CN114315349B - 一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 - Google Patents
一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 Download PDFInfo
- Publication number
- CN114315349B CN114315349B CN202111550993.6A CN202111550993A CN114315349B CN 114315349 B CN114315349 B CN 114315349B CN 202111550993 A CN202111550993 A CN 202111550993A CN 114315349 B CN114315349 B CN 114315349B
- Authority
- CN
- China
- Prior art keywords
- zirconate titanate
- barium zirconate
- preparing
- solution
- barium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910021523 barium zirconate Inorganic materials 0.000 title claims abstract description 68
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 18
- 239000000919 ceramic Substances 0.000 title claims abstract description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000002086 nanomaterial Substances 0.000 claims abstract description 22
- 238000002390 rotary evaporation Methods 0.000 claims abstract description 15
- 239000010936 titanium Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 42
- 239000002243 precursor Substances 0.000 claims description 39
- 239000000843 powder Substances 0.000 claims description 37
- 238000003756 stirring Methods 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000008367 deionised water Substances 0.000 claims description 22
- 229910021641 deionized water Inorganic materials 0.000 claims description 22
- 239000012670 alkaline solution Substances 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 18
- 239000012266 salt solution Substances 0.000 claims description 18
- 150000003608 titanium Chemical class 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000001354 calcination Methods 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 6
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 5
- 239000012498 ultrapure water Substances 0.000 claims description 5
- 238000005303 weighing Methods 0.000 claims 5
- 238000001035 drying Methods 0.000 claims 3
- 238000010025 steaming Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 4
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 abstract description 4
- 229910001626 barium chloride Inorganic materials 0.000 abstract description 4
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 4
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 abstract description 4
- 159000000009 barium salts Chemical class 0.000 abstract description 3
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000002738 chelating agent Substances 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000003153 chemical reaction reagent Substances 0.000 abstract 1
- 229910017053 inorganic salt Inorganic materials 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 6
- 238000003837 high-temperature calcination Methods 0.000 description 5
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,属于电子陶瓷材料技术领域。该方法采用氯化钡(BaCl2)作为钡盐,氧氯化锆(ZrOCl2)作为锆源,钛酸丁酯(C16H36O4Ti)作为钛源,乙二醇(C2H6O2)作为反应螯合剂,在高浓度碱性条件下,通过旋转蒸发反应控制晶体生长速度,成功制备出介孔锆钛酸钡纳米材料。本发明合成过程中以常见的无机盐和简单的试剂为主,成本低,简单易行且重复性很好,适合大规模生产,能够推进电子陶瓷材料商业化进程。
Description
技术领域
本发明属于电子陶瓷材料技术领域,具体涉及一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,利用旋转蒸发法制备锆钛酸钡纳米材料的方法。
背景技术
随着科学技术的不断进步和微电子行业的的快速发展,对电子器件的制造和使用提出了更高的的要求和挑战。陶瓷电容器由于耐高温、抗腐蚀、介电常数高等优点,在微电子器件中具有重要地位。
钛酸钡基陶瓷被誉为电子工业的支柱,研究学者通过对其进行掺杂和改性,使其在更宽泛的温度范围内应用。以钛酸钡为基的材料广泛应用于铁电、压电、介电材料的各个领域。随着电子元件向高精度、多功能以及小型化方向的高速发展,对陶瓷粉体的纯度、颗粒尺寸及成型特性提出了更高的要求。钛酸钡锶陶瓷在外界直流电场作用下,容易发生击穿,不利于器件微型化,从而限制了钛酸钡锶陶瓷的应用。Zr4+比Ti4+具有更大的离子半径,所以Zr4+取代Ti4+后的化学结构更稳定。钛酸钡陶瓷在常温下为四方相结构,通过对钛酸钡掺杂Zr形成锆钛酸钡(BZT),可以极大地改善晶体结构并较大幅度调控材料的室温介电系数。
本发明采用氯化钡(BaCl2)作为钡盐,氧氯化锆(ZrOCl2)作为锆源,钛酸丁酯(C16H36O4Ti)作为钛源,乙二醇(C2H6O2)作为反应螯合剂,在高浓度碱性条件下,通过旋转蒸发反应控制晶体生长速度,成功制备出介孔锆钛酸钡纳米材料。本发明方法合成工艺简单易行、合成温度低、可重复性好,合成产物纯度高,可用于陶瓷电容器等方面,应用前景广阔。
发明内容
本发明的目的在于提供一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,研究出一种制备工艺简单、成本低廉、产物无毒无害且高纯超细、组分均匀可控的锆钛酸钡陶瓷粉体。
为实现上述目的,本发明提供如下技术方案:一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,包括以下步骤:
步骤1,配制乙二醇溶液:称取0.776-3.104g C2H6O2于烧杯中并加入20mL去离子水,搅拌至完全溶解得到乙二醇溶液;
步骤2,配制混合溶液:称取6.137-24.549g BaCl2于烧杯中并加入20-80mL去离子水,搅拌至完全溶解,另称取4.279-17.114g ZrOCl2,搅拌至完全溶解,得到混合溶液;
步骤3,配制钛盐溶液:量取4.25-17mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,充分搅拌均匀得到钛盐溶液;
步骤4,配制碱性溶液:称取12.5-50g NaOH粉末,将称取的NaOH粉末少量多次加入到20-80mL去离子水中,搅拌均匀得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,继续搅拌得到的白色浊液,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,发生旋转蒸发反应,离心洗涤后置于烘箱干燥,得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,即可得到介孔锆钛酸钡纳米颗粒。
在上述技术方案中,所述步骤1、2、3、4、5中搅拌过程使用磁力搅拌机进行,搅拌时间为10-60min。
在上述技术方案中,所述步骤4中NaOH粉末加入去离子水的过程分5-10次加入。
在上述技术方案中,所述步骤6中旋转蒸发的条件为:先在142MPa、55℃下旋蒸30-60min,再在72MPa、60℃下旋蒸60-120min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥24-48h即可得到锆钛酸钡前驱体粉末;
在上述技术方案中,所述步骤7中的煅烧温度为800℃,保温时间为120min。
与现有技术相比,本发明的有益效果如下:
本发明提供的一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,采用氯化钡(BaCl2)作为钡盐,氧氯化锆(ZrOCl2)作为锆源,钛酸丁酯(C16H36O4Ti)作为钛源,乙二醇(C2H6O2)作为反应螯合剂,在高浓度碱性条件下,通过旋转蒸发反应控制晶体生长速度,成功制备出介孔锆钛酸钡纳米材料。该方法成本低,简单易行且重复性很好,适合大规模生产,能够推进电子陶瓷材料商业化进程。
附图说明
图1为本发明提供的一种制备介孔锆钛酸钡陶瓷纳米颗粒的工艺流程图;
图2为本发明实施例3制备得到的介孔锆钛酸钡纳米材料的X射线衍射图谱;
图3为本发明实施例3制备得到的介孔锆钛酸钡纳米材料的扫描电镜图;
图4为本发明实施例3制备得到的介孔锆钛酸钡纳米材料的透射电镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,如图1工艺流程图所示,具体操作步骤如下:
步骤1,配制乙二醇溶液:称取0.776-3.104g C2H6O2于烧杯中并加入20mL去离子水,使用磁力搅拌机搅拌10min,得到乙二醇溶液;
步骤2,配制混合溶液:称取6.137-24.549g BaCl2于烧杯中并加入20-80mL去离子水,使用磁力搅拌机搅拌10-30min,另称取4.279-17.114g ZrOCl2,使用磁力搅拌机搅拌10-30min,得到混合溶液;
步骤3,配制钛盐溶液:量取4.25-17mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,使用磁力搅拌机搅拌10-30min,得到钛盐溶液;
步骤4,配制碱性溶液:称取12.5-50g NaOH粉末,将称取的NaOH粉末分5-10次加入到20-80mL去离子水中,使用磁力搅拌机搅拌10-30min,得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,使用磁力搅拌机搅拌30-60min,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,先在142MPa、55℃下旋蒸30-60min,再在72MPa、60℃下旋蒸60-120min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥24-48h,即可得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,煅烧温度为800℃,保温时间为120min,即可得到介孔锆钛酸钡纳米颗粒。
实施例1:
步骤1,配制乙二醇溶液:称取0.776g C2H6O2于烧杯中并加入20mL去离子水,使用磁力搅拌机搅拌10min,得到乙二醇溶液;
步骤2,配制混合溶液:称取6.137g BaCl2于烧杯中并加入20mL去离子水,使用磁力搅拌机搅拌10min,另称取4.279g ZrOCl2,使用磁力搅拌机搅拌10min,得到混合溶液;
步骤3,配制钛盐溶液:量取4.25mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,使用磁力搅拌机搅拌10min,得到钛盐溶液;
步骤4,配制碱性溶液:称取12.5g NaOH粉末,将称取的NaOH粉末分5次加入到20mL去离子水中,使用磁力搅拌机搅拌10min,得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,使用磁力搅拌机搅拌30min,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,先在142MPa、55℃下旋蒸30min,再在72MPa、60℃下旋蒸60min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥24h,即可得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,煅烧温度为800℃,保温时间为120min,即可得到介孔锆钛酸钡纳米颗粒。
实施例2:
步骤1,配制乙二醇溶液:称取1.552g C2H6O2于烧杯中并加入20mL去离子水,使用磁力搅拌机搅拌10min,得到乙二醇溶液;
步骤2,配制混合溶液:称取12.275g BaCl2于烧杯中并加入40mL去离子水,使用磁力搅拌机搅拌20min,另称取8.557g ZrOCl2,使用磁力搅拌机搅拌20min,得到混合溶液;
步骤3,配制钛盐溶液:量取8.5mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,使用磁力搅拌机搅拌20min,得到钛盐溶液;
步骤4,配制碱性溶液:称取25g NaOH粉末,将称取的NaOH粉末分8次加入到40mL去离子水中,使用磁力搅拌机搅拌20min,得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,使用磁力搅拌机搅拌45min,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,先在142MPa、55℃下旋蒸45min,再在72MPa、60℃下旋蒸90min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥30h,即可得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,煅烧温度为800℃,保温时间为120min,即可得到介孔锆钛酸钡纳米颗粒。
实施例3:
步骤1,配制乙二醇溶液:称取3.104g C2H6O2于烧杯中并加入20mL去离子水,使用磁力搅拌机搅拌10min,得到乙二醇溶液;
步骤2,配制混合溶液:称取24.549g BaCl2于烧杯中并加入80mL去离子水,使用磁力搅拌机搅拌30min,另称取17.114g ZrOCl2,使用磁力搅拌机搅拌30min,得到混合溶液;
步骤3,配制钛盐溶液:量取17mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,使用磁力搅拌机搅拌30min,得到钛盐溶液;
步骤4,配制碱性溶液:称取50g NaOH粉末,将称取的NaOH粉末分10次加入到80mL去离子水中,使用磁力搅拌机搅拌30min,得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,使用磁力搅拌机搅拌60min,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,先在142MPa、55℃下旋蒸60min,再在72MPa、60℃下旋蒸120min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥48h,即可得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,煅烧温度为800℃,保温时间为120min,即可得到介孔锆钛酸钡纳米材料。
对本发明实施例3所制备的锆钛酸钡纳米材料进行X射线衍射分析(XRD)(如图2所示),从图中可以看出纳米材料中出现了锆钛酸钡的特征峰并与其标准卡片相对应,衍射峰中的分叉是由于锆钛酸钡固溶体的形成。所制备的锆钛酸钡纳米材料结晶度较好,基本无杂质相。因此,可得出通过本发明方法成功制备出锆钛酸钡纳米材料的结论。
利用扫描电镜(SEM)对本发明实施例3所制备的锆钛酸钡纳米材料的形貌进行分析(如图3所示),可以看出锆钛酸钡纳米颗粒分布均匀,平均粒径为45nm,证明通过本发明的方法可以成功制备高纯超细、组分均匀可控的锆钛酸钡纳米材料的结论。
利用透射电镜(SEM)对本发明实施例3所制备的锆钛酸钡纳米材料的形貌和结构进行分析(如图4所示),可以看出锆钛酸钡纳米颗粒大小分布均匀且存在7nm左右的孔径,属于介孔尺度,证明通过本发明的方法可以成功制备高纯超细、组分均匀可控的介孔锆钛酸钡纳米材料的结论。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (3)
1.一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,其特征在于,包括以下步骤:
步骤1,配制乙二醇溶液:称取0.776-3.104g C2H6O2于烧杯中并加入20mL去离子水,搅拌至完全溶解得到乙二醇溶液;
步骤2,配制混合溶液:称取6.137-24.549g BaCl 2于烧杯中并加入20-80mL去离子水,搅拌至完全溶解,另称取4.279-17.114g ZrOCl2,搅拌至完全溶解,得到混合溶液;
步骤3,配制钛盐溶液:量取4.25-17mL C16H36O4Ti于烧杯中并加入10mL无水乙醇,充分搅拌均匀得到钛盐溶液;
步骤4,配制碱性溶液:称取12.5-50g NaOH粉末,将称取的NaOH粉末少量多次加入到20-80mL去离子水中,搅拌均匀得到碱性溶液;
步骤5,配制前躯体溶液:将步骤2得到的混合溶液、步骤3得到的钛盐溶液、步骤4得到的碱性溶液,依次加入步骤1得到乙二醇溶液,继续搅拌得到的白色浊液,即为锆钛酸钡前躯体溶液;
步骤6,旋转蒸发制备前驱体粉末:将步骤5得到的锆钛酸钡前驱体溶液移入茄形瓶中,发生旋转蒸发反应,离心洗涤后置于烘箱干燥,得到锆钛酸钡前驱体粉末;
步骤7,高温烧结制备锆钛酸钡纳米材料:将步骤6得到的锆钛酸钡前驱体粉末置于马弗炉中,在空气下进行高温煅烧,即可得到介孔锆钛酸钡纳米颗粒;
所述步骤6中旋转蒸发的条件为:先在142MPa、55℃下旋蒸30-60min,再在72MPa、60℃下旋蒸60-120min;离心洗涤时先用超纯水洗涤3次,再用无水乙醇洗涤3次;最后置于60℃烘箱干燥24-48h即可得到锆钛酸钡前驱体粉末;
所述步骤7中的煅烧温度为800℃,保温时间为120min。
2.根据权利要求1所述的一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,其特征在于,所述步骤1、2、3、4、5中搅拌过程使用磁力搅拌机进行,搅拌时间为10-60min。
3.根据权利要求1所述的一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法,其特征在于,所述步骤4中NaOH粉末加入去离子水的过程分5-10次加入。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111550993.6A CN114315349B (zh) | 2021-12-17 | 2021-12-17 | 一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111550993.6A CN114315349B (zh) | 2021-12-17 | 2021-12-17 | 一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114315349A CN114315349A (zh) | 2022-04-12 |
| CN114315349B true CN114315349B (zh) | 2023-01-24 |
Family
ID=81053137
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111550993.6A Active CN114315349B (zh) | 2021-12-17 | 2021-12-17 | 一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114315349B (zh) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119951348B (zh) * | 2025-03-18 | 2025-09-23 | 西安理工大学 | 一种四方相BaZrxTi1-xO3陶瓷自清洁膜及其制备方法 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999067189A1 (en) * | 1998-06-23 | 1999-12-29 | Cabot Corporation | Barium titanate dispersions |
| CN101311377A (zh) * | 2008-02-26 | 2008-11-26 | 浙江大学 | 一种室温制备钛酸钡纳米粉体的方法 |
| CN101602521A (zh) * | 2009-07-15 | 2009-12-16 | 中山大学 | 一种多孔BaTiO3纳米颗粒球的合成方法 |
| JP2012211058A (ja) * | 2011-03-31 | 2012-11-01 | Tdk Corp | チタン酸バリウム粉末、チタン酸バリウム粉末の製造方法およびこれを用いたセラミック電子部品 |
| CN102765755A (zh) * | 2012-07-23 | 2012-11-07 | 天津大学 | 一种氧化锆块体气凝胶的制备方法 |
| CN111233463A (zh) * | 2020-01-20 | 2020-06-05 | 西安理工大学 | 一种制备四方相钛酸钡粉体的方法 |
| CN112679216A (zh) * | 2020-12-25 | 2021-04-20 | 西安理工大学 | 一种液相旋蒸法制备四方相BaTiO3/HA复合纳米颗粒的方法 |
| CN113372131A (zh) * | 2021-04-26 | 2021-09-10 | 西安理工大学 | 微纳孔道结构四方相BaTiO3/HA空心微球的制备方法 |
| CN113716954A (zh) * | 2021-09-18 | 2021-11-30 | 西安理工大学 | 一种具有抗菌性能四方相钛酸钡陶瓷粉体的制备方法 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4252508B2 (ja) * | 2004-07-20 | 2009-04-08 | Tdk株式会社 | チタン酸バリウム粉末の製造方法及びその粉末並びにそれを用いた積層セラミック電子部品 |
| JP2012211046A (ja) * | 2011-03-31 | 2012-11-01 | Tdk Corp | チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末および電子部品の製造方法 |
| CN105948109A (zh) * | 2016-06-22 | 2016-09-21 | 许昌学院 | 一种介孔钛酸钡颗粒的制备方法 |
-
2021
- 2021-12-17 CN CN202111550993.6A patent/CN114315349B/zh active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999067189A1 (en) * | 1998-06-23 | 1999-12-29 | Cabot Corporation | Barium titanate dispersions |
| CN101311377A (zh) * | 2008-02-26 | 2008-11-26 | 浙江大学 | 一种室温制备钛酸钡纳米粉体的方法 |
| CN101602521A (zh) * | 2009-07-15 | 2009-12-16 | 中山大学 | 一种多孔BaTiO3纳米颗粒球的合成方法 |
| JP2012211058A (ja) * | 2011-03-31 | 2012-11-01 | Tdk Corp | チタン酸バリウム粉末、チタン酸バリウム粉末の製造方法およびこれを用いたセラミック電子部品 |
| CN102765755A (zh) * | 2012-07-23 | 2012-11-07 | 天津大学 | 一种氧化锆块体气凝胶的制备方法 |
| CN111233463A (zh) * | 2020-01-20 | 2020-06-05 | 西安理工大学 | 一种制备四方相钛酸钡粉体的方法 |
| CN112679216A (zh) * | 2020-12-25 | 2021-04-20 | 西安理工大学 | 一种液相旋蒸法制备四方相BaTiO3/HA复合纳米颗粒的方法 |
| CN113372131A (zh) * | 2021-04-26 | 2021-09-10 | 西安理工大学 | 微纳孔道结构四方相BaTiO3/HA空心微球的制备方法 |
| CN113716954A (zh) * | 2021-09-18 | 2021-11-30 | 西安理工大学 | 一种具有抗菌性能四方相钛酸钡陶瓷粉体的制备方法 |
Non-Patent Citations (4)
| Title |
|---|
| 复合掺杂BZT粉体的水解沉淀合成与介电性能研究;袁琦等;《陶瓷学报》;20201231(第04期);全文 * |
| 氧化物掺杂Ba(Ti_(0.91)Zr_(0.09))O_3陶瓷的介电弛豫行为;陈涛等;《压电与声光》;20091015(第05期);全文 * |
| 溶胶-凝胶法制备BaTiO3薄膜的研究;宋建静;《电子元件与材料》;20040731;第877页第6-7段、结论 * |
| 锆钛酸钡(BZT)电子结构的第一性原理研究;霍萌;《功能材料》;20110520;实验过程、加入乙二醇量对黏度的影响 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114315349A (zh) | 2022-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104058461A (zh) | 一种铜铁矿结构CuFeO2晶体材料的低温制备方法 | |
| CN106277064A (zh) | 一种制备二硫化铼纳米片的方法 | |
| CN102925979B (zh) | 一种钙钛矿钛酸铅单晶纳米片的制备方法 | |
| CN108314078B (zh) | 一种空心球状钛酸锶钡粉体材料的制备方法 | |
| CN114315349B (zh) | 一种制备介孔锆钛酸钡陶瓷纳米颗粒的方法 | |
| CN103964499A (zh) | 一种碳包覆二氧化钛纳米电极材料的制备方法 | |
| CN107601554B (zh) | 微波辅助水热制备纳米四方相钛酸钡粉末的方法 | |
| CN105198007A (zh) | 一种介孔四氧化三钴纳米片的制备及剥离方法 | |
| CN113470985A (zh) | 一种钒掺杂镍钴双金属氢氧化物电极材料及其制备方法 | |
| CN103880081B (zh) | 一种铜铁矿结构AgCrO2纳米晶材料的制备方法 | |
| JP2023532164A (ja) | 正方晶相チタン酸バリウムナノ粒子の製造方法 | |
| CN104773755A (zh) | 一种通过掺杂Mg2+水热法制备(Ba,Sr)TiO3纳米粉体的方法 | |
| CN113603134A (zh) | 一种单分散四方相钛酸钡空心微球批量生产方法 | |
| CN101891466B (zh) | 一种板状钛酸钡纳米粉体的制备方法 | |
| CN102476819A (zh) | 纳米α-氧化铝粉体的制备方法 | |
| CN113716954A (zh) | 一种具有抗菌性能四方相钛酸钡陶瓷粉体的制备方法 | |
| CN105399418A (zh) | 一种高性能铌酸钠介电陶瓷粉体的制备方法 | |
| CN103603030B (zh) | 一种尺寸可控的一维柱状结构钛酸铅单晶纳米纤维的制备方法 | |
| CN107866214A (zh) | 一种化学溶液法制备Ca3Bi8O15薄膜的方法 | |
| CN115286035B (zh) | 一种空心钛酸钡纳米微球的制备方法 | |
| CN111439779A (zh) | 两步水热法制备高纯度BaTiO3纳米线的方法 | |
| CN106268612A (zh) | 一种多孔钛酸锶钡粉体的制备方法 | |
| CN110642289A (zh) | 一种低温合成四方相钛酸钡纳米粉体的方法 | |
| CN108285171A (zh) | 一种球状钛酸锶钡粉体材料的制备方法 | |
| CN107673403A (zh) | 一种层状钛酸锶的制备方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |