CN114021357A - Structure random fatigue life estimation method based on stress probability density method - Google Patents
Structure random fatigue life estimation method based on stress probability density method Download PDFInfo
- Publication number
- CN114021357A CN114021357A CN202111319645.8A CN202111319645A CN114021357A CN 114021357 A CN114021357 A CN 114021357A CN 202111319645 A CN202111319645 A CN 202111319645A CN 114021357 A CN114021357 A CN 114021357A
- Authority
- CN
- China
- Prior art keywords
- stress
- fatigue life
- probability density
- random
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Evolutionary Biology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Automation & Control Theory (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及飞行器寿命评估技术领域,尤其涉及一种基于应力概率密度法的结构随机疲劳寿命估算方法。The invention relates to the technical field of aircraft life assessment, in particular to a method for estimating random fatigue life of a structure based on a stress probability density method.
背景技术Background technique
航空发动机燃烧室火焰筒、加力燃烧室隔热防振屏、航天飞机蒙皮等薄壁壳结构,在工作时承受复杂的机械力载荷、气动力载荷、热载荷和高声强噪声载荷。这些载荷往往是多轴疲劳载荷,这些载荷具有随机性,在这些载荷作用下将产生复杂的内部应力而导致薄壁壳结构疲劳破坏。Thin-walled shell structures such as aero-engine combustion chamber flame tubes, afterburner thermal insulation and anti-vibration screens, and space shuttle skins are subject to complex mechanical, aerodynamic, thermal and high-sound-intensity noise loads during operation. These loads are often multi-axial fatigue loads, and these loads are random, and under the action of these loads, complex internal stresses will be generated, resulting in fatigue failure of thin-walled shell structures.
传统的随机疲劳寿命估算方法,要先对结构所承受的应力时间历程进行采样和循环计数,然后根据Miner理论进行损伤求和计算。这样,设计者只有完全知道了构件所经历的载荷时间历程,才能对构件作出疲劳寿命估算,然而,在产品及构件的设计阶段,难以获得危险点的详细载荷时间历程。此外,对于某些结构的危险位置,其载荷时间历程无法实测时,采用这种传统的方法也无法预估构件的疲劳寿命。In the traditional random fatigue life estimation method, the stress time history of the structure is sampled and cycle counted, and then the damage summation calculation is performed according to Miner's theory. In this way, the designer can only estimate the fatigue life of the component if he fully knows the load time history experienced by the component. However, in the design stage of the product and component, it is difficult to obtain the detailed load time history of the dangerous point. In addition, when the load time history cannot be measured in the dangerous position of some structures, the fatigue life of the components cannot be estimated by this traditional method.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术的不足,本发明提供一种基于应力概率密度法的结构随机疲劳寿命估算方法。In view of the above-mentioned deficiencies of the prior art, the present invention provides a method for estimating the random fatigue life of a structure based on the stress probability density method.
为解决上述技术问题,本发明所采取的技术方案是:基于应力概率密度法的结构随机疲劳寿命估算方法,包括如下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is: a method for estimating random fatigue life of structures based on the stress probability density method, including the following steps:
步骤1:在随机载荷作用下,分别提取薄壁结构在空间坐标系中x、y、z三个方向上的正应力和剪应力;Step 1: Under the action of random loads, extract the normal stress and shear stress of the thin-walled structure in the three directions of x, y, and z in the spatial coordinate system;
步骤2:在随机载荷作用下,获取薄壁结构服从Weibull分布的Von Mises应力,求解Von Mises应力分量平方过程,得到Weibull参数m和η;Step 2: Under the action of random load, obtain the Von Mises stress of the thin-walled structure obeying the Weibull distribution, solve the square process of the Von Mises stress component, and obtain the Weibull parameters m and η;
Von Mines应力在三维空间中被定义为:The Von Mines stress is defined in three-dimensional space as:
其中,sv表示Von Mines应力,sx、sy、sz分别表示x、y、z方向的正应力,sxy、syz、sxz分别表示x、y、z方向的剪应力;Among them, s v represents the Von Mines stress, s x , s y , and s z represent the normal stress in the x, y, and z directions, respectively, and s xy , s yz , and s xz represent the shear stress in the x, y, and z directions, respectively;
步骤3:基于窄带随机过程的条件,得出非Gauss过程的应力峰值概率密度函数Pp(s),过程如下:Step 3: Based on the conditions of the narrow-band stochastic process, the stress peak probability density function P p (s) of the non-Gauss process is obtained. The process is as follows:
步骤3.1:将弱阻尼系统的响应认定为窄带随机过程,推导出非Gauss过程的应力峰值概率密度函数Pp(s)的近似表达式:Step 3.1: The response of the weakly damped system is identified as a narrow-band random process, and the approximate expression of the stress peak probability density function P p (s) of the non-Gauss process is derived:
其中,Γ()为伽玛函数;s为应力幅值,对于Von Mises应力过程,幅值是有效峰值与过程标准差的组合,即:where Γ() is the gamma function; s is the stress amplitude. For the Von Mises stress process, the amplitude is the combination of the effective peak value and the process standard deviation, namely:
s=s有效+σ(sv)=sv-E(sv)+σ(sv)s= seffective +σ( sv )= sv -E( sv )+σ( sv )
其中,sv为Von Mises应力,s有效为Von Mises应力有效峰值,E(sv)、σ(sv)分别为VonMises应力的均值和标准差;where s v is the Von Mises stress, s is the effective peak value of the Von Mises stress, E(s v ) and σ(s v ) are the mean and standard deviation of the Von Mises stress, respectively;
步骤3.2:将步骤3.1中的公式进行整合,得到Von Mises应力过程的峰值概率密度函数Pp(s)为:Step 3.2: Integrate the formula in Step 3.1 to obtain the peak probability density function P p (s) of the Von Mises stress process as:
步骤4:基于Miner线性累计损伤理论,结合非Gauss过程的应力峰值概率密度函数Pp(s)建立随机疲劳寿命估算模型来确定薄壁结构的疲劳寿命,过程如下:Step 4: Based on Miner's linear cumulative damage theory, combined with the stress peak probability density function P p (s) of the non-Gauss process, a random fatigue life estimation model is established to determine the fatigue life of thin-walled structures. The process is as follows:
步骤4.1:对于窄带随机过程,采用Basquin方程作为疲劳寿命估算的失效模型,根据Miner线性累计损伤理论,结合应力峰值概率密度函数确定窄带随机过程下的疲劳寿命T,过程如下:Step 4.1: For the narrow-band stochastic process, the Basquin equation is used as the failure model for fatigue life estimation. According to the Miner linear cumulative damage theory, combined with the stress peak probability density function, the fatigue life T under the narrow-band stochastic process is determined. The process is as follows:
步骤4.1.1:根据Miner线性累积损伤理论,在等幅应力载荷下,n次工作循环造成的损伤为:Step 4.1.1: According to Miner's linear cumulative damage theory, under the constant amplitude stress load, the damage caused by n working cycles is:
其中,为线性累计损伤率,当循环比总和等于1时发生破坏;ni表示薄壁结构在等幅应力载荷下的工作循环次数;Ni表示在同样的应力幅值载荷下的薄壁结构的疲劳寿命值;in, is the linear cumulative damage rate, failure occurs when the sum of the cycle ratios is equal to 1; ni represents the number of working cycles of the thin-walled structure under the constant stress load; Ni represents the fatigue of the thin-walled structure under the same stress amplitude load life value;
步骤4.1.2:用应力过程的峰值概率密度函数Pp(s)表示薄壁结构在应力幅值s、疲劳寿命T内的工作循环次数,公式为:Step 4.1.2: Use the peak probability density function P p (s) of the stress process to represent the number of working cycles of the thin-walled structure within the stress amplitude s and the fatigue life T, the formula is:
ni=n(s)=E[MT]·T·Pp(s)n i =n(s)=E[M T ]·T·P p (s)
步骤4.1.3:外加应力幅值水平s与标准试样疲劳寿命N之间关系的曲线即为S-N曲线方程:Step 4.1.3: The curve of the relationship between the applied stress amplitude level s and the fatigue life N of the standard specimen is the S-N curve equation:
sbN=Ks b N=K
式中,b和K为材料S-N曲线中确定的材料常数;In the formula, b and K are the material constants determined in the material S-N curve;
步骤4.1.4:将步骤4.1.2和步骤4.1.3中的公式与步骤4.1.1整合,得到一个积分表达式:Step 4.1.4: Combine the formulas from Step 4.1.2 and Step 4.1.3 with Step 4.1.1 to obtain an integral expression:
经推导,得到窄带随机过程下的疲劳寿命T:After derivation, the fatigue life T under the narrow-band random process is obtained:
其中,E[MT]为应力循环的平均发生率;Pp(s)为应力过程的峰值概率密度函数;K和b为材料S-N曲线中确定的材料常数;Among them, E[M T ] is the average occurrence rate of stress cycles; P p (s) is the peak probability density function of the stress process; K and b are the material constants determined in the SN curve of the material;
步骤4.1.5:对于窄带随机过程,E[MT]等于零穿越速率E[0],计算薄壁结构发生破坏时的总循环次数为:Step 4.1.5: For a narrow-band stochastic process, E[M T ] is equal to the zero crossing rate E[0], and the total number of cycles to calculate the failure of the thin-walled structure is:
NT=TE[0]N T =TE[0]
其中,NT为薄壁结构发生破坏时的总循环次数。Among them, NT is the total number of cycles when the thin-walled structure fails.
步骤4.2:对于宽带随机过程,结合局部峰值对薄壁结构疲劳寿命的影响,根据Wirsching模型对疲劳寿命T进行修正,获得适用于宽带随机过程的疲劳寿命T1,过程如下:Step 4.2: For the broadband stochastic process, combined with the influence of the local peak value on the fatigue life of the thin-walled structure, the fatigue life T is corrected according to the Wirsching model, and the fatigue life T 1 suitable for the broadband stochastic process is obtained. The process is as follows:
步骤4.2.1:Wirsching模型根据应力响应不同功率谱密度形状对疲劳寿命进行修正,获得适用于宽带随机振动的寿命估算公式:Step 4.2.1: The Wirsching model corrects the fatigue life according to the different power spectral density shapes of the stress response, and obtains the life estimation formula suitable for broadband random vibration:
其中,λ为修正因子,E[D]为损伤穿越速率;Among them, λ is the correction factor, E[D] is the damage crossing rate;
步骤4.2.2:对于宽带随机过程,E[MT]等于应力峰值出现速率E[P],修正后的总循环次数NT1为:Step 4.2.2: For a broadband stochastic process, E[M T ] is equal to the stress peak occurrence rate E[P], and the corrected total number of cycles N T1 is:
其中,修正因子m为材料S-N曲线的负倒数斜率,α为不规则因子。where the correction factor m is the negative reciprocal slope of the SN curve of the material, and α is the irregularity factor.
采用上述技术方案所产生的有益效果在于:The beneficial effects produced by the above technical solutions are:
1、本发明提供的基于应力概率密度法的结构随机疲劳寿命估算方法,只涉及载荷历程的功率谱密度统计参量,仅与系统输入和响应的频率结构相关,而不涉及载荷历程的随机幅值序列。因此,在结构的设计阶段,设计者即使事先无法获得载荷历程的详细资料,只要根据以往经验或统计模拟预先估计结构将经历的应力随机过程的统计参量,结合现有的疲劳设计理论便可对结构进行随机疲劳寿命预测。1. The method for estimating the random fatigue life of a structure based on the stress probability density method provided by the present invention only involves the statistical parameter of the power spectral density of the load history, which is only related to the frequency structure of the system input and response, and does not involve the random amplitude of the load history. sequence. Therefore, in the design stage of the structure, even if the designer cannot obtain the detailed information of the load history in advance, as long as the statistical parameters of the random stress process that the structure will experience is estimated in advance based on past experience or statistical simulation, combined with the existing fatigue design theory, the Stochastic fatigue life prediction for structures.
2、本发明提供的方法不仅进行了疲劳寿命估算,还对计算结果进行了宽带修正,使得本发明的方法不仅适用于窄带应力过程,经宽带修正后,也适用于宽带随机应力过程。2. The method provided by the present invention not only performs fatigue life estimation, but also performs broadband correction on the calculation results, so that the method of the present invention is not only suitable for narrow-band stress processes, but also for broadband random stress processes after wide-band correction.
附图说明Description of drawings
图1为本发明实施例中基于应力概率密度法的结构随机疲劳寿命估算方法的流程图;1 is a flowchart of a method for estimating random fatigue life of a structure based on a stress probability density method in an embodiment of the present invention;
图2为本发明实施例中基于应力概率密度法的结构随机疲劳寿命估算方法进行软件开发时各功能模块的示意图。FIG. 2 is a schematic diagram of each functional module during software development of the method for estimating random fatigue life of a structure based on the stress probability density method according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.
如图1所示,本实施例中基于应力概率密度法的结构随机疲劳寿命估算方法如下所述。As shown in FIG. 1 , the method for estimating the random fatigue life of a structure based on the stress probability density method in this embodiment is as follows.
步骤1:在随机载荷作用下,分别提取薄壁结构在空间坐标系中x、y、z三个方向上的正应力和剪应力;Step 1: Under the action of random loads, extract the normal stress and shear stress of the thin-walled structure in the three directions of x, y, and z in the spatial coordinate system;
步骤2:在随机载荷作用下,获取薄壁结构服从Weibull分布的Von Mises应力,求解Von Mises应力分量平方过程,得到Weibull参数m和η;Step 2: Under the action of random load, obtain the Von Mises stress of the thin-walled structure obeying the Weibull distribution, solve the square process of the Von Mises stress component, and obtain the Weibull parameters m and η;
Von Mines应力在三维空间中被定义为:The Von Mines stress is defined in three-dimensional space as:
其中,sv表示Von Mines应力,sx、sy、sz分别表示x、y、z方向的正应力,sxy、syz、sxz分别表示x、y、z方向的剪应力;Among them, s v represents the Von Mines stress, s x , s y , and s z represent the normal stress in the x, y, and z directions, respectively, and s xy , s yz , and s xz represent the shear stress in the x, y, and z directions, respectively;
根据随机变量数字特征定理和上述公式可以得到:According to the digital characteristic theorem of random variables and the above formula, we can get:
其中,为Von Mines应力平方过程的均值,为VonMines应力分量平方过程的的均值,E(sx)、E(sy)为Von Mines应力分量的均值,为VonMines应力平方过程的方差,为Von Mines应力分量平方过程的的方差,σ2(sx)Von Mines应力分量的方差。in, is the Von Mines stress squared process the mean of , is the mean value of the square process of the VonMines stress component, E(s x ), E(s y ) are the mean value of the Von Mines stress component, is the VonMines stress squared process Variance, is the variance of the Von Mines stress component squared process, σ 2 (s x ) the variance of the Von Mines stress component.
对于零均值Guass过程,随机变量X服从均值为0,方差为σ2的正态分布,即X~N(0,σ2),有:For the zero-mean Guass process, the random variable X obeys a normal distribution with a mean of 0 and a variance of σ 2 , that is, X~N(0,σ 2 ), there are:
式中,E(Xk)为随机变量X的k次方均值,(k-1)!!=(k-1)(k-3)…×3×1In the formula, E(X k ) is the k-th power mean of the random variable X, (k-1)! ! =(k-1)(k-3)...×3×1
σ2(X2)=E(X4)-[E(X2)]2=2σ4 σ 2 (X 2 )=E(X 4 )-[E(X 2 )] 2 =2σ 4
其中,σ2(X2)为随机变量X的2次方方差,E(X2)为随机变量X的2次方均值;Among them, σ 2 (X 2 ) is the quadratic variance of the random variable X, and E(X 2 ) is the quadratic mean of the random variable X;
对于服从Weibull分布的Von Mines应力过程,可以推导出Von Mines应力平方过程的方差为:For the Von Mines stress process obeying the Weibull distribution, the Von Mines stress squared process can be derived Variance for:
式中,Γ()为伽玛函数。In the formula, Γ() is the gamma function.
通过公式联立求解,可以得到Weibull参数m和。By solving the formulas simultaneously, the Weibull parameters m and sum can be obtained.
步骤3:基于窄带随机过程的条件,得出非Gauss过程的应力峰值概率密度函数Pp(s),过程如下:Step 3: Based on the conditions of the narrow-band stochastic process, the stress peak probability density function P p (s) of the non-Gauss process is obtained. The process is as follows:
步骤3.1:将弱阻尼系统的响应认定为窄带随机过程,推导出非Gauss过程的应力峰值概率密度函数Pp(s)的近似表达式:Step 3.1: The response of the weakly damped system is identified as a narrow-band random process, and the approximate expression of the stress peak probability density function P p (s) of the non-Gauss process is derived:
其中,Γ()为伽玛函数;s为应力幅值,对于Von Mises应力过程,幅值是有效峰值与过程标准差的组合,即:where Γ() is the gamma function; s is the stress amplitude. For the Von Mises stress process, the amplitude is the combination of the effective peak value and the process standard deviation, namely:
s=s有效+σ(sv)=sv-E(sv)+σ(sv)s= seffective +σ( sv )= sv -E( sv )+σ( sv )
其中,sv为Von Mises应力,s有效为Von Mises应力有效峰值,E(sv)、σ(sv)分别为VonMises应力的均值和标准差;where s v is the Von Mises stress, s is the effective peak value of the Von Mises stress, E(s v ) and σ(s v ) are the mean and standard deviation of the Von Mises stress, respectively;
步骤3.2:将步骤3.1中的公式进行整合,得到Von Mises应力过程的峰值概率密度函数Pp(s)为:Step 3.2: Integrate the formula in Step 3.1 to obtain the peak probability density function P p (s) of the Von Mises stress process as:
步骤4:基于Miner线性累计损伤理论,结合非Gauss过程的应力峰值概率密度函数Pp(s)建立随机疲劳寿命估算模型来确定薄壁结构的疲劳寿命,过程如下:Step 4: Based on Miner's linear cumulative damage theory, combined with the stress peak probability density function P p (s) of the non-Gauss process, a random fatigue life estimation model is established to determine the fatigue life of thin-walled structures. The process is as follows:
步骤4.1:对于窄带随机过程,采用Basquin方程作为疲劳寿命估算的失效模型,根据Miner线性累计损伤理论,结合应力峰值概率密度函数确定窄带随机过程下的疲劳寿命T,过程如下:Step 4.1: For the narrow-band stochastic process, the Basquin equation is used as the failure model for fatigue life estimation. According to the Miner linear cumulative damage theory, combined with the stress peak probability density function, the fatigue life T under the narrow-band stochastic process is determined. The process is as follows:
步骤4.1.1:根据Miner线性累积损伤理论,在等幅应力载荷下,n次工作循环造成的损伤为:Step 4.1.1: According to Miner's linear cumulative damage theory, under the constant amplitude stress load, the damage caused by n working cycles is:
其中,为线性累计损伤率,当循环比总和等于1时发生破坏;ni表示薄壁结构在等幅应力载荷下的工作循环次数;Ni表示在同样的应力幅值载荷下的薄壁结构的疲劳寿命值;in, is the linear cumulative damage rate, failure occurs when the sum of the cycle ratios is equal to 1; ni represents the number of working cycles of the thin-walled structure under the constant stress load; Ni represents the fatigue of the thin-walled structure under the same stress amplitude load life value;
步骤4.1.2:用应力过程的峰值概率密度函数Pp(s)表示薄壁结构在应力幅值s、疲劳寿命T内的工作循环次数,公式为:Step 4.1.2: Use the peak probability density function P p (s) of the stress process to represent the number of working cycles of the thin-walled structure within the stress amplitude s and the fatigue life T, the formula is:
ni=n(s)=E[MT]·T·Pp(s)n i =n(s)=E[M T ]·T·P p (s)
步骤4.1.3:外加应力幅值水平s与标准试样疲劳寿命N之间关系的曲线即为S-N曲线方程:Step 4.1.3: The curve of the relationship between the applied stress amplitude level s and the fatigue life N of the standard specimen is the S-N curve equation:
sbN=Ks b N=K
式中,b和K为材料S-N曲线中确定的材料常数;In the formula, b and K are the material constants determined in the material S-N curve;
步骤4.1.4:将步骤4.1.2和步骤4.1.3中的公式与步骤4.1.1整合,得到一个积分表达式:Step 4.1.4: Combine the formulas from Step 4.1.2 and Step 4.1.3 with Step 4.1.1 to obtain an integral expression:
经推导,得到窄带随机过程下的疲劳寿命T:After derivation, the fatigue life T under the narrow-band random process is obtained:
其中,E[MT]为应力循环的平均发生率;Pp(s)为应力过程的峰值概率密度函数;K和b为材料S-N曲线中确定的材料常数;Among them, E[M T ] is the average occurrence rate of stress cycles; P p (s) is the peak probability density function of the stress process; K and b are the material constants determined in the SN curve of the material;
步骤4.1.5:对于窄带随机过程,E[MT]等于零穿越速率E[0],计算薄壁结构发生破坏时的总循环次数为:Step 4.1.5: For a narrow-band stochastic process, E[M T ] is equal to the zero crossing rate E[0], and the total number of cycles to calculate the failure of the thin-walled structure is:
NT=TE[0]N T =TE[0]
其中,NT为薄壁结构发生破坏时的总循环次数。Among them, NT is the total number of cycles when the thin-walled structure fails.
步骤4.2:对于宽带随机过程,结合局部峰值对薄壁结构疲劳寿命的影响,根据Wirsching模型对疲劳寿命T进行修正,获得适用于宽带随机过程的疲劳寿命T1,过程如下:Step 4.2: For the broadband stochastic process, combined with the influence of the local peak value on the fatigue life of the thin-walled structure, the fatigue life T is corrected according to the Wirsching model, and the fatigue life T 1 suitable for the broadband stochastic process is obtained. The process is as follows:
步骤4.2.1:Wirsching模型根据应力响应不同功率谱密度形状对疲劳寿命进行修正,获得适用于宽带随机振动的寿命估算公式:Step 4.2.1: The Wirsching model corrects the fatigue life according to the different power spectral density shapes of the stress response, and obtains the life estimation formula suitable for broadband random vibration:
其中,λ为修正因子,E[D]为损伤穿越速率;Among them, λ is the correction factor, E[D] is the damage crossing rate;
步骤4.2.2:对于宽带随机过程,E[MT]等于应力峰值出现速率E[P],修正后的总循环次数NT1为:Step 4.2.2: For a broadband stochastic process, E[M T ] is equal to the stress peak occurrence rate E[P], and the corrected total number of cycles N T1 is:
其中,修正因子m为材料S-N曲线的负倒数斜率,α为不规则因子。where the correction factor m is the negative reciprocal slope of the SN curve of the material, and α is the irregularity factor.
本实施例中还将基于应力概率密度法的结构随机疲劳寿命估算方法进行软件开发,其中各个功能模块的结构示意图如图2所示,其中功能模块一用于应力数据采集和VonMines应力计算;功能模块二用于过程参数计算;功能模块三用于疲劳寿命预估。In this embodiment, the software development of the random fatigue life estimation method of the structure based on the stress probability density method is also carried out. The schematic diagram of the structure of each functional module is shown in Figure 2, wherein the functional module 1 is used for stress data acquisition and VonMines stress calculation; function Module two is used for process parameter calculation; function module three is used for fatigue life estimation.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111319645.8A CN114021357A (en) | 2021-11-09 | 2021-11-09 | Structure random fatigue life estimation method based on stress probability density method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111319645.8A CN114021357A (en) | 2021-11-09 | 2021-11-09 | Structure random fatigue life estimation method based on stress probability density method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114021357A true CN114021357A (en) | 2022-02-08 |
Family
ID=80062819
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111319645.8A Withdrawn CN114021357A (en) | 2021-11-09 | 2021-11-09 | Structure random fatigue life estimation method based on stress probability density method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114021357A (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010034581A1 (en) * | 2000-04-07 | 2001-10-25 | Toho Gas Co., Ltd | Method for estimating a life of apparatus under narrow-band random stress variation |
| CN105760577A (en) * | 2016-01-28 | 2016-07-13 | 北京航空航天大学 | Estimation method for sound vibration fatigue life containing uncertain metal structure |
-
2021
- 2021-11-09 CN CN202111319645.8A patent/CN114021357A/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010034581A1 (en) * | 2000-04-07 | 2001-10-25 | Toho Gas Co., Ltd | Method for estimating a life of apparatus under narrow-band random stress variation |
| CN105760577A (en) * | 2016-01-28 | 2016-07-13 | 北京航空航天大学 | Estimation method for sound vibration fatigue life containing uncertain metal structure |
Non-Patent Citations (1)
| Title |
|---|
| 郭小鹏: "高温合金薄壁结构随机声疲劳分析技术研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 08, 15 August 2010 (2010-08-15), pages 031 - 2 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107145641B (en) | Blade vibration fatigue probability life prediction method | |
| CN111079329B (en) | Fatigue life assessment method based on similar structure test | |
| CN112601876B (en) | Systems, devices and methods for estimating fatigue life of technical systems | |
| CN107357176B (en) | Modeling method for test run data of aero-engine | |
| Vatani et al. | Health monitoring and degradation prognostics in gas turbine engines using dynamic neural networks | |
| CN105389427A (en) | Failure detection method for gas circuit part of aero-engine based on adaptive particle filtering | |
| CN115310311B (en) | A Calculation Method of Fatigue Life of Metal Materials under Spectrum Loading | |
| CN118052110B (en) | Fatigue life prediction method for structures under broadband non-Gaussian random loads | |
| CN108052717B (en) | Fatigue life calibration method based on local stress-strain method | |
| CN111160772A (en) | Large power grid risk rapid assessment method | |
| CN113051787B (en) | Air-to-air missile hanging fatigue life estimation method and system based on short-time dynamic stress measurement | |
| CN118332874A (en) | A method for predicting the random vibration fatigue life of engine blades under service conditions | |
| CN109543894B (en) | System and method for predicting loose parts of nuclear power station in advance | |
| CN114970240B (en) | Method and equipment for rapidly evaluating load state of multiphase composite structural image | |
| CN112926233A (en) | Multi-factor sensitivity analysis method based on spatial interpolation | |
| CN112926698B (en) | Vibration prediction and assembly evaluation method for large-scale rotating equipment | |
| CN114021357A (en) | Structure random fatigue life estimation method based on stress probability density method | |
| CN113268829B (en) | Method for estimating fatigue damage of mechanical part by sine frequency sweep vibration | |
| CN119578161A (en) | Single crystal turbine blade simulation test parameter design method and system | |
| CN110210110A (en) | A kind of modeling method towards marine diesel fuselage process reliability of technology | |
| CN111079591B (en) | Bad data restoration method and system based on improved multi-scale principal component analysis | |
| Zhou et al. | Universal weight function method on the probabilistic surface damage tolerance assessment of aeroengine rotors | |
| CN106407620A (en) | ABAQUS-based engineering structure response surface stochastic finite element analysis processing method | |
| CN116050202B (en) | Chaboche blade fatigue life prediction model and method suitable for various average stress performances | |
| CN117216957A (en) | Impact fatigue probability life assessment method and system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WW01 | Invention patent application withdrawn after publication | ||
| WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220208 |