材料构成。厚度可以为优选厚度为 The source electrode 801 and the drain electrode 802 can be made of metal, metal alloy such as molybdenum, molybdenum alloy, aluminum, aluminum alloy, titanium and other conductive materials. Thickness can be The preferred thickness is
在通过构图工艺形成源电极801和漏电极802时,可采用湿法刻蚀或干法刻蚀。When forming the source electrode 801 and the drain electrode 802 through a patterning process, wet etching or dry etching may be used.
通过上述步骤S201~S209便可以制备得到高质量的低温多晶硅薄膜晶体管。Through the above steps S201-S209, a high-quality low-temperature polysilicon thin film transistor can be prepared.
在上述形成的多晶硅薄膜晶体管的基础上,本发明实施例还提供了一种阵列基板的制备方法,包括:On the basis of the polysilicon thin film transistor formed above, an embodiment of the present invention also provides a method for preparing an array substrate, including:
S301、如图8所示,在上述步骤S209的基础上,形成平坦化层90,并在所述平坦化层90上形成与所述漏电极802电连接的像素电极100。S301 , as shown in FIG. 8 , on the basis of the above step S209 , a planarization layer 90 is formed, and a pixel electrode 100 electrically connected to the drain electrode 802 is formed on the planarization layer 90 .
其中,所述平坦化层100的材料例如可以为感光性或非感光性树脂材料,厚度可以为1.5μm~5μm。Wherein, the material of the planarization layer 100 may be, for example, photosensitive or non-photosensitive resin material, and the thickness may be 1.5 μm˜5 μm.
所述像素电极100的材料可以为氧化铟锡(ITO),厚度可以为 The material of the pixel electrode 100 may be indium tin oxide (ITO), and the thickness may be
在此基础上,所述方法还可以包括:On this basis, the method can also include:
S302、如图9所示,在上述S301的基础上,形成钝化层110,并在所述钝化层110上形成公共电极120。S302 , as shown in FIG. 9 , on the basis of the above S301 , a passivation layer 110 is formed, and a common electrode 120 is formed on the passivation layer 110 .
这里,仅以所述像素电极100和所述公共电极120不同层为例进行说明,但本发明实施例并不限于此,所述像素电极100和所述公共电极120同层间隔形成。Here, it is only described by taking different layers of the pixel electrode 100 and the common electrode 120 as an example, but the embodiment of the present invention is not limited thereto, and the pixel electrode 100 and the common electrode 120 are formed in the same layer at intervals.
当然,本发明实施例提供的阵列基板也使用于OLED型显示器,在此不再赘述。Certainly, the array substrate provided by the embodiment of the present invention is also used in an OLED display, which will not be repeated here.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410203194.5A CN103972050A (en) | 2014-05-14 | 2014-05-14 | Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate |
| PCT/CN2014/091542 WO2015172543A1 (en) | 2014-05-14 | 2014-11-19 | Methods of manufacturing polysilicon thin film, polysilicon thin film transistor and array substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410203194.5A CN103972050A (en) | 2014-05-14 | 2014-05-14 | Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103972050A true CN103972050A (en) | 2014-08-06 |
Family
ID=51241417
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410203194.5A Pending CN103972050A (en) | 2014-05-14 | 2014-05-14 | Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN103972050A (en) |
| WO (1) | WO2015172543A1 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104538354A (en) * | 2014-12-31 | 2015-04-22 | 深圳市华星光电技术有限公司 | LTPS TFT pixel unit and manufacturing method thereof |
| CN104966663A (en) * | 2015-05-22 | 2015-10-07 | 信利(惠州)智能显示有限公司 | LTPS film, preparation method thereof, and TFT |
| WO2015172543A1 (en) * | 2014-05-14 | 2015-11-19 | 京东方科技集团股份有限公司 | Methods of manufacturing polysilicon thin film, polysilicon thin film transistor and array substrate |
| CN105140180A (en) * | 2015-08-24 | 2015-12-09 | 武汉华星光电技术有限公司 | Manufacturing method of thin-film transistor array substrate and preparation method of polycrystalline silicon material |
| CN105513960A (en) * | 2016-01-27 | 2016-04-20 | 武汉华星光电技术有限公司 | Deposition method of silicon oxide thin film and preparation method of low temperature polycrystalline silicon TFT substrate |
| CN105679664A (en) * | 2016-03-18 | 2016-06-15 | 武汉华星光电技术有限公司 | Planarization layer descum method |
| CN106033707A (en) * | 2015-03-10 | 2016-10-19 | 上海和辉光电有限公司 | Preparation method for polysilicon film |
| CN106548926A (en) * | 2016-10-27 | 2017-03-29 | 京东方科技集团股份有限公司 | The preparation method of polysilicon layer, thin film transistor (TFT), array base palte and display device |
| CN107369613A (en) * | 2017-07-21 | 2017-11-21 | 京东方科技集团股份有限公司 | Polysilicon membrane, the preparation method of thin film transistor (TFT), equipment, display base plate |
| WO2017210923A1 (en) * | 2016-06-07 | 2017-12-14 | 深圳市华星光电技术有限公司 | Method for manufacturing tft backplane and tft backplane |
| CN109643657A (en) * | 2017-06-22 | 2019-04-16 | 深圳市柔宇科技有限公司 | The production method of the making apparatus and array substrate of array substrate |
| CN109712933A (en) * | 2019-02-19 | 2019-05-03 | 合肥鑫晟光电科技有限公司 | Production method, display base plate and the display panel of display base plate |
| CN111162000A (en) * | 2018-11-08 | 2020-05-15 | 陕西坤同半导体科技有限公司 | Polycrystalline silicon film and preparation method thereof |
| CN111223754A (en) * | 2018-11-23 | 2020-06-02 | 陕西坤同半导体科技有限公司 | Polycrystalline silicon film and preparation method thereof |
| CN114496737A (en) * | 2020-11-12 | 2022-05-13 | 长鑫存储技术有限公司 | Semiconductor device and method of manufacturing the same |
| CN114695255A (en) * | 2022-03-31 | 2022-07-01 | 合肥维信诺科技有限公司 | Display panel, array substrate and production method thereof |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117265470B (en) * | 2023-07-11 | 2024-08-30 | 安徽立光电子材料股份有限公司 | Preparation method of ultrathin composite copper foil and ultrathin composite copper foil |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1098554A (en) * | 1993-02-15 | 1995-02-08 | 株式会社半导体能源研究所 | Semiconductor, semiconductor device and manufacturing method thereof |
| CN101005016A (en) * | 2006-01-16 | 2007-07-25 | 中华映管股份有限公司 | Polysilicon layer and method for manufacturing thin film transistor |
| CN101404142A (en) * | 2008-10-31 | 2009-04-08 | 南开大学 | Current mirror type TFT-OLED display image element unit circuit and its production method |
| CN101908471A (en) * | 2010-04-07 | 2010-12-08 | 江苏华创光电科技有限公司 | Method for preparing large-area polycrystalline film |
| CN102263014A (en) * | 2011-07-29 | 2011-11-30 | 南开大学 | A method for preparing polysilicon thin film material by pre-controlled laser crystallization of crystal nucleus |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100999388B (en) * | 2006-12-30 | 2011-02-09 | 南开大学 | Preparation method of crystallized polysilicon thin film induced by surface modification solution |
| CN101319355A (en) * | 2008-05-26 | 2008-12-10 | 南开大学 | Method, product and application for preparing disc-shaped large-domain polysilicon by nickel solution droplet method |
| CN103972050A (en) * | 2014-05-14 | 2014-08-06 | 京东方科技集团股份有限公司 | Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate |
-
2014
- 2014-05-14 CN CN201410203194.5A patent/CN103972050A/en active Pending
- 2014-11-19 WO PCT/CN2014/091542 patent/WO2015172543A1/en active Application Filing
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1098554A (en) * | 1993-02-15 | 1995-02-08 | 株式会社半导体能源研究所 | Semiconductor, semiconductor device and manufacturing method thereof |
| CN101005016A (en) * | 2006-01-16 | 2007-07-25 | 中华映管股份有限公司 | Polysilicon layer and method for manufacturing thin film transistor |
| CN101404142A (en) * | 2008-10-31 | 2009-04-08 | 南开大学 | Current mirror type TFT-OLED display image element unit circuit and its production method |
| CN101908471A (en) * | 2010-04-07 | 2010-12-08 | 江苏华创光电科技有限公司 | Method for preparing large-area polycrystalline film |
| CN102263014A (en) * | 2011-07-29 | 2011-11-30 | 南开大学 | A method for preparing polysilicon thin film material by pre-controlled laser crystallization of crystal nucleus |
Cited By (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015172543A1 (en) * | 2014-05-14 | 2015-11-19 | 京东方科技集团股份有限公司 | Methods of manufacturing polysilicon thin film, polysilicon thin film transistor and array substrate |
| KR20170101978A (en) * | 2014-12-31 | 2017-09-06 | 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | LTPS TFT pixel unit and manufacturing method thereof |
| GB2548732B (en) * | 2014-12-31 | 2020-09-23 | Shenzhen China Star Optoelect | LTPS TFT pixel unit and manufacture method therefor |
| KR101963066B1 (en) * | 2014-12-31 | 2019-07-31 | 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | LTPS TFT pixel unit and manufacturing method thereof |
| CN104538354B (en) * | 2014-12-31 | 2018-01-09 | 深圳市华星光电技术有限公司 | A kind of LTPS TFT pixel cells and its manufacture method |
| GB2548732A (en) * | 2014-12-31 | 2017-09-27 | Shenzhen China Star Optoelect | LTPS TFT pixel unit and manufacturing method therefor |
| WO2016106923A1 (en) * | 2014-12-31 | 2016-07-07 | 深圳市华星光电技术有限公司 | Ltps tft pixel unit and manufacturing method therefor |
| CN104538354A (en) * | 2014-12-31 | 2015-04-22 | 深圳市华星光电技术有限公司 | LTPS TFT pixel unit and manufacturing method thereof |
| CN106033707A (en) * | 2015-03-10 | 2016-10-19 | 上海和辉光电有限公司 | Preparation method for polysilicon film |
| CN104966663A (en) * | 2015-05-22 | 2015-10-07 | 信利(惠州)智能显示有限公司 | LTPS film, preparation method thereof, and TFT |
| CN104966663B (en) * | 2015-05-22 | 2020-01-14 | 信利(惠州)智能显示有限公司 | Low-temperature polycrystalline silicon thin film, preparation method thereof and thin film transistor |
| CN105140180A (en) * | 2015-08-24 | 2015-12-09 | 武汉华星光电技术有限公司 | Manufacturing method of thin-film transistor array substrate and preparation method of polycrystalline silicon material |
| CN105140180B (en) * | 2015-08-24 | 2018-03-13 | 武汉华星光电技术有限公司 | The preparation method of thin-film transistor array base-plate and the preparation method of polycrystalline silicon material |
| CN105513960A (en) * | 2016-01-27 | 2016-04-20 | 武汉华星光电技术有限公司 | Deposition method of silicon oxide thin film and preparation method of low temperature polycrystalline silicon TFT substrate |
| CN105513960B (en) * | 2016-01-27 | 2019-01-11 | 武汉华星光电技术有限公司 | The deposition method of silicon oxide film and the preparation method of low temperature polycrystalline silicon TFT substrate |
| CN105679664B (en) * | 2016-03-18 | 2018-07-13 | 武汉华星光电技术有限公司 | Planarization layer goes remaining method |
| CN105679664A (en) * | 2016-03-18 | 2016-06-15 | 武汉华星光电技术有限公司 | Planarization layer descum method |
| WO2017210923A1 (en) * | 2016-06-07 | 2017-12-14 | 深圳市华星光电技术有限公司 | Method for manufacturing tft backplane and tft backplane |
| CN106548926B (en) * | 2016-10-27 | 2018-04-10 | 京东方科技集团股份有限公司 | Preparation method, thin film transistor (TFT), array base palte and the display device of polysilicon layer |
| US10283355B2 (en) | 2016-10-27 | 2019-05-07 | Boe Technology Group Co., Ltd. | Method for manufacturing poly-silicon layer, thin film transistor, array substrate and display device |
| CN106548926A (en) * | 2016-10-27 | 2017-03-29 | 京东方科技集团股份有限公司 | The preparation method of polysilicon layer, thin film transistor (TFT), array base palte and display device |
| CN109643657A (en) * | 2017-06-22 | 2019-04-16 | 深圳市柔宇科技有限公司 | The production method of the making apparatus and array substrate of array substrate |
| CN109643657B (en) * | 2017-06-22 | 2022-08-16 | 深圳市柔宇科技股份有限公司 | Manufacturing equipment and manufacturing method of array substrate |
| CN107369613A (en) * | 2017-07-21 | 2017-11-21 | 京东方科技集团股份有限公司 | Polysilicon membrane, the preparation method of thin film transistor (TFT), equipment, display base plate |
| CN111162000A (en) * | 2018-11-08 | 2020-05-15 | 陕西坤同半导体科技有限公司 | Polycrystalline silicon film and preparation method thereof |
| CN111223754A (en) * | 2018-11-23 | 2020-06-02 | 陕西坤同半导体科技有限公司 | Polycrystalline silicon film and preparation method thereof |
| CN109712933A (en) * | 2019-02-19 | 2019-05-03 | 合肥鑫晟光电科技有限公司 | Production method, display base plate and the display panel of display base plate |
| CN114496737A (en) * | 2020-11-12 | 2022-05-13 | 长鑫存储技术有限公司 | Semiconductor device and method of manufacturing the same |
| CN114695255A (en) * | 2022-03-31 | 2022-07-01 | 合肥维信诺科技有限公司 | Display panel, array substrate and production method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015172543A1 (en) | 2015-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103972050A (en) | Preparation method of polycrystalline silicon thin film, polycrystalline silicon thin film transistor and array substrate | |
| US10312271B2 (en) | Array substrate, manufacturing method thereof and display device | |
| US9391207B2 (en) | Thin film transistor, array substrate and manufacturing method thereof, and display device | |
| CN103151388B (en) | A kind of polycrystalline SiTFT and preparation method thereof, array base palte | |
| CN103123910B (en) | Array base palte and manufacture method, display unit | |
| CN102629558B (en) | Method for manufacturing low-temperature polycrystalline silicon thin film transistor | |
| CN103839826B (en) | Low-temperature polycrystalline silicon thin film transistor, array substrate and manufacturing method of array substrate | |
| CN103839825A (en) | Low-temperature polycrystalline silicon thin film transistor, array substrate and manufacturing method of array substrate | |
| JP2010206161A (en) | Film deposition method, and method of manufacturing the same | |
| US9711356B2 (en) | Method for manufacturing thin-film transistor by implanting ions into channel region for lowering leakage current | |
| CN103107095A (en) | Thin film transistor, manufacturing method of thin film transistor, array substrate and display device | |
| US9773921B2 (en) | Combo amorphous and LTPS transistors | |
| WO2013174108A1 (en) | Thin film transistor, method for manufacturing same, and array substrate | |
| CN105470312A (en) | Low-temperature polycrystalline silicon thin film transistor and manufacturing method thereof | |
| CN105280716B (en) | Method for manufacturing thin film transistor | |
| CN105185695A (en) | Oxide semiconductor film preparation method and thin film transistor preparation method | |
| CN104966663B (en) | Low-temperature polycrystalline silicon thin film, preparation method thereof and thin film transistor | |
| CN104716200A (en) | Thin film transistor and preparation method of thin film transistor, array substrate and display device | |
| CN105097666A (en) | Fabrication method for low-temperature poly-silicon thin film transistor (TFT) substrate and low-temperature poly-silicon TFT substrate | |
| CN203589035U (en) | Organic lighting display equipment | |
| CN104716092B (en) | The manufacture method and manufacture device of array base palte | |
| CN104617151B (en) | Low-temperature polysilicon film transistor and production method, array substrate and display device | |
| CN104900491A (en) | Thin film transistor and manufacturing method thereof and display device | |
| CN107316906A (en) | LTPS substrates and preparation method thereof, thin film transistor (TFT), array base palte and display device | |
| CN107393830A (en) | The preparation method of thin film transistor (TFT) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140806 |
|
| RJ01 | Rejection of invention patent application after publication |