CN114317394A - Microcarrier for three-dimensional cell culture and preparation method and application thereof - Google Patents
Microcarrier for three-dimensional cell culture and preparation method and application thereof Download PDFInfo
- Publication number
- CN114317394A CN114317394A CN202111668299.4A CN202111668299A CN114317394A CN 114317394 A CN114317394 A CN 114317394A CN 202111668299 A CN202111668299 A CN 202111668299A CN 114317394 A CN114317394 A CN 114317394A
- Authority
- CN
- China
- Prior art keywords
- protein
- cells
- microcarrier
- microcarriers
- preferred embodiments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004113 cell culture Methods 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title abstract description 20
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 152
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 152
- 238000000034 method Methods 0.000 claims abstract description 93
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 80
- 239000005017 polysaccharide Substances 0.000 claims abstract description 80
- 150000004676 glycans Chemical class 0.000 claims abstract description 71
- 238000004132 cross linking Methods 0.000 claims abstract description 62
- 230000004048 modification Effects 0.000 claims abstract description 50
- 238000012986 modification Methods 0.000 claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 241001465754 Metazoa Species 0.000 claims abstract description 31
- 235000013372 meat Nutrition 0.000 claims abstract description 24
- 235000013622 meat product Nutrition 0.000 claims abstract description 15
- 235000018927 edible plant Nutrition 0.000 claims abstract description 12
- 239000011259 mixed solution Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 235000018102 proteins Nutrition 0.000 claims description 150
- 210000004027 cell Anatomy 0.000 claims description 144
- 239000000243 solution Substances 0.000 claims description 81
- 239000002131 composite material Substances 0.000 claims description 34
- 239000003607 modifier Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 30
- 239000000661 sodium alginate Substances 0.000 claims description 26
- 229940005550 sodium alginate Drugs 0.000 claims description 26
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 25
- 235000010413 sodium alginate Nutrition 0.000 claims description 24
- 238000012258 culturing Methods 0.000 claims description 21
- 229920001661 Chitosan Polymers 0.000 claims description 18
- 229920000554 ionomer Polymers 0.000 claims description 18
- 239000003431 cross linking reagent Substances 0.000 claims description 17
- 229920001277 pectin Polymers 0.000 claims description 16
- 239000001814 pectin Substances 0.000 claims description 16
- 235000010987 pectin Nutrition 0.000 claims description 16
- 210000000130 stem cell Anatomy 0.000 claims description 16
- 108010058643 Fungal Proteins Proteins 0.000 claims description 15
- 229920002148 Gellan gum Polymers 0.000 claims description 15
- 229920002494 Zein Polymers 0.000 claims description 15
- 235000010492 gellan gum Nutrition 0.000 claims description 15
- 239000000216 gellan gum Substances 0.000 claims description 15
- 239000005019 zein Substances 0.000 claims description 15
- 229940093612 zein Drugs 0.000 claims description 15
- 239000000499 gel Substances 0.000 claims description 14
- 108010039918 Polylysine Proteins 0.000 claims description 13
- 229920000656 polylysine Polymers 0.000 claims description 13
- 239000008273 gelatin Substances 0.000 claims description 12
- 229920000159 gelatin Polymers 0.000 claims description 12
- 108010010803 Gelatin Proteins 0.000 claims description 11
- 108010073771 Soybean Proteins Proteins 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 235000019322 gelatine Nutrition 0.000 claims description 11
- 235000011852 gelatine desserts Nutrition 0.000 claims description 11
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 11
- 108010035532 Collagen Proteins 0.000 claims description 10
- 102000008186 Collagen Human genes 0.000 claims description 10
- 229920001436 collagen Polymers 0.000 claims description 10
- 235000010418 carrageenan Nutrition 0.000 claims description 9
- 239000000679 carrageenan Substances 0.000 claims description 9
- 229920001525 carrageenan Polymers 0.000 claims description 9
- 229940113118 carrageenan Drugs 0.000 claims description 9
- 108010050792 glutenin Proteins 0.000 claims description 9
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 9
- 210000001185 bone marrow Anatomy 0.000 claims description 8
- 238000003306 harvesting Methods 0.000 claims description 8
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 8
- 108060008539 Transglutaminase Proteins 0.000 claims description 7
- 210000001178 neural stem cell Anatomy 0.000 claims description 7
- 229920001184 polypeptide Polymers 0.000 claims description 7
- 235000019710 soybean protein Nutrition 0.000 claims description 7
- 229920001059 synthetic polymer Polymers 0.000 claims description 7
- 102000003601 transglutaminase Human genes 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 210000004153 islets of langerhan Anatomy 0.000 claims description 6
- 210000003205 muscle Anatomy 0.000 claims description 6
- 210000001646 side-population cell Anatomy 0.000 claims description 6
- 235000001674 Agaricus brunnescens Nutrition 0.000 claims description 5
- 244000105624 Arachis hypogaea Species 0.000 claims description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 108010082495 Dietary Plant Proteins Proteins 0.000 claims description 5
- 241000209094 Oryza Species 0.000 claims description 5
- 244000000231 Sesamum indicum Species 0.000 claims description 5
- 235000003434 Sesamum indicum Nutrition 0.000 claims description 5
- 229910001424 calcium ion Inorganic materials 0.000 claims description 5
- 235000020235 chia seed Nutrition 0.000 claims description 5
- 238000004945 emulsification Methods 0.000 claims description 5
- 210000002950 fibroblast Anatomy 0.000 claims description 5
- 238000007710 freezing Methods 0.000 claims description 5
- 244000226021 Anacardium occidentale Species 0.000 claims description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 4
- 238000000889 atomisation Methods 0.000 claims description 4
- 210000004271 bone marrow stromal cell Anatomy 0.000 claims description 4
- 150000001720 carbohydrates Chemical class 0.000 claims description 4
- 235000020226 cashew nut Nutrition 0.000 claims description 4
- 210000002744 extracellular matrix Anatomy 0.000 claims description 4
- 238000005469 granulation Methods 0.000 claims description 4
- 230000003179 granulation Effects 0.000 claims description 4
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 4
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims description 4
- 230000000813 microbial effect Effects 0.000 claims description 4
- 229940001941 soy protein Drugs 0.000 claims description 4
- 244000144725 Amygdalus communis Species 0.000 claims description 3
- 235000011437 Amygdalus communis Nutrition 0.000 claims description 3
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 3
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 3
- 235000018262 Arachis monticola Nutrition 0.000 claims description 3
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 claims description 3
- 244000025254 Cannabis sativa Species 0.000 claims description 3
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 3
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 3
- 240000006162 Chenopodium quinoa Species 0.000 claims description 3
- 240000009226 Corylus americana Species 0.000 claims description 3
- 235000001543 Corylus americana Nutrition 0.000 claims description 3
- 235000007466 Corylus avellana Nutrition 0.000 claims description 3
- 240000007049 Juglans regia Species 0.000 claims description 3
- 235000009496 Juglans regia Nutrition 0.000 claims description 3
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 108010084695 Pea Proteins Proteins 0.000 claims description 3
- 239000004697 Polyetherimide Substances 0.000 claims description 3
- 244000061456 Solanum tuberosum Species 0.000 claims description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 3
- 235000010749 Vicia faba Nutrition 0.000 claims description 3
- 240000006677 Vicia faba Species 0.000 claims description 3
- 235000002098 Vicia faba var. major Nutrition 0.000 claims description 3
- 108010055615 Zein Proteins 0.000 claims description 3
- 235000020224 almond Nutrition 0.000 claims description 3
- 210000000601 blood cell Anatomy 0.000 claims description 3
- 235000009120 camo Nutrition 0.000 claims description 3
- 235000005607 chanvre indien Nutrition 0.000 claims description 3
- 235000019705 chickpea protein Nutrition 0.000 claims description 3
- 238000007590 electrostatic spraying Methods 0.000 claims description 3
- 239000011487 hemp Substances 0.000 claims description 3
- 239000003094 microcapsule Substances 0.000 claims description 3
- 235000019707 mung bean protein Nutrition 0.000 claims description 3
- 210000003130 muscle precursor cell Anatomy 0.000 claims description 3
- 210000000963 osteoblast Anatomy 0.000 claims description 3
- 235000019702 pea protein Nutrition 0.000 claims description 3
- 235000020232 peanut Nutrition 0.000 claims description 3
- 229920001601 polyetherimide Polymers 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 235000020234 walnut Nutrition 0.000 claims description 3
- XQQUSYWGKLRJRA-RABCQHRBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s,3s)-2-amino-3-methylpentanoyl]amino]hexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-3-methylbutanoic acid Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O XQQUSYWGKLRJRA-RABCQHRBSA-N 0.000 claims description 2
- MWOGMBZGFFZBMK-LJZWMIMPSA-N (2s)-2-[[(2s)-2-[[2-[[(2s,3s)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-3-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 MWOGMBZGFFZBMK-LJZWMIMPSA-N 0.000 claims description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 2
- 235000003911 Arachis Nutrition 0.000 claims description 2
- 235000005781 Avena Nutrition 0.000 claims description 2
- 244000075850 Avena orientalis Species 0.000 claims description 2
- 241000218236 Cannabis Species 0.000 claims description 2
- 102000016938 Catalase Human genes 0.000 claims description 2
- 108010053835 Catalase Proteins 0.000 claims description 2
- 241000219312 Chenopodium Species 0.000 claims description 2
- 208000030275 Chondronectin Diseases 0.000 claims description 2
- 241000723382 Corylus Species 0.000 claims description 2
- 241000195493 Cryptophyta Species 0.000 claims description 2
- 108010014258 Elastin Proteins 0.000 claims description 2
- 102000016942 Elastin Human genes 0.000 claims description 2
- 108010067306 Fibronectins Proteins 0.000 claims description 2
- 102000016359 Fibronectins Human genes 0.000 claims description 2
- AZKVWQKMDGGDSV-BCMRRPTOSA-N Genipin Chemical compound COC(=O)C1=CO[C@@H](O)[C@@H]2C(CO)=CC[C@H]12 AZKVWQKMDGGDSV-BCMRRPTOSA-N 0.000 claims description 2
- 108010015776 Glucose oxidase Proteins 0.000 claims description 2
- 239000004366 Glucose oxidase Substances 0.000 claims description 2
- 108060003393 Granulin Proteins 0.000 claims description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 2
- 108010023244 Lactoperoxidase Proteins 0.000 claims description 2
- 102000045576 Lactoperoxidases Human genes 0.000 claims description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 2
- 108010085895 Laminin Proteins 0.000 claims description 2
- 102000007547 Laminin Human genes 0.000 claims description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 2
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 claims description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 claims description 2
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 claims description 2
- 235000004789 Rosa xanthina Nutrition 0.000 claims description 2
- 241000220222 Rosaceae Species 0.000 claims description 2
- 241000207763 Solanum Species 0.000 claims description 2
- 235000002634 Solanum Nutrition 0.000 claims description 2
- 241000219873 Vicia Species 0.000 claims description 2
- 241000219977 Vigna Species 0.000 claims description 2
- 108010031318 Vitronectin Proteins 0.000 claims description 2
- 102100035140 Vitronectin Human genes 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229940072056 alginate Drugs 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims description 2
- 229940045110 chitosan Drugs 0.000 claims description 2
- 229920002549 elastin Polymers 0.000 claims description 2
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 2
- AZKVWQKMDGGDSV-UHFFFAOYSA-N genipin Natural products COC(=O)C1=COC(O)C2C(CO)=CCC12 AZKVWQKMDGGDSV-UHFFFAOYSA-N 0.000 claims description 2
- 229940116332 glucose oxidase Drugs 0.000 claims description 2
- 235000019420 glucose oxidase Nutrition 0.000 claims description 2
- 230000002440 hepatic effect Effects 0.000 claims description 2
- 210000003494 hepatocyte Anatomy 0.000 claims description 2
- 102000043667 human chondronectin Human genes 0.000 claims description 2
- 108700020610 human chondronectin Proteins 0.000 claims description 2
- 108010088381 isoleucyl-lysyl-valyl-alanyl-valine Proteins 0.000 claims description 2
- 229940057428 lactoperoxidase Drugs 0.000 claims description 2
- 239000008101 lactose Substances 0.000 claims description 2
- 229960001375 lactose Drugs 0.000 claims description 2
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 2
- 210000000663 muscle cell Anatomy 0.000 claims description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 claims description 2
- 230000001537 neural effect Effects 0.000 claims description 2
- 210000004416 odontoblast Anatomy 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- 150000002989 phenols Chemical class 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 108010055896 polyornithine Proteins 0.000 claims description 2
- 229920002714 polyornithine Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229910001414 potassium ion Inorganic materials 0.000 claims description 2
- 210000000278 spinal cord Anatomy 0.000 claims description 2
- 238000001694 spray drying Methods 0.000 claims description 2
- 108010052768 tyrosyl-isoleucyl-glycyl-seryl-arginine Proteins 0.000 claims description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims 2
- 235000001271 Anacardium Nutrition 0.000 claims 1
- 241000693997 Anacardium Species 0.000 claims 1
- 102000030523 Catechol oxidase Human genes 0.000 claims 1
- 108010031396 Catechol oxidase Proteins 0.000 claims 1
- 241000220455 Cicer Species 0.000 claims 1
- 235000010521 Cicer Nutrition 0.000 claims 1
- 239000004471 Glycine Substances 0.000 claims 1
- 240000008669 Hedera helix Species 0.000 claims 1
- 241000758789 Juglans Species 0.000 claims 1
- 235000013757 Juglans Nutrition 0.000 claims 1
- 235000014435 Mentha Nutrition 0.000 claims 1
- 241001072983 Mentha Species 0.000 claims 1
- 241000219843 Pisum Species 0.000 claims 1
- 244000046095 Psophocarpus tetragonolobus Species 0.000 claims 1
- 235000010580 Psophocarpus tetragonolobus Nutrition 0.000 claims 1
- 235000009367 Sesamum alatum Nutrition 0.000 claims 1
- 241000209149 Zea Species 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 claims 1
- 210000004556 brain Anatomy 0.000 claims 1
- 210000004289 cerebral ventricle Anatomy 0.000 claims 1
- 210000002894 multi-fate stem cell Anatomy 0.000 claims 1
- 230000021164 cell adhesion Effects 0.000 abstract description 15
- 230000010261 cell growth Effects 0.000 abstract description 15
- 230000004663 cell proliferation Effects 0.000 abstract description 11
- 235000013305 food Nutrition 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000012620 biological material Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 27
- 150000002500 ions Chemical class 0.000 description 26
- 239000002609 medium Substances 0.000 description 25
- 239000000834 fixative Substances 0.000 description 24
- 238000003756 stirring Methods 0.000 description 23
- 239000008367 deionised water Substances 0.000 description 22
- 229910021641 deionized water Inorganic materials 0.000 description 22
- 238000011081 inoculation Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 18
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000001110 calcium chloride Substances 0.000 description 11
- 229910001628 calcium chloride Inorganic materials 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- CHADEQDQBURGHL-UHFFFAOYSA-N (6'-acetyloxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 CHADEQDQBURGHL-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000010899 nucleation Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 238000011031 large-scale manufacturing process Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229940071440 soy protein isolate Drugs 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 239000012670 alkaline solution Substances 0.000 description 6
- 210000004102 animal cell Anatomy 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- RQFQJYYMBWVMQG-IXDPLRRUSA-N chitotriose Chemical compound O[C@@H]1[C@@H](N)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](N)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)[C@@H](CO)O1 RQFQJYYMBWVMQG-IXDPLRRUSA-N 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000033458 reproduction Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 235000019704 lentil protein Nutrition 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 235000021118 plant-derived protein Nutrition 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012604 3D cell culture Methods 0.000 description 1
- 108010001949 Algal Proteins Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000005686 eating Nutrition 0.000 description 1
- 235000006694 eating habits Nutrition 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012007 large scale cell culture Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及用于细胞三维培养的微载体及其制备方法和应用,具体涉及一种用于细胞培养的可食用、可溶解的用于细胞三维培养的微载体及其制备方法和应用,特别涉及其在自发团聚形成微型团块组织的应用,属于生物材料及未来食品技术领域。The invention relates to a microcarrier for three-dimensional cell culture, a preparation method and application thereof, in particular to an edible and dissolvable microcarrier for cell three-dimensional culture, a preparation method and application thereof, and in particular The application of the micro-agglomerate tissue formed by spontaneous agglomeration belongs to the field of biological materials and future food technology.
背景技术Background technique
传统畜牧业会产生大量温室气体,且会造成土壤及水资源污染。此外,生产及食用动物肉产品均可能导致病原体传播,危害公众健康。相对于传统养殖肉,细胞培养肉是一种基于组织工程原理,在体外清洁环境中模拟细胞生长、分化过程,培养动物肌肉组织用于肉类产品生产的新型生物技术,在提高肉类生产过程中的转化效率的同时,能够大大减少土地、水资源消耗及温室气体的排放。除此之外,细胞培养肉能够提供与动物肉相似的营养结构及食用体验,因而无需使消费者改变固有的饮食习惯,即可有效缓解传统养殖业引起的环境及食品安全问题。Traditional animal husbandry produces a large amount of greenhouse gases and pollutes soil and water resources. In addition, the production and consumption of animal meat products may lead to the transmission of pathogens and endanger public health. Compared with traditional cultured meat, cell cultured meat is a new biotechnology based on the principle of tissue engineering, which simulates the process of cell growth and differentiation in a clean environment in vitro, and cultivates animal muscle tissue for the production of meat products. At the same time, it can greatly reduce the consumption of land, water resources and greenhouse gas emissions. In addition, cell-cultured meat can provide a nutritional structure and eating experience similar to animal meat, so it can effectively alleviate the environmental and food safety problems caused by traditional aquaculture without requiring consumers to change their inherent eating habits.
细胞培养肉行业存在的难点之一在于降低成本的同时及实现规模化生产。10-100千克动物肉中含有的细胞数量为1012~1013,而传统的二维细胞培养方法难以在短时间内生产出足够用于肉类产品生产的细胞数量,且时间、空间及人工成本高昂,成为限制细胞培养肉产品价格的重要因素之一。One of the difficulties in the cell culture meat industry is to reduce costs and achieve large-scale production. The number of cells contained in 10-100 kg of animal meat is 10 12 to 10 13 , while the traditional two-dimensional cell culture method is difficult to produce enough cells for meat product production in a short time, and the time, space and labor The high cost has become one of the important factors limiting the price of cell cultured meat products.
此外,为了促进细胞生长并模拟动物肉的口感,细胞培养肉的生产过程通常需要引入生物支架。然而,为了得到细胞含量较高、口感接近真实动物肉的细胞培养肉产品,通常需要较高的细胞接种密度,且存在接种不均匀、支架内部营养物质传输易受到阻碍等问题,导致使用的支架体积受到限制。In addition, in order to promote cell growth and simulate the taste of animal meat, the production process of cell-cultured meat often requires the introduction of bioscaffolds. However, in order to obtain cell-cultured meat products with high cell content and taste close to real animal meat, a high cell seeding density is usually required, and there are problems such as uneven seeding and easily hindered nutrient transport inside the scaffold, resulting in the use of scaffolds. Volume is limited.
微载体由于其比表面积大,在同体积条件下可以提供远高于二维培养体系的表面积用于细胞粘附、生长。例如,在培养过程中,通过向培养体系中补充加入微载体,细胞可以自发从培养体系中已有的微载体迁移到新加入的微载体上,采用简单操作即可实现细胞的快速增殖,因而在大规模细胞培养中具有很大的潜力。Due to its large specific surface area, microcarriers can provide much higher surface area than two-dimensional culture systems for cell adhesion and growth under the same volume conditions. For example, during the culture process, by adding microcarriers to the culture system, the cells can spontaneously migrate from the existing microcarriers in the culture system to the newly added microcarriers, and the rapid proliferation of cells can be achieved with simple operations. It has great potential in large-scale cell culture.
目前常见的商业化微载体,按原料可分为交联葡聚糖微载体、纤维素微载体、蛋白微载体、以及人工合成高分子为基质的微载体。其中,交联葡聚糖微载体以Cytodex系列为代表,采用变性胶原或二乙胺乙基(DEAE)进行表面改性,整体带正电荷,利于细胞粘附,是应用较为广泛的一类微载体。纤维素微载体以Cytopore为代表,通过DEAE改性而带正电,具有多孔结构,除提供细胞粘附的表面积外也可保护细胞不受剪切力损伤。蛋白微载体多以明胶或变性胶原为基质,如Tantti 3D细胞培养支架以天然胶原蛋白为原料,具有立体大孔结构,可用于体外细胞放大培养。除天然高分子外的人工合成材料,如玻璃、聚苯乙烯等制备的微载体,具有重复性高的特定,然而,由于其表面缺乏可供细胞识别粘附的位点,导致其应用受限。然而,现有的商业化微载体多用于医药领域,无法满足食品行业的相关规定和要求。At present, the common commercial microcarriers can be divided into cross-linked dextran microcarriers, cellulose microcarriers, protein microcarriers, and microcarriers based on synthetic polymers according to the raw materials. Among them, cross-linked dextran microcarriers are represented by Cytodex series, which are surface-modified with denatured collagen or diethylaminoethyl (DEAE). The whole is positively charged, which is conducive to cell adhesion. vector. Cellulose microcarriers, represented by Cytopore, are positively charged by DEAE modification and have a porous structure, which can protect cells from shear stress in addition to providing a surface area for cell adhesion. Most protein microcarriers use gelatin or denatured collagen as the matrix. For example, the Tantti 3D cell culture scaffold uses natural collagen as the raw material and has a three-dimensional macroporous structure, which can be used for in vitro cell amplification. In addition to natural macromolecules, artificial synthetic materials, such as microcarriers prepared from glass and polystyrene, have high repeatability and specificity. However, their applications are limited due to the lack of sites for cell recognition and adhesion on their surfaces. . However, the existing commercial microcarriers are mostly used in the field of medicine and cannot meet the relevant regulations and requirements of the food industry.
能够用于食品领域的微载体可以大致分为三类:1)不可食用、不可溶解的微载体,该类微载体仅可用于生产前期细胞扩增,需要将扩增的细胞消化并与微载体彻底分离,但是在消化的过程易造成细胞损失,收获效率低,且微载体碎片可能残留在细胞沉淀中并进入终端产品;2)不可食用、可溶解的微载体,由于其不可食用,因此无法加入终端产品中,仍需要将微载体降解或溶解来收获细胞,处理步骤繁琐,且微载体的降解或溶解需要精确控制且易产生有害物质,从而对细胞造成损伤;3)可食用的微载体,可以直接加入终端产品中;而由于微载体直接进入终端产品中,易对肉类产品的口感、味道、颜色等造成影响,因此用于细胞培养的微载体除需要具备支持细胞快速生长、增殖的属性外,还需要对食品风味等具有有益的贡献。但是,目前现有的微载体无法同时具备可食用、可溶解且细胞粘附性能高等优势,无法满足食品行业的相关要求。因此,对于例如细胞培养肉领域,亟需开发能够用于细胞培养,且同时具备可食用、可溶解以及对细胞具有高粘附性能等特点的微载体。Microcarriers that can be used in the food field can be roughly divided into three categories: 1) Inedible and insoluble microcarriers, which can only be used for cell expansion in the early stage of production, and the amplified cells need to be digested and combined with the microcarriers. Complete separation, but easy to cause cell loss in the process of digestion, low harvest efficiency, and microcarrier fragments may remain in the cell pellet and enter the end product; 2) Inedible and soluble microcarriers, because they are inedible, cannot be When added to the end product, the microcarriers still need to be degraded or dissolved to harvest cells. The processing steps are cumbersome, and the degradation or dissolution of the microcarriers needs to be precisely controlled and harmful substances are easily generated, thereby causing damage to cells; 3) Edible microcarriers , can be directly added to the end product; and because the microcarrier directly enters the end product, it is easy to affect the taste, taste, color, etc. of the meat product. Therefore, the microcarrier used for cell culture needs to support the rapid growth and proliferation of cells. In addition to the properties of food, it also needs to have a beneficial contribution to food flavor and so on. However, the existing microcarriers cannot simultaneously have the advantages of being edible, soluble and high in cell adhesion, and cannot meet the relevant requirements of the food industry. Therefore, for example, in the field of cell cultured meat, there is an urgent need to develop microcarriers that can be used in cell culture and have the characteristics of being edible, soluble, and having high adhesion to cells.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种可食用、可溶解的用于细胞三维培养的微载体及其制备方法和应用,用于细胞的快速、大量生产,以解决现有技术中多种问题,例如微载体细胞粘附性差,或因微载体不可食用,需要将微载体分离,导致处理步骤繁琐或分离不彻底等问题,从而为食品领域例如细胞培养肉的商业化生产、降低成本提供支持。In view of the above-mentioned shortcomings of the prior art, the object of the present invention is to provide an edible and dissolvable microcarrier for three-dimensional cell culture and its preparation method and application, which can be used for the rapid and mass production of cells to solve the problem of Various problems in the prior art, such as poor cell adhesion of the microcarriers, or the need to separate the microcarriers because the microcarriers are not edible, lead to cumbersome processing steps or incomplete separation, etc. production and cost reduction.
为实现上述目的及其他相关目的,本发明提供一种用于细胞三维培养的微载体,所述微载体是将包含可食用的植物来源的离子交联凝胶型多糖和可食用的植物来源的蛋白直接混合制成混合液,生成液滴,然后进行交联和/或固定反应后获得。In order to achieve the above object and other related objects, the present invention provides a microcarrier for three-dimensional cell culture, the microcarrier is a microcarrier comprising edible plant-derived ionomer gel-type polysaccharide and edible plant-derived microcarriers. Proteins are directly mixed to make a mixed solution to generate droplets, which are then obtained after cross-linking and/or immobilization reactions.
其中,所述可食用的植物来源的离子交联凝胶型多糖选自海藻酸钠、结冷胶、卡拉胶、果胶、聚甘露糖醛酸中的一种或几种。所述果胶可以是低酯果胶。Wherein, the edible plant-derived ion-crosslinked gelling polysaccharide is selected from one or more of sodium alginate, gellan gum, carrageenan, pectin, and polymannuronic acid. The pectin may be low ester pectin.
其中,所述可食用的非动物来源的蛋白选自植物蛋白和微生物蛋白中的一种或几种。Wherein, the edible non-animal-derived protein is selected from one or more of vegetable protein and microbial protein.
所述植物蛋白所述植物蛋白选自大豆属、豌豆属、玉蜀黍属、茄属、稻属、落花生属、燕麦属、蔷薇科、豇豆、鹰嘴豆属、薄荷类植物、藜属、野豌豆属、扁豆属、大麻属、胡桃属、榛属、芝麻属、腰果属;包括但不限于是大豆分离蛋白、麦谷蛋白、豌豆蛋白、玉米醇溶蛋白、土豆蛋白、大米蛋白、花生蛋白、燕麦蛋白、杏仁蛋白、绿豆蛋白、鹰嘴豆蛋白、奇亚籽蛋白、藜麦蛋白、蚕豆蛋白、扁豆蛋白、毛豆蛋白、火麻仁蛋白、核桃蛋白、榛子蛋白、芝麻蛋白、奇亚籽蛋白、腰果蛋白等中的一种或几种。The vegetable protein is selected from the genus Soybean, Pea, Zea, Solanum, Oryza, Arachis, Avena, Rosaceae, Cowpea, Chickpea, Mint, Chenopodium, Vetch Genus, Lentil, Cannabis, Jugland, Corylus, Sesame, Cashew; including but not limited to soy protein isolate, glutenin, pea protein, zein, potato protein, rice protein, peanut protein, oat protein, almond protein, mung bean protein, chickpea protein, chia seed protein, quinoa protein, broad bean protein, lentil protein, edamame protein, hemp protein, walnut protein, hazelnut protein, sesame protein, chia seed protein, One or more of cashew protein, etc.
所述微生物蛋白包括但不限于是酵母蛋白、蘑菇蛋白、真菌蛋白、藻类蛋白等中的一种或几种。The microbial protein includes, but is not limited to, one or more of yeast protein, mushroom protein, fungal protein, algal protein, and the like.
其中,所述可食用的植物来源的离子交联凝胶型多糖和可食用的植物来源的蛋白的质量比为1~50:1~10。Wherein, the mass ratio of the edible plant-derived ion-crosslinked gelling polysaccharide to the edible plant-derived protein is 1-50:1-10.
本发明另一方面是提供一种用于细胞三维培养的微载体的制备方法,所述方法包括以下步骤:Another aspect of the present invention provides a method for preparing a microcarrier for three-dimensional cell culture, the method comprising the following steps:
(1)制备包含离子交联凝胶型多糖和蛋白的混合溶液;(1) preparing a mixed solution containing ion cross-linked gelatinous polysaccharide and protein;
(2)采用液滴生成法生成蛋白-多糖复合液滴;(2) The droplet generation method is used to generate protein-polysaccharide composite droplets;
(3)将液滴收集到交联剂和/或固定剂中,进行交联反应和/或固定反应,得到所述用于细胞三维培养的微载体。(3) collecting the droplets into a cross-linking agent and/or a fixative, and performing a cross-linking reaction and/or a fixation reaction to obtain the microcarrier for three-dimensional cell culture.
本发明所述方法还包括对所述微载体通过表面改性剂进行表面改性的步骤,所述表面改性剂选自糖类、蛋白、多肽、多糖、合成高分子化合物、细胞外基质组分中的一种或几种。The method of the present invention further comprises the step of modifying the surface of the microcarrier with a surface modifier selected from the group consisting of carbohydrates, proteins, polypeptides, polysaccharides, synthetic polymer compounds, and extracellular matrix. One or more of the points.
本发明另一方面是提供一种如上所述的方法制备得到的用于细胞三维培养的微载体。Another aspect of the present invention is to provide a microcarrier for three-dimensional cell culture prepared by the above method.
本发明另一方面是提供一种如上所述的用于细胞三维培养的微载体在培养细胞、培养细胞-微载体团块、培养肉中的应用。Another aspect of the present invention is to provide an application of the above-mentioned microcarrier for three-dimensional cell culture in cultured cells, cultured cell-microcarrier aggregates, and cultured meat.
本发明另一方面是提供一种利用如上所述的用于细胞三维培养的微载体培养细胞的方法,所述方法包括:Another aspect of the present invention is to provide a method for culturing cells using the above-mentioned microcarriers for three-dimensional cell culture, the method comprising:
(1)将所述微载体接种细胞培养一定时间;(1) the microcarrier inoculated cells are cultured for a certain period of time;
(2)收获细胞;(2) harvesting cells;
或,所述接种细胞的微载体自发团聚形成细胞-微载体团块,收获得到细胞-微载体团块;Or, the cell-seeded microcarriers spontaneously agglomerate to form cell-microcarrier clumps, which are harvested to obtain cell-microcarrier clumps;
或,所述接种细胞的微载体自发团聚形成细胞-微载体团块,将所述细胞-微载体团块黏合、挤压成形,得到细胞培养肉产品。Or, the cell-seeded microcarriers spontaneously agglomerate to form cell-microcarrier clumps, and the cell-microcarrier clumps are bonded and extruded to obtain cell cultured meat products.
本发明另一方面是提供一种产品,所述产品通过将细胞接种在如上所述的用于细胞三维培养的微载体上培养获得。Another aspect of the present invention is to provide a product obtained by inoculating cells on the above-mentioned microcarriers for three-dimensional cell culture.
相对于现有技术,本发明的有益效果包括:Compared with the prior art, the beneficial effects of the present invention include:
1.本发明构建的用于细胞三维培养的微载体为可食用、可溶解的微载体。本发明利用可离子交联成胶的多糖和蛋白为基材制备微载体,具有条件温和、反应可逆的优点,通过本发明方法制备的微载体可以使用EDTA或酶-EDTA完全溶解并收获细胞,避免细胞消化不彻底,难以分离细胞,或因消化时易造成细胞损伤,从而产生难以与细胞分离的微载体碎片等问题,能够提高细胞收获的效率。1. The microcarriers constructed in the present invention for three-dimensional cell culture are edible and soluble microcarriers. The invention uses polysaccharides and proteins that can be ionically cross-linked into gels to prepare microcarriers, and has the advantages of mild conditions and reversible reaction. The microcarriers prepared by the method of the invention can be completely dissolved by EDTA or enzyme-EDTA and cells can be harvested. Avoid incomplete cell digestion, difficult to separate cells, or easy to cause cell damage during digestion, resulting in microcarrier fragments that are difficult to separate from cells and other problems, which can improve the efficiency of cell harvesting.
2.本发明提供的微载体的制备方法,直接将多糖和蛋白混合制成混合液,然后生成液滴进行交联/固定反应获得所述微载体,通过一步法即可制备性能可控的微载体,减少工艺步骤和生产成本。2. In the preparation method of the microcarrier provided by the present invention, the polysaccharide and the protein are directly mixed to make a mixed solution, and then droplets are generated for cross-linking/fixation reaction to obtain the microcarrier, and the microcarrier with controllable performance can be prepared by a one-step method. carrier, reducing process steps and production costs.
3.本发明提供的微载体的制备方法,可以适应多种规模化生产工艺,连续生产尺寸均一的微载体,生物相容性及细胞粘附性好,能够支持细胞的粘附及生长和增殖,可用于快速、大规模生产细胞,降低细胞培养肉产品的成本。3. The preparation method of the microcarrier provided by the present invention can adapt to a variety of large-scale production processes, continuously produce microcarriers with uniform size, good biocompatibility and cell adhesion, and can support cell adhesion, growth and proliferation. , which can be used for rapid and large-scale production of cells, reducing the cost of cell cultured meat products.
4.本发明利用细胞间相互作用,使接种了细胞的微载体自发团聚形成细胞-微载体团块,通过黏合、挤压成形可以直接得到细胞培养肉产品,避免了使用生物支架的细胞接种密度需求高、接种不均匀、内部营养传输受阻碍等问题,简化了操作流程,有利于降低成本及规模化生产。4. The present invention utilizes the interaction between cells to spontaneously agglomerate the microcarriers inoculated with cells to form cell-microcarrier clumps, and can directly obtain cell cultured meat products through bonding and extrusion molding, avoiding the use of biological scaffolds for cell seeding density. Problems such as high demand, uneven inoculation, and hindered internal nutrient transport simplify the operation process, which is conducive to cost reduction and large-scale production.
5.本发明中使用的原料均为商业化的食品原料,适用于规模化生产细胞培养肉的生产。5. The raw materials used in the present invention are all commercial food raw materials, which are suitable for the production of large-scale production of cell cultured meat.
附图说明Description of drawings
图1为用于细胞培养及自发团聚形成微型团块组织的可食用、可溶解的用于细胞三维培养的微载体的制备方法流程图。Fig. 1 is a flow chart of the preparation method of edible and dissolvable microcarriers for cell culture and micro-agglomerate tissue formed by spontaneous agglomeration.
图2为实施例1中得到的微载体的光学显微镜图片。FIG. 2 is an optical microscope picture of the microcarrier obtained in Example 1. FIG.
图3为实施例3中得到的微载体的光学显微镜图片。FIG. 3 is an optical microscope picture of the microcarrier obtained in Example 3. FIG.
图4为实施例7中在(实施例1制备的)微载体表面粘附生长的活细胞染色图片,取样时间分别为接种后的第1、3、5、7天(每幅小图中,标尺为200μm)。4 is a stained picture of living cells that adhere and grow on the surface of the microcarriers (prepared in Example 1) in Example 7, and the sampling times are the 1st, 3rd, 5th, and 7th days after inoculation (in each panel, Scale bar is 200 μm).
图5为实施例8中在(实施例2制备的)微载体表面粘附生长的活细胞染色图片,取样时间分别为接种后的第1、3、5、7天,第5天时开始观察到细胞在微载体表面定性、有序生长(每幅小图中,标尺为200μm)。Figure 5 is a stained picture of living cells adhering and growing on the surface of the microcarriers (prepared in Example 2) in Example 8. The sampling times were on the 1st, 3rd, 5th, and 7th days after inoculation, respectively, and the observation began on the 5th day. Cells grow qualitatively and orderly on the surface of the microcarriers (each panel, the scale bar is 200 μm).
图6为实施例9中在(实施例4制备的)微载体表面生长的活细胞染色图片,取样时间分别为接种后的第1、3、5、7天(每幅小图中,标尺为200μm)。Figure 6 is a stained picture of living cells growing on the surface of the microcarriers (prepared in Example 4) in Example 9, and the sampling times are the 1st, 3rd, 5th, and 7th days after inoculation (in each panel, the scale is 200 μm).
图7为实施例10中在(实施例5制备的)微载体表面生长的活细胞染色图片,取样时间为接种后的第1、3、5、7天(每幅小图中,标尺为200μm)。Figure 7 is a stained picture of live cells growing on the surface of microcarriers (prepared in Example 5) in Example 10, and the sampling time is the 1st, 3rd, 5th, and 7th days after inoculation (each small picture, the scale is 200 μm ).
图8为实施例11中在(实施例5制备的)微载体表面生长的活细胞染色图片,取样时间为接种后的第5天,观察到多个微载体之间自发团聚形成细胞-微载体团块。Figure 8 is a stained picture of living cells growing on the surface of microcarriers (prepared in Example 5) in Example 11. The sampling time is the 5th day after inoculation. It was observed that multiple microcarriers spontaneously aggregated to form cell-microcarriers clumps.
图9为对比例1中得到的微载体的光学显微镜图片。FIG. 9 is an optical microscope picture of the microcarrier obtained in Comparative Example 1. FIG.
图10为对比例2中制备的多糖-蛋白复合微载体表面粘附生长的活细胞染色图片,取样时间为接种后的第1、3、5、7天,观察到仅有极少量细胞粘附在微载体表面,且呈细胞间自团聚现象,说明多糖种类的选择对于细胞在微载体表面的粘附具有重要影响(每幅小图中,标尺为200μm)。Figure 10 is the stained picture of the living cells of the polysaccharide-protein composite microcarriers prepared in Comparative Example 2 that adhere and grow on the surface. The sampling time was on the 1st, 3rd, 5th, and 7th days after inoculation, and only a small amount of cell adhesion was observed. On the surface of the microcarriers, and the phenomenon of intercellular self-aggregation was observed, indicating that the selection of polysaccharide species has an important influence on the adhesion of cells on the surface of the microcarriers (in each panel, the scale is 200 μm).
图11为对比例3中制备的多糖-蛋白(鱼胶原蛋白肽)复合微载体、多糖-蛋白(明胶)复合微载体表面粘附生长的活细胞染色图片,取样时间为接种后的第1、3、5、7天;对于多糖-蛋白(鱼胶原蛋白肽)复合微载体,观察到在接种后的第1-5天中仅有少量细胞粘附在微载体表面,且大部分细胞与细胞间粘连团聚,到第7天观察到细胞少量增殖;对于多糖-蛋白(明胶)复合微载体,观察到在接种后的第1-5天中同样仅有少量细胞粘附在微载体表面,至第7天时观察到细胞快速增殖(每幅小图中,标尺为200μm)。Figure 11 is a picture of live cell staining of the polysaccharide-protein (fish collagen peptide) composite microcarriers and polysaccharide-protein (gelatin) composite microcarriers prepared in Comparative Example 3 that adhere and grow on the surface, and the sampling time is the first, 3, 5, and 7 days; for the polysaccharide-protein (fish collagen peptide) composite microcarriers, it was observed that only a small amount of cells adhered to the surface of the microcarriers on days 1-5 after inoculation, and most of the cells were cell-to-cell. Adhesion and agglomeration, a small amount of cell proliferation was observed on the 7th day; for the polysaccharide-protein (gelatin) composite microcarrier, it was observed that only a small amount of cells adhered to the surface of the microcarrier from the 1st to the 5th day after seeding. Rapid cell proliferation was observed on day 7 (bar is 200 μm in each panel).
图12为对比例4中在不同交联、固定条件下得到的微载体在磁力搅拌器上搅拌24h后的光学显微镜图片。对于采用实施例1中交联固定方法得到的微载体,搅拌24h后形态完整(A);对于采用含有质量百分比分别为4%乙酸、5%氯化钙、8%氯化钠、50%乙醇的水溶液作为交联固定液制备得到的微载体,搅拌24h后出现大量碎片(B);对于采用在80℃水浴中加热析出固定方法得到的微载体,搅拌24h后几乎全部溶解(C)(每幅小图中,图中标尺为200μm)。12 is an optical microscope picture of the microcarriers obtained under different cross-linking and immobilization conditions in Comparative Example 4 after being stirred on a magnetic stirrer for 24 hours. For the microcarriers obtained by the cross-linking and fixing method in Example 1, the morphology was complete after stirring for 24 hours (A); The microcarriers prepared from the aqueous solution of 100% as the cross-linking fixative, a large number of fragments appeared after stirring for 24h (B); for the microcarriers obtained by heating and precipitation in a water bath at 80°C, they were almost completely dissolved (C) after stirring for 24h (each). In the small figure, the scale bar in the figure is 200 μm).
图13为对比例5中制备的多糖-蛋白复合微载体表面粘附生长的活细胞染色图片,取样时间为接种后的第1、4、7天,依次对应A~C图(每幅小图中,标尺为200μm)。Figure 13 is a picture of live cell staining of the polysaccharide-protein composite microcarriers prepared in Comparative Example 5 adhering and growing on the surface. The sampling time is the 1st, 4th, and 7th days after inoculation, corresponding to pictures A to C in turn (each small picture , the scale bar is 200 μm).
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
本发明中,质量体积百分浓度(g/mL)是指某物质在一定体积溶液中的质量;例如某物质的质量体积百分浓度(g/mL)为1%是指该物质在100mL溶液中的质量为1g。其他类推。In the present invention, the mass volume percent concentration (g/mL) refers to the mass of a certain substance in a certain volume of solution; for example, the mass volume percent concentration (g/mL) of a certain substance is 1%, which means that the substance is in 100 mL of solution. The mass in is 1 g. Other analogies.
本发明提供了一种用于细胞三维培养的微载体及其制备方法,所述方法包括:将可食用的植物来源的离子交联凝胶型多糖和可食用的非动物来源的蛋白直接进行混合,制成混合液,生成液滴,通过合适的交联、固定反应条件,制备得到微载体。所述微载体用于细胞培养,可以支持细胞快速增殖,并通过细胞间的相互作用,自发团聚形成细胞-微载体团块。根据实际产品形式需要,可以将微载体溶解收获细胞,进行后续加工,也可以直接通过将团块黏合、挤压成型,得到细胞培养肉产品。将本发明方法制备的微载体用于细胞培养肉,操作快速、简单,易于实现规模化生产,在细胞培养肉领域具有很大的潜力。由于动物来源的蛋白能够被动物细胞更好地识别,因此,现有技术中,为提供动物细胞合适的生长和繁殖载体,通常采用动物来源的蛋白进行微载体制备。由于多糖通常带负电荷,动物来源的蛋白通常带正电荷,为避免多糖和动物来源的蛋白之间发生电荷作用,进而产生聚集体或结块等不利现象,现有的方法通常将多糖先制备微载体,然后将动物来源的蛋白或多肽作为改性剂,在微载体表面进行修饰,以制备同时含有多糖和蛋白的微载体。现有的方法采用动物来源的蛋白为原料制备微载体,一方面制备的微载体不可食用,且会增加后续应用的复杂程度;另一方面,分步制备更加繁琐,不利于工业化放大生产和使用推广。本发明避免了现有技术中动物来源的蛋白,采用的非动物来源的蛋白与可离子交联形成凝胶的多糖分子均带负电荷,不会发生正负电凝集反应,且采用多糖和蛋白直接混合的方式制备微载体,操作简单,能够大大提高生产效率、降低生产成本,制备的微载体可食用,可溶解,能够更好地用于细胞粘附和生长繁殖,以用于后续应用。The invention provides a microcarrier for three-dimensional cell culture and a preparation method thereof. The method comprises: directly mixing edible plant-derived ion-crosslinked gelling polysaccharide and edible non-animal-derived protein , make a mixed solution, generate droplets, and prepare microcarriers through suitable cross-linking and immobilization reaction conditions. The microcarriers are used for cell culture, can support the rapid proliferation of cells, and spontaneously aggregate to form cell-microcarrier clumps through the interaction between cells. According to the actual product form requirements, the microcarriers can be dissolved to harvest the cells for subsequent processing, or the cell cultured meat products can be obtained directly by gluing and extruding the clumps. The microcarrier prepared by the method of the present invention is used for cell culture meat, the operation is fast and simple, and large-scale production is easy to be realized, and it has great potential in the field of cell culture meat. Since animal-derived proteins can be better recognized by animal cells, in the prior art, in order to provide suitable growth and reproduction carriers for animal cells, animal-derived proteins are usually used to prepare microcarriers. Since polysaccharides are usually negatively charged, and animal-derived proteins are usually positively charged, in order to avoid the charge interaction between polysaccharides and animal-derived proteins, which may cause unfavorable phenomena such as aggregates or agglomeration, the existing methods usually prepare polysaccharides first. Microcarriers, and then use animal-derived proteins or polypeptides as modifiers to modify the surface of the microcarriers to prepare microcarriers containing both polysaccharides and proteins. The existing method uses animal-derived protein as raw material to prepare microcarriers. On the one hand, the prepared microcarriers are inedible and will increase the complexity of subsequent applications; promotion. The invention avoids animal-derived proteins in the prior art, adopts non-animal-derived proteins and polysaccharide molecules that can be ionically cross-linked to form gels, both have negative charges, and positive and negative electric agglutination reactions do not occur, and the use of polysaccharides and proteins The direct mixing method to prepare microcarriers is simple to operate, can greatly improve production efficiency and reduce production costs. The prepared microcarriers are edible and soluble, and can be better used for cell adhesion and growth and reproduction for subsequent applications.
本发明提供的用于细胞三维培养的微载体的制备方法,包括:利用可离子交联形成凝胶的多糖分子为基材,与蛋白按照一定比例复配,将混合物形成液滴,进入含有交联剂和/或固定剂的溶液(收集浴)中进行交联、固定,进行或不进行表面改性后,形成蛋白-多糖复合微载体,即所述用于细胞三维培养的微载体。将获得的微载体进行细胞接种,培养一定时间,自发形成细胞-微载体团块,收获细胞或团块用于后续加工。The method for preparing a microcarrier for three-dimensional cell culture provided by the present invention includes: using a polysaccharide molecule that can be ionically crosslinked to form a gel as a base material, compounding with a protein according to a certain ratio, forming the mixture into droplets, and entering the mixture into a liquid containing crosslinking gel. After cross-linking and immobilization in a solution (collection bath) of a linking agent and/or a fixing agent, with or without surface modification, a protein-polysaccharide composite microcarrier is formed, that is, the microcarrier for three-dimensional cell culture. The obtained microcarriers are inoculated with cells, cultured for a certain period of time, and cell-microcarrier clumps are formed spontaneously, and the cells or clumps are harvested for subsequent processing.
具体地,本发明所述的用于细胞三维培养的微载体的制备方法,包括以下步骤:Specifically, the method for preparing a microcarrier for three-dimensional cell culture according to the present invention includes the following steps:
(1)制备包含离子交联凝胶型多糖和蛋白的混合溶液;(1) preparing a mixed solution containing ion cross-linked gelatinous polysaccharide and protein;
(2)采用液滴生成法生成蛋白-多糖复合液滴;(2) The droplet generation method is used to generate protein-polysaccharide composite droplets;
(3)将液滴收集到含有交联剂和/或固定剂的溶液中,进行交联反应和/或固定反应,得到所述用于细胞三维培养的微载体。(3) collecting the droplets into a solution containing a cross-linking agent and/or a fixative, and performing a cross-linking reaction and/or a fixation reaction to obtain the microcarrier for three-dimensional cell culture.
步骤(1)中,所述离子交联凝胶型多糖为可食用的植物来源的离子交联凝胶型多糖,包括但不限于是海藻酸钠、结冷胶、卡拉胶、果胶、聚甘露糖醛酸等中的一种或几种。在一些优选实施方式中,所述离子交联凝胶型多糖为海藻酸钠。在一些优选实施方式中,所述离子交联凝胶型多糖为结冷胶。在一些优选实施方式中,所述离子交联凝胶型多糖为卡拉胶。在一些优选实施方式中,所述离子交联凝胶型多糖为低酯果胶。在一些优选实施方式中,所述离子交联凝胶型多糖为海藻酸钠和结冷胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为海藻酸钠、结冷胶和卡拉胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为海藻酸钠、结冷胶、卡拉胶和低酯果胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为结冷胶和卡拉胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为结冷胶和低酯果胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为卡拉胶和低酯果胶的混合物。在一些优选实施方式中,所述离子交联凝胶型多糖为结冷胶、卡拉胶和低酯果胶的混合物。In step (1), the ion cross-linked gelatinous polysaccharide is an edible plant-derived ion-crosslinked gelatinous polysaccharide, including but not limited to sodium alginate, gellan gum, carrageenan, pectin, polysaccharide. One or more of mannuronic acid, etc. In some preferred embodiments, the ionically cross-linked gelling polysaccharide is sodium alginate. In some preferred embodiments, the ionomer gelatin polysaccharide is gellan gum. In some preferred embodiments, the ionomer gel-type polysaccharide is carrageenan. In some preferred embodiments, the ionomer gel polysaccharide is low-ester pectin. In some preferred embodiments, the ionomer gel polysaccharide is a mixture of sodium alginate and gellan gum. In some preferred embodiments, the ionomer gel-type polysaccharide is a mixture of sodium alginate, gellan gum and carrageenan. In some preferred embodiments, the ionomer gel-type polysaccharide is a mixture of sodium alginate, gellan gum, carrageenan and low-ester pectin. In some preferred embodiments, the ionomer gelatin polysaccharide is a mixture of gellan gum and carrageenan. In some preferred embodiments, the ionomer gel-type polysaccharide is a mixture of gellan gum and low-ester pectin. In some preferred embodiments, the ionomer gel-type polysaccharide is a mixture of carrageenan and low-ester pectin. In some preferred embodiments, the ionomer gel polysaccharide is a mixture of gellan gum, carrageenan and low-ester pectin.
步骤(1)中,所述蛋白为非动物来源的蛋白包括但不限于大豆分离蛋白、麦谷蛋白、豌豆蛋白、玉米醇溶蛋白、土豆蛋白、大米蛋白、花生蛋白、燕麦蛋白、杏仁蛋白、绿豆蛋白、鹰嘴豆蛋白、奇亚籽蛋白、藜麦蛋白、蚕豆蛋白、扁豆蛋白、毛豆蛋白、火麻仁蛋白、核桃蛋白、榛子蛋白、芝麻蛋白、奇亚籽蛋白、腰果蛋白、酵母蛋白、蘑菇蛋白、真菌蛋白、藻类蛋白等中的一种或几种。在一些优选实施方式中,所述蛋白为大豆分离蛋白。在一些优选实施方式中,所述蛋白为酵母蛋白。在一些优选实施方式中,所述蛋白为麦谷蛋白。在一些优选实施方式中,所述蛋白包括大豆分离蛋白和酵母蛋白两种蛋白。In step (1), the protein is non-animal derived protein including but not limited to soybean protein isolate, glutenin, pea protein, zein, potato protein, rice protein, peanut protein, oat protein, almond protein, mung bean Protein, chickpea protein, chia seed protein, quinoa protein, broad bean protein, lentil protein, edamame protein, hemp seed protein, walnut protein, hazelnut protein, sesame protein, chia seed protein, cashew protein, yeast protein, One or more of mushroom protein, fungal protein, algae protein, etc. In some preferred embodiments, the protein is soy protein isolate. In some preferred embodiments, the protein is a yeast protein. In some preferred embodiments, the protein is glutenin. In some preferred embodiments, the protein comprises both soy protein isolate and yeast protein.
步骤(1)中,所述离子交联凝胶型多糖和蛋白的质量比为1~50:1~10。在一些优选实施方式中,所述离子交联凝胶型多糖和蛋白的质量比为20:1。在一些优选实施方式中,所述离子交联凝胶型多糖和蛋白的质量比为1:2.5。在一些优选实施方式中,所述离子交联凝胶型多糖和蛋白的质量比为1:10。In step (1), the mass ratio of the ionically cross-linked gelatinous polysaccharide and the protein is 1-50:1-10. In some preferred embodiments, the mass ratio of the ionomer gelatin polysaccharide and protein is 20:1. In some preferred embodiments, the mass ratio of the ionomer gel polysaccharide and the protein is 1:2.5. In some preferred embodiments, the mass ratio of the ionomer gelatin polysaccharide and the protein is 1:10.
步骤(1)中,作为可选,所述离子交联凝胶型多糖可以先溶解在溶液中,所述溶液可以是任何可食用的且能够溶解所述离子交联凝胶型多糖的溶液;例如,所述溶液为水。在一些优选实施方式中,所述离子交联凝胶型多糖溶解在水中形成多糖水溶液。在一些优选实施方式中,所述离子交联凝胶型多糖水溶液的质量体积百分浓度(g/mL)为0.1~5%。在一些优选实施方式中,所述离子交联凝胶型多糖水溶液的质量体积百分浓度(g/mL)为0.5%。在一些优选实施方式中,所述离子交联凝胶型多糖水溶液的质量体积百分浓度(g/mL)为1%。在一些优选实施方式中,所述离子交联凝胶型多糖水溶液的质量体积百分浓度(g/mL)为2%。In step (1), as an option, the ion-crosslinked gelling polysaccharide can be dissolved in a solution first, and the solution can be any edible solution capable of dissolving the ion-crosslinked gelling polysaccharide; For example, the solution is water. In some preferred embodiments, the ionomer gel-type polysaccharide is dissolved in water to form an aqueous polysaccharide solution. In some preferred embodiments, the mass volume percent concentration (g/mL) of the ion-crosslinked gel polysaccharide aqueous solution is 0.1-5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the aqueous solution of the ionomer gel-type polysaccharide is 0.5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the aqueous solution of the ionomer gel-type polysaccharide is 1%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the ion-crosslinked gel polysaccharide aqueous solution is 2%.
步骤(1)中,作为可选,所述蛋白可以先溶解在溶液中,所述溶液可以是任何可食用的且能够溶解所述蛋白的溶液;例如,所述溶液为碱溶液、水;所述碱溶液包括食用纯碱(即碳酸钠)或烘焙碱(即氢氧化钠)的水溶液。在一些优选实施方式中,所述蛋白溶解在碱溶液中。在一些优选实施方式中,所述蛋白溶解在食用纯碱溶液中。在一些优选实施方式中,所述蛋白溶解在烘焙碱溶液中。在一些优选实施方式中,所述蛋白在碱溶液中的质量体积百分浓度(g/mL)为0.5~20%,可以是0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11、12、13、14、15、16、17、18、19、20%。在一些优选实施方式中,所述蛋白在碱溶液中的质量体积百分浓度(g/mL)为5%。在一些优选实施方式中,所述蛋白在碱溶液中的质量体积百分浓度(g/mL)为10%。In step (1), as an option, the protein can be dissolved in a solution first, and the solution can be any edible solution that can dissolve the protein; for example, the solution is an alkaline solution, water; The alkaline solution includes an aqueous solution of edible soda ash (ie, sodium carbonate) or baking soda (ie, sodium hydroxide). In some preferred embodiments, the protein is dissolved in an alkaline solution. In some preferred embodiments, the protein is dissolved in a soda ash solution. In some preferred embodiments, the protein is dissolved in a baking soda solution. In some preferred embodiments, the mass volume percent concentration (g/mL) of the protein in the alkaline solution is 0.5-20%, which can be 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 , 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the protein in the alkaline solution is 5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the protein in the alkaline solution is 10%.
步骤(2)中,对于生成液滴的方法不限,只要能生成合适直径的液滴即可。所述生成液滴的方法包括但不限于喷雾-冷冻法、喷雾-干燥法、静电喷雾法、同轴气流雾化法、乳化法、微流控方法、微胶囊造粒法。在一些优选实施方式中,所述生成液滴的方法为喷雾-冷冻法。在一些优选实施方式中,所述生成液滴的方法为静电喷雾法。在一些优选实施方式中,所述生成液滴的方法为微胶囊造粒法。在一些优选实施方式中,所述生成液滴的方法为同轴气流雾化方法。在一些优选实施方式中,所述生成液滴的方法为乳化法。In step (2), the method for generating droplets is not limited, as long as droplets of suitable diameter can be generated. The methods for generating droplets include, but are not limited to, spray-freezing method, spray-drying method, electrostatic spray method, coaxial airflow atomization method, emulsification method, microfluidic method, and microcapsule granulation method. In some preferred embodiments, the method of generating droplets is a spray-freezing method. In some preferred embodiments, the method of generating droplets is electrostatic spraying. In some preferred embodiments, the method for generating droplets is microencapsulation granulation. In some preferred embodiments, the method for generating droplets is a coaxial airflow atomization method. In some preferred embodiments, the method for generating droplets is an emulsification method.
所述液滴为微液体,所述液滴的粒径可以是任何合适的粒径。在一些实施方式中,所述液滴的粒径为50~2000μm,可以是50、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000μm。在一些优选实施方式中,所述液滴的粒径为200~500μm,即在一个体系同,同时包含粒径在200~500μm的液滴。在一些优选实施方式中,所述液滴的粒径为200~800μm,即在一个体系同,同时包含粒径在200~800μm的液滴。。在一些优选实施方式中,所述液滴的粒径为200μm。在一些优选实施方式中,所述液滴的粒径为300μm。在一些优选实施方式中,所述液滴的粒径为400μm。在一些优选实施方式中,所述液滴的粒径为500μm。在一些优选实施方式中,所述液滴的粒径为600μm。在一些优选实施方式中,所述液滴的粒径为700μm。在一些优选实施方式中,所述液滴的粒径为800μm。The droplets are micro-liquids, and the particle size of the droplets can be any suitable particle size. In some embodiments, the particle size of the droplets is 50-2000 μm, which can be 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000 μm. In some preferred embodiments, the particle size of the droplets is 200-500 μm, that is, the same system contains droplets with a particle size of 200-500 μm. In some preferred embodiments, the particle size of the droplets is 200-800 μm, that is, the same system contains droplets with a particle size of 200-800 μm. . In some preferred embodiments, the droplets have a particle size of 200 μm. In some preferred embodiments, the droplets have a particle size of 300 μm. In some preferred embodiments, the droplets have a particle size of 400 μm. In some preferred embodiments, the droplets have a particle size of 500 μm. In some preferred embodiments, the droplets have a particle size of 600 μm. In some preferred embodiments, the droplets have a particle size of 700 μm. In some preferred embodiments, the droplets have a particle size of 800 μm.
步骤(3)中,所述交联剂包括但不限于是离子,所述离子能够使上文所述的离子交联凝胶型多糖进行离子交联反应,包括但不限于是钙离子、镁离子、钾离子等中的一种或几种。在一些实施方式中,使用含离子的交联剂。在一些优选实施方式中,仅使用含钙离子的交联剂。在一些优选实施方式中,使用含氯化钙的交联剂。在一些优选实施方式中,使用含氯化钙的水溶液的交联剂。In step (3), the cross-linking agent includes but is not limited to ions, and the ions can make the ion cross-linked gelatinous polysaccharide described above to carry out ion cross-linking reaction, including but not limited to calcium ions, magnesium ions, etc. One or more of ions, potassium ions, etc. In some embodiments, ionic-containing crosslinking agents are used. In some preferred embodiments, only calcium ion-containing crosslinking agents are used. In some preferred embodiments, calcium chloride-containing crosslinking agents are used. In some preferred embodiments, an aqueous calcium chloride-containing crosslinking agent is used.
步骤(3)中,所述固定剂包括但不限于蛋白,所述蛋白能够使得上文所述的蛋白析出固定,所述蛋白包括但不限于是转谷氨酰胺酶、葡萄糖氧化酶、多酚氧化酶、过氧化氢酶、辣根过氧化物酶、乳过氧化物酶、酚类化合物、京尼平等中的一种或几种。在一些优选实施方式中,含固定剂的固定液是包括蛋白的溶液。在一些优选实施方式中,含固定剂的固定液是包括转谷氨酰胺酶的溶液。在一些优选实施方式中,含固定剂的固定液是包括转谷氨酰胺酶的水溶液。In step (3), the fixative includes, but is not limited to, proteins, which can make the above-mentioned proteins precipitate and fix, and the proteins include but are not limited to transglutaminase, glucose oxidase, polyphenols One or more of oxidase, catalase, horseradish peroxidase, lactoperoxidase, phenolic compounds, and genipin. In some preferred embodiments, the fixative containing the fixative is a solution comprising proteins. In some preferred embodiments, the fixative-containing fixative is a solution comprising transglutaminase. In some preferred embodiments, the fixative-containing fixative is an aqueous solution comprising transglutaminase.
在一些优选实施方式中,步骤(3)中,同时使用交联剂和固定剂,或含交联剂和固定剂的溶液。所述交联剂和固定剂可以分开使用,即先使用交联剂再使用固定剂,或先使用固定剂再使用交联剂,且交联固定的次数不做限制,优选地,为先进行一次离子交联,再进行一次蛋白固定;所述交联剂和固定剂可以存在于同一溶液中,同时进行交联、固定反应。也就是说,所述离子和蛋白可以存在于同一溶液中,也可以存在于不同溶液中;当存在于同一溶液中时,液滴在该溶液中同时进行离子交联和蛋白交联反应;当离子和蛋白存在于不同溶液中时,液滴可以先在含离子的交联液中进行离子交联,然后在含蛋白的固定液中进行蛋白固定,或,液滴可以先在含蛋白的固定液中进行蛋白固定,然后在含离子的交联液中进行离子交联。在一些优选实施方式中,所述交联固定液为包括钙离子和转谷氨酰胺酶的溶液。在一些优选实施方式中,所述交联固定液为包括氯化钙和转谷氨酰胺酶的水溶液。In some preferred embodiments, in step (3), a cross-linking agent and a fixing agent, or a solution containing a cross-linking agent and a fixing agent are used simultaneously. The cross-linking agent and the fixing agent can be used separately, that is, the cross-linking agent is used first and then the fixing agent is used, or the fixing agent is used first and then the cross-linking agent is used, and the number of cross-linking and fixing is not limited. One ion cross-linking, and then another protein fixation; the cross-linking agent and the fixative can exist in the same solution, and the cross-linking and fixation reactions are carried out at the same time. That is to say, the ions and proteins can exist in the same solution or in different solutions; when they exist in the same solution, the droplets perform ion cross-linking and protein cross-linking reactions simultaneously in the solution; when When ions and proteins are present in different solutions, the droplets can be ionically crosslinked in an ion-containing crosslinking solution first, and then the protein immobilized in a protein-containing fixative, or the droplets can be first immobilized in a protein-containing fixative. Protein immobilization in solution, followed by ionic crosslinking in ion-containing crosslinking solution. In some preferred embodiments, the cross-linking fixative is a solution comprising calcium ions and transglutaminase. In some preferred embodiments, the cross-linking fixative is an aqueous solution comprising calcium chloride and transglutaminase.
其中,在所述交联液中,所述离子的质量体积百分浓度(g/mL)为0.2-15%,可以是0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8、3.0、3.2、3.4、3.6、3.8、4.0、4.2、4.4、4.6、4.8、5.0、6.0、6.5、7.0、7.5、8.0、8.5、9.0、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0%。优选地,所述离子的质量体积百分浓度(g/mL)为0.5-8%。进一步优选地,所述离子的质量体积百分浓度(g/mL)为0.8-5%,可以是0.8、0.9、1.0、1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8、3.0、3.2、3.4、3.6、3.8、4.0、4.2、4.4、4.6、4.8、5.0%。在一些优选实施方式中,所述离子的质量体积百分浓度(g/mL)为1%。在一些优选实施方式中,所述离子的质量体积百分浓度(g/mL)为1.5%。在一些优选实施方式中,所述离子的质量体积百分浓度(g/mL)为2%。Wherein, in the cross-linking solution, the mass volume percentage concentration (g/mL) of the ions is 0.2-15%, which can be 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0%. Preferably, the mass volume percent concentration (g/mL) of the ions is 0.5-8%. Further preferably, the mass volume percentage concentration (g/mL) of the ions is 0.8-5%, which can be 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the ions is 1%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the ions is 1.5%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the ions is 2%.
其中,在所述固定液中,所述酶蛋白的质量体积百分浓度(g/mL)为0.01-5%,可以是质量体积百分浓度(g/mL)为0.01-0.5%、0.5-1%、0.01-1%、1-2%、2-3%、3-4%、4-5%、0.2-5%;具体可以是0.2、0.4、0.5、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8、3.0、3.2、3.4、3.6、3.8、4.0、4.2、4.4、4.6、4.8、5.0%。优选地,所述蛋白的质量体积百分浓度(g/mL)为0.5-3%。进一步优选地,所述蛋白的质量体积百分浓度(g/mL)为0.5-1.5%,可以是0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5%。在一些优选实施方式中,所述蛋白的质量体积百分浓度(g/mL)为0.5%。在一些优选实施方式中,所述蛋白的质量体积百分浓度(g/mL)为1%。在一些优选实施方式中,所述蛋白的质量体积百分浓度(g/mL)为1.5%。在一些优选实施方式中,所述蛋白的质量体积百分浓度(g/mL)为2%。在一些优选实施方式中,所述蛋白的质量体积百分浓度(g/mL)为2.5%。Wherein, in the fixative solution, the mass volume percent concentration (g/mL) of the enzyme protein is 0.01-5%, and the mass volume percent concentration (g/mL) may be 0.01-0.5%, 0.5- 1%, 0.01-1%, 1-2%, 2-3%, 3-4%, 4-5%, 0.2-5%; 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0%. Preferably, the mass volume percent concentration (g/mL) of the protein is 0.5-3%. Further preferably, the mass volume percent concentration (g/mL) of the protein is 0.5-1.5%, which can be 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the protein is 0.5%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the protein is 1%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the protein is 1.5%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the protein is 2%. In some preferred embodiments, the mass-volume percent concentration (g/mL) of the protein is 2.5%.
步骤(3)中,所述交联或固定反应的温度为2~55℃,可以是2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、55℃。在一些优选实施方式中,所述交联或固定反应的温度为22~55℃。在一些优选实施方式中,所述交联或固定反应的温度为4℃。在一些优选实施方式中,所述交联或固定反应的温度为室温22~28℃。在一些优选实施方式中,所述交联或固定反应的温度为30℃。在一些优选实施方式中,所述交联或固定反应的温度为35℃。在一些优选实施方式中,所述交联或固定反应的温度为40℃。在一些优选实施方式中,所述交联或固定反应的温度为45℃。在一些优选实施方式中,所述交联或固定反应的温度为50℃。在一些优选实施方式中,所述交联或固定反应的温度为40~55℃。在一些优选实施方式中,所述交联或固定反应的温度为55℃。In step (3), the temperature of the cross-linking or fixing reaction is 2 to 55°C, which can be 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 , 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55°C. In some preferred embodiments, the temperature of the crosslinking or fixing reaction is 22-55°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 4°C. In some preferred embodiments, the temperature of the cross-linking or fixing reaction is room temperature 22-28°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 30°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 35°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 40°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 45°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 50°C. In some preferred embodiments, the temperature of the cross-linking or fixing reaction is 40-55°C. In some preferred embodiments, the temperature of the crosslinking or immobilization reaction is 55°C.
步骤(3)中,所述交联或固定反应的时间为5~500min。在一些优选实施方式中,所述交联或固定反应的时间为10~400min。在一些优选实施方式中,所述交联或固定反应的时间为20~300min。在一些优选实施方式中,所述交联或固定反应的时间为20~200min。在一些优选实施方式中,所述交联或固定反应的时间为5~120min,可以是5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120min。在一些优选实施方式中,所述交联或固定反应的时间为30min。在一些优选实施方式中,所述交联或固定反应的时间为60min。在一些优选实施方式中,所述交联或固定反应的时间为90min。在一些优选实施方式中,所述交联或固定反应的时间为120min。In step (3), the time of the cross-linking or immobilization reaction is 5-500 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 10-400 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 20-300 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 20-200 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 5-120 min, which can be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 , 75, 80, 85, 90, 95, 100, 105, 110, 115, 120min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 30 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 60 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 90 min. In some preferred embodiments, the time of the cross-linking or immobilization reaction is 120 min.
本发明所述微载体的制备方法中,步骤(3)之后,还包括步骤(4)对微载体进行表面改性的步骤:即将步骤(3)获得的微载体,加入表面改性剂溶液中,进行表面改性。In the preparation method of the microcarrier of the present invention, after the step (3), it further includes the step (4) of modifying the surface of the microcarrier: adding the microcarrier obtained in the step (3) into the surface modifier solution , for surface modification.
步骤(4)中,所述表面改性剂为任何能够对微载体进行表面改性的材料,其可以改变微载体的多种性能,包括但不限于是改变细胞在微载体上的吸附性能、生长性能、增殖性能、细胞排列性能等;所述改变包括提高或降低,或任何用于为提供微载体综合性能所做考虑而进行的性能改变。所述表面改性材料包括但不限于糖类、蛋白、多肽、多糖、合成高分子化合物、细胞外基质组分中的一种或几种。In step (4), the surface modifier is any material capable of surface modification of the microcarrier, which can change various properties of the microcarrier, including but not limited to changing the adsorption performance of cells on the microcarrier, Growth performance, proliferation performance, cell arranging performance, etc.; such changes include increases or decreases, or any changes in performance considered to provide the overall performance of the microcarrier. The surface modification materials include, but are not limited to, one or more of carbohydrates, proteins, polypeptides, polysaccharides, synthetic polymer compounds, and extracellular matrix components.
所述表面改性剂中,所述的蛋白选自胶原蛋白、层粘连蛋白、纤维连接蛋白、玻连蛋白、弹性蛋白、软骨粘连蛋白、明胶。In the surface modifier, the protein is selected from collagen, laminin, fibronectin, vitronectin, elastin, chondronectin, and gelatin.
所述表面改性剂中,所述的多肽选自多聚赖氨酸、多鸟氨酸、RGD(精氨酸-甘氨酸-天冬氨酸)、YIGSR(酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸)、IKVAV(异亮氨酸-赖氨酸-缬氨酸-丙氨酸-脱氢视黄醇)。In the surface modifier, the polypeptide is selected from polylysine, polyornithine, RGD (arginine-glycine-aspartic acid), YIGSR (tyrosine-isoleucine- Glycine-Serine-Arginine), IKVAV (Isoleucine-Lysine-Valine-Alanine-Dehydroretinol).
所述表面改性剂中,所述的多糖选自壳聚糖、季胺化壳聚糖、乳糖、N-乙酰葡糖胺、海藻酸盐。In the surface modifier, the polysaccharide is selected from chitosan, quaternized chitosan, lactose, N-acetylglucosamine, and alginate.
所述表面改性剂中,所述的合成高分子化合物选自聚氨酯、聚丙烯酸酯、聚醚酰亚胺(PEI)。In the surface modifier, the synthetic polymer compound is selected from polyurethane, polyacrylate, and polyetherimide (PEI).
在一些优选实施方式中,所述表面改性剂为聚赖氨酸、壳聚糖、壳寡糖、玉米醇溶蛋白中的一种或多种,其中壳聚糖及壳寡糖为动物及非动物来源。在一些优选实施方式中,所述壳聚糖及壳寡糖为非动物来源。在一些优选实施方式中,所述表面改性材料为聚赖氨酸。在一些优选实施方式中,所述表面改性材料为非动物来源的壳聚糖。在一些优选实施方式中,所述表面改性材料为非动物来源的壳寡糖。在一些优选实施方式中,所述表面改性材料为玉米醇溶蛋白。In some preferred embodiments, the surface modifier is one or more of polylysine, chitosan, chitosan oligosaccharide, and zein, wherein chitosan and chitosan oligosaccharide are animal and Non-animal sources. In some preferred embodiments, the chitosan and chitosan oligosaccharides are of non-animal origin. In some preferred embodiments, the surface modification material is polylysine. In some preferred embodiments, the surface modification material is non-animal derived chitosan. In some preferred embodiments, the surface modification material is non-animal derived chitosan oligosaccharide. In some preferred embodiments, the surface modification material is zein.
溶解所述表面改性剂的溶剂为水、乙酸、乙醇等中的一种或几种。在一些优选实施方式中,溶解所述表面改性剂的溶剂为水。在一些优选实施方式中,溶解所述表面改性剂的溶剂为乙酸。在一些优选实施方式中,溶解所述表面改性剂的溶剂为乙酸的水溶液。The solvent for dissolving the surface modifier is one or more of water, acetic acid, ethanol and the like. In some preferred embodiments, the solvent in which the surface modifier is dissolved is water. In some preferred embodiments, the solvent in which the surface modifier is dissolved is acetic acid. In some preferred embodiments, the solvent in which the surface modifier is dissolved is an aqueous solution of acetic acid.
所述表面改性剂质量体积百分浓度(g/mL)为0.01-20%,可以是0.01、0.02、0.06、0.08、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8、3.0、3.2、3.4、3.6、3.8、4.0、4.2、4.4、4.6、4.8、5.0、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、20.0%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为0.1-5%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为0.1%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为0.5%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为1%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为1.5%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为2%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为2.5%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为3%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为4%。在一些优选实施方式中,所述表面改性剂的质量体积百分浓度(g/mL)为5%。在一些优选实施方式中,表面改性材料为聚赖氨酸,溶剂体系为水,聚赖氨酸的质量体积百分浓度(g/mL)为0.1~1%。在一些优选实施方式中,所述表面改性材料为壳寡糖,溶剂体系为水,壳寡糖的质量体积百分浓度(g/mL)为0.1~10%。在一些优选实施方式中,所述材料为壳聚糖时,溶剂体系为乙酸的水溶液,乙酸质量体积百分浓度(g/mL)为1~90%,壳聚糖质量体积百分浓度(g/mL)为0.1~5%。在一些优选实施方式中,所述材料为玉米醇溶蛋白时,溶剂体系为70~80%酒精,玉米醇溶蛋白的质量体积百分浓度(g/mL)为5~30%。The mass volume percent concentration (g/mL) of the surface modifier is 0.01-20%, which can be 0.01, 0.02, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0% . In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 0.1-5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 0.1%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 0.5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 1%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 1.5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 2%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 2.5%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 3%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 4%. In some preferred embodiments, the mass volume percent concentration (g/mL) of the surface modifier is 5%. In some preferred embodiments, the surface modification material is polylysine, the solvent system is water, and the mass volume percent concentration (g/mL) of polylysine is 0.1-1%. In some preferred embodiments, the surface modification material is chitosan oligosaccharide, the solvent system is water, and the mass volume percent concentration (g/mL) of chitosan oligosaccharide is 0.1-10%. In some preferred embodiments, when the material is chitosan, the solvent system is an aqueous solution of acetic acid, the acetic acid mass volume percentage concentration (g/mL) is 1-90%, and the chitosan mass volume percentage concentration (g/mL) /mL) is 0.1 to 5%. In some preferred embodiments, when the material is zein, the solvent system is 70-80% alcohol, and the mass volume percent concentration (g/mL) of zein is 5-30%.
所述表面改性的温度为10~80℃,可以是10、15、20、25、30、35、40、45、50、55、60、65、70、75、80℃。在一些优选实施方式中,所述表面改性的温度为10℃。在一些优选实施方式中,所述表面改性的温度为室温22~28℃。在一些优选实施方式中,所述表面改性的温度为20℃。在一些优选实施方式中,所述表面改性的温度为25℃。在一些优选实施方式中,所述表面改性的温度为30℃。在一些优选实施方式中,所述表面改性的温度为35℃。在一些优选实施方式中,所述表面改性的温度为40℃。在一些优选实施方式中,所述表面改性的温度为45℃。在一些优选实施方式中,所述表面改性的温度为50℃。在一些优选实施方式中,所述表面改性的温度为55℃。在一些优选实施方式中,所述表面改性的温度为60℃。在一些优选实施方式中,所述表面改性的温度为65℃。在一些优选实施方式中,所述表面改性的温度为70℃。The temperature of the surface modification is 10-80°C, which can be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80°C. In some preferred embodiments, the temperature of the surface modification is 10°C. In some preferred embodiments, the temperature of the surface modification is room temperature 22-28°C. In some preferred embodiments, the temperature of the surface modification is 20°C. In some preferred embodiments, the temperature of the surface modification is 25°C. In some preferred embodiments, the temperature of the surface modification is 30°C. In some preferred embodiments, the temperature of the surface modification is 35°C. In some preferred embodiments, the temperature of the surface modification is 40°C. In some preferred embodiments, the temperature of the surface modification is 45°C. In some preferred embodiments, the temperature of the surface modification is 50°C. In some preferred embodiments, the temperature of the surface modification is 55°C. In some preferred embodiments, the temperature of the surface modification is 60°C. In some preferred embodiments, the temperature of the surface modification is 65°C. In some preferred embodiments, the temperature of the surface modification is 70°C.
所述表面改性的时间为5~30min。在一些优选实施方式中,所述表面改性的时间为10~260min。在一些优选实施方式中,所述表面改性的时间为20~200min。在一些优选实施方式中,所述表面改性的时间为20~120min,可以是20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120min。在一些优选实施方式中,所述表面改性的时间为30min。在一些优选实施方式中,所述表面改性的时间为40min。在一些优选实施方式中,所述表面改性的时间为50min。在一些优选实施方式中,所述表面改性的时间为60min。在一些优选实施方式中,所述表面改性的时间为90min。在一些优选实施方式中,所述表面改性的时间为120min。The surface modification time is 5-30 min. In some preferred embodiments, the surface modification time is 10-260 min. In some preferred embodiments, the surface modification time is 20-200 min. In some preferred embodiments, the surface modification time is 20-120 min, which can be 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 , 95, 100, 105, 110, 115, 120min. In some preferred embodiments, the surface modification time is 30 min. In some preferred embodiments, the surface modification time is 40 min. In some preferred embodiments, the surface modification time is 50 min. In some preferred embodiments, the surface modification time is 60 min. In some preferred embodiments, the time for the surface modification is 90 min. In some preferred embodiments, the surface modification time is 120 min.
本发明所述微载体的制备还包括自然晾干或烘干的步骤。所述烘干,可以采用任何合适的方式进行,例如所述烘干的温度可以是25-100℃。The preparation of the microcarrier of the present invention also includes the step of natural drying or drying. The drying can be performed in any suitable manner, for example, the drying temperature can be 25-100°C.
在一具体实施方式中,本发明所述微载体的制备方法及利用制备的微载体培养细胞的方法(制备流程图见图1)包括以下步骤:In a specific embodiment, the method for preparing the microcarriers of the present invention and the method for culturing cells using the prepared microcarriers (see Figure 1 for the preparation flow chart) include the following steps:
(1)将离子交联凝胶型多糖以一定质量体积百分浓度(g/mL)溶于水中;(1) Dissolve the ion cross-linked gelatinous polysaccharide in water at a certain mass volume percentage concentration (g/mL);
(2)将蛋白质以一定质量体积百分浓度(g/mL)在碱性条件下溶解,或直接使用蛋白质固体;(2) Dissolve the protein at a certain mass volume percentage concentration (g/mL) under alkaline conditions, or directly use the protein solid;
(3)将溶液与多糖溶液均匀混合,或直接将蛋白质蛋白固体均匀分散在多糖溶液中,使蛋白质与多糖的质量分数达到一定比例;(3) Evenly mix the solution with the polysaccharide solution, or directly disperse the protein protein solid in the polysaccharide solution, so that the mass fraction of protein and polysaccharide reaches a certain ratio;
(4)使用液滴生成方法产生蛋白质蛋白-多糖复合体系微液滴,并在含有该种可与多糖交联成胶的离子的收集浴中收集;(4) using a droplet generation method to generate protein-protein-polysaccharide composite system microdroplets, and collect them in a collection bath containing the ions that can be cross-linked with polysaccharides to form gels;
(5)将获得的液滴在收集浴中交联反应一定时间;(5) crosslinking the obtained droplets in a collecting bath for a certain period of time;
(6)将蛋白质交联酶以一定质量体积百分浓度(g/mL)溶于水中,在一定温度条件下,将微载体浸泡在蛋白质固定液中反应一定时间;(6) Dissolve the protein cross-linking enzyme in water at a certain mass volume percentage concentration (g/mL), and under a certain temperature condition, soak the microcarriers in the protein immobilization solution for a certain period of time;
(7)将表面改性材料以一定质量体积百分浓度(g/mL)溶于合适的溶剂体系中配制成表面改性溶液;(7) Dissolve the surface modification material in a suitable solvent system with a certain mass volume percentage concentration (g/mL) to prepare a surface modification solution;
(8)将完全交联的微载体浸泡于表面改性溶液中一定时间,在一定温度条件下进行表面改性,即获得所述蛋白质蛋白-多糖复合微载体。(8) Soak the fully cross-linked microcarriers in the surface modification solution for a certain period of time, and carry out surface modification under certain temperature conditions to obtain the protein protein-polysaccharide composite microcarriers.
本发明还提供了对微载体进行交联、固定的方法,所述方法如上制备微载体的步骤(3)所述。The present invention also provides a method for cross-linking and immobilizing the microcarrier, and the method is as described in the step (3) of preparing the microcarrier.
本发明还提供如上所述方法制备得到的用于细胞三维培养的微载体,所述微载体为蛋白-多糖复合微载体,为大孔凝胶型。所述微载体的孔径为0.03~60μm,优选为0.1~50μm,更优选为0.2~30μm,更优选为0.5~20μm。所述微载体的粒径为50~2000μm;优选为200~800μm,更优选为200~500μm。大孔型微载体的渗透性好,利于营养物质和细胞代谢物质的扩散,能够为细胞提供良好的生长环境。The present invention also provides a microcarrier for three-dimensional cell culture prepared by the above-mentioned method, wherein the microcarrier is a protein-polysaccharide composite microcarrier, which is a macroporous gel type. The pore size of the microcarrier is 0.03-60 μm, preferably 0.1-50 μm, more preferably 0.2-30 μm, and more preferably 0.5-20 μm. The particle size of the microcarrier is 50-2000 μm; preferably 200-800 μm, more preferably 200-500 μm. Macroporous microcarriers have good permeability, which is conducive to the diffusion of nutrients and cell metabolites, and can provide a good growth environment for cells.
本发明还提供了所述用于细胞三维培养的微载体在培养细胞、培养细胞-微载体团块、培养肉中的应用。The invention also provides the application of the microcarrier for three-dimensional cell culture in culturing cells, culturing cell-microcarrier clumps, and culturing meat.
本发明还提供了利用所述用于细胞三维培养的微载体培养细胞的方法,所述方法包括:将所述微载体接种细胞,培养一定时间收集细胞。The present invention also provides a method for culturing cells using the microcarrier for three-dimensional cell culture, the method comprising: inoculating cells with the microcarrier, and culturing for a certain period of time to collect the cells.
本发明还提供了利用所述用于细胞三维培养的微载体培养细胞-微载体团块和/或细胞培养肉的方法,所述方法包括:The present invention also provides a method for culturing cell-microcarrier agglomerates and/or cell culture meat using the microcarrier for three-dimensional cell culture, the method comprising:
(1)将所述微载体接种细胞培养一定时间;(1) the microcarrier inoculated cells are cultured for a certain period of time;
(2)所述接种了细胞的微载体自发团聚形成细胞-微载体团块,收获得到细胞-微载体团块;(2) the microcarriers inoculated with cells spontaneously agglomerate to form cell-microcarrier clumps, and harvest to obtain cell-microcarrier clumps;
或,将所述细胞-微载体团块黏合、挤压成形,得到所述细胞培养肉产品。Or, the cell-microcarrier clumps are bonded and extruded to obtain the cell cultured meat product.
本发明中,利用所述用于细胞三维培养的微载体培养细胞、培养细胞-微载体团块或细胞培养肉的方法中,所述细胞包括但不限于血基质蛋白、肝细胞、肌细胞、成骨细胞、成纤维细胞、成脂细胞、造牙本质细胞、成体神经元祖细胞、神经干细胞、来自脑室下前脑区的多潜能干细胞、室管膜神经干细胞、造血干细胞、肝造血干细胞、骨髓干细胞、脂肪的成纤维细胞、脂肪干细胞、间充质干细胞、胚胎干细胞、骨髓基质细胞、产生胰岛细胞的干细胞、胰源性多能产生胰岛干细胞、肌肉侧群细胞、骨髓来源的回收细胞、血液来源的间质前体细胞、骨髓来源的侧群细胞、肌肉前体细胞、循环的骨骼干细胞、神经祖细胞、多潜能成体祖细胞、中胚层祖细胞、脊髓祖细胞及孢子样细胞、多种混合及其任何组合所组成的一群组的细胞。In the present invention, in the method for culturing cells, culturing cell-microcarrier aggregates or cell culture meat using the microcarriers for three-dimensional cell culture, the cells include but are not limited to blood matrix proteins, hepatocytes, muscle cells, Osteoblasts, fibroblasts, adipocytes, odontoblasts, adult neuronal progenitor cells, neural stem cells, pluripotent stem cells from the subventricular forebrain region, ependymal neural stem cells, hematopoietic stem cells, hepatic hematopoietic stem cells, bone marrow Stem cells, adipose fibroblasts, adipose stem cells, mesenchymal stem cells, embryonic stem cells, bone marrow stromal cells, islet cell-producing stem cells, pancreatic-derived pluripotent islet-producing stem cells, muscle side population cells, bone marrow-derived recovered cells, blood derived mesenchymal precursor cells, bone marrow derived side population cells, muscle precursor cells, circulating skeletal stem cells, neural progenitor cells, multipotent adult progenitor cells, mesoderm progenitor cells, spinal cord progenitor cells and spore-like cells, various A population of cells formed by mixing and any combination thereof.
在一些优选实施方式中,所述微载体用于培养肉,接种的细胞为成骨细胞、成纤维细胞、成脂细胞中的一种或几种。在一些优选实施方式中,所述微载体用于培养肉,接种的细胞为猪肌肉卫星细胞。在一些优选实施方式中,所述微载体用于培养细胞,用于再生医学,接种的细胞为间充质干细胞。In some preferred embodiments, the microcarriers are used for culturing meat, and the inoculated cells are one or more of osteoblasts, fibroblasts, and adipocytes. In some preferred embodiments, the microcarriers are used for culturing meat, and the inoculated cells are porcine muscle satellite cells. In some preferred embodiments, the microcarriers are used for culturing cells for regenerative medicine, and the inoculated cells are mesenchymal stem cells.
微载体的性能和结构对细胞培养具有重要影响,尤其是微载体的基质材料、表面形状、表面修饰结构、电荷、亲水性等对细胞的贴附、生长和增殖都具有重要影响。现有技术中,采用动物来源的蛋白作为基质材料之一,用于构建微载体,是因为动物来源的基质材料能够为动物细胞更好地识别和粘附,利于细胞的进一步生长和繁殖。而植物来源的蛋白作为基质材料通常无法为动物细胞提供更合适的识别位点,进而不利于动物细胞的粘附。本发明创新地通过将植物来源的蛋白和多糖作为微载体制备的基质材料,通过制备方法过程中的参数调整,采用合适的交联剂和/或固定剂使蛋白和多糖进行交联和/或固定,在更优选方式中采用表面活性剂对微载体进行表面修饰,制备得到的微载体能够很好地为动物细胞所识别和吸附,且形成的三维结构为细胞的生长和形成团块提供有利的空间环境,进而为培养细胞、细胞-微载体团块和细胞培养肉提供基础。The performance and structure of microcarriers have important effects on cell culture, especially the matrix material, surface shape, surface modification structure, charge, and hydrophilicity of microcarriers have important effects on cell attachment, growth and proliferation. In the prior art, animal-derived protein is used as one of the matrix materials for constructing microcarriers, because animal-derived matrix materials can better identify and adhere to animal cells, which is conducive to further cell growth and reproduction. However, plant-derived protein as a matrix material usually cannot provide a more suitable recognition site for animal cells, which is not conducive to the adhesion of animal cells. The present invention innovatively uses plant-derived proteins and polysaccharides as matrix materials prepared as microcarriers, and uses suitable cross-linking agents and/or fixatives to cross-link and/or cross-link proteins and polysaccharides by adjusting parameters during the preparation method. Fixing, in a more preferred manner, the surface of the microcarrier is modified with a surfactant, the prepared microcarrier can be well recognized and adsorbed by animal cells, and the formed three-dimensional structure provides favorable conditions for cell growth and clump formation The space environment, which in turn provides the basis for culturing cells, cell-microcarrier aggregates and cell culture meat.
本发明采用可与离子交联形成水凝胶的天然多糖类材料(如海藻酸钠,其是一种天然可食用材料且具有良好的生物相容性),与钙离子交联形成凝胶网络,反应快速、条件温和,且过程可逆;使用乙二胺四乙酸(EDTA)即可溶解。天然蛋白质基材料,如大豆蛋白、酵母蛋白等,加入肉类产品中还可提供肉制品的口感及风味。将离子交联型多糖与蛋白质混合,利用多糖的快速、可逆凝胶过程与蛋白质的风味,通过特定的方法、控制合适的参数条件制备获得的微载体,具备可以适用于大规模生产细胞培养肉的相关性能,如具有较高的生物活性,可以促进细胞粘附、生长和增殖,通过细胞间相互作用可以使微载体之间自发团聚形成细胞-微载体团块,将团块粘合、挤压成型,可以直接得到例如细胞培养肉等终端产品。本发明可以简化接种流程,无需分离等复杂操作,且培养体积不受限制,有利于大规模、商业化产品的生产。The present invention adopts natural polysaccharide materials (such as sodium alginate, which is a natural edible material and has good biocompatibility) that can be cross-linked with ions to form hydrogels, and cross-linked with calcium ions to form gels network, rapid reaction, mild conditions, and reversible process; it can be dissolved by using ethylenediaminetetraacetic acid (EDTA). Natural protein-based materials, such as soy protein, yeast protein, etc., can be added to meat products to provide the taste and flavor of meat products. Mixing ionically cross-linked polysaccharide and protein, using the fast and reversible gelation process of polysaccharide and the flavor of protein, the microcarrier prepared by specific method and controlling appropriate parameter conditions has the ability to be suitable for large-scale production of cell cultured meat. related properties, such as high biological activity, can promote cell adhesion, growth and proliferation, through the interaction between cells, microcarriers can spontaneously agglomerate to form cell-microcarrier clumps, and the clumps can be glued and squeezed. Compression molding can directly obtain end products such as cell culture meat. The invention can simplify the inoculation process, does not need complex operations such as separation, and has unlimited culture volume, which is beneficial to the production of large-scale and commercial products.
如本文所用,所述“离子交联凝胶型多糖”是指能够在离子的存在下,在分子内部或分子与分子之间形成稳定的网络结构的多糖。As used herein, the "ionocrosslinked gelling polysaccharide" refers to a polysaccharide capable of forming a stable network structure within a molecule or between molecules in the presence of ions.
如本文所用,所述“蛋白固定”是指能够在蛋白固定液的存在下,蛋白质变性析出,或催化蛋白质分子内部及蛋白质分子与蛋白质分子之间通过化学键(如二硫键等)形成稳定的网络结构。As used herein, the "protein immobilization" refers to the ability to denature and separate out proteins in the presence of a protein immobilizer, or to catalyze the formation of stable chemical bonds (such as disulfide bonds, etc.) within protein molecules and between protein molecules and protein molecules. network structure.
如本文所用,所述改性是指通过采用表面改性剂的方法,使微载体表面发生化学反应和物理作用,从而改变微载体表面状态,如表面原子层结构和官能团、表面疏水性、电性、化学吸附和反应特性等。As used herein, the modification refers to chemical reactions and physical effects on the surface of the microcarriers by using surface modifiers, thereby changing the surface states of the microcarriers, such as the surface atomic layer structure and functional groups, surface hydrophobicity, electrical properties, chemical adsorption and reaction properties.
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围;在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。Before further describing the specific embodiments of the present invention, it should be understood that the protection scope of the present invention is not limited to the following specific specific embodiments; it should also be understood that the terms used in the examples of the present invention are for describing specific specific embodiments, Rather than limiting the scope of the invention; in the specification and claims of the present invention, the singular forms "a", "an" and "the" include the plural forms unless the context clearly dictates otherwise.
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。When numerical ranges are given in the examples, it is to be understood that, unless otherwise indicated herein, both endpoints of each numerical range and any number between the two endpoints may be selected. Unless otherwise defined, all technical and scientific terms used in the present invention have the same meaning as commonly understood by one of ordinary skill in the art. In addition to the specific methods, equipment and materials used in the embodiments, according to the mastery of the prior art by those skilled in the art and the description of the present invention, the methods, equipment and materials described in the embodiments of the present invention can also be used Any methods, devices and materials similar or equivalent to those of the prior art can be used to implement the present invention.
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的分子生物学、生物化学、染色质结构和分析、分析化学、细胞培养、重组DNA技术及相关领域的常规技术。Unless otherwise specified, the experimental methods, detection methods and preparation methods disclosed in the present invention all adopt the conventional molecular biology, biochemistry, chromatin structure and analysis, analytical chemistry, cell culture, recombinant DNA technology and related fields in the technical field. conventional technology.
实施例1:大豆分离蛋白-海藻酸钠/聚赖氨酸表面改性微载体的制备Example 1: Preparation of Soy Protein Isolate-Sodium Alginate/Polylysine Surface Modified Microcarrier
称取1g海藻酸钠加入100ml去离子水中,在室温条件下搅拌至完全溶解,配制成浓度为1%的海藻酸钠溶液。称取0.1g食用纯碱加入100ml去离子水中,搅拌溶解,随后称取5g大豆分离蛋白固体,加入碱溶液中,在室温条件下搅拌至完全溶解,配制成浓度为5%的大豆分离蛋白溶液。量取20ml浓度为1%的海藻酸钠溶液,量取80ml浓度质量体积百分浓度(g/mL)为5%的大豆分离蛋白溶液,将两种溶液混合均匀,配制成海藻酸钠浓度为0.2%、大豆分离蛋白浓度为4%的复合溶液,大豆分离蛋白与海藻酸钠的质量比为20:1。采用喷雾-冷冻法制备微液滴,得到粒径为200~500μm的微液滴。称取5g氯化钙固体加入500ml去离子水中,配制成1%的氯化钙溶液,作为离子交联液,将微载体收集至氯化钙溶液中,室温交联30min,得到离子交联的微载体。称取2.5g转谷氨酰胺酶加入500ml水中,在室温条件下溶解,配制成蛋白固定液。将经钙离子交联的微载体收集至蛋白固定液中,水浴加热至40℃固定2h,得到离子交联和蛋白固定的微载体。称取0.1g聚赖氨酸加入100ml去离子水中,在室温条件下搅拌至完全溶解,配制成浓度为0.1%的聚赖氨酸溶液作为表面改性材料。将固定后的微载体浸泡在0.1%聚赖氨酸溶液中,室温下搅拌30min,得到聚赖氨酸表面改性的离子交联和蛋白固定的多糖-蛋白复合微载体,粒径为200~500μm,其光学显微镜图片如图2所示。Weigh 1 g of sodium alginate into 100 ml of deionized water, stir at room temperature until completely dissolved, and prepare a sodium alginate solution with a concentration of 1%. Weigh 0.1g of edible soda ash into 100ml of deionized water, stir to dissolve, then weigh 5g of soy protein isolate solid, add it to the alkali solution, stir at room temperature until completely dissolved, and prepare a soy protein isolate solution with a concentration of 5%. Measure 20ml of sodium alginate solution with a concentration of 1%, and measure 80ml of a soybean protein isolate solution with a concentration of 5% by volume by volume (g/mL), mix the two solutions evenly, and prepare the sodium alginate concentration as The composite solution of 0.2% and soybean protein isolate concentration of 4%, the mass ratio of soybean protein isolate and sodium alginate is 20:1. Micro-droplets are prepared by spray-freezing method to obtain micro-droplets with a particle size of 200-500 μm. Weigh 5g of calcium chloride solid and add it into 500ml of deionized water to prepare a 1% calcium chloride solution as an ionic cross-linking solution. microcarriers. Weigh 2.5 g of transglutaminase into 500 ml of water, dissolve at room temperature, and prepare a protein fixative solution. The calcium ion-crosslinked microcarriers were collected into the protein fixative solution, heated to 40°C in a water bath for 2 h, and the ionically crosslinked and protein-fixed microcarriers were obtained. Weigh 0.1 g of polylysine into 100 ml of deionized water, stir at room temperature until it is completely dissolved, and prepare a polylysine solution with a concentration of 0.1% as a surface modification material. Immerse the immobilized microcarriers in a 0.1% polylysine solution and stir at room temperature for 30 min to obtain polysaccharide-protein composite microcarriers with polylysine surface-modified ion cross-linking and protein immobilization, with a particle size of 200~ 500 μm, and its optical microscope picture is shown in Figure 2.
实施例2:酵母蛋白-低酯果胶微载体的制备Example 2: Preparation of yeast protein-low ester pectin microcarriers
称取2g低酯果胶加入100ml去离子水中,水浴加热60℃搅拌至完全溶解,配制成浓度为2%的低酯果胶溶液。称取5g酵母蛋白固体加入100ml 2%低酯果胶溶液中,搅拌使固体颗粒均匀分散,酵母蛋白与低酯果胶的质量比为2.5:1。称取25g氯化钙固体加入500ml去离子水中,配置成5%的氯化钙溶液,用作收集浴。采用静电喷雾法制备微液滴,将生成的微液滴在收集浴中室温交联固定30min,得到粒径为200~800μm的离子交联的多糖-蛋白复合微载体。2 g of low-ester pectin was weighed into 100 ml of deionized water, heated in a water bath at 60° C. and stirred until completely dissolved to prepare a low-ester pectin solution with a concentration of 2%. Weigh 5 g of yeast protein solids into 100 ml of 2% low-ester pectin solution, stir to make the solid particles evenly dispersed, and the mass ratio of yeast protein to low-ester pectin is 2.5:1. Weigh 25 g of solid calcium chloride into 500 ml of deionized water to prepare a 5% calcium chloride solution for use as a collection bath. Microdroplets were prepared by electrostatic spraying, and the resulting microdroplets were cross-linked and fixed in a collecting bath at room temperature for 30 minutes to obtain ionically cross-linked polysaccharide-protein composite microcarriers with a particle size of 200-800 μm.
实施例3:麦谷蛋白-结冷胶微载体/壳聚糖表面改性微载体的制备Example 3: Preparation of Glutenin-Gellan Gum Microcarriers/Chitosan Surface Modified Microcarriers
称取1g结冷胶加入100ml去离子水中,在室温条件下搅拌至完全溶解,配制成浓度为1%的结冷胶溶液。称取0.1g烘焙碱加入100ml去离子水中,搅拌溶解,随后称取10g麦谷蛋白固体,加入碱溶液中,在室温条件下搅拌至完全溶解,配制成浓度为10%的麦谷蛋白溶液。量取50ml浓度为1%的结冷胶溶液,量取50ml浓度为10%的麦谷蛋白溶液,将两种溶液混合均匀,配制成结冷胶浓度为0.2%、麦谷蛋白浓度为1%的复合溶液,麦谷蛋白与结冷胶的质量比为10:1。称取5g氯化钙固体加入500ml去离子水中,配制成1%的氯化钙溶液,用作收集浴。采用微胶囊造粒法制备微液滴,在收集浴中室温交联固定60min,得到粒径为200~500μm的离子交联的微载体。量取2ml乙酸加入100ml去离子水中,称取0.5g壳聚糖加入100ml 2%乙酸溶液中,在室温条件下搅拌至完全溶解,配制成浓度为0.5%的壳聚糖溶液作为表面改性材料。将在收集浴中交联后的微载体浸泡在0.5%壳聚糖溶液中,60℃搅拌2h,得到壳聚糖表面改性的离子交联的多糖-蛋白复合微载体,粒径为200~500μm,其光学显微镜图片如图3所示。Weigh 1 g of gellan gum into 100 ml of deionized water, stir at room temperature until completely dissolved, and prepare a gellan gum solution with a concentration of 1%. Weigh 0.1g of baking soda into 100ml of deionized water, stir to dissolve, then weigh 10g of glutenin solid, add it to the alkali solution, stir at room temperature until completely dissolved, and prepare a glutenin solution with a concentration of 10%. Measure 50ml of gellan gum solution with a concentration of 1% and 50ml of glutenin solution with a concentration of 10%. Mix the two solutions evenly to prepare a compound with a gellan gum concentration of 0.2% and a glutenin concentration of 1%. solution, the mass ratio of glutenin to gellan gum is 10:1. Weigh 5 g of calcium chloride solid into 500 ml of deionized water to prepare a 1% calcium chloride solution, which is used as a collection bath. Micro-droplets were prepared by microcapsule granulation, and cross-linked and fixed in a collecting bath at room temperature for 60 min to obtain ionically cross-linked microcarriers with a particle size of 200-500 μm. Measure 2ml of acetic acid into 100ml of deionized water, weigh 0.5g of chitosan and add it to 100ml of 2% acetic acid solution, stir at room temperature until completely dissolved, and prepare a chitosan solution with a concentration of 0.5% as a surface modification material . Soak the cross-linked microcarriers in the collection bath in 0.5% chitosan solution, and stir at 60° C. for 2 h to obtain ionically crosslinked polysaccharide-protein composite microcarriers modified on the surface of chitosan, with a particle size of 200~ 500 μm, and its optical microscope picture is shown in Figure 3.
实施例4:玉米醇溶蛋白表面改性的海藻酸钠多孔微载体的制备Example 4: Preparation of Zein Surface-Modified Sodium Alginate Porous Microcarriers
称取0.5g海藻酸钠加入100ml去离子水中,在室温条件下搅拌至完全溶解,配制成浓度为0.5%的海藻酸钠溶液。称取5g玉米醇溶蛋白固体加入100ml 0.5%海藻酸钠溶液中,搅拌使固体颗粒均匀分散,玉米醇溶蛋白与海藻酸钠的质量比为10:1。称取5g氯化钙固体加入500ml去离子水中,配置成1%的氯化钙溶液,用作收集浴。采用同轴气流雾化方法制备微液滴,将生成的微液滴在收集浴中室温交联固定30min,得到粒径为200~800μm的离子交联的微载体。将收集的离子交联的微载体用去离子水清洗,用75%酒精浸泡清洗,除去玉米醇溶蛋白,得到多孔微载体。称取5g玉米醇溶蛋白固体加入100ml 75%酒精,在室温条件下溶解,配制成浓度5%玉米醇溶蛋白溶液。将多孔微载体浸泡在5%玉米醇溶蛋白溶液中,过滤除去多余液体,80℃烘干,得到玉米醇溶蛋白表面改性的离子交联的多孔多糖-蛋白复合微载体,粒径为200~800μm。Weigh 0.5 g of sodium alginate into 100 ml of deionized water, stir at room temperature until completely dissolved, and prepare a sodium alginate solution with a concentration of 0.5%. Weigh 5g of zein solids and add them into 100ml of 0.5% sodium alginate solution, stir to make the solid particles evenly dispersed, and the mass ratio of zein to sodium alginate is 10:1. 5 g of calcium chloride solid was weighed into 500 ml of deionized water to prepare a 1% calcium chloride solution, which was used as a collection bath. Microdroplets were prepared by coaxial airflow atomization, and the resulting microdroplets were cross-linked and fixed in a collecting bath at room temperature for 30 minutes to obtain ionically cross-linked microcarriers with a particle size of 200-800 μm. The collected ionically cross-linked microcarriers were washed with deionized water, soaked and washed with 75% alcohol to remove zein to obtain porous microcarriers. Weigh 5 g of zein solid, add 100 ml of 75% alcohol, dissolve at room temperature, and prepare a 5% zein solution. The porous microcarriers were soaked in 5% zein solution, filtered to remove excess liquid, and dried at 80°C to obtain ion-crosslinked porous polysaccharide-protein composite microcarriers modified on the surface of zein, with a particle size of 200 ~800μm.
实施例5:大豆分离蛋白-酵母蛋白-海藻酸钠微载体的制备Example 5: Preparation of Soy Protein Isolate-Yeast Protein-Sodium Alginate Microcarrier
称取1g海藻酸钠加入100ml去离子水中,在室温条件下搅拌至完全溶解,配制成浓度为1%的海藻酸钠溶液。称取0.1g食用纯碱加入100ml去离子水中,搅拌溶解,随后称取5g大豆分离蛋白固体,加入碱溶液中,在室温条件下搅拌至完全溶解,配制成浓度为5%的大豆分离蛋白溶液。量取20ml浓度为1%的海藻酸钠溶液,量取20ml浓度为5%的大豆分离蛋白溶液,将两种溶液混合,加入60ml去离子水,混合均匀,配制成海藻酸钠浓度为0.2%、大豆分离蛋白浓度为1%的复合溶液。取1g酵母蛋白固体加入100ml上述复合溶液中,搅拌使固体颗粒均匀分散,其中蛋白质的总质量与海藻酸钠的质量比为10:1。向多糖和蛋白的混合液中加入混合液体积10倍的食用油,制备成乳化体系,采用乳化法制备微液滴,得到粒径为200~500μm的微液滴。称取5g氯化钙固体加入500ml去离子水中,配制成1%的氯化钙溶液。将上述100ml乳化体系加入500ml 1%氯化钙溶液中,室温下搅拌30min,使液滴交联,得到多糖-蛋白复合微载体。Weigh 1 g of sodium alginate into 100 ml of deionized water, stir at room temperature until completely dissolved, and prepare a sodium alginate solution with a concentration of 1%. Weigh 0.1g of edible soda ash into 100ml of deionized water, stir to dissolve, then weigh 5g of soy protein isolate solid, add it to the alkali solution, stir at room temperature until completely dissolved, and prepare a soy protein isolate solution with a concentration of 5%. Measure 20ml of sodium alginate solution with a concentration of 1%, measure 20ml of soybean protein isolate solution with a concentration of 5%, mix the two solutions, add 60ml of deionized water, mix well, and prepare a sodium alginate concentration of 0.2% , Soybean protein isolate concentration of 1% compound solution. 1 g of yeast protein solid was added to 100 ml of the above composite solution, and the solid particles were uniformly dispersed by stirring, wherein the mass ratio of the total mass of protein to sodium alginate was 10:1. To the mixed solution of polysaccharide and protein, edible oil with a volume of 10 times the mixed solution is added to prepare an emulsion system, and micro-droplets are prepared by an emulsification method to obtain micro-droplets with a particle size of 200-500 μm. Weigh 5g of calcium chloride solid and add it into 500ml of deionized water to prepare a 1% calcium chloride solution. Add 100 ml of the above-mentioned emulsification system to 500 ml of 1% calcium chloride solution, and stir at room temperature for 30 minutes to cross-link the droplets to obtain a polysaccharide-protein composite microcarrier.
实施例6:可溶性微载体的溶解Example 6: Dissolution of Soluble Microcarriers
称取3.8g EDTA固体加入100ml去离子水中,微热搅拌溶解后,加入900ml去离子水,配制成浓度为10mM的EDTA溶液。将实施例1中得到的微载体加入10mM EDTA溶液中,摇匀使微载体与溶液充分接触,室温下静置5min,微载体完全溶解。Weigh 3.8g of EDTA solid and add it to 100ml of deionized water. After stirring with slight heat to dissolve, add 900ml of deionized water to prepare an EDTA solution with a concentration of 10mM. The microcarriers obtained in Example 1 were added to a 10 mM EDTA solution, shaken up to make the microcarriers fully contact with the solution, and allowed to stand at room temperature for 5 min to completely dissolve the microcarriers.
实施例7:在微载体上培养猪肌肉卫星细胞Example 7: Culture of porcine muscle satellite cells on microcarriers
将猪肌肉卫星细胞以104个/mg的密度接种到实施例1中制备得到的蛋白-多糖复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10ml FBS))中培养7天。Pig muscle satellite cells were seeded on the protein-polysaccharide composite microcarrier prepared in Example 1 at a density of 10 4 /mg, in a complete medium (90% DMEM, 10% FBS (that is, every 100 ml of complete medium containing 90ml DMEM medium+10ml FBS)) for 7 days.
在接种后的第1、3、5、7天通过光学显微镜及二乙酸荧光素对活细胞进行染色观察,结果如图4所示。由图4可知,在接种后的第1天可观察到大多数细胞粘附在微载体表面并铺展,随后在第3、5、7天观察到细胞数量随培养时间延长显著增加,说明实施例1制备的微载体可以提供贴壁细胞粘附的表面,并能够支持细胞快速生长和增殖。On the 1st, 3rd, 5th, and 7th days after inoculation, the living cells were stained and observed by light microscope and fluorescein diacetate, and the results are shown in FIG. 4 . It can be seen from Figure 4 that most of the cells adhered to the surface of the microcarriers and spread on the first day after inoculation, and then the number of cells was observed to increase significantly with the extension of the culture time on the 3rd, 5th, and 7th days. 1 The prepared microcarriers can provide a surface for adherent cells to adhere to and can support the rapid growth and proliferation of cells.
实施例8:细胞在蛋白-多糖复合微载体上的定向排列Example 8: Orientation of cells on proteoglycan composite microcarriers
将C2C12细胞以104个/mg的密度接种到实施例2中得到的蛋白-多糖复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10mlFBS))中培养7天。C2C12 cells were seeded on the proteoglycan composite microcarrier obtained in Example 2 at a density of 10 4 /mg, and cultured in a complete medium (90% DMEM, 10% FBS (that is, every 100 ml of complete medium contained 90 ml of DMEM). culture medium + 10 ml FBS)) for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图5所示。由图5可知,在接种后的第1天,大多数细胞粘附在微载体表面并铺展,随后在第3、5、7天观察到细胞数量随培养时间的延长而显著增加,在第5天后细胞沿微载体表面纹路有序、定向排列。The cells were stained with fluorescein diacetate on the 1st, 3rd, 5th, and 7th days after inoculation, and the living cells were observed by a light microscope. The results are shown in FIG. 5 . It can be seen from Figure 5 that on the first day after seeding, most of the cells adhered to the surface of the microcarriers and spread, and then a significant increase in the number of cells was observed on the 3rd, 5th, and 7th days with the extension of the culture time, and on the 5th day. Dianhou cells are arranged in an orderly and directional arrangement along the surface pattern of the microcarrier.
实施例9:细胞在具有多孔结构的蛋白-多糖复合微载体上的粘附生长Example 9: Adhesive growth of cells on proteoglycan composite microcarriers with porous structure
将C2C12细胞以104个/mg的密度接种到实施例4中得到的具有多孔结构的多糖-蛋白复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10ml FBS))中培养7天。C2C12 cells were seeded on the polysaccharide-protein composite microcarriers with porous structure obtained in Example 4 at a density of 10 4 /mg, in a complete medium (90% DMEM, 10% FBS (that is, per 100 ml of complete medium). Cultured in 90 ml DMEM medium + 10 ml FBS)) for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图6所示。由图6可知,在接种后的第1天,细胞可以粘附在微载体表面并铺展,随后在第3、5、7天观察到细胞数量随培养时间的延长而增加,说明含有多种蛋白质组分的微载体能够支持细胞生长和增殖。The cells were stained with fluorescein diacetate on the 1st, 3rd, 5th, and 7th days after inoculation, and the living cells were observed by a light microscope. The results are shown in FIG. 6 . It can be seen from Figure 6 that cells can adhere to the surface of the microcarriers and spread on the first day after inoculation, and then the number of cells was observed to increase with the extension of the culture time on the third, fifth and seventh days, indicating that the cells contained a variety of proteins. The microcarriers of the components are capable of supporting cell growth and proliferation.
实施例10:多种蛋白质组分对细胞在微载体上的粘附生长作用Example 10: Effects of various protein components on the adhesion and growth of cells on microcarriers
将C2C12细胞以104个/mg的密度接种到实施例5中得到的蛋白-多糖复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10mlFBS))中培养7天。C2C12 cells were seeded on the proteoglycan composite microcarrier obtained in Example 5 at a density of 10 4 /mg, and were cultured in a complete medium (90% DMEM, 10% FBS (that is, every 100 ml of complete medium contained 90 ml of DMEM). culture medium + 10 ml FBS)) for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图7所示。由图7可知,在接种后的第1天,细胞可以粘附在微载体表面并铺展,随后在第3、5、7天观察到细胞数量随培养时间的延长而增加,说明含有多种蛋白质组分的微载体能够支持细胞生长和增殖。The cells were stained with fluorescein diacetate on the 1st, 3rd, 5th, and 7th days after inoculation, and the living cells were observed by a light microscope. The results are shown in FIG. 7 . It can be seen from Figure 7 that cells can adhere to the surface of the microcarriers and spread on the first day after inoculation, and then the number of cells was observed to increase with the extension of the culture time on the third, fifth and seventh days, indicating that the cells contained a variety of proteins. The microcarriers of the components are capable of supporting cell growth and proliferation.
实施例11:蛋白-多糖复合微载体的自发团聚形成细胞-微载体团块Example 11: Spontaneous aggregation of protein-polysaccharide composite microcarriers to form cell-microcarrier clumps
将猪骨骼肌细胞以104个/mg的密度接种到实施例5中得到的蛋白-多糖复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10mlFBS))中培养7天。Porcine skeletal muscle cells were seeded on the proteoglycan composite microcarrier obtained in Example 5 at a density of 10 4 /mg, in a complete medium (90% DMEM, 10% FBS (that is, 90 ml per 100 ml of complete medium). DMEM medium+10ml FBS)) for 7 days.
在接种后的第5天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图8所示。由图8可知,在第5天时,多个微载体之间通过细胞间相互作用自发团聚形成细胞-微载体团块;对活细胞染色观察发现团块表面及微载体之间被大量活细胞包裹。随着培养时间延长,观察到细胞-微载体团块数量不断增多,形成的团块体积不断增大。The cells were stained with fluorescein diacetate on the 5th day after seeding, and the living cells were observed by a light microscope, and the results are shown in FIG. 8 . It can be seen from Figure 8 that on the 5th day, multiple microcarriers spontaneously agglomerated through cell-to-cell interactions to form cell-microcarrier clumps; the staining of live cells found that the surface of the clumps and between the microcarriers were wrapped by a large number of living cells. . The number of cell-microcarrier clumps was observed to increase and the volume of the clumps formed continued to increase with the extension of the culture time.
对比例1 仅蛋白制备的微载体Comparative Example 1 Protein-only preparation of microcarriers
在实施例1的基础上,不使用海藻酸钠,仅使用蛋白制备微载体,且交联固定液收集浴不同,具体为采用现有常用于蛋白交联固定的混合液,其含有质量百分比的以下组分:4%乙酸、5%氯化钙、8%氯化钠、50%乙醇的水溶液。On the basis of Example 1, instead of using sodium alginate, only protein was used to prepare microcarriers, and the collection bath of the cross-linking fixative solution was different. Specifically, the existing mixed solution commonly used for protein cross-linking and fixation was used, which contained mass percent The following components: 4% acetic acid, 5% calcium chloride, 8% sodium chloride, 50% ethanol in water.
制备得到的蛋白微载体的光学显微镜图片如图9所示。由图9可知,制备的不含多糖的蛋白微载体粒径仅为1-2mm,其可提供细胞粘附增殖的比表面积远低于本发明实施例1多糖-蛋白质微载体,应用于大规模生产时效率过低,说明多糖添加对于调控微载体粒径、制备粒径分布适宜的微载体具有必要性。The optical microscope picture of the prepared protein microcarrier is shown in FIG. 9 . It can be seen from FIG. 9 that the particle size of the prepared protein microcarrier without polysaccharide is only 1-2 mm, and the specific surface area that can provide cell adhesion and proliferation is much lower than that of the polysaccharide-protein microcarrier in Example 1 of the present invention, which is applied to large-scale The production efficiency is too low, indicating that polysaccharide addition is necessary for regulating the particle size of microcarriers and preparing microcarriers with suitable particle size distribution.
对比例2 不同多糖种类对微载体的影响Comparative Example 2 Effects of different polysaccharide species on microcarriers
在实施例2的基础上,仅将低酯果胶替换为海藻酸钠,其他条件同实施例2,制备得到多糖-蛋白复合微载体。On the basis of Example 2, only low-ester pectin was replaced with sodium alginate, and other conditions were the same as those of Example 2, to prepare a polysaccharide-protein composite microcarrier.
将C2C12细胞以104个/mg的密度接种到该方法制备的微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10ml FBS))中培养7天。C2C12 cells were seeded on the microcarriers prepared by this method at a density of 10 4 /mg, in full medium (90% DMEM, 10% FBS (ie, 90 ml DMEM medium + 10 ml FBS per 100 ml full medium)) cultured for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图10所示。由图10可知,在接种后的第1-7天中仅有极少量细胞粘附在微载体表面,且呈细胞间自团聚现象,说明多糖种类的选择对于细胞在微载体表面的粘附具有重要影响。The cells were stained with fluorescein diacetate on the 1st, 3rd, 5th, and 7th days after inoculation, and the living cells were observed by a light microscope. The results are shown in FIG. 10 . It can be seen from Figure 10 that only a very small amount of cells adhered to the surface of the microcarriers on the 1st to 7th days after inoculation, and the phenomenon of intercellular self-aggregation was observed, indicating that the selection of polysaccharide species has an important effect on the adhesion of cells to the surface of the microcarriers. Significant influence.
对比例3 不同种类的动物来源的蛋白对微载体的影响Comparative Example 3 Effects of Different Kinds of Animal-derived Proteins on Microcarriers
(1)多糖-蛋白(鱼胶原蛋白肽)复合微载体(1) Polysaccharide-protein (fish collagen peptide) composite microcarrier
在实施例2的基础上,仅将酵母蛋白替换为动物来源的鱼胶原蛋白肽,其他条件同实施例2,制备得到多糖-蛋白复合微载体。On the basis of Example 2, only the yeast protein was replaced with animal-derived fish collagen peptides, and other conditions were the same as those of Example 2, to prepare a polysaccharide-protein composite microcarrier.
将C2C12细胞以104个/mg的密度接种到该方法制备的微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10ml FBS))中培养7天。C2C12 cells were seeded on the microcarriers prepared by this method at a density of 10 4 /mg, in full medium (90% DMEM, 10% FBS (ie, 90 ml DMEM medium + 10 ml FBS per 100 ml full medium)) cultured for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图11左侧列所示。由图11可知,在接种后的第1-5天中仅有少量细胞粘附在微载体表面,且大部分细胞与细胞间粘连团聚,到第7天观察到细胞少量增殖。Cells were stained with fluorescein diacetate on days 1, 3, 5, and 7 after inoculation, and living cells were observed by light microscopy. The results are shown in the left column of Figure 11 . It can be seen from Fig. 11 that only a small amount of cells adhered to the surface of the microcarriers on the 1st to 5th day after seeding, and most of the cells adhered and agglomerated with each other, and a small amount of cell proliferation was observed on the 7th day.
(2)多糖-蛋白(明胶)复合微载体(2) Polysaccharide-protein (gelatin) composite microcarrier
在实施例2的基础上,将酵母蛋白替换为明胶,其他条件同实施例2,制备得到果胶-明胶复合微载体。On the basis of Example 2, the yeast protein was replaced with gelatin, and other conditions were the same as those of Example 2, to prepare a pectin-gelatin composite microcarrier.
采取相同方法接种C2C12细胞,即,将C2C12细胞以104个/mg的密度接种到该方法制备的微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90ml DMEM培养基+10ml FBS))中培养7天。C2C12 cells were seeded by the same method, that is, C2C12 cells were seeded on the microcarriers prepared by this method at a density of 10 4 /mg, in a complete medium (90% DMEM, 10% FBS (that is, every 100 ml of complete medium contained 90ml DMEM medium+10ml FBS)) for 7 days.
在接种后的第1、3、5、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图11右侧列所示。由图11可知,在接种后的第1-5天中同样仅有少量细胞粘附在微载体表面,至第7天时观察到细胞快速增殖。说明酵母蛋白相较于动物来源的胶原蛋白类物质能够更有效地在短期内促进细胞粘附及增殖。Cells were stained with fluorescein diacetate on days 1, 3, 5, and 7 after inoculation, and live cells were observed by light microscopy. The results are shown in the right column of Figure 11 . It can be seen from FIG. 11 that only a small amount of cells adhered to the surface of the microcarriers on the 1st to 5th day after seeding, and rapid cell proliferation was observed on the 7th day. This indicates that yeast protein can more effectively promote cell adhesion and proliferation in a short time than animal-derived collagen.
对比例4 不同交联液、固定液的成分以及交联和固定条件对微载体的影响Comparative Example 4 Effects of different cross-linking solutions, components of fixatives, and cross-linking and fixation conditions on microcarriers
(1)实施例1(1) Example 1
将实施例1中得到的离子、蛋白交联固定后得到的微载体(即加入聚赖氨酸之前)于去离子水中分散,在磁力搅拌器上搅拌24h,微载体形态完整,无明显破裂,如图12中A图所示。The microcarriers obtained after cross-linking and fixing of ions and proteins obtained in Example 1 (that is, before adding polylysine) were dispersed in deionized water, and stirred on a magnetic stirrer for 24h. As shown in Figure A in Figure 12.
(2)不同交联固定液(2) Different cross-linking fixatives
参照实施例1的方法,将氯化钙溶液替换为含有质量百分比分别为4%乙酸、5%氯化钙、8%氯化钠、50%乙醇的水溶液(交联固定液),即将采用喷雾-冷冻法制备的微液滴收集到上述交联固定液中,在室温下交联固定30min。With reference to the method of Example 1, the calcium chloride solution is replaced by an aqueous solution (cross-linked fixative) containing 4% acetic acid, 5% calcium chloride, 8% sodium chloride, 50% ethanol by mass percentage, respectively, and a spray is about to be used. - The microdroplets prepared by the freezing method are collected into the above-mentioned cross-linking fixative solution, and cross-linked and fixed for 30 min at room temperature.
然后将固定后的微载体于去离子水中分散,在磁力搅拌器上搅拌24h,观察发现微载体破碎,形成大量碎片,如图12中B图所示。Then, the immobilized microcarriers were dispersed in deionized water, and stirred on a magnetic stirrer for 24 hours. It was observed that the microcarriers were broken and a large number of fragments were formed, as shown in Figure B in Figure 12 .
(3)不同固定条件(3) Different fixed conditions
参照实施例1的方法制备氯化钙交联的微载体,然后采用热固定法,将所述微载体在80℃水浴中加热2h使蛋白质析出固定。Calcium chloride cross-linked microcarriers were prepared with reference to the method in Example 1, and then the microcarriers were heated in a water bath at 80° C. for 2 hours by thermal fixation to precipitate and fix proteins.
然后将固定后的微载体于去离子水中分散,在磁力搅拌器上搅拌24h,观察发现微载体几乎完全溶解,如图12中C图所示。说明以本发明实施例1的交联固定试剂和方法制备的微载体相较其他方法具有更为优越的机械性能,在搅拌条件下可以维持形貌。Then, the immobilized microcarriers were dispersed in deionized water, stirred on a magnetic stirrer for 24 hours, and it was observed that the microcarriers were almost completely dissolved, as shown in Figure C in Figure 12 . It shows that the microcarrier prepared by the cross-linking immobilization reagent and method of Example 1 of the present invention has more superior mechanical properties than other methods, and can maintain the shape under stirring conditions.
对比例5 不同改性剂对微载体的影响Comparative Example 5 Effects of different modifiers on microcarriers
参照实施例1,将表面改性材料聚赖氨酸替换为蘑菇来源壳聚糖,其他同实施例1,得到一种不含动物来源成分的可食用、可溶解微载体。Referring to Example 1, the surface modification material polylysine was replaced with mushroom-derived chitosan, and the others were the same as in Example 1, to obtain an edible and soluble microcarrier without animal-derived ingredients.
参照实施例6的方法,对可溶性微载体进行溶解实验,发现本实施例制备的微载体完全溶解。Referring to the method of Example 6, a dissolution experiment was performed on the soluble microcarriers, and it was found that the microcarriers prepared in this example were completely dissolved.
参照实施例7的方法,将C2C12细胞以104个/mg的密度接种到实施例5中得到的蛋白-多糖复合微载体上,在全培养基(90%DMEM,10%FBS(即每100ml全培养基含有90mlDMEM培养基+10ml FBS))中培养7天。在接种后的第1、4、7天使用二乙酸荧光素对细胞进行染色,并通过光学显微镜对活细胞进行观察,结果如图13所示。由图13可知,在接种后的第1天(A图),细胞可以粘附在微载体表面并铺展,随后在第4天(B图)、第7天(C图)观察到细胞数量随培养时间的延长而增加,说明采用蘑菇来源壳聚糖作为表面改性材料能够支持细胞在微载体表面的粘附及生长。Referring to the method of Example 7, C2C12 cells were seeded on the proteoglycan composite microcarrier obtained in Example 5 at a density of 10 4 /mg, in a complete medium (90% DMEM, 10% FBS (that is, per 100 ml). The complete medium contains 90 ml of DMEM medium + 10 ml of FBS)) for 7 days. The cells were stained with fluorescein diacetate on the 1st, 4th, and 7th days after inoculation, and the living cells were observed by a light microscope. The results are shown in FIG. 13 . It can be seen from Figure 13 that on the 1st day after seeding (Panel A), cells can adhere to the surface of the microcarriers and spread, and then the number of cells was observed on the 4th day (Panel B) and the 7th day (Panel C). The culture time was prolonged and increased, indicating that the use of mushroom-derived chitosan as the surface modification material can support the adhesion and growth of cells on the surface of the microcarriers.
将所述微载体用于细胞培养,细胞粘附及生长情况良好。The microcarriers were used for cell culture, and the cells adhered and grew well.
以上的实施例是为了说明本发明公开的实施方案,并不能理解为对本发明的限制。此外,本文所列出的各种修改以及发明中方法、组合物的变化,在不脱离本发明的范围和精神的前提下对本领域内的技术人员来说是显而易见的。虽然已结合本发明的多种具体优选实施例对本发明进行了具体的描述,但应当理解,本发明不应仅限于这些具体实施例。事实上,各种如上所述的对本领域内的技术人员来说显而易见的修改来获取发明都应包括在本发明的范围内。The above examples are intended to illustrate the disclosed embodiments of the present invention, and should not be construed as limiting the present invention. Furthermore, various modifications set forth herein and variations in the methods and compositions of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the present invention has been described in detail in conjunction with various specific preferred embodiments of the present invention, it should be understood that the present invention should not be limited to these specific embodiments. Indeed, various modifications as described above which are obvious to those skilled in the art to obtain the invention are intended to be included within the scope of the present invention.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111668299.4A CN114317394A (en) | 2021-12-31 | 2021-12-31 | Microcarrier for three-dimensional cell culture and preparation method and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111668299.4A CN114317394A (en) | 2021-12-31 | 2021-12-31 | Microcarrier for three-dimensional cell culture and preparation method and application thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114317394A true CN114317394A (en) | 2022-04-12 |
Family
ID=81020981
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111668299.4A Pending CN114317394A (en) | 2021-12-31 | 2021-12-31 | Microcarrier for three-dimensional cell culture and preparation method and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114317394A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115386544A (en) * | 2022-08-23 | 2022-11-25 | 广东唯泰生物科技有限公司 | Hydrogel for mesenchymal stem cell culture, culture medium and preparation method thereof |
| CN115491347A (en) * | 2022-09-15 | 2022-12-20 | 江南大学 | Preparation method of blocky cell culture meat |
| CN116103218A (en) * | 2023-02-03 | 2023-05-12 | 国纳科技(昆山)有限公司 | Preparation method and product of 3D cell culture hydrogel microsphere |
| WO2024080932A1 (en) * | 2022-10-12 | 2024-04-18 | National University Of Singapore | A microcarrier, a method of making a microcarrier, a system for producing a cell cultured food product and a method of producing a cell cultured food product |
| WO2024161321A1 (en) * | 2023-01-31 | 2024-08-08 | Rhodes University | Corn endosperm-based biomaterial scaffold |
| CN118546424A (en) * | 2024-05-20 | 2024-08-27 | 上海乐纯生物技术股份有限公司 | A method for producing edible and degradable porous microcarrier |
| WO2025061069A1 (en) * | 2023-09-21 | 2025-03-27 | 台湾创新材料股份有限公司 | High-surface-area and virtual-sphere microcarrier for cell culture and formation method therefor |
| WO2025193526A1 (en) * | 2024-03-15 | 2025-09-18 | Corning Incorporated | Edible microcarriers and support structures for cultivated meat production |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102250390A (en) * | 2011-05-25 | 2011-11-23 | 天津大学 | Alginate hydrogel microcarrier and preparation method thereof |
| US20120058554A1 (en) * | 2009-07-28 | 2012-03-08 | Sophie Deshayes | Synthetic Polysaccharide Microcarriers for Culturing Cells |
| CN102516778A (en) * | 2011-11-29 | 2012-06-27 | 上海交通大学 | Cereal protein-based micro-carrier for large-scale culture of cells, and preparation method and application of micro-carrier |
| CN109837235A (en) * | 2019-01-15 | 2019-06-04 | 浙江大学 | Application of the hydrogel microcarrier in the sticking, expand, freeze and digest of cell |
-
2021
- 2021-12-31 CN CN202111668299.4A patent/CN114317394A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120058554A1 (en) * | 2009-07-28 | 2012-03-08 | Sophie Deshayes | Synthetic Polysaccharide Microcarriers for Culturing Cells |
| CN102250390A (en) * | 2011-05-25 | 2011-11-23 | 天津大学 | Alginate hydrogel microcarrier and preparation method thereof |
| CN102516778A (en) * | 2011-11-29 | 2012-06-27 | 上海交通大学 | Cereal protein-based micro-carrier for large-scale culture of cells, and preparation method and application of micro-carrier |
| CN109837235A (en) * | 2019-01-15 | 2019-06-04 | 浙江大学 | Application of the hydrogel microcarrier in the sticking, expand, freeze and digest of cell |
Non-Patent Citations (3)
| Title |
|---|
| JUN YAN 等: "Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate", 《FOOD HYDROCOLLOIDS》, vol. 113, 30 April 2021 (2021-04-30), pages 1 - 9 * |
| XUYAN DONG 等: "Preparation and characterization of soybean Protein isolate/chitosan/sodium alginate ternary complex coacervate phase", 《FOOD SCIENCE AND TECHNOLOGY》, vol. 1, 4 July 2021 (2021-07-04), pages 1 - 11 * |
| 陈云 等: "海藻酸钠/大豆蛋白共混凝胶微球的结构", 《武汉大学学报》, vol. 4, 24 August 2006 (2006-08-24), pages 396 - 400 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115386544A (en) * | 2022-08-23 | 2022-11-25 | 广东唯泰生物科技有限公司 | Hydrogel for mesenchymal stem cell culture, culture medium and preparation method thereof |
| CN115386544B (en) * | 2022-08-23 | 2024-01-05 | 广东唯泰生物科技有限公司 | Hydrogel for mesenchymal stem cell culture, culture medium and preparation method thereof |
| CN115491347A (en) * | 2022-09-15 | 2022-12-20 | 江南大学 | Preparation method of blocky cell culture meat |
| WO2024080932A1 (en) * | 2022-10-12 | 2024-04-18 | National University Of Singapore | A microcarrier, a method of making a microcarrier, a system for producing a cell cultured food product and a method of producing a cell cultured food product |
| WO2024161321A1 (en) * | 2023-01-31 | 2024-08-08 | Rhodes University | Corn endosperm-based biomaterial scaffold |
| CN116103218A (en) * | 2023-02-03 | 2023-05-12 | 国纳科技(昆山)有限公司 | Preparation method and product of 3D cell culture hydrogel microsphere |
| WO2025061069A1 (en) * | 2023-09-21 | 2025-03-27 | 台湾创新材料股份有限公司 | High-surface-area and virtual-sphere microcarrier for cell culture and formation method therefor |
| WO2025193526A1 (en) * | 2024-03-15 | 2025-09-18 | Corning Incorporated | Edible microcarriers and support structures for cultivated meat production |
| CN118546424A (en) * | 2024-05-20 | 2024-08-27 | 上海乐纯生物技术股份有限公司 | A method for producing edible and degradable porous microcarrier |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114317394A (en) | Microcarrier for three-dimensional cell culture and preparation method and application thereof | |
| Zernov et al. | Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat | |
| CN102172498B (en) | Three-dimensional porous chitosan/gelatin microsphere, preparation method thereof and application thereof in hepatocyte culture | |
| US8080418B2 (en) | Method of making a three dimensional cell culture matrix | |
| US20080220526A1 (en) | Gum coatings for cell culture, methods of manufacture and methods of use | |
| CN101624472B (en) | Macroporous microcarrier for cell culture and preparation method and application thereof | |
| CN117511851B (en) | Application of hydrogel scaffold in cell-cultured meat preparation | |
| Lee et al. | Three-dimensional scaffolds, materials, and fabrication for cultured meat applications: A scoping review and future direction | |
| Kulus et al. | Bioreactors, scaffolds and microcarriers and in vitro meat production—current obstacles and potential solutions | |
| CN112424333A (en) | System for cell culture in a bioreactor | |
| CN116536257A (en) | Edible microcarrier for cellular meat and preparation method thereof | |
| CN105169491B (en) | A kind of method for preparing fungi highly -branched polysaccharide xanthan gum hydrogel scaffold | |
| CN114516974B (en) | A kind of preparation method and application of porous gelatin microcarrier | |
| CN114686421A (en) | Preparation method and application of lung tissue extracellular matrix-free microcarrier | |
| US20120190113A1 (en) | Macroporous Microcarrier Specific to Liver Cell, Preparation Method and Use Thereof | |
| WO2024080932A1 (en) | A microcarrier, a method of making a microcarrier, a system for producing a cell cultured food product and a method of producing a cell cultured food product | |
| EP4444867A1 (en) | Edible microcarrier for the preparation of cultured meat and method of producing same | |
| CN108753692A (en) | A kind of 3D cultural methods of Chicken Primordial Germ Cells | |
| CN112481190B (en) | Complex enzyme digestive juice and preparation method and application thereof | |
| CN113061566A (en) | Cell large-scale culture method and microcarrier used by same | |
| CN116287000A (en) | Living body functional material based on plant cells and preparation method thereof | |
| CN119193479B (en) | A porous microcarrier for culturing mesenchymal stem cells and its preparation method and application | |
| EP4624640A1 (en) | Producing cell containing fibers for artificial meat | |
| US20250101359A1 (en) | 3d hydrogel system for cell scale-up and bioproduction | |
| CN114574421A (en) | TGase-catalyzed gelatin-mediated cell aggregate and preparation method and application thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |