CN114299634A - Method for judging abnormality of transmission data of automobile networking equipment - Google Patents
Method for judging abnormality of transmission data of automobile networking equipment Download PDFInfo
- Publication number
- CN114299634A CN114299634A CN202111648231.XA CN202111648231A CN114299634A CN 114299634 A CN114299634 A CN 114299634A CN 202111648231 A CN202111648231 A CN 202111648231A CN 114299634 A CN114299634 A CN 114299634A
- Authority
- CN
- China
- Prior art keywords
- data
- data record
- automobile
- car
- record table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000005540 biological transmission Effects 0.000 title claims abstract description 39
- 230000005856 abnormality Effects 0.000 title claims abstract description 37
- 230000006855 networking Effects 0.000 title claims abstract description 15
- 230000002159 abnormal effect Effects 0.000 claims abstract description 59
- 238000011835 investigation Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 4
- 238000013024 troubleshooting Methods 0.000 claims description 4
- 238000007689 inspection Methods 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种汽车网联设备传输数据异常判定方法。汽车通过网联设备与车联网平台通讯连接,车联网平台上设置有汽车信息数据库;本发明的方法包括:预先设置排查时间段,从汽车信息数据库中获取排查时间段内记录的汽车运行数据记录;对于汽车运行数据记录,将同一汽车在连续时间段内发动机转速数据相同的数据记录进行汇总,得出同车同转速时长;预先设置一个时长上限阈值,判断同车同转速时长是否超过时长上限阈值,若是则判定连续时间段内汽车的网联设备传输数据异常;将判定异常的连续时间段内汽车的网联设备传输数据汇总集合,构成异常数据传输表。本发明的异常判定方法能够对汽车网联设备异常传输的数据记录进行高效准确的判定。
The invention discloses a method for judging abnormality of transmission data of an automobile network connection device. The car is communicated and connected with the car networking platform through the networking equipment, and the car networking platform is provided with a car information database; the method of the present invention includes: presetting an inspection time period, and obtaining the car operation data records recorded in the inspection time period from the car information database. ;For the car running data records, the data records with the same engine speed data of the same car in a continuous period of time are aggregated to obtain the same car speed time duration; a time duration upper limit threshold is preset to determine whether the same car speed time duration exceeds the upper limit of the duration Threshold, if it is, it is determined that the transmission data of the connected equipment of the car in the continuous time period is abnormal; the data transmission data of the connected equipment of the connected car of the car in the continuous time period that is determined to be abnormal is aggregated and set to form an abnormal data transmission table. The abnormality judging method of the present invention can efficiently and accurately judge the data records abnormally transmitted by the car network equipment.
Description
技术领域technical field
本发明涉及一种汽车网联技术,尤其涉及一种汽车网联设备传输数据异常判定方法。The invention relates to an automobile network connection technology, in particular to a method for determining abnormality of transmission data of an automobile network connection device.
背景技术Background technique
车联网技术是指,以行驶中的汽车为信息感知对象,借助新一代信息通信技术,实现车与车、人、路、服务平台之间的网络连接,提升车辆整体的智能驾驶水平,为用户提供安全、舒适、智能、高效的驾驶感受与交通服务,同时提高交通运行效率,提升社会交通服务的智能化水平。车联网作为5G和大数据技术的前沿应用,在推动汽车智能化进程中起到了关键作用。The Internet of Vehicles technology refers to the realization of the network connection between vehicles, vehicles, people, roads, and service platforms with the help of the new generation of information and communication technology, taking the moving car as the information perception object, improving the overall intelligent driving level of the vehicle, and providing users Provide safe, comfortable, intelligent and efficient driving experience and traffic services, while improving the efficiency of traffic operation and improving the intelligence level of social traffic services. As a cutting-edge application of 5G and big data technology, the Internet of Vehicles has played a key role in promoting the process of automobile intelligence.
作为实现车联网应用的硬件基础,在汽车上须配置网联设备,车辆通过网联设备与车联网平台实现无线网络通讯连接,这样才能实现车联网的各项应用技术。然而,在实际应用过程中,由于电子信号干扰、信号无连接、设备卡死、程序运算异常等各种状况会导致汽车上的网联设备发生异常情况,这就影响到了车联网的各项应用,从而给汽车用户造成较大的麻烦,降低了用户的用车体验。就目前而言,还没有很好的方法能够对汽车网联设备传输数据异常的情况进行高效准确的判定。As the hardware foundation for realizing the application of the Internet of Vehicles, the car must be equipped with connected equipment, and the vehicle can realize wireless network communication connection with the Internet of Vehicles platform through the connected equipment, so that various application technologies of the Internet of Vehicles can be realized. However, in the actual application process, due to various conditions such as electronic signal interference, signal disconnection, device stuck, abnormal program operation, etc., abnormal situations will occur in the connected devices on the car, which affects various applications of the Internet of Vehicles. , thereby causing great trouble to the car user and reducing the user's car experience. At present, there is no good method to efficiently and accurately determine the abnormality of the data transmission of the car network equipment.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种汽车网联设备传输数据异常判定方法,该异常判定方法能够对汽车网联设备异常传输的数据记录进行高效准确的判定。The purpose of the present invention is to provide a method for judging abnormality of data transmitted by an automobile network connected device, which can efficiently and accurately determine the abnormally transmitted data records of the automobile network connected device.
为了实现上述技术目的,本发明采用如下技术方案:In order to realize above-mentioned technical purpose, the present invention adopts following technical scheme:
一种汽车网联设备传输数据异常判定方法,汽车通过网联设备与车联网平台实现数据通讯连接,所述车联网平台上设置有汽车信息数据库;A method for judging abnormality of data transmitted by a car networking device, the car realizes data communication connection with a car networking platform through the car networking device, and the car networking platform is provided with a car information database;
所述异常判定方法包括如下步骤:The abnormality determination method includes the following steps:
步骤1,预先设置排查时间段,从汽车信息数据库中获取排查时间段内记录的汽车运行数据记录;Step 1, pre-set the investigation time period, and obtain the vehicle operation data records recorded in the investigation time period from the automobile information database;
步骤2,对于读取的汽车运行数据记录,将同一汽车在连续时间段内发动机转速数据相同的数据记录进行汇总,得出同车同转速时长;Step 2, for the read vehicle running data records, summarize the data records of the same vehicle with the same engine speed data in a continuous period of time, and obtain the same vehicle and same rotation speed duration;
步骤3,预先设置一个时长上限阈值,判断所述同车同转速时长是否超过所述时长上限阈值,若是则判定所述连续时间段内汽车的网联设备传输数据异常。Step 3: Preset a duration upper limit threshold, determine whether the duration of the same-vehicle simultaneous rotation speed exceeds the duration upper limit threshold, and if so, determine that the data transmission of the car's network-connected device is abnormal in the continuous time period.
进一步地,所述步骤1包括:根据预先设置的排查时间段,对汽车信息数据库中存储的汽车运行数据记录表DS0的数据记录上传日期和数据记录上传时间进行筛选,将数据记录上传日期时间处于排查时间段内的数据记录筛选出来,从而获取排查时间段内记录的汽车运行数据记录,将获取的汽车运行数据记录汇总构成第一数据记录表DS1。Further, the step 1 includes: according to a preset investigation time period, screening the data record upload date and data record upload time of the car operation data record table DS0 stored in the car information database, and set the data record upload date and time in the The data records in the investigation time period are filtered out, so as to obtain the vehicle operation data records recorded in the investigation time period, and the obtained vehicle operation data records are aggregated to form a first data record table DS1.
进一步地,所述步骤1还包括:预先设置异常转速阈值,将第一数据记录表DS1中发动机转速超过异常转速阈值的数据记录滤除掉。Further, the step 1 further includes: presetting an abnormal rotation speed threshold, and filtering out the data records in which the engine rotation speed exceeds the abnormal rotation speed threshold in the first data recording table DS1.
进一步地,所述步骤2包括:Further, the step 2 includes:
步骤2.1,对所述第一数据记录表DS1进行整理,以车辆编号为第一排序字段,以数据记录上传时间为第二排序字段,对第一数据记录表DS1中的数据记录进行重新排序整理,将排序整理后的数据记录表作为第二数据记录表DS2;Step 2.1, arranging the first data record table DS1, taking the vehicle number as the first sorting field, and taking the data record upload time as the second sorting field, reordering and sorting the data records in the first data record table DS1 , take the sorted data record table as the second data record table DS2;
步骤2.2,以第二数据记录表DS2为基础增加一个数据字段,从而构成第三数据记录表DS3,增加的数据字段为序号;Step 2.2, add a data field based on the second data record table DS2, thereby constitute the third data record table DS3, and the added data field is a serial number;
步骤2.3,在第三数据记录表DS3的基础上增加一个数据字段,从而构成第四数据记录表DS4,增加的数据字段为分组条件码,所述分组条件码的数值为数据记录上传时间减去序号与数据采集周期时间乘积后的数值;Step 2.3, adding a data field on the basis of the third data record table DS3, thereby forming the fourth data record table DS4, the added data field is a grouping condition code, and the value of the grouping condition code is the data record upload time minus The value of the product of the serial number and the data collection cycle time;
步骤2.4,在第四数据记录表DS4的基础上增加一个数据字段,从而构成第五数据记录表DS5,增加的数据字段为分组记录数,对所述第五数据记录表DS5中的数据记录进行合并汇总处理,将车辆编号、发动机转速、分组条件码数据均相同的数据记录合并汇总成一条数据记录,并且将合并汇总的数据记录条数作为合并后数据记录的分组记录数的数值;Step 2.4, on the basis of the fourth data record table DS4, a data field is added to form a fifth data record table DS5, and the increased data field is the number of group records, and the data records in the fifth data record table DS5 are processed. Merge and summary processing, merge and summarize the data records with the same vehicle number, engine speed, and grouping condition code data into one data record, and use the number of merged and summarized data records as the value of the number of grouped records of the merged data record;
步骤2.5,在第五数据记录表DS5的基础上增加一个数据字段,从而构成第六数据记录表DS6,增加的数据字段为同车同转速时长,所述同车同转速时长的数值为分组记录数与数据采集周期时间的乘积。Step 2.5, on the basis of the fifth data record table DS5, a data field is added, thereby forming the sixth data record table DS6, the added data field is the same vehicle and the same rotation speed duration, and the value of the same vehicle and same rotation speed duration is the group record. The product of the number and the data acquisition cycle time.
进一步地,所述步骤3包括:将第六数据记录表DS6中的同车同转速时长的数值与时长上限阈值作比较,判断同车同转速时长是否超过所述时长上限阈值,若是则判定所述连续时间段内汽车的网联设备传输数据异常,否则判定所述连续时间段内汽车的网联设备传输数据正常。Further, the step 3 includes: comparing the value of the duration of the same vehicle with the same rotation speed in the sixth data recording table DS6 with the upper limit threshold of the duration, and judging whether the duration of the same vehicle rotation at the same speed exceeds the upper limit threshold of the duration, and if so, it is determined that the The data transmission of the connected device of the car in the continuous time period is abnormal, otherwise it is determined that the data transmission of the connected device of the car in the continuous time period is normal.
进一步地,所述异常判定方法还包括:Further, the abnormality determination method also includes:
步骤4,将判定异常的连续时间段内汽车的网联设备传输数据汇总集合,构成异常数据传输表。Step 4: A summary set of the transmission data of the network-connected devices of the car in the continuous time period in which the abnormality is determined is formed to form an abnormal data transmission table.
进一步地,所述排查时间段设置为一天时间。Further, the checking time period is set to one day.
在本发明的异常判定方法中,通过对汽车信息数据库中记录的汽车运行数据记录进行分析,将同一辆汽车在一个连续时间段内发动机转速数据相同的数据记录进行汇总,若发动机转速数据相同的持续时间较长,则判定该汽车的网联设备在所述的连续时间段内传输的数据出现异常。In the abnormality determination method of the present invention, by analyzing the vehicle running data records recorded in the vehicle information database, the data records of the same vehicle with the same engine speed data in a continuous time period are summarized. If the duration is longer, it is determined that the data transmitted by the connected device of the car in the continuous time period is abnormal.
本发明的异常判定方法相对现有技术,其有益效果在于:采用本发明的异常判定方法,能够对汽车网联设备异常传输的数据进行高效准确的判定,根据判定结果,车联网平台上的其它软件和模型算法则不会再调用异常的数据记录来参与运算,从而提高了整个车联网平台的运行效率以及数据运算处理的准确性。Compared with the prior art, the abnormality determination method of the present invention has the beneficial effect that the abnormality determination method of the present invention can efficiently and accurately determine the abnormally transmitted data of the car networking equipment. Software and model algorithms will no longer call abnormal data records to participate in operations, thus improving the operating efficiency of the entire IoV platform and the accuracy of data processing.
附图说明Description of drawings
图1为本发明汽车网联设备传输数据异常判定方法的流程图。FIG. 1 is a flow chart of a method for determining abnormality of data transmitted by an automobile network connected device according to the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明:The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments:
本实施方式提供了一种汽车网联设备传输数据异常判定方法,该异常判定方法对车联网平台中的汽车信息数据库中记录的汽车运行数据记录进行分析判断,以判定汽车网联设备异常传输的数据。This embodiment provides a method for determining the abnormality of data transmitted by a connected vehicle device. The abnormality determination method analyzes and judges the vehicle operation data records recorded in the vehicle information database in the connected vehicle platform, so as to determine the abnormal transmission of the connected vehicle device. data.
所述车联网平台是某汽车厂家设立的一个云数据平台(在服务器中运行),该车联网平台上设置有汽车信息数据库以及围绕该汽车信息数据库的一系列软件和模型算法。所述汽车信息数据库采用的是clickhouse数据库。The IoV platform is a cloud data platform (running in a server) established by an automobile manufacturer. The IoV platform is provided with a car information database and a series of software and model algorithms surrounding the car information database. The car information database adopts the clickhouse database.
由所述汽车厂家生产的汽车上都配置有网联设备,汽车可通过所述网联设备与车联网平台实现数据通讯连接,车联网平台通过网联设备可获取汽车上传的汽车运行数据,并将获取的汽车运行数据以数据记录的形式存储在汽车信息数据库中的汽车运行数据记录表DS0中。所述汽车运行数据记录表DS0中存储的数据记录称作汽车运行数据记录,该汽车运行数据记录表DS0中保存了所有汽车的运行数据,在执行算法或使用软件应用时可以及时查询。The cars produced by the automobile manufacturers are all equipped with connected equipment, and the car can realize data communication connection with the Internet of Vehicles platform through the connected equipment. The obtained vehicle running data is stored in the vehicle running data record table DS0 in the vehicle information database in the form of data records. The data records stored in the vehicle operation data record table DS0 are called vehicle operation data records. The vehicle operation data record table DS0 stores all vehicle operation data, which can be queried in time when executing algorithms or using software applications.
所述汽车运行数据记录表DS0中的数据字段包括有车辆编号、发动机转速、数据记录上传时间、数据记录上传日期、环境温度、电池电压、冷却液温度、燃油温度、当前故障信息、排气流量,等等,常用的数据字段有几百个,还有两万多个备用字段,这些数据字段中的数据记录了汽车运行工况,车联网平台通过这些数据字段的组合可以分析出汽车或汽车零件是否运行正常,也可以分析出汽车是否运行在最经济的设计区间,还可以分析出司机的驾驶行为习惯,等等,以便于汽车厂家为车主提供良好的售后服务。The data fields in the vehicle operation data record table DS0 include vehicle number, engine speed, data record upload time, data record upload date, ambient temperature, battery voltage, coolant temperature, fuel temperature, current fault information, and exhaust flow. , etc. There are hundreds of commonly used data fields, and there are more than 20,000 spare fields. The data in these data fields record the operating conditions of the car. The car networking platform can analyze the car or car through the combination of these data fields. Whether the parts are running normally, it can also be analyzed whether the car is running in the most economical design range, and the driver's driving behavior can also be analyzed, etc., so that car manufacturers can provide good after-sales service for car owners.
在本实施方式中,为了保障异常判定方法的顺利实施,在车联网平台原有汽车信息数据库的基础上再增加设置一个异常信息数据库,该异常信息数据库用于配合本实施方式的异常判定方法的具体实施。所述异常信息数据库采用的是mysql数据库。In this embodiment, in order to ensure the smooth implementation of the abnormality determination method, an abnormality information database is set up on the basis of the original car information database of the Internet of Vehicles platform, and the abnormality information database is used to cooperate with the abnormality determination method of this embodiment. specific implementation. The abnormal information database adopts the mysql database.
此外,在车联网平台还增设了一个方法执行程序,由该方法执行程序来具体执行本实施方式的异常判定方法。In addition, a method execution program is added to the Internet of Vehicles platform, and the method execution program specifically executes the abnormality determination method of this embodiment.
参见图1,本实施方式的异常判定方法包括如下步骤:Referring to FIG. 1, the abnormality determination method of this embodiment includes the following steps:
步骤1,预先设置一个排查时间段,从汽车信息数据库中的汽车运行数据记录表DS0中获取排查时间段内记录的汽车运行数据记录。In step 1, an investigation time period is preset, and the vehicle operation data records recorded in the investigation time period are obtained from the vehicle operation data record table DS0 in the vehicle information database.
该步骤1包括如下的具体过程:This step 1 includes the following specific processes:
根据预先设置的排查时间段,对汽车信息数据库中存储的汽车运行数据记录表DS0的数据字段“数据记录上传日期”进行筛选,将数据记录上传日期处于排查时间段内的数据记录筛选出来,从而获取排查时间段内记录的汽车运行数据记录。According to the pre-set investigation time period, filter the data field "data record upload date" of the car operation data record table DS0 stored in the car information database, and filter out the data records whose data record upload date is within the investigation time period, so as to Obtain the vehicle operation data records recorded during the troubleshooting period.
对于获取的汽车运行数据记录仅保留四个数据字段的数据,所述四个数据字段为“车辆编号”、“发动机转速”、“数据记录上传时间”和“数据记录上传日期”,其余数据字段的数据废弃,然后将筛选出来的数据记录在异常信息数据库中汇总构成第一数据记录表DS1。Only the data of four data fields are retained for the obtained vehicle operation data records, the four data fields are "vehicle number", "engine speed", "data record upload time" and "data record upload date", and the remaining data fields are The data is discarded, and then the filtered data is recorded in the abnormal information database to form a first data record table DS1.
在本实施方式中,所述排查时间段设置为一天时间,即24小时。In this embodiment, the investigation time period is set to one day, that is, 24 hours.
此外,为了避免外部噪音信号干扰导致的数据记录中的异常突变数值,还可以通过数据筛选方式将一些异常的数据记录滤除掉。在本实施方式中,预先设置一个异常转速阈值,采用异常转速阈值来对第一数据记录表DS1中的数据字段“发动机转速”进行筛选,将发动机转速超过异常转速阈值的数据记录滤除掉。在本实施方式中,所述异常转速阈值设置为6000rpm。In addition, in order to avoid abnormal mutation values in the data records caused by the interference of external noise signals, some abnormal data records can also be filtered out by means of data filtering. In this embodiment, an abnormal speed threshold is preset, and the abnormal speed threshold is used to filter the data field "engine speed" in the first data record table DS1, and the data records whose engine speed exceeds the abnormal speed threshold are filtered out. In this embodiment, the abnormal rotation speed threshold is set to 6000 rpm.
需要说明的是,在其它实施方式中,在根据排查时间段进行筛选时,也可对数据字段“数据记录上传时间”与“数据记录上传日期”结合得出的数据记录上传日期时间进行筛选。It should be noted that, in other embodiments, when filtering according to the investigation time period, the data record upload date and time obtained by combining the data fields "data record upload time" and "data record upload date" may also be filtered.
步骤2,对于读取的汽车运行数据记录,将同一汽车在连续时间段内发动机转速数据相同的数据记录进行汇总,从而得出同车同转速时长。Step 2: For the read vehicle operation data records, the data records of the same vehicle with the same engine speed data in consecutive time periods are aggregated, so as to obtain the same vehicle and same rotation speed duration.
所述同车同转速时长是指同一汽车发动机转速数据相同的连续时间段的时长。The duration of the same rotation speed in the same vehicle refers to the duration of the continuous time period in which the rotation speed data of the same vehicle engine is the same.
该步骤2包括如下的具体过程:This step 2 includes the following specific processes:
步骤2.1,在异常信息数据库中,对所述第一数据记录表DS1进行整理,以车辆编号为第一排序字段,以数据记录上传时间为第二排序字段,对第一数据记录表DS1中的数据记录进行重新排序整理,将排序整理后的数据记录表作为第二数据记录表DS2。Step 2.1, in the abnormal information database, sort out the first data record table DS1, take the vehicle number as the first sort field, take the data record upload time as the second sort field, and sort the data in the first data record table DS1. The data records are rearranged, and the sorted data record table is used as the second data record table DS2.
步骤2.2,在异常信息数据库中,以第二数据记录表DS2为基础增加一个名为“序号”的数据字段,从而构成第三数据记录表DS3。Step 2.2, in the abnormal information database, a data field named "serial number" is added based on the second data record table DS2, thereby forming a third data record table DS3.
所述序号为第三数据记录表DS3中所有数据记录的顺序号,该顺序号为从1开始的自然数。The sequence number is the sequence number of all data records in the third data record table DS3, and the sequence number is a natural number starting from 1.
步骤2.3,在异常信息数据库中,在第三数据记录表DS3的基础上增加一个名为“分组条件码”的数据字段,从而构成第四数据记录表DS4,第四数据记录表DS4中每条数据记录的分组条件码的数值为数据记录上传时间减去序号与数据采集周期时间乘积后的数值,用计算式表示即为:数据记录上传时间-序号×数据采集周期时间。所述数据采集周期时间是指网联设备获取并发送汽车运行数据的周期性间隔时间。Step 2.3, in the abnormal information database, add a data field named "grouping condition code" on the basis of the third data record table DS3, thereby forming the fourth data record table DS4, each entry in the fourth data record table DS4. The value of the grouping condition code of the data record is the value of the data record upload time minus the product of the serial number and the data collection cycle time, which is expressed as: data record upload time - serial number × data collection cycle time. The data collection cycle time refers to the periodic interval time during which the network-connected device obtains and sends the vehicle operation data.
步骤2.4,在异常信息数据库中,在第四数据记录表DS4的基础上增加一个名为“分组记录数”的数据字段,从而构成第五数据记录表DS5,然后对所述第五数据记录表DS5中的数据记录进行合并汇总处理,将车辆编号、发动机转速、分组条件码数据均相同的数据记录合并汇总成一条数据记录,并且将合并汇总的数据记录条数作为合并后数据记录的数据字段“分组记录数”的数值。Step 2.4, in the abnormal information database, add a data field named "number of grouped records" on the basis of the fourth data record table DS4, thereby forming the fifth data record table DS5, and then to the fifth data record table DS5. The data records in DS5 are merged and summarized, and the data records with the same vehicle number, engine speed, and grouping condition code data are merged and summarized into one data record, and the number of merged and summarized data records is used as the data field of the merged data record. Numerical value for "Number of Grouped Records".
步骤2.5,在异常信息数据库中,在第五数据记录表DS5的基础上增加一个名为“同车同转速时长”的数据字段,从而构成第六数据记录表DS6,第六数据记录表DS6中每条数据记录的同车同转速时长的数值为分组记录数与数据采集周期时间的乘积,用计算式表示即为:分组记录数×数据采集周期时间。Step 2.5, in the abnormal information database, add a data field named "same vehicle speed duration" on the basis of the fifth data record table DS5, thereby forming the sixth data record table DS6, in the sixth data record table DS6 The value of the time duration of the same vehicle and the same rotation speed of each data record is the product of the number of grouped records and the data collection cycle time, which is expressed as: the number of grouped records × the data collection cycle time.
步骤3,预先设置一个时长上限阈值,判断所述同车同转速时长是否超过所述时长上限阈值,若是则判定所述连续时间段内汽车的网联设备传输数据异常,否则判定所述连续时间段内汽车的网联设备传输数据正常。Step 3: Preset a duration upper limit threshold, determine whether the duration of the same-vehicle rotation at the same time exceeds the duration upper limit threshold, and if so, determine that the transmission data of the car's network-connected device in the continuous time period is abnormal, otherwise determine that the continuous time The network-connected devices of the cars in the segment transmit data normally.
该步骤3包括如下的具体过程:This step 3 includes the following specific processes:
将第六数据记录表DS6中数据记录的数据字段“同车同转速时长”的数值与所述时长上限阈值作比较,判断同车同转速时长是否超过所述时长上限阈值,若是则判定所述连续时间段内汽车的网联设备传输数据异常,否则判定所述连续时间段内汽车的网联设备传输数据正常。Compare the value of the data field "same-vehicle with the same rotation speed duration" in the data record in the sixth data record table DS6 with the upper limit threshold of the duration, and judge whether the duration of the same vehicle at the same rotation speed exceeds the upper limit of the duration, and if so, determine the The data transmission of the connected device of the car in the continuous time period is abnormal, otherwise, it is determined that the data transmission of the connected device of the car in the continuous time period is normal.
步骤4,将判定异常的连续时间段内汽车的网联设备传输数据汇总集合,构成异常数据传输表,并将该异常数据传输表存储在车联网平台中,以供车联网平台上的其它软件和模型算法读取数据。Step 4: Summarize and set the transmission data of the car's connected equipment in the continuous time period in which the abnormality is determined to form an abnormal data transmission table, and store the abnormal data transmission table in the Internet of Vehicles platform for other software on the Internet of Vehicles platform. and model algorithms to read the data.
该步骤4包括如下的具体过程:This step 4 includes the following specific processes:
根据所述时长上限阈值对第六数据记录表DS6中的数据记录进行筛选,将同车同转速时长大于时长上限阈值的数据记录筛选出来汇总构成第七数据记录表DS7,该第七数据记录表DS7则可作为异常数据传输表。The data records in the sixth data recording table DS6 are screened according to the upper limit of the duration, and the data records whose duration is greater than the upper limit of the duration of the same vehicle are screened out to form a seventh data recording table DS7. The seventh data recording table DS7 can be used as an exception data transfer table.
车联网平台上的软件和模型算法以异常数据传输表为依据,在进行数据调用运算时可以将汽车信息数据库中的一些异常的数据记录清洗筛除掉,不再调用异常的数据记录来参与运算,这样就可以提高整个车联网平台的运行效率以及数据运算处理的准确性。The software and model algorithms on the Internet of Vehicles platform are based on the abnormal data transmission table. During the data call operation, some abnormal data records in the car information database can be cleaned and screened, and abnormal data records are no longer called to participate in the operation. In this way, the operation efficiency of the entire Internet of Vehicles platform and the accuracy of data operation and processing can be improved.
本实施方式的异常判定方法,其所基于的原理为:在汽车正常行驶过程中,发动机的转速是不可能一直保持不变的,车辆行驶时由网联设备传输的数据中,如果发动机转速在一个连续的时间段内一直保持不变的话,那么这段连续的时间段内传输的数据一定是异常数据,由此则可进一步判定汽车的网联设备出现了异常情况。The abnormality determination method of this embodiment is based on the principle that the engine speed cannot be kept constant during the normal driving of the vehicle. If it remains unchanged for a continuous period of time, then the data transmitted in this continuous period of time must be abnormal data, so that it can be further determined that there is an abnormal situation in the connected equipment of the car.
基于上述的原理,在本实施方式的异常判定方法中,通过对汽车信息数据库中记录的汽车运行数据记录进行分析,将同一辆汽车在一个连续时间段内发动机转速数据相同的数据记录进行汇总,若发动机转速数据相同的持续时间较长,则判定该汽车的网联设备在所述的连续时间段内传输的数据出现异常。Based on the above principles, in the abnormality determination method of this embodiment, by analyzing the vehicle operation data records recorded in the vehicle information database, the data records with the same engine speed data in a continuous time period of the same vehicle are summarized, If the same duration of the engine speed data is longer, it is determined that the data transmitted by the network-connected device of the car in the continuous time period is abnormal.
本实施方式的异常判定方法,其优点在于:采用本实施方式的异常判定方法,能够对汽车网联设备异常传输的数据进行高效准确的判定,将被判定异常传输的数据清洗筛除后,车联网平台上的其它软件和模型算法则不会再调用异常的数据记录来参与运算,从而提高了整个车联网平台的运行效率以及数据运算处理的准确性。此外,在分析判定网联设备异常传输的数据时,只需分析发动机转速即可,因此无须大量处理数据,判定异常的效率较高。The abnormality determination method of this embodiment has the advantage that: by using the abnormality determination method of this embodiment, it is possible to efficiently and accurately determine the abnormally transmitted data of the car network equipment, and after cleaning and screening the data that is determined to be abnormally transmitted, the vehicle Other software and model algorithms on the networking platform will no longer call abnormal data records to participate in operations, thereby improving the operating efficiency of the entire IoV platform and the accuracy of data processing. In addition, when analyzing and judging the abnormally transmitted data of the network-connected device, it is only necessary to analyze the engine speed, so there is no need to process a large amount of data, and the abnormality judgment efficiency is high.
以下提供一个具体实施例:A specific example is provided below:
在该实施例中,汽车信息数据库中的汽车运行数据记录表DS0如表1所示(为方便描述,表格中只列出了四个字段):In this embodiment, the car operation data record table DS0 in the car information database is shown in Table 1 (for the convenience of description, only four fields are listed in the table):
表1:汽车运行数据记录表DS0Table 1: Vehicle Operation Data Record Sheet DS0
在车联网平台原有汽车信息数据库的基础上再增加设置一个异常信息数据库。On the basis of the original car information database of the Internet of Vehicles platform, an exception information database is added.
本实施例的步骤过程如下:The steps of this embodiment are as follows:
1),预先设置2021年11月16日一天24小时的排查时间段,从汽车信息数据库中的汽车运行数据记录表DS0中获取2021年11月16日一天24小时内记录的汽车运行数据记录。1), pre-set the 24-hour inspection time period on November 16, 2021, and obtain the vehicle operation data records recorded within 24 hours a day on November 16, 2021 from the vehicle operation data record table DS0 in the vehicle information database.
具体来说,用“2021-11-16”对汽车信息数据库中存储的汽车运行数据记录表DS0的数据字段“数据记录上传日期”进行筛选,将数据记录上传日期为“2021-11-16”的数据记录筛选出来,从而获取2021年11月16日记录的汽车运行数据记录。Specifically, use "2021-11-16" to filter the data field "data record upload date" of the car operation data record table DS0 stored in the car information database, and set the data record upload date as "2021-11-16" The data records are filtered out to obtain the vehicle operation data records recorded on November 16, 2021.
对于获取的汽车运行数据记录仅保留四个数据字段的数据,所述四个数据字段为“车辆编号”、“发动机转速”、“数据记录上传时间”和“数据记录上传日期”,其余数据字段的数据废弃,然后将筛选出来的数据记录在异常信息数据库中汇总构成第一数据记录表DS1。Only the data of four data fields are retained for the obtained vehicle operation data records, the four data fields are "vehicle number", "engine speed", "data record upload time" and "data record upload date", and the remaining data fields are The data is discarded, and then the filtered data is recorded in the abnormal information database to form a first data record table DS1.
为了避免外部噪音信号干扰导致的数据记录中的异常突变数值,预先设置一个6000rpm的异常转速阈值,采用6000rpm的异常转速阈值来对第一数据记录表DS1中的数据字段“发动机转速”进行筛选,将发动机转速超过6000rpm的数据记录滤除掉。得出的第一数据记录表DS1如表2所示:In order to avoid abnormal sudden changes in data records caused by external noise signal interference, an abnormal speed threshold of 6000rpm is preset, and the abnormal speed threshold of 6000rpm is used to filter the data field "engine speed" in the first data record table DS1. Data records with engine speeds above 6000 rpm were filtered out. The obtained first data record table DS1 is shown in Table 2:
表2:第一数据记录表DS1Table 2: The first data record sheet DS1
2),对于读取的汽车运行数据记录,将同一汽车在连续时间段内发动机转速数据相同的数据记录进行汇总,从而得出同车同转速时长。2), for the read car running data records, the data records with the same engine speed data in the same car in a continuous period of time are aggregated, so as to obtain the same car speed time duration.
具体来说包括如下过程:Specifically, it includes the following processes:
2.1),在异常信息数据库中,对所述第一数据记录表DS1进行整理,以车辆编号为第一排序字段,以数据记录上传时间为第二排序字段,对第一数据记录表DS1中的数据记录进行重新排序整理,将排序整理后的数据记录表作为第二数据记录表DS2。所述第二数据记录表DS2如表3所示:2.1), in the abnormal information database, organize the first data record table DS1, take the vehicle number as the first sorting field, and use the data record upload time as the second sorting field, and compare the data in the first data record table DS1. The data records are rearranged, and the sorted data record table is used as the second data record table DS2. The second data record table DS2 is shown in Table 3:
表3:第二数据记录表DS2Table 3: Second Data Record Table DS2
2.2),在异常信息数据库中,以第二数据记录表DS2为基础增加一个名为“序号”的数据字段,从而构成第三数据记录表DS3。所述“序号”也可以理解为第二数据记录表DS2中数据记录的行号。所述第三数据记录表DS3如表4所示:2.2) In the abnormal information database, a data field named "serial number" is added based on the second data record table DS2, thereby forming a third data record table DS3. The "serial number" can also be understood as the row number of the data record in the second data record table DS2. The third data record table DS3 is shown in Table 4:
表4:第三数据记录表DS3Table 4: Third data record sheet DS3
2.3),在异常信息数据库中,在第三数据记录表DS3的基础上增加一个名为“分组条件码”的数据字段,从而构成第四数据记录表DS4,第四数据记录表DS4中每条数据记录的分组条件码的数值为数据记录上传时间减去序号与数据采集周期时间乘积后的数值,所述数据采集周期时间为1秒。所述第四数据记录表DS4如表5所示:2.3), in the abnormal information database, a data field named "grouping condition code" is added on the basis of the third data record table DS3, thereby forming the fourth data record table DS4, each of the fourth data record table DS4. The value of the grouping condition code of the data record is the value obtained by subtracting the product of the serial number and the data collection cycle time from the data record upload time, and the data collection cycle time is 1 second. The fourth data record table DS4 is shown in Table 5:
表5:第四数据记录表DS4Table 5: Fourth Data Record Sheet DS4
2.4),在异常信息数据库中,在第四数据记录表DS4的基础上增加一个名为“分组记录数”的数据字段,从而构成第五数据记录表DS5,然后对所述第五数据记录表DS5中的数据记录进行合并汇总处理,将车辆编号、发动机转速、分组条件码数据均相同的数据记录合并汇总成一条数据记录,并且将合并汇总的数据记录条数作为合并后数据记录的数据字段“分组记录数”的数值。所述第五数据记录表DS5如表6所示:2.4), in the abnormal information database, on the basis of the fourth data record table DS4, add a data field named "number of grouping records", thereby forming the fifth data record table DS5, and then to the fifth data record table. The data records in DS5 are merged and summarized, and the data records with the same vehicle number, engine speed, and grouping condition code data are merged and summarized into one data record, and the number of merged and summarized data records is used as the data field of the merged data record. Numerical value for "Number of Grouped Records". The fifth data record table DS5 is shown in Table 6:
表6:第五数据记录表DS5Table 6: Fifth data record sheet DS5
2.5),在异常信息数据库中,在第五数据记录表DS5的基础上增加一个名为“同车同转速时长”的数据字段,从而构成第六数据记录表DS6,第六数据记录表DS6中每条数据记录的同车同转速时长的数值为分组记录数与数据采集周期时间的乘积。所述第六数据记录表DS6如表7所示:2.5), in the abnormal information database, on the basis of the fifth data record table DS5, add a data field named "same speed with the same vehicle speed", thereby forming the sixth data record table DS6, in the sixth data record table DS6 The value of the time duration of the same vehicle and the same speed of each data record is the product of the number of grouped records and the data collection cycle time. The sixth data record table DS6 is shown in Table 7:
表7:第六数据记录表DS6Table 7: Sixth Data Record Sheet DS6
3),预先设置一个5秒的时长上限阈值,判断所述同车同转速时长是否超过所述时长上限阈值,若是则判定所述连续时间段内汽车的网联设备传输数据异常,否则判定所述连续时间段内汽车的网联设备传输数据正常。3), pre-set a 5-second duration upper limit threshold, determine whether the duration of the same-vehicle rotation at the same speed exceeds the duration upper limit threshold, and if so, determine that the transmission data of the car's networked equipment in the continuous time period is abnormal, otherwise determine that the The connected devices of the car transmit data normally during the continuous period of time.
具体来说,将第六数据记录表DS6中数据记录的数据字段“同车同转速时长”的数值与5秒的时长上限阈值作比较,判断同车同转速时长是否超过5秒,若是则判定所述连续时间段内汽车的网联设备传输数据异常,否则判定所述连续时间段内汽车的网联设备传输数据正常。Specifically, compare the value of the data field "same-vehicle-same-speed duration" in the data record in the sixth data record table DS6 with the 5-second duration upper limit threshold to determine whether the same-vehicle-same-speed duration exceeds 5 seconds, and if so, determine In the continuous period of time, the data transmission of the network-connected device of the car is abnormal, otherwise, it is determined that the data transmission of the network-connected device of the car in the continuous time period is normal.
4),将判定异常的连续时间段内汽车的网联设备传输数据汇总集合,构成异常数据传输表,并将该异常数据传输表存储在车联网平台中,以供车联网平台上的其它软件和模型算法读取数据。4), summarize and set the transmission data of the car's connected equipment in the continuous time period when the abnormality is determined to form an abnormal data transmission table, and store the abnormal data transmission table in the Internet of Vehicles platform for other software on the Internet of Vehicles platform. and model algorithms to read the data.
具体来说,根据5秒的时长上限阈值对第六数据记录表DS6中的数据记录进行筛选,将同车同转速时长大于5秒的数据记录筛选出来汇总构成第七数据记录表DS7,该第七数据记录表DS7则可作为异常数据传输表。所述第七数据记录表DS7如表8所示:Specifically, the data records in the sixth data record table DS6 are screened according to the upper limit threshold of the duration of 5 seconds, and the data records with the same vehicle and the same rotation speed longer than 5 seconds are screened out and aggregated to form the seventh data record table DS7. Seven data record table DS7 can be used as abnormal data transmission table. The seventh data record table DS7 is shown in Table 8:
表8:第七数据记录表DS7Table 8: Seventh Data Record Sheet DS7
车联网平台上的其它软件和模型算法在运行和计算前先将第七数据记录表DS7中记录的时间段内的汽车运行数据记录过滤排除掉,这样一来,软件和模型算法运行计算所基于的数据则是准确无异常的,运行计算得出的结果自然也就不会受异常数据的影响。Other software and model algorithms on the Internet of Vehicles platform filter out the vehicle operation data records in the time period recorded in the seventh data record table DS7 before running and calculating. The data is accurate and non-abnormal, and the results obtained by running the calculation will naturally not be affected by abnormal data.
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Therefore, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the present invention. within the scope of protection of the invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111648231.XA CN114299634A (en) | 2021-12-30 | 2021-12-30 | Method for judging abnormality of transmission data of automobile networking equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111648231.XA CN114299634A (en) | 2021-12-30 | 2021-12-30 | Method for judging abnormality of transmission data of automobile networking equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114299634A true CN114299634A (en) | 2022-04-08 |
Family
ID=80974147
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111648231.XA Pending CN114299634A (en) | 2021-12-30 | 2021-12-30 | Method for judging abnormality of transmission data of automobile networking equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114299634A (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001012294A (en) * | 1999-06-30 | 2001-01-16 | Sanyo Electric Co Ltd | Apparatus and method for controlling gas engine of air conditioner |
| CN102187077A (en) * | 2008-10-16 | 2011-09-14 | 洋马株式会社 | Engine rpm control device |
| CN106031098A (en) * | 2015-01-20 | 2016-10-12 | 松下电器(美国)知识产权公司 | Abnormal frame handling method, abnormal detection electronic control unit, and vehicle network system |
| CN108593306A (en) * | 2018-06-20 | 2018-09-28 | 浙江吉利控股集团有限公司 | A kind of detection method and detecting system for vehicle motor |
| CN109245955A (en) * | 2017-07-10 | 2019-01-18 | 阿里巴巴集团控股有限公司 | A kind of data processing method, device and server |
| CN110430103A (en) * | 2019-09-18 | 2019-11-08 | 光大兴陇信托有限责任公司 | A kind of message monitoring method |
| CN111311912A (en) * | 2020-02-25 | 2020-06-19 | 北京天融信网络安全技术有限公司 | Internet of vehicles detection data determination method and device and electronic equipment |
| CN111623993A (en) * | 2020-05-25 | 2020-09-04 | 上海华兴数字科技有限公司 | Engine health degree evaluation method and device for excavator and electronic equipment |
| CN112214481A (en) * | 2020-10-27 | 2021-01-12 | 深圳供电局有限公司 | Data cleaning method for power quality data |
-
2021
- 2021-12-30 CN CN202111648231.XA patent/CN114299634A/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001012294A (en) * | 1999-06-30 | 2001-01-16 | Sanyo Electric Co Ltd | Apparatus and method for controlling gas engine of air conditioner |
| CN102187077A (en) * | 2008-10-16 | 2011-09-14 | 洋马株式会社 | Engine rpm control device |
| CN106031098A (en) * | 2015-01-20 | 2016-10-12 | 松下电器(美国)知识产权公司 | Abnormal frame handling method, abnormal detection electronic control unit, and vehicle network system |
| CN109245955A (en) * | 2017-07-10 | 2019-01-18 | 阿里巴巴集团控股有限公司 | A kind of data processing method, device and server |
| CN108593306A (en) * | 2018-06-20 | 2018-09-28 | 浙江吉利控股集团有限公司 | A kind of detection method and detecting system for vehicle motor |
| CN110430103A (en) * | 2019-09-18 | 2019-11-08 | 光大兴陇信托有限责任公司 | A kind of message monitoring method |
| CN111311912A (en) * | 2020-02-25 | 2020-06-19 | 北京天融信网络安全技术有限公司 | Internet of vehicles detection data determination method and device and electronic equipment |
| CN111623993A (en) * | 2020-05-25 | 2020-09-04 | 上海华兴数字科技有限公司 | Engine health degree evaluation method and device for excavator and electronic equipment |
| CN112214481A (en) * | 2020-10-27 | 2021-01-12 | 深圳供电局有限公司 | Data cleaning method for power quality data |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Amarasinghe et al. | Cloud-based driver monitoring and vehicle diagnostic with OBD2 telematics | |
| CN109204063B (en) | Method and device for acquiring SOH (state of health) of power battery and vehicle | |
| CN112819031B (en) | Vehicle weight prediction method and system, electronic equipment, medium | |
| CN112000502B (en) | Processing method and device for mass error logs, electronic device and storage medium | |
| CN112730748B (en) | Large-scale screening method for high NOx emission of heavy diesel vehicle based on working condition selection | |
| CN110991668A (en) | An analysis method of electric vehicle power battery monitoring data based on association rules | |
| CN107730117B (en) | Cable maintenance early warning method and system based on heterogeneous data comprehensive analysis | |
| JP2017077055A (en) | State diagnostic device and program | |
| CN113719337B (en) | Particle capture system processing method and apparatus | |
| CN111583442B (en) | Terminal policy configuration method and device, computer equipment and storage medium | |
| CN118655882A (en) | A data analysis method for fault prediction and health management of automotive electronic control systems | |
| CN107608270A (en) | The analysis method and device of automotive performance | |
| CN114060132A (en) | A NOx sensor cheating detection method based on remote monitoring of emissions | |
| CN114118463A (en) | After-sale market service management system for automobile | |
| CN118991534A (en) | Battery control system and method for electric automobile | |
| CN114299634A (en) | Method for judging abnormality of transmission data of automobile networking equipment | |
| WO2021217626A1 (en) | Vehicle data processing method and apparatus, computer device, and storage medium | |
| CN117171921B (en) | Method and device for evaluating and processing health state of diesel particulate tail gas purification device | |
| CN118709118A (en) | A method and system for analyzing electromechanical equipment health monitoring data | |
| CN114326668A (en) | Auxiliary diagnosis and analysis device for automobile vibration noise fault | |
| CN113378359A (en) | Method and device for evaluating oil consumption of engine and transmission efficiency of whole vehicle | |
| CN116863664A (en) | Real-time monitoring method and system for gas equipment | |
| CN115454016A (en) | A vehicle log collection method and log system | |
| CN204423430U (en) | A kind of logistics vehicles driver performance appraisal system | |
| CN104568038B (en) | Vehicle oil consumption management method and system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information |
Address after: 2636 Jungong Road, Yangpu District, Shanghai 200438 Applicant after: Shanghai New Power Automotive Technology Co.,Ltd. Address before: 2636 Jungong Road, Yangpu District, Shanghai 200438 Applicant before: SHANGHAI DIESEL ENGINE Co.,Ltd. |
|
| CB02 | Change of applicant information | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220408 |
|
| RJ01 | Rejection of invention patent application after publication |