[go: up one dir, main page]

CN114300613A - Planar Magnetized Spin Orbit Magnetic Assemblies - Google Patents

Planar Magnetized Spin Orbit Magnetic Assemblies Download PDF

Info

Publication number
CN114300613A
CN114300613A CN202110202621.8A CN202110202621A CN114300613A CN 114300613 A CN114300613 A CN 114300613A CN 202110202621 A CN202110202621 A CN 202110202621A CN 114300613 A CN114300613 A CN 114300613A
Authority
CN
China
Prior art keywords
layer
planar
heavy metal
free layer
film surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110202621.8A
Other languages
Chinese (zh)
Other versions
CN114300613B (en
Inventor
李欣翰
魏拯华
王艺蓉
杨姗意
张耀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN114300613A publication Critical patent/CN114300613A/en
Application granted granted Critical
Publication of CN114300613B publication Critical patent/CN114300613B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Materials of the active region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

The invention provides a planar magnetized spin orbit magnetic component. The planar magnetized spin-orbit magnetic device includes a heavy metal layer, an upper electrode, and a magnetic tunneling junction. The magnetic tunnel junction is arranged between the heavy metal layer and the upper electrode. The MTJ includes a free layer and a pinned layer. The free layer is arranged on the heavy metal layer and is provided with a first film surface area. The fixed layer is arranged on the free layer and is provided with a second membrane surface area. A preset included angle is formed between the long axis direction of the membrane surface shape of the free layer and the long axis direction of the membrane surface shape of the fixed layer, and the area of the first membrane surface is larger than that of the second membrane surface.

Description

平面式磁化自旋轨道磁性组件Planar Magnetized Spin Orbit Magnetic Assemblies

技术领域technical field

本发明涉及一种平面式磁化自旋轨道磁性组件。The invention relates to a planar magnetized spin orbit magnetic assembly.

背景技术Background technique

磁内存(Magnetic Random Access Memory,MRAM)具有速度快、低耗能、高密度、非挥发性,和几乎可无限次读写的优势,被预测为是下一世代内存的主流。磁内存中存储元件的主要结构是由铁磁/非磁性金属/铁磁三层材料的固定层(Pined Layer)、穿隧阻障层(Tunneling Barrier Layer)及磁性材料的自由层(Free Layer)所堆栈组成的堆栈结构。此种堆栈结构可被称为磁穿隧接面(Magnetic Tunnel Junction,MTJ)组件。由于写入电流仅通过被选择的磁穿隧接面组件,而磁化翻转取决于写入电流的强度以及外部磁场的强度,因此在磁穿隧接面组件微缩之后反而有利于写入电流的下降,理论上将能够同时解决提升写入选择性以及降低写入电流的问题。Magnetic Random Access Memory (MRAM) has the advantages of high speed, low power consumption, high density, non-volatile, and almost unlimited read and write, and is predicted to be the mainstream of the next generation of memory. The main structure of the storage element in the magnetic memory is composed of the Pined Layer, the Tunneling Barrier Layer and the Free Layer of the magnetic material. The stack structure composed of stacks. Such a stack structure may be referred to as a Magnetic Tunnel Junction (MTJ) device. Since the write current only passes through the selected MTJ components, and the magnetization reversal depends on the strength of the write current and the strength of the external magnetic field, it is beneficial to the decrease of the write current after the MTJ components are scaled down , in theory, it will be able to solve the problems of improving write selectivity and reducing write current at the same time.

以自旋轨道力矩(Spin-Orbit-Torque,SOT)机制来进行读写的磁穿隧接面组件可以区分为平面式MTJ组件(In-plane MTJ)以及垂直式MTJ组件(Perpendicular MTJ)。若利用自旋轨道力矩的机制来实现磁内存结构的话,可更为提升操作速度及写入可靠度。SOT在平面式MTJ组件中的翻转机制为,将写入电流通入以铁磁材料形成的重金属层。重金属层将因为自旋霍尔效应而产生自旋转移力矩(Spin Transfer Torque,STT)。此外,写入电流在经过材料接口处的垂直电场将会产生拉什巴力矩(Rashba Torque,RT)。由于STT以及RT这两种力矩皆与写入电流的方向垂直且平行于膜面,因此这两种力矩将会相互加总而成为SOT使得铁磁层的磁矩翻转,达成写入存储元件的目的。The magnetic tunneling junction components that read and write by the spin-orbit-torque (SOT) mechanism can be divided into in-plane MTJ components and vertical MTJ components (Perpendicular MTJ). If the spin-orbit torque mechanism is used to realize the magnetic memory structure, the operation speed and writing reliability can be further improved. The flipping mechanism of the SOT in the planar MTJ device is to pass the writing current into the heavy metal layer formed of the ferromagnetic material. The heavy metal layer will generate a spin transfer torque (STT) due to the spin Hall effect. In addition, the vertical electric field of the write current through the material interface will generate Rashba Torque (RT). Since the two moments of STT and RT are both perpendicular to the direction of the write current and parallel to the film surface, these two moments will add up to each other and become SOT, which will make the magnetic moment of the ferromagnetic layer reverse, and achieve the write memory element. Purpose.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供一种平面式磁化自旋轨道磁性组件,通过对自由层与固定层的膜面形状进行设计,使得自旋轨道力矩对于自由层的磁矩而言将会提供额外的侧向力矩,从而略为降低自由层的磁矩在磁化翻转的难度,进而达到省电效果。Embodiments of the present invention provide a planar magnetized spin-orbit magnetic assembly. By designing the film surface shapes of the free layer and the pinned layer, the spin-orbit moment will provide an additional lateral direction to the magnetic moment of the free layer. Therefore, the difficulty of the magnetic moment of the free layer in the magnetization reversal is slightly reduced, and the power saving effect is achieved.

本发明实施例的平面式磁化自旋轨道磁性组件包括重金属层、上电极以及磁穿隧接面。磁穿隧接面设置于重金属层与上电极之间。磁穿隧接面包括自由层以及固定层。自由层设置于重金属层上,且自由层具有第一膜面面积。固定层设置于自由层上,且固定层具有第二膜面面积。自由层的膜面形状的长轴方向与固定层的膜面形状的长轴方向之间具有预设夹角,且第一膜面面积大于第二膜面面积。The planar magnetized spin-orbit magnetic component of the embodiment of the present invention includes a heavy metal layer, an upper electrode, and a magnetic tunnel junction. The magnetic tunnel junction is arranged between the heavy metal layer and the upper electrode. The magnetic tunnel junction includes a free layer and a pinned layer. The free layer is arranged on the heavy metal layer, and the free layer has a first film surface area. The fixed layer is disposed on the free layer, and the fixed layer has a second membrane surface area. There is a preset angle between the long axis direction of the film surface shape of the free layer and the long axis direction of the film surface shape of the fixed layer, and the area of the first film surface is larger than the area of the second film surface.

基于上述,本发明实施例所提出的平面式磁化自旋轨道磁性组件经设计以将磁穿隧接面中自由层的膜面大于固定层的膜面,且使自由层与固定层的膜面形状的长轴方向相互之间具有预设夹角。因此,可让自由层的磁矩更容易受到自旋轨道力矩的影响而被调整。如此一来,自旋轨道力矩将会对自由层的磁矩向量提供额外的侧向力矩,从而略为降低自由层的磁矩在磁化翻转的难度。换句话说,本实施例的自由层磁矩将更易于受到重金属层的电流所引发的自旋轨道力矩而发生磁化翻转,因此可降低重金属层中的写入电流量级,进而达到省电效果。Based on the above, the planar magnetization spin-orbit magnetic assembly proposed in the embodiments of the present invention is designed so that the film surface of the free layer in the magnetic tunnel junction is larger than the film surface of the pinned layer, and the film surface of the free layer and the pinned layer is The long axis directions of the shapes have a preset angle with each other. Therefore, the magnetic moment of the free layer can be more easily adjusted by the influence of the spin-orbit moment. In this way, the spin-orbit moment will provide an additional lateral moment to the magnetic moment vector of the free layer, thereby slightly reducing the difficulty of the magnetic moment of the free layer in the magnetization inversion. In other words, the magnetic moment of the free layer in this embodiment is more likely to be magnetized by the spin-orbit moment induced by the current of the heavy metal layer, and thus the magnitude of the write current in the heavy metal layer can be reduced, thereby achieving the power saving effect. .

附图说明Description of drawings

图1A是依照本发明的第一实施例的平面式磁化自旋轨道磁性组件的结构示意图。FIG. 1A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly according to a first embodiment of the present invention.

图1B是图1A中平面式磁化自旋轨道磁性组件的结构上视图。FIG. 1B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly of FIG. 1A .

图1C是图1A中固定层与自由层的膜面形状示意图。FIG. 1C is a schematic diagram of the shape of the film surface of the fixed layer and the free layer in FIG. 1A .

图2是依照本发明的第一实施例与第二实施例的平面式磁化自旋轨道磁性组件的结构的侧视图。2 is a side view of the structure of the planar magnetized spin-orbit magnetic assembly according to the first embodiment and the second embodiment of the present invention.

图3A是依照本发明的第二实施例的平面式磁化自旋轨道磁性组件的结构示意图。3A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly according to a second embodiment of the present invention.

图3B是图3A中平面式磁化自旋轨道磁性组件的结构上视图。FIG. 3B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly of FIG. 3A .

图3C是图3A中固定层与自由层的膜面形状示意图。FIG. 3C is a schematic diagram of the shape of the film surface of the fixed layer and the free layer in FIG. 3A .

图4A是依照本发明的第三实施例的平面式磁化自旋轨道磁性组件的结构示意图。4A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly according to a third embodiment of the present invention.

图4B是图4A中平面式磁化自旋轨道磁性组件的结构上视图。FIG. 4B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly of FIG. 4A .

图4C是图4A中固定层与自由层的膜面形状示意图。FIG. 4C is a schematic diagram of the shape of the film surface of the fixed layer and the free layer in FIG. 4A .

图5是依照本发明的第三实施例与第四实施例的平面式磁化自旋轨道磁性组件的结构的侧视图。5 is a side view of the structure of the planar magnetized spin-orbit magnetic assembly according to the third embodiment and the fourth embodiment of the present invention.

图6A是依照本发明的第四实施例的平面式磁化自旋轨道磁性组件的结构示意图。6A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly according to a fourth embodiment of the present invention.

图6B是图6A中平面式磁化自旋轨道磁性组件的结构上视图。FIG. 6B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly of FIG. 6A .

图6C是图6A中固定层与自由层的膜面形状示意图。FIG. 6C is a schematic diagram of the shape of the film surface of the fixed layer and the free layer in FIG. 6A .

图7是本发明实施例中固定层的膜面形状为椭圆形的情况下自由层的形状以及调整预设夹角后重金属层中输入电流的示意图。7 is a schematic diagram of the shape of the free layer and the input current in the heavy metal layer after adjusting the preset angle when the shape of the film surface of the fixed layer is oval in the embodiment of the present invention.

附图标记说明Description of reference numerals

100、300、400、600:平面式磁化自旋轨道磁性组件;100, 300, 400, 600: Planar magnetized spin-orbit magnetic components;

110、410、610:重金属层;110, 410, 610: heavy metal layer;

120:上电极;120: upper electrode;

130、330:磁穿隧接面;130, 330: magnetic tunnel junction;

131:覆盖层;131: cover layer;

132、332:固定层;132, 332: fixed layer;

133:阻障层;133: barrier layer;

134、334:自由层;134, 334: free layer;

134-1、134-3:胶囊形的半圆形;134-1, 134-3: Capsule-shaped semicircle;

134-2:胶囊形的矩形;134-2: Capsule-shaped rectangle;

151、351:自由层的磁矩向量;151, 351: the magnetic moment vector of the free layer;

152、352:固定层的磁矩向量;152, 352: the magnetic moment vector of the fixed layer;

162、362:退火方向;162, 362: annealing direction;

440、640:下电极;440, 640: lower electrode;

470:下电极的开口;470: the opening of the lower electrode;

710、720、730、740:标号;710, 720, 730, 740: label;

Ic:输入电流;Ic: input current;

A1:第一膜面面积;A1: The area of the first film surface;

A2:第二膜面面积;A2: The area of the second membrane surface;

LD1、LD3:自由层的膜面形状的长轴方向;LD1, LD3: the long axis direction of the film surface shape of the free layer;

LD2、LD4:固定层的膜面形状的长轴方向;LD2, LD4: the long axis direction of the film surface shape of the fixed layer;

P1:中心点;P1: center point;

X:X轴方向;X: X-axis direction;

Y:Y轴方向;Y: Y-axis direction;

Z:Z轴方向;Z: Z-axis direction;

θ:预设夹角;θ: preset included angle;

LAD:胶囊形的长轴;LAD: the long axis of the capsule;

SAD:胶囊形的短轴;SAD: capsule-shaped short axis;

P1:自由层的膜面形状的中心点。P1: The center point of the film surface shape of the free layer.

具体实施方式Detailed ways

现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同组件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts.

本实施例特别针对磁穿隧接面中的自由层以及固定层的膜面形状以及相对应的结构进行设计,从而让本发明各实施例的自由层的磁矩将更易于受到重金属层的电流所引发的自旋轨道力矩而发生磁化翻转。以下分别说明各实施例中的细节。This embodiment is specially designed for the film surface shapes and corresponding structures of the free layer and the fixed layer in the magnetic tunnel junction, so that the magnetic moment of the free layer in each embodiment of the present invention will be more susceptible to the current of the heavy metal layer The induced spin-orbit moment causes the magnetization to flip. The details in each embodiment are described below.

图1A是依照本发明的第一实施例的平面式磁化自旋轨道磁性组件100的结构示意图。图1B是图1A中平面式磁化自旋轨道磁性组件100的结构上视图。图1C是图1A中固定层132与自由层134的膜面形状示意图。图2是依照本发明的第一实施例与第二实施例的平面式磁化自旋轨道磁性组件100的结构的侧视图。在此先行以图1A至图1C以及图2说明本发明的第一实施例。FIG. 1A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly 100 according to a first embodiment of the present invention. FIG. 1B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly 100 of FIG. 1A . FIG. 1C is a schematic diagram of the shape of the film surface of the fixed layer 132 and the free layer 134 in FIG. 1A . FIG. 2 is a side view of the structure of the planar magnetized spin-orbit magnetic assembly 100 according to the first embodiment and the second embodiment of the present invention. Here, the first embodiment of the present invention is described first with reference to FIGS. 1A to 1C and FIG. 2 .

平面式磁化自旋轨道磁性组件100主要包括重金属层110、上电极120以及磁穿隧接面130。磁穿隧接面130设置于重金属层110与上电极120之间。磁穿隧接面130主要包括自由层(free layer)134以及固定层(pinned layer)132。The planar magnetized spin-orbit magnetic component 100 mainly includes a heavy metal layer 110 , an upper electrode 120 and a magnetic tunnel junction 130 . The magnetic tunnel junction 130 is disposed between the heavy metal layer 110 and the upper electrode 120 . The magnetic tunnel junction 130 mainly includes a free layer 134 and a pinned layer 132 .

重金属层110又可以称为是写入线。重金属层110通过电极接点获得输入电流Ic而产生自旋电流,以使磁穿隧接面130发生磁化翻转。本实施例的重金属层110的材料可以为钽(Ta)、铂(Pt)、钨(W)或上述三者的组合的合金。The heavy metal layer 110 may also be referred to as a write line. The heavy metal layer 110 obtains the input current Ic through the electrode contact to generate a spin current, so that the magnetization reversal of the magnetic tunnel junction 130 occurs. The material of the heavy metal layer 110 in this embodiment may be tantalum (Ta), platinum (Pt), tungsten (W), or an alloy of a combination of the above three.

上电极120又可以称为是位线,其用以读取平面式磁化自旋轨道磁性组件100中磁穿隧接面130所存储的数据。上电极120的材料是导电材料,例如为铜(Cu)、铝(Al)、钽(Ta)或上述元素的组合的合金。The upper electrode 120 may also be referred to as a bit line, which is used for reading data stored in the magnetic tunnel junction 130 in the planar magnetized spin orbit magnetic device 100 . The material of the upper electrode 120 is a conductive material, such as copper (Cu), aluminum (Al), tantalum (Ta), or an alloy of a combination of the above elements.

自由层134设置于重金属层110上。固定层132设置于自由层134上。固定层132的材料为具有平面式磁矩的铁磁材料,且固定层132的磁矩向量152为平行于膜面而排列。固定层132的材料包括铁(Fe)、钴(Co)、镍(Ni)、钆(Gd)、铽(Tb)、镝(Dy)、硼(B)或上述七者的组合的合金。详细来说,固定层132例如是由下固定层、耦合层以及上固定层所组成的铁磁/非磁性金属/铁磁材料叠层。上固定层及下固定层可以是单层或复合式多层结构。单层结构的上固定层或下固定层可通过例如是铁(Fe)、钴(Co)、镍(Ni)…等铁磁材料或这些元素的合金来实现。多层复合式结构的上固定层或下固定层则可为铁磁材料与金属材料的复合层结构,例如以钴(Co)/铂(Pt)、钴(Co)/镍(Ni)、钴(Co)/钯(Pd)…等元素组成的复合层结构。The free layer 134 is disposed on the heavy metal layer 110 . The fixed layer 132 is disposed on the free layer 134 . The material of the pinned layer 132 is a ferromagnetic material with a planar magnetic moment, and the magnetic moment vector 152 of the pinned layer 132 is aligned parallel to the film surface. The material of the pinned layer 132 includes iron (Fe), cobalt (Co), nickel (Ni), gadolinium (Gd), terbium (Tb), dysprosium (Dy), boron (B) or an alloy of combinations thereof. In detail, the pinned layer 132 is, for example, a ferromagnetic/non-magnetic metal/ferromagnetic material stack composed of a lower pinned layer, a coupling layer and an upper pinned layer. The upper fixed layer and the lower fixed layer can be a single layer or a composite multi-layer structure. The upper pinned layer or the lower pinned layer of the single-layer structure can be realized by ferromagnetic materials such as iron (Fe), cobalt (Co), nickel (Ni), etc., or an alloy of these elements. The upper or lower fixed layer of the multi-layer composite structure can be a composite layer structure of ferromagnetic material and metal material, such as cobalt (Co)/platinum (Pt), cobalt (Co)/nickel (Ni), cobalt (Co) (Co)/Palladium (Pd)... and other elements of the composite layer structure.

自由层134为平面式磁化自旋轨道磁性组件100中的记忆层。重金属层110可从平面式磁化自旋轨道磁性组件100的电极接点接收输入电流Ic。此输入电流Ic将流过重金属层110以因自旋霍尔效应(SHE)而产生多种具备不同方向的自旋电流,进而产生合力矩,使自由层134的磁矩翻转,以达成数据读写的目的。自由层134的材料为具有水平异相性的铁磁材料。自由层134的磁矩是由自由层的形状决定,也就是,自由层的磁矩方向将按照自由层形状中的长轴方向来决定,且自由层的磁矩向量为平行于膜面而排列。自由层134的铁磁材料可以是铁(Fe)、钴(Co)、镍(Ni)、钆(Gd)、铽(Tb)、镝(Dy)、硼(B)或这些元素的合金,如CoFeB、NF、FeB…等。自由层134可以是单层结构或是多层复合式结构。若自由层为由多层铁磁材料形成的复合结构的话,这些多层复合结构的材料则可以是钴(Co)/铂(Pt)、钴(Co)/镍(Ni)、钴(Co)/钯(Pd)…等元素组成的复合层结构。The free layer 134 is a memory layer in the planar magnetized spin-orbit magnetic assembly 100 . The heavy metal layer 110 can receive the input current Ic from the electrode contacts of the planar magnetized spin-orbit magnetic assembly 100 . The input current Ic will flow through the heavy metal layer 110 to generate a variety of spin currents with different directions due to the spin Hall effect (SHE), thereby generating a resultant torque to reverse the magnetic moment of the free layer 134 to achieve data reading purpose of writing. The material of the free layer 134 is a ferromagnetic material having horizontal heterogeneity. The magnetic moment of the free layer 134 is determined by the shape of the free layer, that is, the direction of the magnetic moment of the free layer will be determined according to the long axis direction in the shape of the free layer, and the magnetic moment vector of the free layer is aligned parallel to the film surface. . The ferromagnetic material of the free layer 134 may be iron (Fe), cobalt (Co), nickel (Ni), gadolinium (Gd), terbium (Tb), dysprosium (Dy), boron (B) or an alloy of these elements, such as CoFeB, NF, FeB...etc. The free layer 134 may be a single-layer structure or a multi-layer composite structure. If the free layer is a composite structure formed of multi-layer ferromagnetic materials, the materials of these multi-layer composite structures may be cobalt (Co)/platinum (Pt), cobalt (Co)/nickel (Ni), cobalt (Co) /Palladium (Pd) ... and other elements of the composite layer structure.

本实施例的磁穿隧接面130还包括覆盖层131以及阻障层133。覆盖层131设置在上电极120与固定层132之间。阻障层133设置在自由层134与固定层132之间。阻障层133可以具备经实验而得的预定厚度,从而有效地隔开上下层的金属或铁磁材料的自旋电流传递,让各层的操作机制能够单纯而不相互影响。本实施例的阻障层133可以是特定厚度下具备磁穿隧条件的绝缘材料。这些绝缘材料可以为氧化镁、氧化铝或两者的组合。本实施例的覆盖层131与固定层132具备相同的膜面形状及膜面面积,且阻障层133与自由层134具备相同的膜面形状及膜面面积,如图1A所示。The magnetic tunnel junction 130 of this embodiment further includes a capping layer 131 and a barrier layer 133 . The capping layer 131 is disposed between the upper electrode 120 and the fixed layer 132 . The barrier layer 133 is disposed between the free layer 134 and the fixed layer 132 . The barrier layer 133 can have a predetermined thickness obtained through experiments, so as to effectively isolate the spin current transfer of the metal or ferromagnetic material in the upper and lower layers, so that the operation mechanism of each layer can be simple and not affect each other. The barrier layer 133 in this embodiment may be an insulating material with magnetic tunneling conditions at a specific thickness. These insulating materials can be magnesia, alumina, or a combination of both. The cover layer 131 and the fixed layer 132 in this embodiment have the same shape and surface area, and the barrier layer 133 and the free layer 134 have the same shape and surface area, as shown in FIG. 1A .

为了方便说明,本发明多个实施例的图式中设置坐标轴X、Y、Z,以利于后续描述。图1B与图1C中的X轴方向是重金属层110的延伸方向,Y轴方向是上电极120的延伸方向,X轴方向与Y轴方向所构成的平面为各层(如,上电极120、重金属层110、固定层132与自由层134)的膜面,Z轴方向为垂直于膜面的方向。各层的膜面与XY平面平行。在本实施例中,输入电流Ic的传输方向为正的X轴方向。For the convenience of description, coordinate axes X, Y, and Z are set in the drawings of various embodiments of the present invention to facilitate subsequent descriptions. In FIGS. 1B and 1C, the X-axis direction is the extension direction of the heavy metal layer 110, the Y-axis direction is the extension direction of the upper electrode 120, and the plane formed by the X-axis direction and the Y-axis direction is each layer (eg, the upper electrode 120, For the film surfaces of the heavy metal layer 110, the fixed layer 132 and the free layer 134), the Z-axis direction is a direction perpendicular to the film surfaces. The film surface of each layer is parallel to the XY plane. In this embodiment, the transmission direction of the input current Ic is the positive X-axis direction.

图1B与图1C中的固定层132以及自由层134分别表示其自身所在位置与膜面形状。本实施例特别针对磁穿隧接面130中的自由层134以及固定层132的膜面形状以及相对应的结构进行设计,从而让本发明各实施例的自由层的磁矩将更易于受到重金属层的电流所引发的自旋轨道力矩而发生磁化翻转。详细来说,本实施例中自由层134的膜面形状为椭圆形以及胶囊形其中之一,固定层132的膜面形状则为椭圆形。椭圆形以及胶囊形皆具有长轴以及短轴。The fixed layer 132 and the free layer 134 in FIG. 1B and FIG. 1C respectively represent their own position and the shape of the film surface. This embodiment is specially designed for the film surface shapes and corresponding structures of the free layer 134 and the fixed layer 132 in the magnetic tunnel junction 130 , so that the magnetic moment of the free layer in each embodiment of the present invention is more susceptible to heavy metals The magnetization inversion occurs due to the spin-orbit torque induced by the current in the layer. Specifically, in this embodiment, the shape of the film surface of the free layer 134 is one of an oval shape and a capsule shape, and the shape of the film surface of the fixed layer 132 is an oval shape. Both elliptical and capsule shapes have a major axis and a minor axis.

在此详细描述『胶囊形』。图1B与图1C中自由层134的膜面形状以胶囊形呈现。本实施例中,自由层134的胶囊形是由两个半圆形134-1与134-3以及一个矩形134-2结合而成。本发明实施例将自由层134的胶囊形中具备最长距离的两点之间的连线称为是胶囊形的长轴LAD,且长轴LAD经过胶囊形的矩形134-2的中心点(也就是,自由层的膜面形状的中心点P1)。另一方面,本实施例将经过胶囊形的矩形134-2的中心点(即,自由层的膜面形状的中心点P1)、且与半圆形134-1或134-3与矩形134-2之间的贴合处相互平行的连线称为是胶囊形的短轴SAD。也就是说,胶囊形的长轴LAD与短轴SAD皆会经过自由层的膜面形状的中心点P1。长轴LAD所对应的方向即为图1C中的长轴方向LD1。The "capsule shape" is described in detail here. The shape of the film surface of the free layer 134 in FIGS. 1B and 1C is presented in a capsule shape. In this embodiment, the capsule shape of the free layer 134 is formed by combining two semicircles 134-1 and 134-3 and a rectangle 134-2. In the embodiment of the present invention, the connection line between two points with the longest distance in the capsule shape of the free layer 134 is referred to as the long axis LAD of the capsule shape, and the long axis LAD passes through the center point of the capsule shape rectangle 134-2 ( That is, the center point P1) of the film surface shape of the free layer. On the other hand, this embodiment will pass through the center point of the capsule-shaped rectangle 134-2 (ie, the center point P1 of the film surface shape of the free layer), and connect the semicircle 134-1 or 134-3 with the rectangle 134- The connecting lines that are parallel to each other at the junction between 2 are called capsule-shaped short-axis SAD. That is to say, both the long axis LAD and the short axis SAD of the capsule shape pass through the center point P1 of the film surface shape of the free layer. The direction corresponding to the long axis LAD is the long axis direction LD1 in FIG. 1C .

本实施例中长轴LAD的长度可以是半圆形134-1或134-3的直径再加上矩形134-2中不与半圆形134-1或134-3相贴合的一边(图1B与图1C中以矩形134-2的长边作为举例)的长度。本实施例中短轴SAD的长度可以是半圆形134-1或134-3的直径。In this embodiment, the length of the long axis LAD can be the diameter of the semicircle 134-1 or 134-3 plus the side of the rectangle 134-2 that does not fit with the semicircle 134-1 or 134-3 (Fig. In 1B and FIG. 1C, the length of the long side of the rectangle 134-2 is used as an example). The length of the short axis SAD in this embodiment may be the diameter of the semicircle 134-1 or 134-3.

本实施例中的胶囊形是由两个半圆形134-1与134-3与矩形134-2相互结合,于其他实施例中也可以是由两个椭圆形与矩形相互结合。若是以两个半椭圆形与矩形相互结合的胶囊形,则此胶囊形的长轴长度则为两个半椭圆形的长轴长度加上再加上矩形中不与两个半椭圆形相贴合的一边的长度;此胶囊形的短轴长度则等同于两个半椭圆形的短轴长度。The capsule shape in this embodiment is composed of two semicircles 134-1 and 134-3 and a rectangle 134-2 combined with each other. In other embodiments, two oval shapes and a rectangle can also be combined with each other. If it is a capsule in which two semi-ellipses and rectangles are combined with each other, the length of the major axis of the capsule is the length of the major axes of the two semi-ellipses plus the length of the major axes of the two semi-ellipses plus the rectangle that does not fit the two semi-ellipses. The length of one side of the capsule; the length of the minor axis of this capsule is equal to the length of the minor axis of the two semi-ellipses.

本实施例的自由层134具有第一膜面面积A1,固定层132具有的第二膜面面积A2,且第一膜面面积A1大于第二膜面面积A2。本实施例的自由层134的膜面形状的中心点跟固定层132的膜面形状的中心点(如图1C的中心点P1)可以相互重叠。应用本实施例者亦可让自由层的膜面形状的中心点与固定层的膜面形状的中心点不同。The free layer 134 of this embodiment has a first film surface area A1, and the fixed layer 132 has a second film surface area A2, and the first film surface area A1 is larger than the second film surface area A2. In this embodiment, the center point of the film surface shape of the free layer 134 and the center point of the film surface shape of the fixed layer 132 (the center point P1 in FIG. 1C ) may overlap each other. Those applying this embodiment can also make the center point of the film surface shape of the free layer different from the center point of the film surface shape of the fixed layer.

经设计,本实施例的自由层134的膜面形状的长轴方向LD1与固定层132的膜面形状的长轴方向LD2之间具有预设夹角θ。如此一来,自旋轨道力矩对于自由层134的磁矩向量151而言将会提供额外的侧向力矩,从而略为降低自由层134的磁矩在磁化翻转的难度。本实施例中,预设夹角θ的绝对值大于零度且小于45度为较佳。若预设夹角θ的绝对值大于45度的话,自旋轨道力矩所提供额外的侧向力矩较不明显,将会导致自由层的磁化翻转较为不稳定。换句话说,若预设夹角θ的绝对值大于45度的话,可能会让自由层发生非预期的磁化翻转。本实施例的预设夹角不等于0与90度。By design, a predetermined angle θ exists between the long axis direction LD1 of the film surface shape of the free layer 134 and the long axis direction LD2 of the film surface shape of the fixed layer 132 in this embodiment. In this way, the spin-orbit torque will provide additional lateral torque to the magnetic moment vector 151 of the free layer 134 , thereby slightly reducing the difficulty of the magnetic moment of the free layer 134 in magnetization inversion. In this embodiment, the absolute value of the preset angle θ is preferably greater than zero degrees and less than 45 degrees. If the absolute value of the preset angle θ is greater than 45 degrees, the additional lateral torque provided by the spin-orbit torque is less obvious, which will lead to the instability of the magnetization reversal of the free layer. In other words, if the absolute value of the preset angle θ is greater than 45 degrees, it may cause unexpected magnetization inversion of the free layer. The preset included angle in this embodiment is not equal to 0 and 90 degrees.

本实施例中,本实施例的固定层132的磁矩向量152与自由层134的膜面形状的长轴方向LD2相同。在平面式磁化自旋轨道磁性组件100的半导体制造程序中对固定层132进行退火步骤时,本实施例经设计以使退火方向162沿着自由层132膜面形状的长轴方向LD2来进行,从而决定/固定住固定层132的磁矩向量152。详细来说,利用半导体制程来制造平面式磁化自旋轨道磁性组件或相关的磁阻式随机存取内存(MRAM)的流程概略如下。利用物理气相沉积(PVD)技术对基板进行镀膜、磁退火(field anneal)、屏蔽(Mask)或图样化(patterning)、蚀刻(etch)等步骤。前述步骤可能会交叉进行。前述步骤完成后,基板将会进行装置测试(device testing)与封装(encapsulation),从而完成平面式磁化自旋轨道磁性组件100的制造。本实施例所述的退火方向即是在半导体制程中磁退火步骤中以特定温度对基板进行升温、降温等操作,从而固定某个层级组件的磁矩向量。In this embodiment, the magnetic moment vector 152 of the pinned layer 132 in this embodiment is the same as the long axis direction LD2 of the film surface shape of the free layer 134 . When the annealing step is performed on the pinned layer 132 in the semiconductor manufacturing process of the planar magnetization spin-orbit magnetic device 100, the present embodiment is designed so that the annealing direction 162 is performed along the long axis direction LD2 of the film surface shape of the free layer 132, Thus, the magnetic moment vector 152 of the pinned layer 132 is determined/fixed. In detail, the process of manufacturing a planar magnetized spin-orbit magnetic device or a related magnetoresistive random access memory (MRAM) using a semiconductor process is outlined as follows. The physical vapor deposition (PVD) technology is used to coat the substrate, magnetic annealing (field anneal), masking (Mask) or patterning (patterning), etching (etch) and other steps. The preceding steps may be interleaved. After the aforementioned steps are completed, the substrate will undergo device testing and encapsulation, thereby completing the fabrication of the planar magnetized spin-orbit magnetic assembly 100 . The annealing direction in this embodiment is to perform operations such as heating and cooling the substrate at a specific temperature in the magnetic annealing step in the semiconductor process, so as to fix the magnetic moment vector of a certain level of components.

第一实施例中的覆盖层131与固定层132是在半导体制程中同时进行蚀刻,而阻障层133与自由层134则是在半导体制程中的另一时间点同时进行蚀刻。因此,覆盖层131与固定层132两者的膜面形状为相同,且阻障层133与自由层134两者的膜面形状为相同。覆盖层131与固定层132两者的膜面形状则与自由层134与阻障层133两者的膜面形状不同。在本实施例的半导体制程的蚀刻流程中,若是将阻障层133连同覆盖层131与固定层132同时进行蚀刻的话,由于部分自由层134并未被阻障层133覆盖而裸露在外,可能会导致并未被阻障层133覆盖的部分自由层134消失其磁性,使得自由层134无法由形状异相性提供额外的翻转力矩。因此,为了避免前述情形,本实施例将阻障层133与自由层134两者同时进行蚀刻,使得阻障层133与自由层134的膜面形状皆为相同。In the first embodiment, the capping layer 131 and the fixed layer 132 are etched simultaneously in the semiconductor process, while the barrier layer 133 and the free layer 134 are etched simultaneously at another point in the semiconductor process. Therefore, the shape of the film surface of the capping layer 131 and the fixed layer 132 is the same, and the shape of the film surface of both the barrier layer 133 and the free layer 134 is the same. The shape of the film surface of the capping layer 131 and the fixed layer 132 is different from the shape of the film surface of the free layer 134 and the barrier layer 133 . In the etching process of the semiconductor process of the present embodiment, if the barrier layer 133 is etched together with the capping layer 131 and the fixed layer 132 at the same time, since part of the free layer 134 is not covered by the barrier layer 133 and is exposed, there may be As a result, the part of the free layer 134 that is not covered by the barrier layer 133 loses its magnetic properties, so that the free layer 134 cannot provide additional flipping torque due to the shape anisotropy. Therefore, in order to avoid the aforementioned situation, in this embodiment, both the barrier layer 133 and the free layer 134 are etched at the same time, so that the film surface shapes of the barrier layer 133 and the free layer 134 are the same.

在此以图2与图3A至图3C说明本发明的第二实施例。第一实施例的组件100与第二实施例的组件300在侧视图上呈现的各层结构皆为相同,因此以图2呈现平面式磁化自旋轨道磁性组件300的侧视图。图3A是依照本发明的第二实施例的平面式磁化自旋轨道磁性组件300的结构示意图。图3B是图3A中平面式磁化自旋轨道磁性组件300的结构上视图。图3C是图3A中固定层332与自由层334的膜面形状示意图。Herein, the second embodiment of the present invention is described with reference to FIG. 2 and FIGS. 3A to 3C . The structure of each layer in the side view of the device 100 of the first embodiment and the device 300 of the second embodiment are the same, so FIG. 2 is a side view of the planar magnetized spin-orbit magnetic device 300 . FIG. 3A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly 300 according to a second embodiment of the present invention. FIG. 3B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly 300 of FIG. 3A. FIG. 3C is a schematic diagram of the shape of the film surface of the fixed layer 332 and the free layer 334 in FIG. 3A .

第一实施例与第二实施例中各层组件的材料与功能皆为相同。第一实施例与第二实施例之间的不同处在于,平面式磁化自旋轨道磁性组件300中自由层334与固定层332的位置配置与平面式磁化自旋轨道磁性组件100中自由层134与固定层132的位置配置互不相同。尤其是,第二实施例中自由层334的膜面形状的长轴方向LD3平行于Y轴方向且固定层332的膜面形状的长轴方向LD4并未平行于Y轴方向,而第一实施例中自由层134的膜面形状的长轴方向LD1并未平行于Y轴方向且固定层132的膜面形状的长轴方向LD2平行于Y轴方向。平面式磁化自旋轨道磁性组件300的自由层334与固定层332的材料与功能请参阅前述实施例中平面式磁化自旋轨道磁性组件100的自由层134与固定层132。固定层332的磁矩向量352平行于半导体制程中的退火方向362。自由层334的磁矩向量351平行于自由层334的膜面形状的长轴方向LD3。The materials and functions of the components of each layer in the first embodiment and the second embodiment are the same. The difference between the first embodiment and the second embodiment is that the positional configuration of the free layer 334 and the pinned layer 332 in the planar magnetization spin-orbit magnetic assembly 300 is the same as that of the free layer 134 in the planar magnetization spin-orbit magnetic assembly 100 . The positional configuration of the fixed layer 132 is different from each other. In particular, in the second embodiment, the long-axis direction LD3 of the film surface shape of the free layer 334 is parallel to the Y-axis direction, and the long-axis direction LD4 of the film surface shape of the fixed layer 332 is not parallel to the Y-axis direction. In the example, the long-axis direction LD1 of the film surface shape of the free layer 134 is not parallel to the Y-axis direction, and the long-axis direction LD2 of the film surface shape of the pinned layer 132 is parallel to the Y-axis direction. For the materials and functions of the free layer 334 and the pinned layer 332 of the planar magnetized spin-orbit magnetic assembly 300 , please refer to the free layer 134 and the fixed layer 132 of the planar magnetized spin-orbit magnetic assembly 100 in the foregoing embodiments. The magnetic moment vector 352 of the pinned layer 332 is parallel to the annealing direction 362 in the semiconductor process. The magnetic moment vector 351 of the free layer 334 is parallel to the long axis direction LD3 of the film surface shape of the free layer 334 .

第一实施例与第二实施例中自由层134、334的膜面形状的长轴方向LD1、LD3与固定层132、332的膜面形状的长轴方向LD2、LD4之间的关系皆是相距一个正的预设夹角θ。亦即,长轴方向LD1、LD3分别位于长轴方向LD2、LD4的左侧。应用本发明中各个实施例者亦可让第一实施例与第二实施例中自由层134、334的膜面形状的长轴方向LD1、LD3与固定层132、332的膜面形状的长轴方向LD2、LD4之间的关系皆是相距一个负的预设夹角θ。亦即,在其他实施例中,长轴方向LD1、LD3可分别位于长轴方向LD2、LD4的右侧。也就是说,第一实施例中的自由层134的膜面形状的长轴方向LD1与固定层132的膜面形状的长轴方向LD2可相互置换,第二实施例中的自由层334的膜面形状的长轴方向LD3与固定层332的膜面形状的长轴方向LD4可相互置换,使得自由层134与固定层132的膜面形状通过结构中的角度调整而产生符合本发明的另一实施例。In the first embodiment and the second embodiment, the relationship between the long-axis directions LD1 and LD3 of the film surface shapes of the free layers 134 and 334 and the long-axis directions LD2 and LD4 of the film surface shapes of the fixed layers 132 and 332 are all distances from each other. A positive preset angle θ. That is, the major axis directions LD1 and LD3 are located on the left side of the major axis directions LD2 and LD4, respectively. Those who apply the various embodiments of the present invention can also make the long axis directions LD1 and LD3 of the film surface shapes of the free layers 134 and 334 in the first embodiment and the second embodiment and the long axes of the film surface shapes of the fixed layers 132 and 332 . The relationship between the directions LD2 and LD4 is a negative preset angle θ. That is, in other embodiments, the long-axis directions LD1, LD3 may be located on the right side of the long-axis directions LD2, LD4, respectively. That is to say, the long axis direction LD1 of the film surface shape of the free layer 134 in the first embodiment and the long axis direction LD2 of the film surface shape of the fixed layer 132 can be replaced with each other, and the film of the free layer 334 in the second embodiment The long-axis direction LD3 of the surface shape and the long-axis direction LD4 of the film surface shape of the fixed layer 332 can be replaced with each other, so that the film surface shape of the free layer 134 and the fixed layer 132 can be adjusted by the angle in the structure to produce another method according to the present invention. Example.

第一实施例与第二实施例中的自由层134、334的膜面形状皆为胶囊形,应用本实施例者亦可将第一实施例与第二实施例中的自由层134、334的膜面形状设计为椭圆形。The shapes of the film surfaces of the free layers 134 and 334 in the first embodiment and the second embodiment are both capsule-shaped. Those applying this embodiment can also use the free layers 134 and 334 in the first embodiment and the second embodiment. The shape of the membrane surface is designed as an oval.

在此以图4A至图4C与图5说明本发明的第三实施例。图4A是依照本发明的第三实施例的平面式磁化自旋轨道磁性组件400的结构示意图。图4B是图4A中平面式磁化自旋轨道磁性组件400的结构上视图。图4C是图4A中固定层132与自由层134的膜面形状示意图。第一实施例与第三实施例中相同标号的组件皆为相同组件,两者具备相同材料以及相同功能。第一实施例与第三实施例之间的主要差异在于,平面式磁化自旋轨道磁性组件400的重金属层410以及自由层134具有相同的膜面形状与膜面面积,且平面式磁化自旋轨道磁性组件400还包括下电极440。在半导体制程中,可同时对重金属层410以及自由层134进行蚀刻,使得重金属层410以及自由层134具有相同的膜面形状与膜面面积。平面式磁化自旋轨道磁性组件400的重金属层410的材料与功能请参阅前述实施例中平面式磁化自旋轨道磁性组件100的重金属层110。Herein, the third embodiment of the present invention will be described with reference to FIGS. 4A to 4C and FIG. 5 . FIG. 4A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly 400 according to a third embodiment of the present invention. FIG. 4B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly 400 of FIG. 4A. FIG. 4C is a schematic diagram of the shape of the film surface of the fixed layer 132 and the free layer 134 in FIG. 4A . The components with the same numbers in the first embodiment and the third embodiment are the same components, and both have the same materials and the same functions. The main difference between the first embodiment and the third embodiment is that the heavy metal layer 410 and the free layer 134 of the planar magnetization spin-orbit magnetic component 400 have the same film shape and area, and the planar magnetization spin The track magnetic assembly 400 also includes a lower electrode 440 . In the semiconductor manufacturing process, the heavy metal layer 410 and the free layer 134 can be etched at the same time, so that the heavy metal layer 410 and the free layer 134 have the same film surface shape and film surface area. For the material and function of the heavy metal layer 410 of the planar magnetization spin-orbit magnetic assembly 400 , please refer to the heavy metal layer 110 of the planar magnetization spin-orbit magnetic assembly 100 in the foregoing embodiment.

下电极440设置在重金属层410下方。两个下电极440分别设置在重金属层410的相对两侧。本实施例的下电极410包括开口470。开口470配置在重金属层410下方。开口470在平行于重金属层410的短轴SAD对应方向的宽度H1小于重金属层410的膜面形状的短轴SAD的长度,开口470的宽度小于自由层134以及重金属层410的膜面形状的短轴宽度,且开口470的延伸方向平行于自由层134的膜面形状的长轴方向LD1(如图4B与图4C所示)。下电极440的材料为导电材料。例如,下电极的材料可以为铜(Cu)、铝(Al)、钽(Ta)或上述元素的组合的合金。本实施例的下电极440的厚度可以为1千埃

Figure BDA0002948399850000101
至6千埃
Figure BDA0002948399850000102
应用本实施例者可依其需求调整下电极440的厚度。因此,输入电流Ic通过下电极440的一端流经重金属层410而抵达下电极440的另一端,从而实现重金属层410的功能。The lower electrode 440 is disposed under the heavy metal layer 410 . The two lower electrodes 440 are respectively disposed on opposite sides of the heavy metal layer 410 . The lower electrode 410 of this embodiment includes an opening 470 . The opening 470 is disposed under the heavy metal layer 410 . The width H1 of the opening 470 in the direction parallel to the short axis SAD of the heavy metal layer 410 is smaller than the length of the short axis SAD of the film surface shape of the heavy metal layer 410 , and the width of the opening 470 is smaller than the short axis of the film surface shape of the free layer 134 and the heavy metal layer 410 . axis width, and the extending direction of the opening 470 is parallel to the long axis direction LD1 of the film surface shape of the free layer 134 (as shown in FIG. 4B and FIG. 4C ). The material of the lower electrode 440 is a conductive material. For example, the material of the lower electrode may be an alloy of copper (Cu), aluminum (Al), tantalum (Ta) or a combination of the above elements. The thickness of the lower electrode 440 in this embodiment may be 1 kA
Figure BDA0002948399850000101
to 6 k Angstroms
Figure BDA0002948399850000102
Those applying this embodiment can adjust the thickness of the lower electrode 440 according to their needs. Therefore, the input current Ic flows through the heavy metal layer 410 through one end of the lower electrode 440 and reaches the other end of the lower electrode 440 , thereby realizing the function of the heavy metal layer 410 .

在侧视图上呈现的各层结构皆为相同,因此以图2呈现平面式磁化自旋轨道磁性组件300的侧视图。The structure of each layer shown in the side view is the same, so FIG. 2 shows the side view of the planar magnetized spin-orbit magnetic device 300 .

在此以图5与图6A至图6C说明本发明的第四实施例。第三实施例的平面式磁化自旋轨道磁性组件400与第四实施例的平面式磁化自旋轨道磁性组件600在侧视图上呈现的各层结构皆为相同,因此以图5呈现平面式磁化自旋轨道磁性组件600的侧视图。图6A是依照本发明的第四实施例的平面式磁化自旋轨道磁性组件600的结构示意图。图6B是图6A中平面式磁化自旋轨道磁性组件600的结构上视图。图6C是图6A中固定层332与自由层334的膜面形状示意图。Herein, the fourth embodiment of the present invention is described with reference to FIG. 5 and FIGS. 6A to 6C . The layers of the planar magnetization spin-orbit magnetic assembly 400 of the third embodiment and the planar magnetization spin-orbit magnetic assembly 600 of the fourth embodiment are the same in side views, so the planar magnetization is shown in FIG. 5 . Side view of spin-orbit magnetic assembly 600 . FIG. 6A is a schematic structural diagram of a planar magnetized spin-orbit magnetic assembly 600 according to a fourth embodiment of the present invention. FIG. 6B is a top view of the structure of the planar magnetized spin-orbit magnetic assembly 600 of FIG. 6A. FIG. 6C is a schematic diagram of the shape of the film surface of the fixed layer 332 and the free layer 334 in FIG. 6A .

第二实施例与第四实施例中各层组件的材料与功用皆为相同。第二实施例与第四实施例之间的不同处在于,平面式磁化自旋轨道磁性组件600的重金属层610以及自由层334具有相同的膜面形状与膜面面积,且平面式磁化自旋轨道磁性组件600还包括下电极640。在半导体制程中,可同时对重金属层610以及自由层334进行蚀刻,使得重金属层610以及自由层334具有相同的膜面形状与膜面面积。平面式磁化自旋轨道磁性组件600的重金属层610的材料与功能请参阅前述实施例中平面式磁化自旋轨道磁性组件100的重金属层110。The materials and functions of the components of each layer in the second embodiment and the fourth embodiment are the same. The difference between the second embodiment and the fourth embodiment is that the heavy metal layer 610 and the free layer 334 of the planar magnetization spin-orbit magnetic component 600 have the same film shape and area, and the planar magnetization spin The track magnetic assembly 600 also includes a lower electrode 640 . In the semiconductor manufacturing process, the heavy metal layer 610 and the free layer 334 can be etched at the same time, so that the heavy metal layer 610 and the free layer 334 have the same film surface shape and film surface area. For the materials and functions of the heavy metal layer 610 of the planar magnetization spin-orbit magnetic assembly 600 , please refer to the heavy metal layer 110 of the planar magnetization spin-orbit magnetic assembly 100 in the foregoing embodiment.

下电极640设置在重金属层610下方。两个下电极640分别设置在重金属层610的相对两侧。本实施例的下电极640包括开口670。开口670配置在重金属层610下方。开口670在平行于重金属层610的短轴SAD对应方向的宽度小于重金属层610的膜面形状的短轴SAD的长度,且开口670的延伸方向平行于自由层334的膜面形状的长轴方向LD3(如图6B与图6C所示)。平面式磁化自旋轨道磁性组件600的重金属层610与下电极640的材料与功能请参阅前述第三实施例中平面式磁化自旋轨道磁性组件400的重金属层410与下电极440。The lower electrode 640 is disposed under the heavy metal layer 610 . The two lower electrodes 640 are respectively disposed on opposite sides of the heavy metal layer 610 . The lower electrode 640 of this embodiment includes an opening 670 . The opening 670 is disposed under the heavy metal layer 610 . The width of the opening 670 in the direction parallel to the short axis SAD of the heavy metal layer 610 is smaller than the length of the short axis SAD of the film surface shape of the heavy metal layer 610 , and the extension direction of the opening 670 is parallel to the long axis direction of the film surface shape of the free layer 334 . LD3 (shown in Figures 6B and 6C). For the materials and functions of the heavy metal layer 610 and the lower electrode 640 of the planar magnetized spin-orbit magnetic assembly 600 , please refer to the heavy metal layer 410 and the lower electrode 440 of the planar magnetized spin-orbit magnetic assembly 400 in the third embodiment.

第三实施例与第四实施例中自由层134、334的膜面形状的长轴方向LD1、LD3与固定层132、332的膜面形状的长轴方向LD2、LD4之间的关系皆是相距一个正的预设夹角θ。亦即,长轴方向LD1、LD3分别位于长轴方向LD2、LD4的左侧。应用本发明中各个实施例者亦可让第三实施例与第四实施例中自由层134、334的膜面形状的长轴方向LD1、LD3与固定层132、332的膜面形状的长轴方向LD2、LD4之间的关系皆是相距一个负的预设夹角θ。亦即,在其他实施例中,长轴方向LD1、LD3可分别位于长轴方向LD2、LD4的右侧。也就是说,第三实施例中的自由层134的膜面形状的长轴方向LD1与固定层132的膜面形状的长轴方向LD2可相互置换,第四实施例中的自由层334的膜面形状的长轴方向LD3与固定层332的膜面形状的长轴方向LD4可相互置换,使得自由层134与固定层132的膜面形状通过结构中的角度调整而产生符合本发明的另一实施例。In the third embodiment and the fourth embodiment, the relationship between the long-axis directions LD1 and LD3 of the film surface shapes of the free layers 134 and 334 and the long-axis directions LD2 and LD4 of the film surface shapes of the fixed layers 132 and 332 are all distances from each other. A positive preset angle θ. That is, the major axis directions LD1 and LD3 are located on the left side of the major axis directions LD2 and LD4, respectively. Those applying each embodiment of the present invention can also make the long axis directions LD1 and LD3 of the film surface shapes of the free layers 134 and 334 in the third embodiment and the fourth embodiment and the long axes of the film surface shapes of the fixed layers 132 and 332 The relationship between the directions LD2 and LD4 is a negative preset angle θ. That is, in other embodiments, the long-axis directions LD1, LD3 may be located on the right side of the long-axis directions LD2, LD4, respectively. That is to say, the long-axis direction LD1 of the film surface shape of the free layer 134 in the third embodiment and the long-axis direction LD2 of the film surface shape of the fixed layer 132 can be replaced with each other, and the film of the free layer 334 in the fourth embodiment The long-axis direction LD3 of the surface shape and the long-axis direction LD4 of the film surface shape of the fixed layer 332 can be replaced with each other, so that the film surface shape of the free layer 134 and the fixed layer 132 can be adjusted by the angle in the structure to produce another method according to the present invention. Example.

第三实施例与第四实施例中的自由层134、334的膜面形状皆为胶囊形,应用本实施例者亦可将第三实施例与第四实施例中的自由层134、334的膜面形状设计为椭圆形。The film surface shapes of the free layers 134 and 334 in the third embodiment and the fourth embodiment are both capsule-shaped. Those who apply this embodiment can also use the free layers 134 and 334 in the third embodiment and the fourth embodiment. The shape of the membrane surface is designed as an oval.

图7是本发明实施例中固定层的膜面形状为椭圆形的情况下自由层的形状以及调整预设夹角后重金属层中输入电流的示意图。图7是在绝对温度(T)在300K的情形下进行模拟所获得的成果。7 is a schematic diagram of the shape of the free layer and the input current in the heavy metal layer after adjusting the preset angle when the shape of the film surface of the fixed layer is oval in the embodiment of the present invention. Figure 7 shows the results obtained from the simulation at an absolute temperature (T) of 300K.

图7的纵轴以每平方厘米的安培(A)数来表示重金属层中输入电流需达到多少安培才能使自由层中的磁矩向量进行磁化翻转。图7中标号710表示在没有预设夹角θ(亦即,默认夹角θ为零度)的情况下,将固定层与自由层的膜面形状皆设计为椭圆形时,重金属层中输入电流需达到多少安培以使自由层中的磁矩向量进行磁化翻转。图7中标号720表示在有预设夹角θ(例如,预设夹角θ为10度)的情况下,将固定层与自由层的膜面形状皆设计为椭圆形时,重金属层中输入电流需达到多少安培以使自由层中的磁矩向量进行磁化翻转。图7中标号730表示在没有预设夹角θ(亦即,默认夹角θ为零度)的情况下,将固定层为椭圆形且将自由层的膜面形状设计为胶囊形时,重金属层中输入电流需达到多少安培以使自由层中的磁矩向量进行磁化翻转。图7中标号740表示在有预设夹角θ(例如,预设夹角θ为10度)的情况下,将固定层为椭圆形且将自由层的膜面形状设计为胶囊形时,重金属层中输入电流需达到多少安培以使自由层中的磁矩向量进行磁化翻转。The vertical axis of FIG. 7 represents, in amperes (A) per square centimeter, how many amperes the input current in the heavy metal layer needs to reach to cause the magnetic moment vector in the free layer to flip the magnetization. The reference numeral 710 in FIG. 7 represents the input current in the heavy metal layer when the film surface shapes of the fixed layer and the free layer are both designed to be elliptical in the absence of a preset angle θ (that is, the default angle θ is zero degrees). How many amperes must be reached to flip the magnetization of the magnetic moment vector in the free layer. The reference numeral 720 in FIG. 7 indicates that when there is a preset angle θ (for example, the preset angle θ is 10 degrees), when the film surface shapes of the fixed layer and the free layer are both designed to be elliptical, the input in the heavy metal layer How many amperes the current needs to reach to flip the magnetization of the magnetic moment vector in the free layer. The reference numeral 730 in FIG. 7 indicates that when there is no preset angle θ (that is, the default angle θ is zero degrees), when the fixed layer is elliptical and the film surface shape of the free layer is designed as a capsule, the heavy metal layer How many amperes the input current needs to reach in order to flip the magnetization of the magnetic moment vector in the free layer. Reference numeral 740 in FIG. 7 indicates that when there is a preset angle θ (for example, the preset angle θ is 10 degrees), when the fixed layer is elliptical and the film surface shape of the free layer is designed as a capsule, the heavy metal How many amperes the input current in the layer needs to reach to flip the magnetization of the magnetic moment vector in the free layer.

由图7可知,在预设夹角θ为10度情况下,标号720以及标号740中重金属层所需的输入电流的安培数皆低于没有预设夹角θ(默认夹角θ为零度)情况下标号710以及标号730中重金属层所需的输入电流的安培数。As can be seen from FIG. 7 , when the preset angle θ is 10 degrees, the amperage of the input current required by the heavy metal layers in the reference numeral 720 and 740 is lower than that without the preset included angle θ (the default included angle θ is zero degrees). The amperage of the input current required for the heavy metal layer in case 710 and 730.

综上所述,本发明实施例所提出的平面式磁化自旋轨道磁性组件,通过将磁穿隧接面中自由层的膜面形状设计为椭圆形或胶囊形、固定层的膜面形状设计为椭圆形、自由层的膜面大于固定层的膜面、且使自由层与固定层的膜面形状的长轴方向相互之间具有预设夹角。因此,可让自由层的磁矩更容易受到自旋轨道力矩的影响而被调整。也就是说,由于固定层以及自由层的膜面形状的异向性,以及半导体制程中自由层与固定层的退火方向皆为固定层的膜面形状的长轴方向。如此一来,自旋轨道力矩将会对自由层的磁矩向量提供额外的侧向力矩,从而略为降低自由层的磁矩在磁化翻转的难度。换句话说,本实施例的自由层磁矩将更易于受到重金属层的电流所引发的自旋轨道力矩而发生磁化翻转,因此可降低重金属层中的写入电流量级,进而达到省电效果。To sum up, the planar magnetized spin-orbit magnetic assembly proposed in the embodiment of the present invention is designed by designing the shape of the film surface of the free layer in the magnetic tunnel junction to be an ellipse or a capsule shape, and the shape of the film surface of the fixed layer. It is elliptical, the film surface of the free layer is larger than the film surface of the fixed layer, and the long axis directions of the film surface shapes of the free layer and the fixed layer have a preset angle with each other. Therefore, the magnetic moment of the free layer can be more easily adjusted by the influence of the spin-orbit moment. That is to say, due to the anisotropy of the film surface shapes of the pinned layer and the free layer, and the annealing direction of the free layer and the pinned layer in the semiconductor process, both are the long axis direction of the film surface shape of the pinned layer. In this way, the spin-orbit moment will provide an additional lateral moment to the magnetic moment vector of the free layer, thereby slightly reducing the difficulty of the magnetic moment of the free layer in the magnetization inversion. In other words, the magnetic moment of the free layer in this embodiment is more likely to be magnetized by the spin-orbit moment induced by the current of the heavy metal layer, and thus the magnitude of the write current in the heavy metal layer can be reduced, thereby achieving the power saving effect. .

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.

Claims (18)

1. A planar magnetized spin orbit magnetic component, comprising:
a heavy metal layer;
an upper electrode; and
a magnetic tunneling junction disposed between the heavy metal layer and the upper electrode,
wherein the magnetic tunneling junction comprises:
a free layer disposed on the heavy metal layer, the free layer having a first film face area; and
a fixed layer disposed on the free layer, the fixed layer having a second film face area,
and a preset included angle is formed between the long axis direction of the membrane surface shape of the free layer and the long axis direction of the membrane surface shape of the fixed layer, and the area of the first membrane surface is larger than that of the second membrane surface.
2. The planar magnetized spin orbit magnetic component of claim 1, wherein the film surface shape of the free layer is one of an elliptical shape and a capsule shape.
3. The planar magnetized spin orbit magnetic component of claim 2, wherein the film surface of the pinned layer has an elliptical shape.
4. The planar magnetized spin orbit magnetic component of claim 1, further comprising:
a barrier layer disposed between the free layer and the fixed layer.
5. The planar magnetized spin orbit magnetic component of claim 4, wherein the barrier layer is made of magnesium oxide, aluminum oxide or a combination thereof.
6. The planar magnetized spin orbit magnetic component of claim 1, further comprising:
a cover layer disposed between the upper electrode and the fixed layer.
7. The planar magnetized spin orbit magnetic component of claim 1, further comprising:
and the lower electrodes are arranged below the heavy metal layer and are respectively arranged on two opposite sides of the heavy metal layer.
8. The planar magnetized spin orbit magnetic device of claim 7, wherein the lower electrode comprises an opening, the opening is disposed below the heavy metal layer, a width of the opening in a direction parallel to a short axis of the heavy metal layer is smaller than a length of a short axis of a film surface shape of the heavy metal layer, and an extending direction of the opening is parallel to a long axis of the film surface shape of the free layer.
9. The planar magnetized spin orbit magnetic component of claim 7, wherein the material of the lower electrode is copper, aluminum, tantalum, or alloys of combinations thereof.
10. The planar magnetized spin orbit magnetic component of claim 7, wherein the heavy metal layer and the free layer have the same film side area and film side shape.
11. The planar magnetized spin orbit magnetic device of claim 7, wherein the heavy metal layer and the free layer are etched simultaneously during semiconductor processing.
12. The planar magnetized spin-orbit magnetic component of claim 1, wherein the heavy metal layer obtains an input current through electrode contacts to generate a spin current to cause magnetization switching of the MTJ,
the material of the heavy metal layer is tantalum, platinum, tungsten or alloy of the combination of the three.
13. The planar magnetized spin orbit magnetic component of claim 1, wherein the free layer is a ferromagnetic material with horizontal anisotropy, and the magnetic moment vector of the free layer is aligned parallel to the film plane.
14. The planar magnetized spin orbit magnetic component of claim 1, wherein the pinned layer is a ferromagnetic material having a planar magnetic moment, and the pinned layer has a magnetic moment vector aligned parallel to the film plane.
15. The planar magnetized spin orbit magnetic component of claim 1, wherein the material of the pinned layer comprises iron, cobalt, nickel, gadolinium, terbium, dysprosium, boron, or alloys of combinations of the seven.
16. The planar magnetized spin orbit magnetic component of claim 1, wherein the predetermined included angle is not equal to 90 degrees.
17. The planar magnetized spin orbit magnetic component of claim 1, wherein the predetermined angle has an absolute value greater than zero degrees and less than 45 degrees.
18. The planar spin-orbit magnetic device of claim 1, wherein the annealing direction for the pinned layer in the semiconductor process for manufacturing the planar spin-orbit magnetic device is the same as the long axis direction of the film surface shape of the pinned layer.
CN202110202621.8A 2020-10-07 2021-02-23 Planar magnetized spin-orbit magnetic assembly Active CN114300613B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109134728 2020-10-07
TW109134728A TWI751728B (en) 2020-10-07 2020-10-07 In-plane magnetized spin-orbit magnetic device

Publications (2)

Publication Number Publication Date
CN114300613A true CN114300613A (en) 2022-04-08
CN114300613B CN114300613B (en) 2025-05-23

Family

ID=80809112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110202621.8A Active CN114300613B (en) 2020-10-07 2021-02-23 Planar magnetized spin-orbit magnetic assembly

Country Status (3)

Country Link
US (1) US11844288B2 (en)
CN (1) CN114300613B (en)
TW (1) TWI751728B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847715A (en) * 2023-08-30 2023-10-03 北京芯可鉴科技有限公司 Spin-orbit-moment magnetic memory cell based on exchange bias and magnetic random access memory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002722B (en) * 2020-07-21 2024-04-12 中国科学院微电子研究所 Spintronic devices, SOT-MRAM storage cells, storage arrays, and storage-computing integrated circuits
TWI790839B (en) * 2021-12-02 2023-01-21 財團法人工業技術研究院 In-plane magnetized spin-orbit magnetic device
US20240206347A1 (en) * 2022-12-15 2024-06-20 Industrial Technology Research Institute Magnetic memory structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964393A (en) * 2010-08-10 2011-02-02 杭州电子科技大学 Method for eliminating hysteresis of magnetic resistance of spin valve
US9608039B1 (en) * 2015-11-16 2017-03-28 Samsung Electronics Co., Ltd. Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field
CN107689415A (en) * 2016-08-04 2018-02-13 财团法人工业技术研究院 Perpendicular magnetization spin orbit magnetic element
KR20180045328A (en) * 2016-10-25 2018-05-04 한양대학교 산학협력단 Spin Neuron Device and Method of operating the same
CN109841726A (en) * 2017-11-28 2019-06-04 财团法人工业技术研究院 Spin(-)orbit Magnetic memory body and its manufacturing method
US20190304524A1 (en) * 2018-03-30 2019-10-03 Kaan Oguz Spin orbit torque (sot) memory devices with enhanced stability and their methods of fabrication
US20190348329A1 (en) * 2017-03-29 2019-11-14 Tdk Corporation Spin-current magnetization reversal element, magnetoresistance effect element, and magnetic memory
US20200286536A1 (en) * 2016-06-03 2020-09-10 Tohoku University Magnetic multilayer film, magnetic memory element, magnetic memory and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US9837602B2 (en) 2015-12-16 2017-12-05 Western Digital Technologies, Inc. Spin-orbit torque bit design for improved switching efficiency
US9747933B1 (en) * 2016-02-16 2017-08-29 Tdk Corporation Magneto-resistive effect element having side shield integrated with upper shield
US10333058B2 (en) 2016-03-17 2019-06-25 Cornell University Nanosecond-timescale low-error switching of 3-terminal magnetic tunnel junction circuits through dynamic in-plane-field assisted spin-hall effect
JP6374452B2 (en) 2016-08-04 2018-08-15 株式会社東芝 Magnetic memory
US10784441B2 (en) * 2016-08-04 2020-09-22 Industrial Technology Research Institute Perpendicularly magnetized spin-orbit magnetic device
US10205092B2 (en) 2016-10-07 2019-02-12 Samsung Electronics Co., Ltd. Method and system for providing a diluted free layer magnetic junction usable in spin transfer or spin-orbit torque applications
US9953692B1 (en) 2017-04-11 2018-04-24 Sandisk Technologies Llc Spin orbit torque MRAM memory cell with enhanced thermal stability
US11227990B2 (en) * 2019-07-17 2022-01-18 Industrial Technology Research Institute Magnetic memory structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964393A (en) * 2010-08-10 2011-02-02 杭州电子科技大学 Method for eliminating hysteresis of magnetic resistance of spin valve
US9608039B1 (en) * 2015-11-16 2017-03-28 Samsung Electronics Co., Ltd. Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field
US20200286536A1 (en) * 2016-06-03 2020-09-10 Tohoku University Magnetic multilayer film, magnetic memory element, magnetic memory and method for producing same
CN107689415A (en) * 2016-08-04 2018-02-13 财团法人工业技术研究院 Perpendicular magnetization spin orbit magnetic element
KR20180045328A (en) * 2016-10-25 2018-05-04 한양대학교 산학협력단 Spin Neuron Device and Method of operating the same
US20190348329A1 (en) * 2017-03-29 2019-11-14 Tdk Corporation Spin-current magnetization reversal element, magnetoresistance effect element, and magnetic memory
CN109841726A (en) * 2017-11-28 2019-06-04 财团法人工业技术研究院 Spin(-)orbit Magnetic memory body and its manufacturing method
US20190304524A1 (en) * 2018-03-30 2019-10-03 Kaan Oguz Spin orbit torque (sot) memory devices with enhanced stability and their methods of fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847715A (en) * 2023-08-30 2023-10-03 北京芯可鉴科技有限公司 Spin-orbit-moment magnetic memory cell based on exchange bias and magnetic random access memory
CN116847715B (en) * 2023-08-30 2023-11-17 北京芯可鉴科技有限公司 Spin-orbit moment magnetic storage unit and magnetic random access memory based on exchange bias

Also Published As

Publication number Publication date
CN114300613B (en) 2025-05-23
TW202215430A (en) 2022-04-16
US11844288B2 (en) 2023-12-12
TWI751728B (en) 2022-01-01
US20220109100A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
TWI751728B (en) In-plane magnetized spin-orbit magnetic device
US7919826B2 (en) Magnetoresistive element and manufacturing method thereof
US11309488B2 (en) Double spin filter tunnel junction
US7727778B2 (en) Magnetoresistive element and method of manufacturing the same
US11621391B2 (en) Antiferromagnet based spin orbit torque memory device
KR102499931B1 (en) Semiconductor mram device and method
US7068536B2 (en) Magnetic random access memory, and production method therefor
US20180159024A1 (en) Magnetic memory device
TWI639155B (en) Storage element, storage device, and magnetic head
JP6434103B1 (en) Magnetic memory
US10784441B2 (en) Perpendicularly magnetized spin-orbit magnetic device
US10276786B2 (en) Magnetic memory
TW201842503A (en) Magnetic memory, semiconductor device, electronic instrument, and reading method for magnetic memory
CN110352506B (en) Ferromagnetic tunnel junction element and method of manufacturing the same
CN111937170A (en) Magnetoresistive stack and method thereof
US12033682B2 (en) In-plane magnetized spin-orbit magnetic device
US8854870B2 (en) Magnetoresistive random access memory (MRAM) die including an integrated magnetic security structure
CN114447216A (en) Magnetoresistive random access memory and manufacturing method thereof
O’Sullivan Magnetic tunnel junction-based MRAM and related processing issues
WO2021016837A1 (en) Magnetic tunnel junction, manufacturing method, spin diode, and memory
CN116234418A (en) Planar magnetized spin-orbit magnetic assembly
WO2019135744A1 (en) Filter layer for a perpendicular top synthetic antiferromagnet (saf) stack for a spin orbit torque (sot) memory
CN119851708A (en) STT-MRAM memory bit, memory device and writing and reading methods thereof
CN116056550A (en) Magnetic tunnel junction cell, magnetic memory cell and memory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant