CN114367966A - Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer - Google Patents
Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer Download PDFInfo
- Publication number
- CN114367966A CN114367966A CN202210032237.2A CN202210032237A CN114367966A CN 114367966 A CN114367966 A CN 114367966A CN 202210032237 A CN202210032237 A CN 202210032237A CN 114367966 A CN114367966 A CN 114367966A
- Authority
- CN
- China
- Prior art keywords
- crease
- dielectric elastomer
- driving component
- rigid
- minimum energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/08—Programme-controlled manipulators characterised by modular constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J18/00—Arms
- B25J18/02—Arms extensible
- B25J18/025—Arms extensible telescopic
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于介电弹性体最小能量结构的机械臂,机械臂包括串联在一起的多个刚性折纸机构,刚性折纸机构整体呈柱体形状,包括两个支架体和多个刚性折纸,刚性折纸与支架体的连接处形成第一折痕,每个第一折痕对应设置驱动组件,驱动组件包括最小能量结构式介电弹性体驱动器,驱动组件具有弯曲后可相互靠近或远离的两个连接端,驱动组件的其中一个连接端为移动端,驱动组件的移动端与其所对应第一折痕之间的距离可随所述驱动组件的弯曲而改变,驱动组件的另一个连接端为固定端,驱动组件的固定端与其所对应第一折痕之间的距离固定设置。本发明具有多个自由度、灵活性好、响应速度快、驱动力更大、环境适应性强。
The invention discloses a mechanical arm based on a minimum energy structure of a dielectric elastomer. The mechanical arm includes a plurality of rigid origami mechanisms connected in series. The rigid origami mechanism is in the shape of a cylinder as a whole, and includes two bracket bodies and a plurality of rigid origami mechanisms. , a first crease is formed at the connection between the rigid origami and the bracket body, and each first crease is correspondingly provided with a driving component, the driving component includes a minimum-energy structural dielectric elastomer driver, and the driving component has two parts that can approach or move away from each other after bending. There are two connecting ends, one of the connecting ends of the driving component is the moving end, the distance between the moving end of the driving component and the corresponding first crease can be changed with the bending of the driving component, and the other connecting end of the driving component is The fixed end, the distance between the fixed end of the driving component and its corresponding first crease is fixedly set. The invention has multiple degrees of freedom, good flexibility, fast response speed, larger driving force and strong environmental adaptability.
Description
技术领域technical field
本发明属于智能机器人技术领域,具体涉及基于介电弹性体最小能量结构的机械臂。The invention belongs to the technical field of intelligent robots, and in particular relates to a mechanical arm based on a minimum energy structure of a dielectric elastomer.
背景技术Background technique
现有的机械臂大多由刚性材料制作而成,采用电机或液压驱动,能够输出较大的载荷,代替人类在一些极端环境中工作,然而,刚性材料不可变性的特点限制了机械臂的环境适应能力,制约了其在狭小空间和崎岖环境中的行动能力,因此,迫切需要一种具有复杂环境适应能力的新型柔性机械臂。而介电弹性体材料具有驱动应变大、能量密度高、能量转换效率高、响应速度快等特点,更适合用于柔性机械臂的驱动。此外,近些年来,折纸结构凭借其良好的折叠特性和大折展比的特点而广受关注,将折纸技术用到机械臂的设计中可增加其对环境的适应性。Most of the existing robotic arms are made of rigid materials and are driven by motors or hydraulics, which can output large loads and replace humans in some extreme environments. However, the immutability of rigid materials limits the environmental adaptation of robotic arms. Therefore, a new type of flexible manipulator with the ability to adapt to complex environments is urgently needed. Dielectric elastomer materials have the characteristics of large driving strain, high energy density, high energy conversion efficiency, and fast response speed, and are more suitable for driving flexible robotic arms. In addition, in recent years, origami structures have attracted wide attention due to their good folding characteristics and large folding aspect ratios. Applying origami technology to the design of robotic arms can increase its adaptability to the environment.
专利授权公告号为CN105856271B的中国发明专利公开了一种基于形状记忆聚合物与介电弹性体的航空机械臂及其制作方法。该发明的机械臂不依赖于复杂的机械结构,展开主要依赖于形状记忆聚合物的形状记忆效应以及介电弹性体受电压自我拉伸的性质,密度小并且可以承受较大变形,可以在发射前进行压缩收纳,减小发射时占据的空间和有效载荷。上述机械臂的伸展依靠形状记忆聚合物和介电弹性体混合驱动,伸展量难以实现精确控制,并且驱动力较小。The Chinese invention patent with the patent authorization announcement number CN105856271B discloses an aviation manipulator based on a shape memory polymer and a dielectric elastomer and a manufacturing method thereof. The mechanical arm of the invention does not depend on a complex mechanical structure, and its deployment mainly depends on the shape memory effect of the shape memory polymer and the self-stretching property of the dielectric elastomer under voltage. The density is small and can withstand large deformation. It is compressed and stored before the launch to reduce the space and payload occupied during launch. The stretching of the above-mentioned robotic arms is driven by a mixture of shape memory polymers and dielectric elastomers, and it is difficult to precisely control the stretching amount and the driving force is small.
参考论文“Soft pneumatic actuator-driven origami-inspired modularrobotic“pneumagami”.”,文章介绍了一种新的模块化机器人,用于实现具有紧凑外形的可重构、主动控制、高自由度(高自由度)系统,例如线性组装形成连续式机械臂。上述模块化机器人通过气动软袋驱动,气动辅助元件较多,结构较为复杂。Referring to the paper "Soft pneumatic actuator-driven origami-inspired modular robotic "pneumagami".", the paper introduces a new modular robot for realizing reconfigurable, actively controlled, high degree of freedom (DOF) with a compact form factor ) system, such as linear assembly to form a continuous robotic arm. The above-mentioned modular robot is driven by a pneumatic soft bag, has many pneumatic auxiliary components, and has a complex structure.
公开(公告)号为CN112959346A的中国发明专利公开了一种介电弹性体驱动的刚性折纸式灵巧手模块化驱动指节。该发明的指节通过多层弯曲型介电弹性体驱动器驱动,具有多个自由度,灵活性好,响应速度快,折纸结构提高了指节的刚性及负载能力,介电弹性体材料自身固有的柔性结合折纸结构的折叠特性提高了指节的环境适应性。上述指节存在如下缺点:①驱动力小;②指节的弯曲角度难以控制;③指节压缩或弯曲时,相互连接的两个折纸单元的变形难以预估,可能会与驱动器干涉从而破坏指节的运动;④当指节长度改变时,多层弯曲型介电弹性体驱动器也需要设计得更长,通用性差。The Chinese invention patent publication (announcement) No. CN112959346A discloses a rigid origami-type dexterous hand modular driving knuckle driven by a dielectric elastomer. The knuckle of the invention is driven by a multi-layer curved dielectric elastomer driver, which has multiple degrees of freedom, good flexibility and fast response speed. The origami structure improves the rigidity and load capacity of the knuckle, and the dielectric elastomer material itself inherently The flexibility of combined with the folding properties of the origami structure improves the environmental adaptability of the knuckles. The above-mentioned knuckles have the following disadvantages: ①The driving force is small; ②The bending angle of the knuckles is difficult to control; ③When the knuckles are compressed or bent, the deformation of the two connected origami units is difficult to predict, and may interfere with the driver to destroy the fingers. ④ When the length of the knuckle changes, the multi-layer curved dielectric elastomer actuator also needs to be designed longer, and the versatility is poor.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的上述不足,本发明提供一种多自由度、灵活性好、响应快、环境适应性强,且驱动力更大的基于介电弹性体最小能量结构的机械臂。In view of the above-mentioned deficiencies in the prior art, the present invention provides a mechanical arm based on the minimum energy structure of a dielectric elastomer with multiple degrees of freedom, good flexibility, fast response, strong environmental adaptability, and greater driving force.
本发明提供以下的技术方案:一种基于介电弹性体最小能量结构的机械臂,所述机械臂包括串联在一起的多个刚性折纸机构,所述刚性折纸机构整体呈柱体形状,包括分别设于所述柱体两端的两个支架体和围绕所述柱体中心线均布设置的多个刚性折纸,所述刚性折纸与所述支架体的连接处形成第一折痕,每个所述第一折痕对应设置驱动组件,所述驱动组件包括最小能量结构式介电弹性体驱动器,所述驱动组件具有弯曲后可相互靠近或远离的两个连接端,所述驱动组件的两个连接端分别连接形成其所对应第一折痕的刚性折纸和支架体,所述驱动组件的其中一个连接端为移动端,所述驱动组件的移动端与其所对应第一折痕之间的距离可随所述驱动组件的弯曲而改变,所述驱动组件的另一个连接端为固定端,所述驱动组件的固定端与其所对应第一折痕之间的距离固定设置,所述驱动组件弯曲带动其所对应第一折痕角度改变,所述第一折痕角度改变带动形成所述第一折痕的所述刚性折纸形变,所述刚性折纸形变带动所述柱体弯曲或长度改变。The present invention provides the following technical solutions: a mechanical arm based on the minimum energy structure of a dielectric elastomer, the mechanical arm includes a plurality of rigid origami mechanisms connected in series, and the rigid origami mechanisms are in the shape of a cylinder as a whole, including Two bracket bodies arranged at both ends of the cylinder and a plurality of rigid origami evenly distributed around the center line of the cylinder, the connection between the rigid origami and the bracket body forms a first crease, and each The first fold is correspondingly provided with a drive assembly, the drive assembly includes a minimum energy structural dielectric elastomer driver, the drive assembly has two connection ends that can approach or move away from each other after bending, and the two connections of the drive assembly The ends are respectively connected to the rigid origami forming the corresponding first crease and the bracket body, one of the connecting ends of the drive assembly is a moving end, and the distance between the moving end of the drive assembly and the corresponding first crease can be adjusted. The other connecting end of the drive assembly is a fixed end, and the distance between the fixed end of the drive assembly and its corresponding first crease is fixed, and the drive assembly bends to drive The corresponding first crease angle changes, the first crease angle change drives the rigid origami forming the first crease to deform, and the rigid origami deformation drives the cylinder to bend or change its length.
本发明的一个实施例中,所述驱动组件还包括第一刚性支撑部件和第二刚性支撑部件,所述第一刚性支撑部件和所述第二刚性支撑部件分别连接所述最小能量结构式介电弹性体驱动器并分别作为所述驱动组件的移动端和固定端。In an embodiment of the present invention, the drive assembly further includes a first rigid support member and a second rigid support member, the first rigid support member and the second rigid support member are respectively connected to the minimum energy structural dielectric The elastomer driver is used as the moving end and the fixed end of the driving assembly, respectively.
本发明的一个实施例中,驱动组件未通电时,所述驱动组件呈弯曲状态且拱起高度为H1,所述驱动组件对应的第一折痕角度为α1,驱动组件通电时,所述驱动组件呈弯曲状态或平整状态且拱起高度为H2,所述驱动组件对应的第一折痕角度为α2,H1大于H2,α1小于α2。In an embodiment of the present invention, when the drive assembly is not powered on, the drive assembly is in a bent state and the arch height is H1, and the first crease angle corresponding to the drive assembly is α1. When the drive assembly is powered on, the drive assembly The assembly is in a bent state or a flat state and the arched height is H2, the first crease angle corresponding to the driving assembly is α2, H1 is greater than H2, and α1 is smaller than α2.
本发明的一个实施例中,所述最小能量结构式介电弹性体驱动器包括柔性基底、设于所述柔性基底上的预拉伸的介电弹性体薄膜以及均匀涂覆于所述预拉伸的介电弹性体薄膜两侧的柔性电极。In one embodiment of the present invention, the minimum energy structure-type dielectric elastomer driver includes a flexible substrate, a pre-stretched dielectric elastomer film disposed on the flexible substrate, and a film uniformly coated on the pre-stretched dielectric elastomer. Flexible electrodes on both sides of the dielectric elastomer film.
本发明的一个实施例中,所述预拉伸的介电弹性体薄膜采用聚丙烯酸酯、天然橡胶或硅胶,所述柔性电极采用碳脂、单壁碳纳米管或银纳米线导电液。In an embodiment of the present invention, the pre-stretched dielectric elastomer film is made of polyacrylate, natural rubber or silica gel, and the flexible electrode is made of carbon grease, single-walled carbon nanotube or silver nanowire conductive liquid.
本发明的一个实施例中,所述驱动组件的移动端通过销轴和挡板可移动连接于一长孔内,所述销轴穿过所述长孔,所述销轴的两端分别连接所述驱动组件和所述挡板。In one embodiment of the present invention, the moving end of the drive assembly is movably connected to a long hole through a pin shaft and a baffle plate, the pin shaft passes through the long hole, and both ends of the pin shaft are connected respectively the drive assembly and the baffle.
本发明的一个实施例中,所述驱动组件的移动端的移动方向与其所对应的第一折痕垂直。In an embodiment of the present invention, the moving direction of the moving end of the driving component is perpendicular to the corresponding first crease.
本发明的一个实施例中,所述驱动组件的固定端粘结固定。In an embodiment of the present invention, the fixed end of the driving assembly is fixed by bonding.
本发明的一个实施例中,所述驱动组件的移动端连接所述刚性折纸,所述驱动组件的固定端连接所述支架体。In one embodiment of the present invention, the moving end of the driving component is connected to the rigid origami, and the fixed end of the driving component is connected to the bracket body.
本发明的一个实施例中,所述刚性折纸上仅设有一个第二折痕,所述第二折痕为单顶点多折痕图案。In an embodiment of the present invention, there is only one second crease on the rigid origami, and the second crease is a single vertex multi-fold pattern.
由于上述技术方案运用,本发明与现有技术相比具有下列优点:Due to the application of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:
1)本发明公开的基于介电弹性体最小能量结构的机械臂,采用刚性折纸和最小能量结构式介电弹性体驱动器,具有多个自由度、灵活性好、响应速度快、驱动力更大、环境适应性强;1) The mechanical arm based on the minimum energy structure of the dielectric elastomer disclosed in the present invention adopts rigid origami and the minimum energy structure type dielectric elastomer driver, which has multiple degrees of freedom, good flexibility, fast response speed, greater driving force, Strong adaptability to the environment;
2)本发明公开的基于介电弹性体最小能量结构的机械臂,驱动组件设置在刚性折纸与支架体之间的第一折痕处,只需要通过控制折痕处的角度即可控制刚性折纸机构的运动,控制简便,并且可用于各种不同尺寸的刚性折纸机构的驱动,通用性强。2) The mechanical arm based on the minimum energy structure of the dielectric elastomer disclosed in the present invention, the driving component is arranged at the first crease between the rigid origami and the bracket body, and the rigid origami can be controlled only by controlling the angle of the crease The movement of the mechanism is easy to control, and can be used for driving rigid origami mechanisms of various sizes, with strong versatility.
3)本发明公开的基于介电弹性体最小能量结构的机械臂,机械臂由多个刚性折纸机构串联组成,每个刚性折纸机构单独控制,因此机械臂的操作更灵活、运动范围更广、环境适应性更强。3) The mechanical arm based on the minimum energy structure of the dielectric elastomer disclosed in the present invention is composed of a plurality of rigid origami mechanisms connected in series, and each rigid origami mechanism is independently controlled, so the operation of the mechanical arm is more flexible, the range of motion is wider, Environmental adaptability is stronger.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings that form a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute improper limitations on the present application.
图1为本发明中机械臂的整体示意图;Fig. 1 is the overall schematic diagram of the mechanical arm in the present invention;
图2为本发明中刚性折纸机构的整体示意图;Fig. 2 is the overall schematic diagram of the rigid origami mechanism in the present invention;
图3为本发明中刚性折纸机构的支架体与刚性折纸之间的连接示意图;3 is a schematic diagram of the connection between the support body of the rigid origami mechanism and the rigid origami in the present invention;
图4为本发明中驱动组件的示意图;4 is a schematic diagram of a drive assembly in the present invention;
图5为本发明中输入电压前驱动组件的示意图;Fig. 5 is the schematic diagram of the drive assembly before inputting the voltage in the present invention;
图6为本发明中输入电压后驱动组件的示意图;6 is a schematic diagram of a drive assembly after inputting a voltage in the present invention;
图7为本发明中各个驱动组件的输入电压相同时刚性折纸机构的示意图;7 is a schematic diagram of a rigid origami mechanism when the input voltages of each drive assembly are the same in the present invention;
图8为本发明中各个驱动组件的输入电压不完全相同时刚性折纸机构的示意图。FIG. 8 is a schematic diagram of the rigid folding mechanism when the input voltages of the driving components are not identical in the present invention.
其中,10、刚性折纸机构;1、支架体;11、第一折痕;2、刚性折纸;21、第二折痕;22、折叠板A;23、折叠板B;24、折叠板C;25、折叠板D;26、折叠板E;27、折叠板F;3、驱动组件;31、第一刚性支撑部件;32、第二刚性支撑部件;33、柔性基底;34、预拉伸的介电弹性体薄膜;35、柔性电极;4、销轴;5、挡板;6、长孔。Among them, 10, rigid origami mechanism; 1, bracket body; 11, first crease; 2, rigid origami; 21, second crease; 22, folding board A; 23, folding board B; 24, folding board C; 25. Folding plate D; 26. Folding plate E; 27. Folding plate F; 3. Drive assembly; 31, First rigid support member; 32, Second rigid support member; Dielectric elastomer film; 35, flexible electrode; 4, pin; 5, baffle; 6, long hole.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof. In this disclosure, terms such as "upper", "lower", "left", "right", "front", "rear", "vertical", "horizontal", "side", "bottom", etc. The orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only a relational word determined for the convenience of describing the structural relationship of each component or element of the present disclosure, and does not specifically refer to any component or element in the present disclosure, and should not be construed as a reference to the present disclosure. public restrictions. In the present disclosure, terms such as "fixed connection", "connected", "connected", etc. should be understood in a broad sense, indicating that it may be a fixed connection, an integral connection or a detachable connection; it may be directly connected, or through an intermediate connection. media are indirectly connected. For the relevant scientific research or technical personnel in the field, the specific meanings of the above terms in the present disclosure can be determined according to specific circumstances, and should not be construed as limitations on the present disclosure.
以下为用于说明本发明的一较佳实施例,但不用来限制本发明的范围。The following is a preferred embodiment for illustrating the present invention, but not for limiting the scope of the present invention.
实施例一Example 1
参见图1至图8,如其中的图例所示,一种基于介电弹性体最小能量结构的机械臂,上述机械臂包括串联在一起的多个刚性折纸机构10,上述刚性折纸机构10整体呈柱体形状,包括分别设于上述柱体两端的两个支架体1和围绕上述柱体中心线均布设置的多个刚性折纸2,上述刚性折纸2与上述支架体1的连接处形成第一折痕11,每个上述第一折痕11对应设置驱动组件3,上述驱动组件3包括最小能量结构式介电弹性体驱动器,上述驱动组件3具有弯曲后可相互靠近或远离的两个连接端,上述驱动组件的两个连接端分别连接形成其所对应第一折痕11的刚性折纸2和支架体1,上述驱动组件3的其中一个连接端为移动端,上述驱动组件3的移动端与其所对应第一折痕11之间的距离可随上述驱动组件3的弯曲而改变,上述驱动组件3的另一个连接端为固定端,上述驱动组件3的固定端与其所对应第一折痕11之间的距离固定设置,上述驱动组件3弯曲带动其所对应第一折痕11角度改变,上述第一折痕11角度改变带动形成上述第一折痕11的上述刚性折纸2形变,上述刚性折纸2形变带动上述柱体弯曲或长度改变。Referring to FIGS. 1 to 8 , as shown in the legends therein, a mechanical arm based on the minimum energy structure of a dielectric elastomer, the above-mentioned mechanical arm includes a plurality of
上述技术方案中,通过向驱动组件施加电压,使一个或多个驱动组件形变,从而使得刚性折纸形变,从而使关节形变。各个驱动组件的输入电压独立控制,当它们的输入电压相同时,关节实现压缩运动,输入电压不同时,关节实现弯曲运动,输入电压消失时,关节会自动恢复到初始状态。一方面,采用刚性折纸和最小能量结构式介电弹性体驱动器,具有多个自由度、灵活性好、响应速度快、关节负载力更大、关节的环境适应性强,另一方面,由于驱动组件是设置在刚性折纸与支架体之间的第一折痕处,其通用性较好,可用于各种不同长度的关节的制作。In the above technical solution, by applying a voltage to the driving components, one or more driving components are deformed, so that the rigid origami is deformed, thereby deforming the joints. The input voltage of each drive component is independently controlled. When their input voltages are the same, the joints realize compression motion. When the input voltages are different, the joints realize bending motion. When the input voltage disappears, the joints will automatically return to the initial state. On the one hand, the rigid origami and minimum-energy structural dielectric elastomer driver is adopted, which has multiple degrees of freedom, good flexibility, fast response speed, greater joint load force, and strong joint environmental adaptability. On the other hand, due to the driving components It is arranged at the first crease between the rigid origami and the bracket body. It has good versatility and can be used for the production of joints of various lengths.
本发明的一个实施例中,上述驱动组件3还包括第一刚性支撑部件31和第二刚性支撑部件32,上述第一刚性支撑部件31和上述第二刚性支撑部件32分别连接上述最小能量结构式介电弹性体驱动器并分别作为上述驱动组件3的移动端和固定端。通过设置刚性驱动部件,使得驱动组件带有一定的刚性,关节的制作及位置控制更容易。在其他实施例中还可以是:不设置上述第一刚性支撑部件和/或第二刚性支撑部件。In an embodiment of the present invention, the above-mentioned
本发明的一个实施例中,驱动组件未通电时,上述驱动组件3呈弯曲状态且拱起高度为H1,上述驱动组件3所对应的第一折痕11角度为α1,驱动组件通电时,上述驱动组件3呈弯曲状态或平整状态且拱起高度为H2,上述驱动组件3对应的第一折痕11角度为α2,H1大于H2,α1小于α2。驱动组件未通电时,第一折痕角度为90度左右,此时,驱动组件弯曲,恰好可以契合的设置在柱体的端面和侧面之间,驱动组件通电时,第一折痕角度为钝角,此时,驱动组件逐渐展平,恰好可以契合的设置在柱体的端面和侧面之间。在其他实施例中还可以是:In an embodiment of the present invention, when the drive assembly is not powered on, the
本发明的一个实施例中,上述最小能量结构式介电弹性体驱动器包括柔性基底33、设于上述柔性基底33上的预拉伸的介电弹性体薄膜34以及均匀涂覆于预拉伸的介电弹性体薄膜34两侧的柔性电极35。In one embodiment of the present invention, the above-mentioned minimum energy structure-type dielectric elastomer driver includes a
本发明的一个实施例中,上述预拉伸的介电弹性体薄膜34采用聚丙烯酸酯、天然橡胶或硅胶,上述柔性电极35采用碳脂、单壁碳纳米管或银纳米线导电液。In an embodiment of the present invention, the pre-stretched
本发明的一个实施例中,上述驱动组件3的移动端通过销轴4和挡板5可移动连接于一长孔6内,上述销轴4穿过上述长孔6,上述销轴4的两端分别连接上述驱动组件3和上述挡板5。长孔简单易制作,只需去除支架体或刚性折纸的折叠板上的部分材料即可成型,不需要设置更多的附件。在其他实施例中还可以是:上述驱动组件3的移动端通过T字形销轴可移动连接于一限位槽内,或者上述驱动组件的移动端通过滑套可移动连接一导向杆上。In an embodiment of the present invention, the moving end of the above-mentioned
本发明的一个实施例中,驱动组件3的移动端的移动方向与其所对应的第一折痕11垂直。驱动组件的移动端的移动方向与第一折痕垂直,关节的变形更加顺畅。在其他实施例中,驱动组件的移动端的移动方向与第一折痕还可以形成锐角或钝角,只要能够实现驱动组件的移动端可以移动即可。In an embodiment of the present invention, the moving direction of the moving end of the driving
本发明的一个实施例中,上述驱动组件3的固定端粘结固定。驱动组件的固定端通过粘结固定,不会对支架体或刚性折纸造成损伤,且操作方便。在其他实施例中还可以是:上述驱动组件的固定端通过螺栓固定或通过卡扣结构固定。In an embodiment of the present invention, the fixed end of the above-mentioned
本发明的一个实施例中,上述驱动组件3的移动端连接上述刚性折纸2,上述驱动组件3的固定端连接上述支架体1。由于柱体的长度一般大于其直径,因此刚性折纸的尺寸相对于支架体的尺寸来说,更适合于驱动组件的移动端连接,能够为驱动组件移动端移动提供空间。在其他实施例中还可以是:上述驱动组件的移动端连接上述支架体,上述驱动组件的固定端连接上述刚性折纸。In an embodiment of the present invention, the movable end of the above-mentioned
本发明的一个实施例中,上述刚性折纸2上设有第二折痕21,上述第二折痕21为单顶点多折痕图案,每个上述刚性折纸2和上述两个支架体1构成非闭合的空间四连杆。每个刚性折纸与两个支架体组成非闭合的四连杆,且驱动组件带有一定的刚性,关节的制作及位置控制更容易。上述单顶点多折痕图案为伞面的折痕图案。第二折痕21具体为单顶点六折痕图案。上述刚性折纸2包括围绕顶点依次通过转轴连接的折叠板A22、折叠板B23、折叠板C24、折叠板D25、折叠板E26以及折叠板F27,各个转轴的中心线经过顶点位置。折叠板A22和折叠板D25分别连接两个支架体1。In one embodiment of the present invention, the
本发明实施例中优选的实施方式,上述支架体1为六边形薄板,上述六边形薄板包括交替布置的第一侧边和第二侧边,在三个上述第一侧边处通过驱动组件连接刚性折纸,三个上述第二侧边不予布置。In a preferred implementation in the embodiments of the present invention, the above-mentioned
本发明实施例中优选的实施方式,上述支架体和上述刚性折纸通过3D打印或激光切割制作,上述关节的第一折痕11处使用柔性材料连接。柔性基底、第一第二刚性支撑部件也是通过3D打印或激光切割制作,第二折痕也使用柔性材料连接。另外销轴和挡板制作方式较多,塑料或金属材料都可以。In a preferred embodiment of the embodiments of the present invention, the above-mentioned bracket body and the above-mentioned rigid origami are manufactured by 3D printing or laser cutting, and the
实际使用时,将上述关节连接在两个物体之间,两个支架体分别与两个物体连接,当向所有驱动组件施加相同的电压时,关节缩短,当向部分驱动组件施加电压时,关节弯曲。In actual use, the above joints are connected between two objects, and the two bracket bodies are respectively connected with the two objects. When the same voltage is applied to all driving components, the joints shorten, and when voltage is applied to some of the driving components, the joints are shortened. bending.
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对本发明实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above is a description of the embodiments of the present invention. The above description of the disclosed embodiments enables those skilled in the art to realize or use the present invention. Various modifications to the embodiments of the invention will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210032237.2A CN114367966A (en) | 2022-01-12 | 2022-01-12 | Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer |
| PCT/CN2022/118020 WO2023134185A1 (en) | 2022-01-12 | 2022-09-09 | Mechanical arm based on minimum energy structure of dielectric elastomer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210032237.2A CN114367966A (en) | 2022-01-12 | 2022-01-12 | Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114367966A true CN114367966A (en) | 2022-04-19 |
Family
ID=81143295
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210032237.2A Pending CN114367966A (en) | 2022-01-12 | 2022-01-12 | Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN114367966A (en) |
| WO (1) | WO2023134185A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114700936A (en) * | 2022-06-07 | 2022-07-05 | 中国科学院沈阳自动化研究所 | A Soft Continuous Robot Based on Modular Origami Pneumatic Artificial Muscles |
| CN115091439A (en) * | 2022-07-28 | 2022-09-23 | 浙江大学 | Modularized soft mechanical arm system based on dielectric elastomer and control method |
| CN115179320A (en) * | 2022-07-21 | 2022-10-14 | 东南大学 | Flexible driver based on muscle transverse bridge structure and manufacturing method and test system thereof |
| WO2023134185A1 (en) * | 2022-01-12 | 2023-07-20 | 苏州大学 | Mechanical arm based on minimum energy structure of dielectric elastomer |
| CN117901077A (en) * | 2022-10-12 | 2024-04-19 | 万勋科技(深圳)有限公司 | Soft muscle, transmission structure, robot and method for manufacturing soft muscle |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030218403A1 (en) * | 2002-05-10 | 2003-11-27 | Massachusetts Institute Of Technology | Dielectric elastomer actuated systems and methods |
| JP2014220949A (en) * | 2013-05-09 | 2014-11-20 | バンドー化学株式会社 | Actuator element, actuator, flexible sheet, and manufacturing method of the actuator element |
| CN112959346A (en) * | 2021-04-15 | 2021-06-15 | 苏州大学 | Rigid paper folding type dexterous hand modular driving knuckle driven by dielectric elastomer |
| CN113199485A (en) * | 2021-05-24 | 2021-08-03 | 苏州大学 | Driving model of rigid paper folding type dexterous finger joint driven by dielectric elastomer |
| CN113580119A (en) * | 2021-08-17 | 2021-11-02 | 苏州大学 | Pneumatic continuum mechanism based on paper folding structure and continuum robot |
| US20210376221A1 (en) * | 2019-09-10 | 2021-12-02 | Dalian University Of Technology | Electric controlled bi-directional bending actuator with deformability and stiffness tunable capacity |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011068328A (en) * | 2009-09-24 | 2011-04-07 | Koryo Miura | Cylindrical expansion structure |
| CN108356810A (en) * | 2018-02-09 | 2018-08-03 | 浙江工业大学 | A kind of origami structure based on electric drive autofolding |
| CN114367966A (en) * | 2022-01-12 | 2022-04-19 | 苏州大学 | Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer |
-
2022
- 2022-01-12 CN CN202210032237.2A patent/CN114367966A/en active Pending
- 2022-09-09 WO PCT/CN2022/118020 patent/WO2023134185A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030218403A1 (en) * | 2002-05-10 | 2003-11-27 | Massachusetts Institute Of Technology | Dielectric elastomer actuated systems and methods |
| JP2014220949A (en) * | 2013-05-09 | 2014-11-20 | バンドー化学株式会社 | Actuator element, actuator, flexible sheet, and manufacturing method of the actuator element |
| US20210376221A1 (en) * | 2019-09-10 | 2021-12-02 | Dalian University Of Technology | Electric controlled bi-directional bending actuator with deformability and stiffness tunable capacity |
| CN112959346A (en) * | 2021-04-15 | 2021-06-15 | 苏州大学 | Rigid paper folding type dexterous hand modular driving knuckle driven by dielectric elastomer |
| CN113199485A (en) * | 2021-05-24 | 2021-08-03 | 苏州大学 | Driving model of rigid paper folding type dexterous finger joint driven by dielectric elastomer |
| CN113580119A (en) * | 2021-08-17 | 2021-11-02 | 苏州大学 | Pneumatic continuum mechanism based on paper folding structure and continuum robot |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023134185A1 (en) * | 2022-01-12 | 2023-07-20 | 苏州大学 | Mechanical arm based on minimum energy structure of dielectric elastomer |
| CN114700936A (en) * | 2022-06-07 | 2022-07-05 | 中国科学院沈阳自动化研究所 | A Soft Continuous Robot Based on Modular Origami Pneumatic Artificial Muscles |
| CN115179320A (en) * | 2022-07-21 | 2022-10-14 | 东南大学 | Flexible driver based on muscle transverse bridge structure and manufacturing method and test system thereof |
| CN115091439A (en) * | 2022-07-28 | 2022-09-23 | 浙江大学 | Modularized soft mechanical arm system based on dielectric elastomer and control method |
| CN115091439B (en) * | 2022-07-28 | 2024-03-29 | 浙江大学 | A modular soft manipulator system and control method based on dielectric elastomer |
| CN117901077A (en) * | 2022-10-12 | 2024-04-19 | 万勋科技(深圳)有限公司 | Soft muscle, transmission structure, robot and method for manufacturing soft muscle |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023134185A1 (en) | 2023-07-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114367966A (en) | Robotic Arm Based on Minimum Energy Structure of Dielectric Elastomer | |
| CN112959346B (en) | Modular actuation knuckles of a rigid origami-like dexterous hand actuated by dielectric elastomer | |
| CN113580119B (en) | A pneumatic continuum mechanism and continuum robot based on origami structure | |
| CN108044613A (en) | Flexible pneumatic unit is connected mechanical arm with multiple-unit | |
| CN115056260B (en) | Multi-grabbing-mode soft gripper based on bistable paper folding | |
| CN113199464A (en) | Modular high-expansion-ratio robot based on paper folding mechanism | |
| CN215701777U (en) | Rigid paper folding type dexterous hand modular driving knuckle driven by dielectric elastomer | |
| CN106313037B (en) | Pneumatic concatenated flexible mechanical arm | |
| CN111660317B (en) | Gripper module and pneumatic universal gripper capable of continuously adjusting gripping posture | |
| CN113580190B (en) | Soft body driving joint | |
| CN116901120A (en) | Cuttlefish-like grabbing type end effector based on paper folding structure and method | |
| CN111923022A (en) | An unconstrained mobile soft robot and its driving method | |
| CN112497202B (en) | A miniature pneumatic layer blocking mechanism with impedance adjustment and position sensing functions | |
| CN114800466A (en) | Software module based on paper folding structure and software robot | |
| CN119369453A (en) | A modular origami soft robotic arm | |
| CN116442207B (en) | A software drive unit and a modular software robot arm having the same | |
| CN114603597A (en) | A rigid-soft coupled manipulator | |
| JP2001268948A (en) | Electrostatic actuator and operation mechanism using the same | |
| CN113967922B (en) | A fully flexible pneumatic soft bionic manipulator | |
| CN117246424A (en) | A quadruped crawling microrobot and control method | |
| CN115574058A (en) | A controllable bending stacked chain structure | |
| CN118876042B (en) | Electrostatic paper folding driver | |
| CN115351808A (en) | Flexible gripper based on origami structure | |
| CN115157312A (en) | A drive joint of a bionic soft snake-like robot | |
| CN108050219B (en) | High-bearing truss type high-flexibility mechanism |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220419 |