CN114325434A - Fuel cell electrochemical impedance spectrum detection device and detection method - Google Patents
Fuel cell electrochemical impedance spectrum detection device and detection method Download PDFInfo
- Publication number
- CN114325434A CN114325434A CN202111574759.7A CN202111574759A CN114325434A CN 114325434 A CN114325434 A CN 114325434A CN 202111574759 A CN202111574759 A CN 202111574759A CN 114325434 A CN114325434 A CN 114325434A
- Authority
- CN
- China
- Prior art keywords
- current
- voltage
- detection
- fuel cell
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fuel Cell (AREA)
Abstract
本发明提供一种燃料电池电化学阻抗谱检测装置及检测方法,其中检测装置包括多个并联的Boost电路、电流检测模块、及用于检测电堆两端的电压大小的电压检测模块,全部所述Boost电路均与电堆相连接,每个所述Boost电路能产生一个激励源,所述电流检测模块的数量与Boost电路的数量相同,全部所述电流检测模块分别用于检测全部Boost电路与电堆相连接段的电流大小。本燃料电池电化学阻抗谱检测装置及检测方法,对燃料电池电化学阻抗谱检测的精度更高、检测效率更高。
The present invention provides a fuel cell electrochemical impedance spectroscopy detection device and a detection method, wherein the detection device includes a plurality of parallel boost circuits, a current detection module, and a voltage detection module for detecting the voltage at both ends of the stack. The boost circuits are all connected to the stack, each of the boost circuits can generate an excitation source, the number of the current detection modules is the same as the number of the boost circuits, and all the current detection modules are respectively used to detect all the boost circuits and the power supply. The magnitude of the current in the stack phase connection segment. The fuel cell electrochemical impedance spectroscopy detection device and the detection method have higher detection accuracy and higher detection efficiency for the fuel cell electrochemical impedance spectroscopy.
Description
技术领域technical field
本发明涉及燃料电池技术领域,特别是涉及一种燃料电池电化学阻抗谱检测装置及检测方法。The invention relates to the technical field of fuel cells, in particular to a fuel cell electrochemical impedance spectroscopy detection device and a detection method.
背景技术Background technique
氢燃料电池作为绿色环保的新技术,是当今新能源领域的研究热点。现在作为新能源汽车重要技术方向,质子交换膜燃料电池。As a new green technology, hydrogen fuel cell is a research hotspot in the field of new energy. Now as an important technical direction of new energy vehicles, proton exchange membrane fuel cells.
由于内阻综合反映氢燃料电池内部湿度,温度,健康状态。对燃料电池内阻进行实时监测是保障氢燃料电池安全,高效运行具有重要意义,但是氢燃料电池属于非线性和时变系统,一般难以精确测量出电池的阻抗参数。并且电池的内阻抗属于毫欧数量级,加大了电池的测量精度难度。目前国内外主流的内阻检测方法是交流阻抗谱方法,是采用小幅值交流电压和电流对燃料电池扰动,进行燃料电池内阻测试,获得交流阻抗数据。对于交流阻抗方法,扰动采用正弦波,优点是容易产生和分析;缺点是大部分是采用外加激励源实现扰动,并且在测试过程中需要从低频到高频进行扫频,测试各个频率端的内阻抗得到阻抗谱,执行时间较长、效率较低不能实时反应阻抗状态。目前也有比较创行的方案是采用发三角形波扰动,并且发10HZ,100HZ,1000HZ频率,通过检测电压电流进行FFT分析得出不同频率的内阻抗从而获得阻抗谱;但是这种方案在高频段由于幅值衰减厉害,导致高频端误差比较大的问题;并且也需要发出几段不同频率的三角形波,还是存在发波时间较长的问题。即采用发三角形波扰动的方法,存在检测精度较低,效率也较低的问题。Because the internal resistance comprehensively reflects the internal humidity, temperature and health status of the hydrogen fuel cell. Real-time monitoring of the internal resistance of fuel cells is of great significance to ensure the safety and efficient operation of hydrogen fuel cells. However, hydrogen fuel cells are nonlinear and time-varying systems, and it is generally difficult to accurately measure the impedance parameters of the battery. And the internal impedance of the battery is in the order of milliohms, which increases the difficulty of measuring the battery's accuracy. At present, the mainstream internal resistance detection method at home and abroad is the AC impedance spectroscopy method, which uses a small amplitude AC voltage and current to disturb the fuel cell, conducts the internal resistance test of the fuel cell, and obtains the AC impedance data. For the AC impedance method, the sine wave is used for the disturbance, which has the advantage of being easy to generate and analyze; the disadvantage is that most of the disturbance is realized by using an external excitation source, and the frequency needs to be swept from low frequency to high frequency during the test process to test the internal impedance of each frequency end. The impedance spectrum is obtained, the execution time is long, the efficiency is low, and the impedance state cannot be reflected in real time. At present, there is also a relatively innovative solution that uses triangular wave disturbance, and sends 10HZ, 100HZ, 1000HZ frequencies, and obtains the impedance spectrum by detecting the voltage and current and performing FFT analysis to obtain the internal impedance of different frequencies; The amplitude attenuation is severe, resulting in a relatively large error at the high frequency end; and it is also necessary to send out several triangular waves of different frequencies, which still has the problem of a long wave sending time. That is, the method of generating triangular wave disturbance has the problems of low detection accuracy and low efficiency.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明要解决的技术问题在于提供一种检测效率更高的燃料电池电化学阻抗谱检测装置。In view of the above-mentioned shortcomings of the prior art, the technical problem to be solved by the present invention is to provide a fuel cell electrochemical impedance spectroscopy detection device with higher detection efficiency.
为实现上述目的,本发明提供一种燃料电池电化学阻抗谱检测装置,包括多个并联的Boost电路、电流检测模块、及用于检测电堆两端的电压大小的电压检测模块,全部所述Boost电路均与电堆相连接,每个所述Boost电路能产生一个激励源,所述电流检测模块的数量与Boost电路的数量相同,全部所述电流检测模块分别用于检测全部Boost电路与电堆相连接段的电流大小。In order to achieve the above purpose, the present invention provides a fuel cell electrochemical impedance spectroscopy detection device, including a plurality of parallel boost circuits, a current detection module, and a voltage detection module for detecting the voltage at both ends of the stack. The circuits are all connected to the stack, each of the boost circuits can generate an excitation source, the number of the current detection modules is the same as the number of the boost circuits, and all the current detection modules are respectively used to detect all the boost circuits and the stack. The magnitude of the current in the connected segments.
进一步地,所述燃料电池电化学阻抗谱检测装置,还包括DFFT模块,全部所述电流检测模块和电压检测模块均与DFFT模块相连接。Further, the fuel cell electrochemical impedance spectroscopy detection device further includes a DFFT module, and all the current detection modules and voltage detection modules are connected to the DFFT module.
进一步地,所述燃料电池电化学阻抗谱检测装置,还包括存储器,所述电流检测模块和电压检测模块均与存储器相连接,所述DFFT模块与存储器相连接。Further, the fuel cell electrochemical impedance spectroscopy detection device further includes a memory, the current detection module and the voltage detection module are both connected to the memory, and the DFFT module is connected to the memory.
进一步地,所述燃料电池电化学阻抗谱检测装置,还包括电流A/D转换模块,所述电流检测模块通过电流A/D转换模块与存储器相连接。Further, the fuel cell electrochemical impedance spectroscopy detection device further includes a current A/D conversion module, and the current detection module is connected to the memory through the current A/D conversion module.
进一步地,所述燃料电池电化学阻抗谱检测装置,还包括电压A/D转换模块,所述电压检测模块通过电压A/D转换模块与存储器相连接。Further, the fuel cell electrochemical impedance spectroscopy detection device further includes a voltage A/D conversion module, and the voltage detection module is connected to the memory through the voltage A/D conversion module.
进一步地,所述燃料电池电化学阻抗谱检测装置,还包括运算控制单元及与运算控制单元相连接的脉冲宽度调制单元,全部所述电流检测模块均与运算控制单元相连接,所述脉冲宽度调制单元与全部所述Boost电路相连接。Further, the fuel cell electrochemical impedance spectroscopy detection device further includes an arithmetic control unit and a pulse width modulation unit connected with the arithmetic control unit, all the current detection modules are connected with the arithmetic control unit, and the pulse width The modulation unit is connected with all the boost circuits.
进一步地,全部所述电流检测模块均与电流A/D转换模块相连接,所述电流A/D转换模块与运算控制单元相连接。Further, all the current detection modules are connected with the current A/D conversion module, and the current A/D conversion module is connected with the arithmetic control unit.
如上所述,本发明涉及的燃料电池电化学阻抗谱检测装置,具有以下有益效果:As described above, the fuel cell electrochemical impedance spectroscopy detection device involved in the present invention has the following beneficial effects:
本燃料电池电化学阻抗谱检测装置的工作原理为:全部Boost电路同时向电堆发不同频率段的波,全部电流检测模块分别检测全部Boost电路与电堆相连接段的电流值,以得到不同频率段的电流值;电压检测模块通过对电堆两端的电压进行检测获得全部Boost电路发出波叠加形成的电压值,以得到不同频率段的电压值,根据不同频率段的电流值及不同频率段的电压值计算出不同频率段的阻抗值,根据获得不同频率段的阻抗值既能绘制生成阻抗谱。本检测装置,利用Boost电路产生激励源,且利用多个Boost电路产生不同频率段的波,此种方式发波时间较短,能大大提高对电堆阻抗检测的效率,可以实现真正意义上对电堆阻抗的实时检测,并且能更加准确的得出燃料电池的阻抗谱,方便实时准确地检测燃料电池的健康状态,进而大大提高燃料电池使用的安全系数,特别在氢燃料电池新能源汽车上能够大大提高安全系数。The working principle of the fuel cell electrochemical impedance spectrum detection device is as follows: all the boost circuits send waves of different frequency bands to the stack at the same time, and all the current detection modules detect the current values of all the boost circuits connected to the stack respectively, so as to obtain different The current value of the frequency band; the voltage detection module obtains the voltage value formed by the superposition of the waves emitted by all the boost circuits by detecting the voltage at both ends of the stack, so as to obtain the voltage value of different frequency bands, according to the current value of different frequency bands and different frequency bands. The impedance value of different frequency bands can be calculated from the voltage value of , and the impedance spectrum can be generated according to the obtained impedance values of different frequency bands. The detection device uses the boost circuit to generate the excitation source, and uses multiple boost circuits to generate waves of different frequency bands. This method has a short wave generation time, which can greatly improve the efficiency of the stack impedance detection, and can achieve a true sense of Real-time detection of stack impedance, and can more accurately obtain the impedance spectrum of the fuel cell, which is convenient for real-time and accurate detection of the health status of the fuel cell, thereby greatly improving the safety factor of the use of the fuel cell, especially in the hydrogen fuel cell new energy vehicle. Can greatly improve the safety factor.
本发明要解决的另一个技术问题在于提供一种检测效率更高、精度更高的检测方法。Another technical problem to be solved by the present invention is to provide a detection method with higher detection efficiency and higher precision.
为实现上述目的,本发明提供一种采用所述燃料电池电化学阻抗谱检测装置的检测方法,包括如下步骤:In order to achieve the above purpose, the present invention provides a detection method using the fuel cell electrochemical impedance spectroscopy detection device, comprising the following steps:
全部Boost电路同时向电堆发不同频率段的方波,全部电流检测模块分别检测全部Boost电路与电堆相连接段的电流值,再对获得的电流值进行DFFT分析计算得到不同频率段的电流值;电压检测模块通过对电堆两端的电压进行检测获得全部Boost电路发出方波叠加形成的电压值,再对获得的电压值进行DFFT分析计算得到不同频率段的电压值,根据不同频率段的电流值及不同频率段的电压值计算出不同频率段的阻抗值。All Boost circuits send square waves of different frequency bands to the stack at the same time, and all current detection modules detect the current values of all Boost circuits connected to the stack respectively, and then perform DFFT analysis on the obtained current values to calculate the current in different frequency bands. value; the voltage detection module obtains the voltage value formed by the superposition of square waves emitted by all Boost circuits by detecting the voltage at both ends of the stack, and then performs DFFT analysis on the obtained voltage value to calculate the voltage value in different frequency bands. The current value and the voltage value of different frequency bands are used to calculate the impedance value of different frequency bands.
进一步地,至少一路Boost电路发10HZ方波,至少一路Boost电路发50HZ方波,至少一路Boost电路发100HZ方波,至少一路Boost电路发500HZ方波,至少一路Boost电路发1000HZ方波,至少一路Boost电路发5000HZ方波。Further, at least one Boost circuit sends 10HZ square wave, at least one Boost circuit sends 50HZ square wave, at least one Boost circuit sends 100HZ square wave, at least one Boost circuit sends 500HZ square wave, at least one Boost circuit sends 1000HZ square wave, and at least one Boost circuit sends 1000HZ square wave. The Boost circuit sends out a 5000HZ square wave.
进一步地,将电流检测模块获得的电流值中的直流量进行滤除后,再将电流值进行DFFT分析计算;将电压检测模块获得的电压值中的直流量进行滤除后,再将电压值进行DFFT分析计算。Further, after filtering out the direct current in the current value obtained by the current detection module, the current value is then subjected to DFFT analysis and calculation; after filtering out the direct current in the voltage value obtained by the voltage detection module, the voltage value Perform DFFT analysis calculations.
如上所述,本发明涉及的检测方法,具有以下有益效果:As mentioned above, the detection method involved in the present invention has the following beneficial effects:
本检测方法,利用Boost电路作为激励源,节约了发波时间,进而大大提高了检测效率;同时,采用方波进行检测,避免了采用三角形波的高频幅值衰减严重导致采样精度差,进而保证本检测方法的精度更高。In this detection method, the boost circuit is used as the excitation source, which saves the wave generation time, thereby greatly improving the detection efficiency; at the same time, the square wave is used for detection, which avoids the high frequency amplitude attenuation of the triangular wave, which leads to poor sampling accuracy, and further improves the detection efficiency. The accuracy of this detection method is guaranteed to be higher.
附图说明Description of drawings
图1为本发明实施例中燃料电池电化学阻抗谱检测装置的结构示意图。FIG. 1 is a schematic structural diagram of a fuel cell electrochemical impedance spectroscopy detection device in an embodiment of the present invention.
元件标号说明Component label description
1 Boost电路1 Boost circuit
2 电流检测模块2 Current detection module
3 电压检测模块3 Voltage detection module
4 电堆4 stacks
5 DFFT模块5 DFFT module
6 存储器6 memory
7 电流A/D转换模块7 Current A/D conversion module
8 电压A/D转换模块8 Voltage A/D conversion module
9 运算控制单元9 Operation Control Unit
10 脉冲宽度调制单元10 Pulse width modulation unit
11 分析判断模块11 Analysis and judgment module
12 VCU模块12 VCU modules
13 FCS模块13 FCS module
具体实施方式Detailed ways
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。The embodiments of the present invention are described below by specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等用语,亦仅为便于叙述明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。It should be noted that the structures, proportions, sizes, etc. shown in the accompanying drawings of this specification are only used to cooperate with the contents disclosed in the specification for the understanding and reading of those who are familiar with the technology, and are not used to limit the conditions for the implementation of the present invention. , therefore does not have technical substantive significance, any structural modification, proportional relationship change or size adjustment, without affecting the effect that the present invention can produce and the purpose that can be achieved, should still fall within the scope of the present invention. within the scope of the technical content. At the same time, terms such as "up", "down", "left", "right", "middle" and "one" quoted in this specification are only for the convenience of description and are not used to limit the scope of the present invention. The scope of implementation, the change or adjustment of the relative relationship, and the technical content without substantial change, shall also be regarded as the scope of the present invention.
如图1所示,本实施例提供一种燃料电池电化学阻抗谱检测装置,包括多个并联的Boost电路1、电流检测模块2、及用于检测电堆4两端的电压大小的电压检测模块3,全部Boost电路1均与电堆4相连接,每个Boost电路1能产生一个激励源,电流检测模块2的数量与Boost电路1的数量相同,全部电流检测模块2分别用于检测全部Boost电路1与电堆4相连接段的电流大小。本燃料电池电化学阻抗谱检测装置的工作原理为:全部Boost电路1同时向电堆4发不同频率段的波,全部电流检测模块2分别检测全部Boost电路1与电堆4相连接段的电流值,以得到不同频率段的电流值;电压检测模块3通过对电堆4两端的电压进行检测获得全部Boost电路1发出波叠加形成的电压值,以得到不同频率段的电压值,根据不同频率段的电流值及不同频率段的电压值计算出不同频率段的阻抗值,根据获得不同频率段的阻抗值既能绘制生成阻抗谱。本检测装置,利用Boost电路1产生激励源,且利用多个Boost电路1产生不同频率段的波,此种方式发波时间较短,能大大提高对电堆4阻抗检测的效率,可以实现真正意义上对电堆4阻抗的实时检测,并且能更加准确的得出燃料电池的阻抗谱,方便实时准确地检测燃料电池的健康状态,进而大大提高燃料电池使用的安全系数,特别在氢燃料电池新能源汽车上能够大大提高安全系数。As shown in FIG. 1 , this embodiment provides a fuel cell electrochemical impedance spectroscopy detection device, including a plurality of
本实施例中燃料电池电化学阻抗谱检测装置,还包括DFFT模块5、存储器6、电流A/D转换模块7及电压A/D转换模块8,全部电流检测模块2均与电流A/D转换模块7相连接,电压检测模块3与电压A/D转换模块8相连接,电流A/D转换模块7和电压A/D转换模块8均与存储器6相连接,存储器6又与DFFT模块5相连接。全部电流检测模块2将相应的Boost电路1与电堆4相连接段的电流值反馈给电流A/D转换模块7,电流A/D转换模块7将电流值的模拟信号转变为数字信号后发送给存储器6进行存储,电压检测模块3将检测到的电压值反馈给电压A/D转换模块8,电压A/D转换模块8将电压值的模拟信号转换为数字信号后、发送给存储器6进行存储,DFFT模块5对存储器6中的电流值通过DFFT分析计算得到不同频率段的电流值,且DFFT模块5对存储器6中的电压值通过DFFT分析计算得到不同频率段的电压值,进而通过阻抗计算方法计算出不同频率段的阻抗值,绘制生成阻抗谱。In this embodiment, the fuel cell electrochemical impedance spectroscopy detection device further includes a
如图1所示,本实施例中燃料电池电化学阻抗谱检测装置,还包括运算控制单元9及与运算控制单元9相连接的脉冲宽度调制单元10,电流A/D转换模块7与运算控制单元9相连接,脉冲宽度调制单元10与全部所述Boost电路1相连接。电流A/D转换模块7将各个Boost电路1与电堆4连接段的电流值发送给运算控制单元9,运算控制单元9根据检测到的电流情况、包括波段宽度等,并根据设定的情况通过控制脉冲宽度调制单元10实现对各个Boost电路1的调节,以保证各个Boost电路1发出波的状态达到设定要求。As shown in FIG. 1, the fuel cell electrochemical impedance spectroscopy detection device in this embodiment further includes an
同时,本实施例提供一种采用所述燃料电池电化学阻抗谱检测装置的检测方法,包括如下步骤:Meanwhile, this embodiment provides a detection method using the fuel cell electrochemical impedance spectroscopy detection device, comprising the following steps:
全部Boost电路1同时向电堆4发不同频率段的方波,全部电流检测模块2分别检测全部Boost电路1与电堆4相连接段的电流值,再对获得的电流值进行DFFT分析计算得到不同频率段的电流值;电压检测模块3通过对电堆4两端的电压进行检测获得全部Boost电路1发出方波叠加形成的电压值,再对获得的电压值进行DFFT分析计算得到不同频率段的电压值,根据不同频率段的电流值及不同频率段的电压值计算出不同频率段的阻抗值。All
本检测方法,利用Boost电路1作为激励源,节约了发波时间,进而大大提高了检测效率;同时,采用方波进行检测,避免了采用三角形波的高频幅值衰减严重导致采样精度差,进而保证本检测方法的精度更高。In this detection method, the
本实施例中检测方法,具体将电流检测模块2获得的电流值中的直流量进行滤除后,再将电流值进行DFFT分析计算;并将电压检测模块3获得的电压值中的直流量进行滤除后,再将电压值进行DFFT分析计算。The detection method in this embodiment specifically filters out the direct current in the current value obtained by the
本实施例中检测装置及检测方法,涉及到对氢燃料电池内阻检测,其利用Boost电路1作为激励源,实现了对氢燃料电池的在线电化学阻抗谱检测,且采用多路Boost电路1同时发方波,有利于提高检测精度。整个过程存在多个激励源集成在多项交错并联的Boost电路1中,通过n路交错并联Boost电路1,就可以产生n个激励源,只通过控制Boost电路1控制燃料电池电流产生一个直流电流和轻微不影响控制的稳定性的方波两者叠加组成电流,再燃料电池稳定后,采样燃料电池的电压和电流进行DFFT分析,得到各个频率下的燃料电池的内阻抗,绘制成电池的电化学阻抗谱。整个检测装置及方法,采用激励源设计,克服了现有技术中采用正弦波扫频时间长、三角形波的高频幅值衰减严重采样精度差、分时给出不同频率三角形波时间长等缺点。The detection device and detection method in this embodiment relate to the detection of the internal resistance of the hydrogen fuel cell. The
另外,从方波和三角形波的FFT分析可以看方波的高频含量是三角形波的n/2倍。In addition, from the FFT analysis of the square wave and the triangular wave, it can be seen that the high frequency content of the square wave is n/2 times that of the triangular wave.
方波的FFT: FFT of a square wave:
三角形波的FFT: FFT of a triangular wave:
例如,本实施例可具体采用6路Boost电路1发波,第一路Boost电路1发10HZ方波,第二路Boost电路1发50HZ方波,第三路Boost电路1发100HZ方波,第四路Boost电路1发500HZ方波,第五路Boost电路1发1000HZ方波,第六路Boost电路1发5000HZ方波。DC-DC是6路交错并联Boost电路1,同时发波;通过不同路电流检测分别检测到电流,通过电路处理滤除直流量,然后A/D转换送入DSP通过DFFT分析计算得到不同频率段电流值。电压采样得到6路方波叠加产生的电压值,通过电路处理滤除直流量,然后A/D转换送入DSP通过DFFT分析计算的不同频率电压值。通过阻抗计算方法计算出不同频率段的阻抗值,绘制生成阻抗谱。For example, in this embodiment, 6 channels of Boost circuit can be used to emit 1 wave, the first channel of Boost circuit can emit 10HZ square wave, the second channel of Boost circuit can emit 1 50HZ square wave, the third channel of Boost circuit can emit 100HZ square wave, and the third channel of Boost circuit can emit 100HZ square wave. The four-way Boost circuit sends one 500HZ square wave, the fifth-way Boost circuit sends one 1000HZ square wave, and the sixth-way Boost circuit sends one 5000HZ square wave. DC-DC is a 6-channel interleaved
另外,如图1所示,本实施例中燃料电池电化学阻抗谱检测装置,还包括与DFFT模块5相连接的分析判断模块11,分析判断模块11与VCU模块12相连接,VCU模块12与FCS模块13相连接。本实施例中运算控制单元9、脉冲宽度调制单元10、电流检测模块2、电压检测模块3、A/D转换模块、存储器6、DFFT模块5及分析判断模块11构成本检测装置的主控单元。In addition, as shown in FIG. 1 , the fuel cell electrochemical impedance spectroscopy detection device in this embodiment further includes an analysis and
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111574759.7A CN114325434A (en) | 2021-12-21 | 2021-12-21 | Fuel cell electrochemical impedance spectrum detection device and detection method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111574759.7A CN114325434A (en) | 2021-12-21 | 2021-12-21 | Fuel cell electrochemical impedance spectrum detection device and detection method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114325434A true CN114325434A (en) | 2022-04-12 |
Family
ID=81054443
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111574759.7A Pending CN114325434A (en) | 2021-12-21 | 2021-12-21 | Fuel cell electrochemical impedance spectrum detection device and detection method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114325434A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024115236A1 (en) * | 2022-11-29 | 2024-06-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method and device for ascertaining the conditions underlying a degradation of galvanic cells using electrochemical impedance spectroscopy |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999066340A1 (en) * | 1998-06-16 | 1999-12-23 | Korea Kumho Petrochemical Co., Ltd | Method of and apparatus for measuring battery capacity |
| JP2000023370A (en) * | 1998-06-30 | 2000-01-21 | Matsushita Electric Works Ltd | Solar light power generation system |
| US6160382A (en) * | 1998-11-19 | 2000-12-12 | Korea Kumbho Petrochemical Co., Ltd. | Method and apparatus for determining Characteristic parameters of a charge storage device |
| US6208147B1 (en) * | 1998-06-16 | 2001-03-27 | Korea Kumho Petrochenical Co., Ltd. | Method of and apparatus for measuring battery capacity by impedance spectrum analysis |
| CN105449241A (en) * | 2015-12-18 | 2016-03-30 | 武汉理工大学 | Online electrochemical impedance spectroscopy detecting system and method of fuel cell |
| WO2017003917A1 (en) * | 2015-07-01 | 2017-01-05 | Battelle Energy Alliance, Llc | Energy storage cell impedance measuring apparatus, methods and related systems |
| CN108663631A (en) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | A lithium-ion battery pack electrochemical impedance spectroscopy online measurement device |
| CN109212431A (en) * | 2018-09-19 | 2019-01-15 | 同济大学 | A kind of fuel cells impedance measuring system and method |
| US20190383878A1 (en) * | 2016-12-29 | 2019-12-19 | Vito Nv | Hybrid battery charger/tester |
| DE102019200506A1 (en) * | 2019-01-16 | 2020-07-16 | Audi Ag | Measuring arrangement, motor vehicle and method for determining a complex impedance |
| CN111628545A (en) * | 2020-06-03 | 2020-09-04 | 浙江大学台州研究院 | A charge-discharge system and its control method considering multi-battery life balance and cell balance at the same time |
| US20200319236A1 (en) * | 2017-03-23 | 2020-10-08 | Sensor Holdings Limited | Sensing over a shared physical channel |
-
2021
- 2021-12-21 CN CN202111574759.7A patent/CN114325434A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999066340A1 (en) * | 1998-06-16 | 1999-12-23 | Korea Kumho Petrochemical Co., Ltd | Method of and apparatus for measuring battery capacity |
| US6208147B1 (en) * | 1998-06-16 | 2001-03-27 | Korea Kumho Petrochenical Co., Ltd. | Method of and apparatus for measuring battery capacity by impedance spectrum analysis |
| JP2000023370A (en) * | 1998-06-30 | 2000-01-21 | Matsushita Electric Works Ltd | Solar light power generation system |
| US6160382A (en) * | 1998-11-19 | 2000-12-12 | Korea Kumbho Petrochemical Co., Ltd. | Method and apparatus for determining Characteristic parameters of a charge storage device |
| WO2017003917A1 (en) * | 2015-07-01 | 2017-01-05 | Battelle Energy Alliance, Llc | Energy storage cell impedance measuring apparatus, methods and related systems |
| CN105449241A (en) * | 2015-12-18 | 2016-03-30 | 武汉理工大学 | Online electrochemical impedance spectroscopy detecting system and method of fuel cell |
| US20190383878A1 (en) * | 2016-12-29 | 2019-12-19 | Vito Nv | Hybrid battery charger/tester |
| US20200319236A1 (en) * | 2017-03-23 | 2020-10-08 | Sensor Holdings Limited | Sensing over a shared physical channel |
| CN108663631A (en) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | A lithium-ion battery pack electrochemical impedance spectroscopy online measurement device |
| CN109212431A (en) * | 2018-09-19 | 2019-01-15 | 同济大学 | A kind of fuel cells impedance measuring system and method |
| DE102019200506A1 (en) * | 2019-01-16 | 2020-07-16 | Audi Ag | Measuring arrangement, motor vehicle and method for determining a complex impedance |
| CN111628545A (en) * | 2020-06-03 | 2020-09-04 | 浙江大学台州研究院 | A charge-discharge system and its control method considering multi-battery life balance and cell balance at the same time |
Non-Patent Citations (1)
| Title |
|---|
| 陈威仰 等: "燃料电池EIS检测中DC/DC变换器的预测控制研究", 《电力电子技术》, vol. 51, no. 10, pages 6 - 10 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024115236A1 (en) * | 2022-11-29 | 2024-06-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method and device for ascertaining the conditions underlying a degradation of galvanic cells using electrochemical impedance spectroscopy |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102981124B (en) | Spot test method and test device for fuel cell stack membrane electrode conditions | |
| CN114976114B (en) | Alternating current impedance test system and method for high-power fuel cell | |
| CN206074690U (en) | The ac impedance measurement system of fuel cell | |
| CN105449241B (en) | The online electrochemical impedance spectroscopy detecting system of fuel cell and method | |
| Dotelli et al. | Diagnosis of PEM fuel cell drying and flooding based on power converter ripple | |
| Trovò et al. | Multichannel Electrochemical Impedance Spectroscopy and equivalent circuit synthesis of a large-scale vanadium redox flow battery | |
| CN103063714B (en) | Online test system and method for alternating-current impedances of fuel cell zones | |
| CN106970266A (en) | A kind of EIS method for fast measuring of lithium ion battery | |
| CN108663631A (en) | A lithium-ion battery pack electrochemical impedance spectroscopy online measurement device | |
| CN105244521B (en) | A kind of water content control method of fuel cell | |
| CN112345951A (en) | A method for measuring AC impedance of batteries in a composite power supply power system | |
| CN106093583B (en) | A kind of Vehicular accumulator cell group battery cell impedance measurement device and method | |
| CN1975452A (en) | Electric vehicle accumulator internal resistance pulse detecting method | |
| CN102288830A (en) | Storage battery impedance detection device excited by SPWA (Sine-wave Pulse Width Modulation) signal generated by single chip microcomputer | |
| CN111650524A (en) | Alternating current impedance testing system and method for power battery | |
| CN112838248A (en) | Fuel cell stack current, voltage and impedance measurement device | |
| CN104597407A (en) | Test equipment and test method for partition zone impedance of dual-function fuel cell | |
| CN208000365U (en) | Fuel cell diagnostic device | |
| Ferrero et al. | Single PEM fuel cell analysis for the evaluation of current ripple effects | |
| CN216052095U (en) | Electrochemical alternating-current impedance spectrum testing equipment | |
| CN1564014A (en) | Testing method and appliance for horizontal conductivity of fuel cell proton exchange membrane | |
| CN115308621A (en) | Multi-signal embeddable lithium ion battery electrochemical impedance spectrum testing device and method | |
| CN119493023A (en) | Fuel cell testing system, method, device, processor and readable storage medium thereof with integrated electrochemical AC impedance testing function | |
| CN112557451B (en) | Device and method for detecting catalyst loading on membrane electrode | |
| CN114325434A (en) | Fuel cell electrochemical impedance spectrum detection device and detection method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220412 |
|
| RJ01 | Rejection of invention patent application after publication |