[go: up one dir, main page]

CN114290327A - Six-axis robotic arm control system based on first-order variable gain ADRC - Google Patents

Six-axis robotic arm control system based on first-order variable gain ADRC Download PDF

Info

Publication number
CN114290327A
CN114290327A CN202111413191.0A CN202111413191A CN114290327A CN 114290327 A CN114290327 A CN 114290327A CN 202111413191 A CN202111413191 A CN 202111413191A CN 114290327 A CN114290327 A CN 114290327A
Authority
CN
China
Prior art keywords
adrc
feedback
speed
disturbance
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111413191.0A
Other languages
Chinese (zh)
Other versions
CN114290327B (en
Inventor
刘赵阳
骆敏舟
卢钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Advanced Laser Technology
Original Assignee
Nanjing Institute of Advanced Laser Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Advanced Laser Technology filed Critical Nanjing Institute of Advanced Laser Technology
Priority to CN202111413191.0A priority Critical patent/CN114290327B/en
Publication of CN114290327A publication Critical patent/CN114290327A/en
Application granted granted Critical
Publication of CN114290327B publication Critical patent/CN114290327B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Feedback Control In General (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

The invention provides a six-axis mechanical arm control system based on a first-order variable gain ADRC, which comprises a first-order variable gain ADRC controller, wherein the first-order variable gain ADRC controller comprises: a linear tracking module; planning a path and a speed through an upper computer, outputting a given rotating speed and transmitting the rotating speed to a servo driving system; an expansion state observation module; all internal and external disturbances of the controlled system are considered as a whole, and a new state quantity, namely total disturbance (z), is expanded2) And carrying out dynamic estimation and feedback compensation on the total disturbance; the variable gain fal function of the traditional ADRC is reserved, and the ESO is adopted to realize the estimation of total disturbance and the effect of replacing error integral feedback by feedback; a composite state error feedback module; in the SEF, the gain is composed of a nonlinear function fal, and the disturbance quantity obtained by the ESO is subjected to feedback compensation to counteract the influence of internal and external disturbance on the system.

Description

基于一阶变增益ADRC的六轴机械臂控制系统Six-axis robotic arm control system based on first-order variable gain ADRC

技术领域technical field

本发明涉及机械臂控制技术领域,尤其涉及基于一阶变增益ADRC的六轴机械臂控制系统。The invention relates to the technical field of robotic arm control, in particular to a six-axis robotic arm control system based on first-order variable gain ADRC.

背景技术Background technique

六轴机械臂在执行抓取、搬运、对接等任务中,由于机械臂由多个关节构成,其自身构型、姿态直接影响机械臂的负载转矩发生较大变化。传统PID控制由于其控制参数相对固定,若负载转矩变大将会导致其伺服系统的控制性能下降;此外同一组PID参数也很难应用于驱动全速领域,尤其是高速与低速时最佳PID参数都需要额外整定。When the six-axis manipulator performs tasks such as grasping, handling, and docking, since the manipulator is composed of multiple joints, its own configuration and posture directly affect the load torque of the manipulator, and the load torque of the manipulator changes greatly. Due to the relatively fixed control parameters of traditional PID control, if the load torque increases, the control performance of the servo system will be degraded; in addition, the same set of PID parameters is also difficult to apply to the field of driving at full speed, especially the optimal PID parameters at high speed and low speed. require additional tuning.

采用ADRC控制器的矢量控制系统存在对负载变换的适应能力、参数鲁棒性和抗干扰性强的优点。因此为了在系统内外界参数发生变化时,关节伺服系统在全速域均具有良好的动静态性能,通常用ADRC控制器代替速度环中的普通PID控制器。The vector control system using ADRC controller has the advantages of adaptability to load change, robustness of parameters and strong anti-interference. Therefore, in order to ensure that the joint servo system has good dynamic and static performance in the full-speed domain when the external parameters in the system change, the ADRC controller is usually used instead of the ordinary PID controller in the speed loop.

传统非线性ADRC具有收敛速度快、稳态精度高等有点,但由于各种非线性函数的存在,其对处理器性能要求较高,且参数较多难以应用于实际场合。The traditional nonlinear ADRC has the advantages of fast convergence speed and high steady-state accuracy. However, due to the existence of various nonlinear functions, it has high requirements for processor performance and many parameters are difficult to apply to practical occasions.

发明内容SUMMARY OF THE INVENTION

本发明针对现有技术的不足,提供了基于一阶变增益ADRC的六轴机械臂控制系统。Aiming at the deficiencies of the prior art, the present invention provides a six-axis robotic arm control system based on the first-order variable gain ADRC.

本发明通过以下技术手段实现解决上述技术问题的:The present invention realizes and solves the above-mentioned technical problems through the following technical means:

基于一阶变增益ADRC的六轴机械臂控制系统,包括一阶变增益ADRC控制器,所述一阶变增益ADRC控制器包括:A six-axis robotic arm control system based on first-order variable gain ADRC includes a first-order variable-gain ADRC controller, and the first-order variable-gain ADRC controller includes:

线性跟踪模块;通过上位机进行路径、速度规划,输出给定转速并传递至伺服驱动系统,如下式所示Linear tracking module; the path and speed are planned by the host computer, and the given speed is output and transmitted to the servo drive system, as shown in the following formula

Figure BDA0003374986620000021
Figure BDA0003374986620000021

扩张状态观察模块;将被控系统所有内部和外部扰动视为一体,扩张出新状态量--总扰动(z2),并对总扰动进行动态估计与反馈补偿;Expanded state observation module; considers all internal and external disturbances of the controlled system as one, expands a new state quantity-total disturbance (z 2 ), and performs dynamic estimation and feedback compensation for the total disturbance;

保留传统ADRC的变增益fal函数,简化一阶ESO结构式为Retaining the variable gain fal function of traditional ADRC, the simplified first-order ESO structural formula is

Figure BDA0003374986620000022
Figure BDA0003374986620000022

式中,z2保为观测的总扰动,δ取值为5Ts,Ts为系统离散步长;β1和β2为控制器参数;fal函数为误差非线性函数,其具体表达式为In the formula, z 2 is the total disturbance observed, δ is 5Ts, Ts is the discrete step size of the system; β 1 and β 2 are the controller parameters; the fal function is the error nonlinear function, and its specific expression is

Figure BDA0003374986620000023
Figure BDA0003374986620000023

采用ESO来实现总扰动的估计和反馈取代误差积分反馈的作用;ESO is used to realize the estimation of total disturbance and feedback to replace the function of error integral feedback;

复合状态误差反馈模块;Composite state error feedback module;

在SEF中增益由非线性函数fal组成,其结构如下In SEF the gain is composed of a nonlinear function fal whose structure is as follows

e1=x-z1 e 1 =xz 1

u0=kpfal(e13,δ)u 0 =k p fal(e 13 ,δ)

式中,u0为输出控制量,e1为LT输出跟踪信号与ESO反馈信号的误差,kp为增益系数,且α3满足0<α3<1;In the formula, u 0 is the output control quantity, e1 is the error between the LT output tracking signal and the ESO feedback signal, kp is the gain coefficient, and α3 satisfies 0<α3<1;

对ESO得到的扰动量进行反馈补偿以抵消内外扰动对系统的影响,即Feedback compensation is performed on the disturbance amount obtained by ESO to offset the influence of internal and external disturbances on the system, that is,

u1=u0-z2 u 1 =u 0 -z 2

控制器最终输出为The final output of the controller is

u=u1/b0 u=u 1 /b 0

式中,b0为控制量增益,在伺服驱动系统中u为输出的q轴给定电流。In the formula, b0 is the control amount gain, and in the servo drive system, u is the output q-axis given current.

一阶变增益ADRC控制方法,包括以下步骤:The first-order variable gain ADRC control method includes the following steps:

S1 ADRC参数初始化、S2速度给定量更新、S3状态误差反馈ESF、S4反馈补偿、S5输出控制量iq、S6控制对象motor、S7获取实时速度反馈、S8观测扰动量ESO;所述S8观测扰动量ESO将数据传输至S3状态误差反馈ESF以及S4反馈补偿。S1 ADRC parameter initialization, S2 speed given quantity update, S3 state error feedback ESF, S4 feedback compensation, S5 output control quantity iq, S6 control object motor, S7 obtain real-time speed feedback, S8 observe disturbance quantity ESO; the S8 observes disturbance quantity ESO transmits data to S3 state error feedback ESF and S4 feedback compensation.

基于一阶变增益ADRC控制方法的一阶非线性ADRC控制转速跟踪方法,在Matlab/simulink中搭建算法模型;其中转速环分别采用PI、ADRC控制器对比测试,并且为模拟机械臂实际运行状态,其中速度给定为规划好的一条加速直线,在运行过程中改变负载转矩的大小,观察转速是否能快速跟踪给定转速。Based on the first-order nonlinear ADRC control speed tracking method based on the first-order variable-gain ADRC control method, the algorithm model was built in Matlab/simulink; the speed loop was tested by PI and ADRC controllers respectively, and the actual operation state of the manipulator was simulated. The speed is given as a planned acceleration line, and the load torque is changed during operation to observe whether the speed can quickly track the given speed.

作为上述技术方案的改进,所述对比测试包括:负载突变对比测试以及负载随机扰动对比测试。As an improvement of the above technical solution, the comparison test includes: a load mutation comparison test and a load random disturbance comparison test.

本发明的有益效果:Beneficial effects of the present invention:

一阶变增益ADRC相当于ADRC的线性化特例。在考虑机械臂实际应用场景的基础下,简化了控制器结构与算法复杂度,同时又保留了ADRC的控制精度、鲁棒性好的优点,使得其特别适合六轴机械臂这种对控制精度要求较高的伺服驱动系统。A first-order variable gain ADRC is equivalent to a linearized special case of ADRC. On the basis of considering the actual application scenarios of the manipulator, the controller structure and algorithm complexity are simplified, and at the same time, the advantages of ADRC control accuracy and robustness are retained, making it especially suitable for the control accuracy of the six-axis manipulator. Requires higher servo drive system.

采用ESO来实现总扰动的估计和反馈可以取代误差积分反馈的作用,因此可以避免由误差积分反馈所带来的系统动态响应变慢、容易震荡、积分饱和等问题。Using ESO to realize the estimation and feedback of total disturbance can replace the role of error integral feedback, so it can avoid the problems of slow system dynamic response, easy oscillation and integral saturation caused by error integral feedback.

附图说明Description of drawings

图1为本发明实施例所述基于一阶变增益ADRC的六轴机械臂控制系统的流程示意图;1 is a schematic flowchart of a six-axis robotic arm control system based on a first-order variable gain ADRC according to an embodiment of the present invention;

图2为本发明实施例所述一阶变增益ADRC程序运行流程图;2 is a flow chart of the first-order variable gain ADRC program operation according to an embodiment of the present invention;

图3为本发明实施例所述负载转矩变化图;Fig. 3 is the load torque variation diagram according to the embodiment of the present invention;

图4为本发明实施例所述PMSM转速响应图;Fig. 4 is the PMSM rotational speed response diagram according to the embodiment of the present invention;

图5为本发明实施例所述突加负载转速响应图;FIG. 5 is a speed response diagram of a sudden load according to an embodiment of the present invention;

图6为本发明实施例所述突然卸载转速响应图;6 is a response diagram of a sudden unloading speed according to an embodiment of the present invention;

图7为本发明实施例所述负载波动图;FIG. 7 is a load fluctuation diagram according to an embodiment of the present invention;

图8为本发明实施例所述负载波动时的转速响应图;FIG. 8 is a speed response diagram when the load fluctuates according to the embodiment of the present invention;

图9为图8中180rpm-250rpm时的的转速响应图。FIG. 9 is a response diagram of the rotational speed at 180 rpm-250 rpm in FIG. 8 .

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention are described clearly and completely below. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。It should be noted that when an element is referred to as being "fixed to" another element, it can be directly on the other element or intervening elements may also be present. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present.

实施例Example

如图1所示,本实施例所述基于一阶变增益ADRC的六轴机械臂控制系统,包括一阶变增益ADRC控制器,所述一阶变增益ADRC控制器主要包括以下三个模块:As shown in FIG. 1 , the first-order variable-gain ADRC-based six-axis robotic arm control system in this embodiment includes a first-order variable-gain ADRC controller, and the first-order variable-gain ADRC controller mainly includes the following three modules:

(1)线性跟踪器(Linear Tracker,LT)(1) Linear Tracker (LT)

伺服六轴机器臂的转速给定主要由上位机进行路径、速度规划产生,然后通过协议实时下发至伺服驱动系统,理论上不存在速度突变情况。因此为最大限度提高控制器的响应速度,将传统的ADRC的微分器跟踪器舍去,直接输出给定转速,如下式所示The rotation speed of the servo six-axis robot arm is mainly generated by the path and speed planning of the upper computer, and then sent to the servo drive system in real time through the protocol. In theory, there is no sudden change in speed. Therefore, in order to maximize the response speed of the controller, the traditional ADRC differentiator tracker is discarded, and the given speed is directly output, as shown in the following formula

Figure BDA0003374986620000051
Figure BDA0003374986620000051

(2扩张状态观测器(Extended State Observer,ESO)(2 Extended State Observer (ESO)

作为ADRC核心部分,ESO将被控系统所有内部和外部扰动视为一体,扩张出新状态量--总扰动(z2),并用一定方法对总扰动进行动态估计与反馈补偿。ESO不必清楚扰动的精确模型,所以对于参数变化较大的控制系统,可以提高其鲁棒性及抗扰动能力。As the core part of ADRC, ESO regards all internal and external disturbances of the controlled system as one, expands a new state quantity - total disturbance (z2), and uses a certain method to dynamically estimate and feedback the total disturbance. ESO does not need to know the exact model of the disturbance, so for the control system with large parameter changes, its robustness and anti-disturbance ability can be improved.

保留传统ADRC的变增益fal函数,由于控制器中不存在微分量,因此经过简化一阶ESO结构式为The variable gain fal function of traditional ADRC is retained. Since there is no differential component in the controller, the simplified first-order ESO structural formula is

Figure BDA0003374986620000052
Figure BDA0003374986620000052

式中,z2保为观测的总扰动,δ可取值为5Ts,Ts为系统离散步长;β1和β2为控制器参数;fal函数为误差非线性函数,具有“小误差大增益,大误差小增益”的特点,其具体表达式为In the formula, z2 is the total disturbance observed, δ can take a value of 5Ts, Ts is the discrete step size of the system; β1 and β2 are the controller parameters; the fal function is an error nonlinear function, with "small error large gain, large error. The characteristic of "small gain", its specific expression is

Figure BDA0003374986620000061
Figure BDA0003374986620000061

采用ESO来实现总扰动的估计和反馈可以取代误差积分反馈的作用,因此可以避免由误差积分反馈所带来的系统动态响应变慢、容易震荡、积分饱和等问题。Using ESO to realize the estimation and feedback of total disturbance can replace the role of error integral feedback, so it can avoid the problems of slow system dynamic response, easy oscillation and integral saturation caused by error integral feedback.

(3)复合状态误差反馈(State Error Feedback,SEF)(3) Composite State Error Feedback (SEF)

在一般的PID控制中,控制器的比例、积分、微分信号采用线性组合的方式,输出控制量u0。通常情况下线性组合并不是最优的控制方式。因此在SEF中增益也由非线性函数fal组成,不考虑其中微分信号,其结构如下In general PID control, the proportional, integral and differential signals of the controller are linearly combined, and the control quantity u0 is output. In general, linear combination is not the optimal control method. Therefore, the gain in SEF is also composed of the nonlinear function fal, regardless of the differential signal, its structure is as follows

e1=x-z1 e 1 =xz 1

u0=kpfal(e13,δ)u 0 =k p fal(e 13 ,δ)

式中,e1为LT输出跟踪心啊后与ESO反馈信号的误差,kp为增益系数,且α3满足0<α3<1;In the formula, e1 is the error between the LT output tracking and the ESO feedback signal, kp is the gain coefficient, and α3 satisfies 0<α3<1;

最后,还需要将ESO估计得到的扰动量进行反馈补偿,以抵消内外扰动对系统的影响,即Finally, it is also necessary to perform feedback compensation on the disturbance amount estimated by ESO to offset the influence of internal and external disturbances on the system, that is,

u1=u0-z2 u 1 =u 0 -z 2

控制器最终输出为The final output of the controller is

u=u1/b0 u=u 1 /b 0

式中,b0为控制量增益,在伺服驱动系统中u为输出的q轴给定电流。In the formula, b0 is the control amount gain, and in the servo drive system, u is the output q-axis given current.

综上,本专利提出一阶变增益ADRC控制器结构如下:To sum up, the structure of the first-order variable gain ADRC controller proposed in this patent is as follows:

Figure BDA0003374986620000071
Figure BDA0003374986620000071

由上述公式可以作出一阶变增益ADRC控制器的结构图如图1所示;由上述结构式和结构图可见,本专利提出的一阶变增益ADRC相当于ADRC的线性化特例。在考虑机械臂实际应用场景的基础下,简化了控制器结构与算法复杂度,同时又保留了ADRC的控制精度、鲁棒性好的优点,使得其特别适合六轴机械臂这种对控制精度要求较高的伺服驱动系统。The structure diagram of the first-order variable gain ADRC controller can be obtained from the above formula as shown in Figure 1; from the above structural formula and structure diagram, it can be seen that the first-order variable gain ADRC proposed in this patent is equivalent to the linearization special case of ADRC. On the basis of considering the actual application scenarios of the manipulator, the controller structure and algorithm complexity are simplified, and at the same time, the advantages of ADRC control accuracy and robustness are retained, making it especially suitable for the control accuracy of the six-axis manipulator. Requires higher servo drive system.

实施例2Example 2

如图2所示;一阶变增益ADRC控制方法,包括以下步骤:As shown in Figure 2; the first-order variable gain ADRC control method includes the following steps:

S1 ADRC参数初始化、S2速度给定量更新、S3状态误差反馈ESF、S4反馈补偿、S5输出控制量iq、S6控制对象motor、S7获取实时速度反馈、S8观测扰动量ESO;所述S8观测扰动量ESO将数据传输至S3状态误差反馈ESF以及S4反馈补偿。S1 ADRC parameter initialization, S2 speed given quantity update, S3 state error feedback ESF, S4 feedback compensation, S5 output control quantity iq, S6 control object motor, S7 obtain real-time speed feedback, S8 observe disturbance quantity ESO; the S8 observes disturbance quantity ESO transmits data to S3 state error feedback ESF and S4 feedback compensation.

实施例3Example 3

为研究本专利提出的一阶非线性ADRC控制策略及转速跟踪性能改进的有效性,提出基于一阶变增益ADRC控制方法的一阶非线性ADRC控制转速跟踪方法,In order to study the effectiveness of the first-order nonlinear ADRC control strategy and speed tracking performance improvement proposed in this patent, a first-order nonlinear ADRC control speed tracking method based on the first-order variable gain ADRC control method is proposed.

在Matlab/simulink中搭建此算法模型。其中转速环分别采用PI、ADRC控制器对比测试,并且为模拟机械臂实际运行状态其中速度给定为规划好的一条加速直线,在运行过程中改变负载转矩的大小,观察转速是否能快速跟踪给定转速。Build this algorithm model in Matlab/simulink. The speed loop is tested by PI and ADRC controllers respectively, and the speed is given as a planned acceleration line to simulate the actual operating state of the manipulator. Change the load torque during the operation and observe whether the speed can track quickly. given speed.

3.1负载突变对比测试3.1 Load mutation comparison test

设定负载转矩变化如图3所示;The change of the set load torque is shown in Figure 3;

图4-图6为在负载突变时,PMSM控制系统分别在ADRC与PI控制时的转速响应图。Figures 4 to 6 are the speed response diagrams of the PMSM control system under ADRC and PI control respectively when the load is abruptly changed.

仿真中,在1s加负载转矩1N*m,在2s时卸载。可以看到,在加载时,PI控制下的电机转速跌落达到了60rpm,而ADRC控制时转速跌落幅值大大减小,只有20rpm。同样,在卸载时LADRC控制的电机转速幅值也明显小于PI控制时的转速变化。因此,采用本专利提出的ADRC控制器的电机控制系统在负载突变时的动态性能明显优于PI控制。In the simulation, a load torque of 1N*m is applied at 1s, and unloaded at 2s. It can be seen that when loading, the motor speed drop under PI control reaches 60rpm, while the amplitude of the speed drop under ADRC control is greatly reduced to only 20rpm. Likewise, the amplitude of the motor speed controlled by LADRC during unloading is also significantly smaller than the speed change during PI control. Therefore, the dynamic performance of the motor control system using the ADRC controller proposed in this patent is obviously better than that of the PI control when the load suddenly changes.

3.2负载随机扰动对比测试3.2 Load random disturbance comparison test

图7所示为PMSM控制系统稳定运行时,在有持续负载扰动情况下的电机转速与电流响应图。为模拟在实际机械臂运行工况下有可能出现的负载持续干扰情况,在仿真中对电机的负载转矩加入一定频率的扰动信号,Figure 7 shows the response diagram of motor speed and current under the condition of continuous load disturbance when the PMSM control system is running stably. In order to simulate the continuous disturbance of the load that may occur under the actual operating conditions of the manipulator, a disturbance signal of a certain frequency is added to the load torque of the motor in the simulation.

由图8以及图9的转速变化情况可以看出电机在稳态运行时,PI控制的转速波动比较明显,上下幅值最大能达到60rpm;ADRC控制的转速波动较小,最大幅值在10rpm以内。因此本文提出的ADRC在负载扰动时的稳态运行能力优于PI控制。It can be seen from the speed changes in Figure 8 and Figure 9 that when the motor is running in a steady state, the speed fluctuation of PI control is relatively obvious, and the upper and lower amplitudes can reach up to 60rpm; the speed fluctuation of ADRC control is small, and the maximum amplitude is within 10rpm. . Therefore, the steady-state operation capability of ADRC proposed in this paper is better than that of PI control under load disturbance.

综上所述,在相同的仿真实验下(给定相同、参数相同),相较于PI控制器,采用本专利提出的ADRC控制策略的驱动系统可以实现转速的快速无超调跟踪,且具有更好的抗负载扰动能力。To sum up, under the same simulation experiment (same given and same parameters), compared with the PI controller, the drive system using the ADRC control strategy proposed in this patent can achieve fast speed tracking without overshoot, and has Better anti-load disturbance capability.

需要说明的是,在本文中,如若存在第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, if there are relational terms such as first and second, etc., it is only used to distinguish one entity or operation from another entity or operation, and does not necessarily require or imply these entities or operations There is no such actual relationship or order between them. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The recorded technical solutions are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (4)

1.基于一阶变增益ADRC的六轴机械臂控制系统,其特征在于:包括一阶变增益ADRC控制器,所述一阶变增益ADRC控制器包括:1. the six-axis manipulator control system based on first-order variable gain ADRC, is characterized in that: comprise first-order variable-gain ADRC controller, and described first-order variable-gain ADRC controller comprises: 线性跟踪模块;通过上位机进行路径、速度规划,输出给定转速并传递至伺服驱动系统,如下式所示Linear tracking module; the path and speed are planned by the host computer, and the given speed is output and transmitted to the servo drive system, as shown in the following formula
Figure FDA0003374986610000011
Figure FDA0003374986610000011
扩张状态观察模块;将被控系统所有内部和外部扰动视为一体,扩张出新状态量--总扰动(z2),并对总扰动进行动态估计与反馈补偿;Expanded state observation module; considers all internal and external disturbances of the controlled system as one, expands a new state quantity-total disturbance (z 2 ), and performs dynamic estimation and feedback compensation for the total disturbance; 保留传统ADRC的变增益fal函数,简化一阶ESO结构式为Retaining the variable gain fal function of traditional ADRC, the simplified first-order ESO structural formula is
Figure FDA0003374986610000012
Figure FDA0003374986610000012
式中,z2保为观测的总扰动,δ取值为5Ts,Ts为系统离散步长;β1和β2为控制器参数;fal函数为误差非线性函数,其具体表达式为In the formula, z 2 is the total disturbance observed, δ is 5Ts, Ts is the discrete step size of the system; β 1 and β 2 are the controller parameters; the fal function is the error nonlinear function, and its specific expression is
Figure FDA0003374986610000013
Figure FDA0003374986610000013
采用ESO来实现总扰动的估计和反馈取代误差积分反馈的作用;ESO is used to realize the estimation of total disturbance and feedback to replace the function of error integral feedback; 复合状态误差反馈模块;Composite state error feedback module; 在SEF中增益由非线性函数fal组成,其结构如下In SEF the gain is composed of a nonlinear function fal whose structure is as follows e1=x-z1 e 1 =xz 1 u0=kpfal(e13,δ)u 0 =k p fal(e 13 ,δ) 式中,u0为输出控制量,e1为LT输出跟踪信号与ESO反馈信号的误差,kp为增益系数,且α3满足0<α3<1;In the formula, u 0 is the output control quantity, e1 is the error between the LT output tracking signal and the ESO feedback signal, kp is the gain coefficient, and α3 satisfies 0<α3<1; 对ESO得到的扰动量进行反馈补偿以抵消内外扰动对系统的影响,即Feedback compensation is performed on the disturbance amount obtained by ESO to offset the influence of internal and external disturbances on the system, that is, u1=u0-z2 u 1 =u 0 -z 2 控制器最终输出为The final output of the controller is u=u1/b0 u=u 1 /b 0 式中,b0为控制量增益,在伺服驱动系统中u为输出的q轴给定电流。In the formula, b0 is the control amount gain, and in the servo drive system, u is the output q-axis given current.
2.根据权利要求1所述的一阶变增益ADRC控制方法,其特征在于:包括以下步骤:2. first-order variable gain ADRC control method according to claim 1, is characterized in that: comprise the following steps: S1 ADRC参数初始化、S2速度给定量更新、S3状态误差反馈ESF、S4反馈补偿、S5输出控制量iq、S6控制对象motor、S7获取实时速度反馈、S8观测扰动量ESO;所述S8观测扰动量ESO将数据传输至S3状态误差反馈ESF以及S4反馈补偿。S1 ADRC parameter initialization, S2 speed given quantity update, S3 state error feedback ESF, S4 feedback compensation, S5 output control quantity iq, S6 control object motor, S7 obtain real-time speed feedback, S8 observe disturbance quantity ESO; the S8 observes disturbance quantity ESO transmits data to S3 state error feedback ESF and S4 feedback compensation. 3.根据权利要求1所述的基于一阶变增益ADRC控制方法的一阶非线性ADRC控制转速跟踪方法,其特征在于:在Matlab/simulink中搭建算法模型;其中转速环分别采用PI、ADRC控制器对比测试,并且为模拟机械臂实际运行状态,其中速度给定为规划好的一条加速直线,在运行过程中改变负载转矩的大小,观察转速是否能快速跟踪给定转速。3. the first-order nonlinear ADRC control rotational speed tracking method based on the first-order variable gain ADRC control method according to claim 1, is characterized in that: in Matlab/simulink, set up algorithm model; Wherein rotational speed loop adopts PI, ADRC control respectively In order to simulate the actual operating state of the manipulator, the speed is given as a planned acceleration line, and the load torque is changed during the operation to observe whether the speed can quickly track the given speed. 4.根据权利要求3中所述的基于一阶变增益ADRC控制方法的一阶非线性ADRC控制转速跟踪方法,其特征在于:所述对比测试包括:负载突变对比测试以及负载随机扰动对比测试。4 . The first-order nonlinear ADRC control speed tracking method based on the first-order variable gain ADRC control method according to claim 3 , wherein the comparison test comprises: load mutation comparison test and load random disturbance comparison test. 5 .
CN202111413191.0A 2021-11-25 2021-11-25 Six-axis mechanical arm control system based on first-order variable gain ADRC Active CN114290327B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111413191.0A CN114290327B (en) 2021-11-25 2021-11-25 Six-axis mechanical arm control system based on first-order variable gain ADRC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111413191.0A CN114290327B (en) 2021-11-25 2021-11-25 Six-axis mechanical arm control system based on first-order variable gain ADRC

Publications (2)

Publication Number Publication Date
CN114290327A true CN114290327A (en) 2022-04-08
CN114290327B CN114290327B (en) 2023-05-30

Family

ID=80964826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111413191.0A Active CN114290327B (en) 2021-11-25 2021-11-25 Six-axis mechanical arm control system based on first-order variable gain ADRC

Country Status (1)

Country Link
CN (1) CN114290327B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993591A (en) * 2022-04-15 2022-09-02 中南大学 A LADRC-based seismic simulation shaking table control method and system

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156107A (en) * 1984-01-25 1985-08-16 Hitachi Ltd Track correcting method of robot hand
US20030199997A1 (en) * 2002-04-18 2003-10-23 Zhiqiang Gao Scaling and parameterizing a controller
CN1725131A (en) * 2004-07-21 2006-01-25 韩京清 Three-parameter fastest self-anti-interference controller device and self-anti-interference control method
WO2007035559A2 (en) * 2005-09-19 2007-03-29 Cleveland State University Controllers, observers, and applications thereof
CN104281055A (en) * 2014-03-18 2015-01-14 江南大学 Active-disturbance-rejection control method for temperature of a constant stirring polypropylene reaction kettle
CN105563489A (en) * 2016-03-01 2016-05-11 浙江工业大学 Flexible manipulator control method based on non-linear active disturbance rejection control technique
CN107357171A (en) * 2017-08-14 2017-11-17 哈尔滨理工大学 The control method of boat-carrying three-axle steady platform
CN107792655A (en) * 2016-08-29 2018-03-13 发那科株式会社 Workpiece extraction system
CN108459497A (en) * 2017-12-14 2018-08-28 南京理工大学 A kind of steady control method for taking aim at servo-drive system based on ADRC and NLPID
CN108555913A (en) * 2018-06-15 2018-09-21 天津大学 The Auto-disturbance-rejection Control of mobile mechanical arm position/force based on passivity
CN108908374A (en) * 2018-09-20 2018-11-30 安徽理工大学 A kind of express sorter device people and control system
CN109143863A (en) * 2018-09-13 2019-01-04 武汉科技大学 The quick self study of nonlinear system improves ADRC control method
CN109333529A (en) * 2018-09-20 2019-02-15 南京邮电大学 Output-consistent controller and design method for multiple single-arm manipulators with predefined performance
CN109676607A (en) * 2018-12-30 2019-04-26 江苏集萃智能制造技术研究所有限公司 A kind of zero-g control method of non-moment sensing
CN109683471A (en) * 2018-08-28 2019-04-26 杭州电子科技大学 Auto-disturbance-rejection Control, device and system
CN110549334A (en) * 2019-08-15 2019-12-10 大连大华中天科技有限公司 Control method of four-degree-of-freedom mechanical arm
CN110703591A (en) * 2019-10-29 2020-01-17 西安石油大学 A control method of an active disturbance rejection controller for a rotary valve drive motor
CN110764418A (en) * 2019-11-13 2020-02-07 天津津航计算技术研究所 Active disturbance rejection controller based on finite time convergence extended state observer
CN110989355A (en) * 2019-12-18 2020-04-10 西安理工大学 Improved generation auto-disturbance-rejection controller
CN111462154A (en) * 2020-02-27 2020-07-28 中电莱斯信息系统有限公司 Target positioning method and device based on depth vision sensor and automatic grabbing robot
CN111531548A (en) * 2020-06-12 2020-08-14 安徽工程大学 Active-disturbance-rejection control method of multi-shaft series mechanical arm
CN112241124A (en) * 2020-10-27 2021-01-19 南昌大学 Design method of self-adaptive inversion integral nonsingular fast terminal sliding mode controller
CN112394637A (en) * 2020-11-13 2021-02-23 江苏集萃智能制造技术研究所有限公司 Cooperative robot control method based on active disturbance rejection control technology
CN112847303A (en) * 2020-12-31 2021-05-28 北京理工大学 Cooperative control method of Stewart platform

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156107A (en) * 1984-01-25 1985-08-16 Hitachi Ltd Track correcting method of robot hand
US20030199997A1 (en) * 2002-04-18 2003-10-23 Zhiqiang Gao Scaling and parameterizing a controller
CN1725131A (en) * 2004-07-21 2006-01-25 韩京清 Three-parameter fastest self-anti-interference controller device and self-anti-interference control method
WO2007035559A2 (en) * 2005-09-19 2007-03-29 Cleveland State University Controllers, observers, and applications thereof
CN104281055A (en) * 2014-03-18 2015-01-14 江南大学 Active-disturbance-rejection control method for temperature of a constant stirring polypropylene reaction kettle
CN105563489A (en) * 2016-03-01 2016-05-11 浙江工业大学 Flexible manipulator control method based on non-linear active disturbance rejection control technique
CN107792655A (en) * 2016-08-29 2018-03-13 发那科株式会社 Workpiece extraction system
CN107357171A (en) * 2017-08-14 2017-11-17 哈尔滨理工大学 The control method of boat-carrying three-axle steady platform
CN108459497A (en) * 2017-12-14 2018-08-28 南京理工大学 A kind of steady control method for taking aim at servo-drive system based on ADRC and NLPID
CN108555913A (en) * 2018-06-15 2018-09-21 天津大学 The Auto-disturbance-rejection Control of mobile mechanical arm position/force based on passivity
CN109683471A (en) * 2018-08-28 2019-04-26 杭州电子科技大学 Auto-disturbance-rejection Control, device and system
CN109143863A (en) * 2018-09-13 2019-01-04 武汉科技大学 The quick self study of nonlinear system improves ADRC control method
CN109333529A (en) * 2018-09-20 2019-02-15 南京邮电大学 Output-consistent controller and design method for multiple single-arm manipulators with predefined performance
CN108908374A (en) * 2018-09-20 2018-11-30 安徽理工大学 A kind of express sorter device people and control system
CN109676607A (en) * 2018-12-30 2019-04-26 江苏集萃智能制造技术研究所有限公司 A kind of zero-g control method of non-moment sensing
CN110549334A (en) * 2019-08-15 2019-12-10 大连大华中天科技有限公司 Control method of four-degree-of-freedom mechanical arm
CN110703591A (en) * 2019-10-29 2020-01-17 西安石油大学 A control method of an active disturbance rejection controller for a rotary valve drive motor
CN110764418A (en) * 2019-11-13 2020-02-07 天津津航计算技术研究所 Active disturbance rejection controller based on finite time convergence extended state observer
CN110989355A (en) * 2019-12-18 2020-04-10 西安理工大学 Improved generation auto-disturbance-rejection controller
CN111462154A (en) * 2020-02-27 2020-07-28 中电莱斯信息系统有限公司 Target positioning method and device based on depth vision sensor and automatic grabbing robot
CN111531548A (en) * 2020-06-12 2020-08-14 安徽工程大学 Active-disturbance-rejection control method of multi-shaft series mechanical arm
CN112241124A (en) * 2020-10-27 2021-01-19 南昌大学 Design method of self-adaptive inversion integral nonsingular fast terminal sliding mode controller
CN112394637A (en) * 2020-11-13 2021-02-23 江苏集萃智能制造技术研究所有限公司 Cooperative robot control method based on active disturbance rejection control technology
CN112847303A (en) * 2020-12-31 2021-05-28 北京理工大学 Cooperative control method of Stewart platform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高阳等: "高阶不确定非线性系统的线性自抗扰控制", 《控制与决策》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993591A (en) * 2022-04-15 2022-09-02 中南大学 A LADRC-based seismic simulation shaking table control method and system

Also Published As

Publication number Publication date
CN114290327B (en) 2023-05-30

Similar Documents

Publication Publication Date Title
CN110764418B (en) Active disturbance rejection controller based on limited time convergence extended state observer
CN110707981A (en) Permanent magnet synchronous motor speed controller based on novel extended state observer
CN114536334B (en) High-order sliding mode anti-interference control method for flexible mechanical arm system
CN111251288B (en) Flexible robot cascade control system and method based on time-varying interference compensation
CN112039394A (en) A PMSM Servo Control System Based on Fuzzy Active Disturbance Rejection
CN112394637B (en) A collaborative robot control method based on active disturbance rejection control technology
CN116339141A (en) A global fixed-time trajectory tracking sliding mode control method for manipulators
CN111510035A (en) A control method and device for a permanent magnet synchronous motor
CN111865169A (en) A Model-Free Integral Sliding Mode Control Method for Ultrasonic Motor Servo System
CN116841205A (en) Hand-boat coupling system trajectory tracking limited time preset performance control method and system
CN110649845B (en) Position Tracking Control Method of Photoelectric Turntable Based on Robust Generalized Predictive Control
Xia et al. Advanced motion control of hydraulic manipulator with precise compensation of dynamic friction
CN108233805A (en) The design method of the extended state observer of permanent magnet synchronous motor revolution speed control system
Cheng et al. Bounded decoupling control for flexible‐joint robot manipulators with state estimation
CN115903507A (en) Inertial navigation modulation axis control method based on LQR regulator
CN114290327A (en) Six-axis robotic arm control system based on first-order variable gain ADRC
CN117452831A (en) Four-rotor unmanned aerial vehicle control method, device, system and storage medium
CN116442223A (en) A Design Method of Nonlinear Dynamic Controller for Trajectory Tracking of Manipulator System
CN116317794A (en) A high-precision control method for electric actuators of aero-engines
CN108803325B (en) Robust finite time control method for permanent magnet synchronous motor servo system
CN109361333B (en) Online inertia identification method and system, motor controller and readable memory
CN115179300A (en) Flexible mechanical arm trajectory tracking control method for preset time
CN114890314A (en) Fault-tolerant control method for double-pendulum tower crane with online track correction
CN118778441A (en) Composite anti-interference control method and system for control moment gyro frame servo system
Mokhtari et al. Decentralized control design using Integrator Backstepping for controlling web winding systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant