CN114373673A - Preparation method of semiconductor structure - Google Patents
Preparation method of semiconductor structure Download PDFInfo
- Publication number
- CN114373673A CN114373673A CN202210165374.3A CN202210165374A CN114373673A CN 114373673 A CN114373673 A CN 114373673A CN 202210165374 A CN202210165374 A CN 202210165374A CN 114373673 A CN114373673 A CN 114373673A
- Authority
- CN
- China
- Prior art keywords
- layer
- titanium
- substrate
- metal
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title abstract 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 84
- 239000002184 metal Substances 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 77
- 230000008569 process Effects 0.000 claims abstract description 47
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 17
- 239000010949 copper Substances 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000004380 ashing Methods 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000004140 cleaning Methods 0.000 claims abstract description 8
- 238000005530 etching Methods 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims description 68
- 229910052719 titanium Inorganic materials 0.000 claims description 68
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 66
- 230000008021 deposition Effects 0.000 claims description 58
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 238000002161 passivation Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 238000002407 reforming Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 10
- 230000008859 change Effects 0.000 abstract description 2
- 238000001259 photo etching Methods 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 42
- 238000010586 diagram Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 229910000881 Cu alloy Inorganic materials 0.000 description 6
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- -1 titanium halide Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构的制备方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for preparing a semiconductor structure.
背景技术Background technique
随着半导体技术的发展以及芯片集成度的提高,金属互连线变得更细、更窄、更薄,同时各金属互连线之间的距离也越来越窄。在实际生产过程中,光刻工艺经常会进行光刻返工(rework),也就是需要将错误的光刻胶全部去掉。现有技术中的光刻胶一般是有机物,传统的光刻返工流程通常是采用灰化工艺去胶再进行湿法清洁,然后再次进行光刻。With the development of semiconductor technology and the improvement of chip integration, metal interconnection lines have become thinner, narrower, and thinner, and the distance between the metal interconnection lines has also become narrower. In the actual production process, the photolithography process often performs photolithography rework, that is, it is necessary to remove all the wrong photoresist. The photoresist in the prior art is generally an organic substance, and the traditional photolithography rework process usually uses an ashing process to remove the photoresist, then performs wet cleaning, and then performs photolithography again.
图1为一种半导体结构的制备方法的结构示意图,如图1所示,提供衬底100,所述衬底100上形成有金属层102及待除去的光刻胶层,所述金属层102的材料为铝铜合金;对所述金属层102上方的光刻胶进行灰化工艺,灰化工艺的温度通常是250℃~300℃,在该温度下所述金属层102内容易产生铝的theta(θ)相,所述铝的theta相为二铝化铜,所述二铝化铜颗粒104难以去除,会导致对所述金属层102进行再次刻蚀时,所述二铝化铜颗粒104下方的所述金属层102不能被完整的刻蚀掉(图中画圈的部分)。如图2所示,在所述金属层102上顺形地形成介质层106及钝化层108时,半导体器件表面上所述二铝化铜颗粒104对应的位置的金属残留会产生凸起。图3为正常批次的半导体器件的缺陷目检图,图4为图2中半导体器件的缺陷目检图,图4中所示的凸起产生的小丘缺陷会对半导体器件的性能及良率产生影响。FIG. 1 is a schematic structural diagram of a method for preparing a semiconductor structure. As shown in FIG. 1 , a
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种半导体结构的制备方法,消除光刻胶层返工过程中产生的金属残留及小丘缺陷。The purpose of the present invention is to provide a method for preparing a semiconductor structure, which can eliminate the metal residues and hillock defects generated during the rework of the photoresist layer.
为了达到上述目的,本发明提供了一种半导体结构的制备方法,包括:In order to achieve the above object, the present invention provides a method for preparing a semiconductor structure, comprising:
提供衬底,在所述衬底上依次形成金属层及图形化的光刻胶层,所述金属层包含铜和铝;providing a substrate on which a metal layer and a patterned photoresist layer are sequentially formed, the metal layer comprising copper and aluminum;
判断所述图形化的光刻胶层是否需要返工;determining whether the patterned photoresist layer needs to be reworked;
当判定所述图形化的光刻胶层需要返工时,依次执行灰化工艺及湿法清洗工艺,以去除所述图形化的光刻胶层;When it is determined that the patterned photoresist layer needs to be reworked, an ashing process and a wet cleaning process are sequentially performed to remove the patterned photoresist layer;
对所述衬底执行退火工艺。An annealing process is performed on the substrate.
可选的,形成所述金属层之后,形成所述图形化的光刻胶层之前,还包括:Optionally, after forming the metal layer and before forming the patterned photoresist layer, the method further includes:
在所述金属层上依次形成钛沉积层及氮化钛层。A titanium deposition layer and a titanium nitride layer are sequentially formed on the metal layer.
可选的,所述钛沉积层的厚度大于 Optionally, the thickness of the titanium deposition layer is greater than
可选的,形成所述钛沉积层及所述氮化钛层的步骤包括:Optionally, the steps of forming the titanium deposition layer and the titanium nitride layer include:
将所述衬底放置于真空腔内,向所述真空腔内通入含钛气体以在所述金属层上形成所述钛沉积层;placing the substrate in a vacuum chamber, and feeding a titanium-containing gas into the vacuum chamber to form the titanium deposition layer on the metal layer;
向所述真空腔内通入氮气,以在所述钛沉积层上形成氮化钛层。Nitrogen gas was introduced into the vacuum chamber to form a titanium nitride layer on the titanium deposition layer.
可选的,形成所述钛沉积层及所述氮化钛层的步骤包括:Optionally, the steps of forming the titanium deposition layer and the titanium nitride layer include:
在所述衬底上形成第一钛沉积层;forming a first titanium deposition layer on the substrate;
将所述衬底放置于真空腔内,向所述真空腔内通入含钛气体以在所述第一钛沉积层上形成第二钛沉积层,所述第一钛沉积层和所述第二钛沉积层构成所述钛沉积层;The substrate is placed in a vacuum chamber, and a titanium-containing gas is introduced into the vacuum chamber to form a second titanium deposition layer on the first titanium deposition layer, the first titanium deposition layer and the first titanium deposition layer. The titanium deposition layer constitutes the titanium deposition layer;
向所述真空腔内通入氮气,以在所述钛沉积层上形成氮化钛层。Nitrogen gas was introduced into the vacuum chamber to form a titanium nitride layer on the titanium deposition layer.
可选的,氮气的流量为3000sccm~3600sccm。Optionally, the flow rate of nitrogen gas is 3000 sccm to 3600 sccm.
可选的,在对所述光刻胶层进行灰化工艺之前,还包括:Optionally, before the ashing process is performed on the photoresist layer, the method further includes:
在所述氮化钛层上形成抗反射层,所述抗反射层覆盖所述氮化钛层。An anti-reflection layer is formed on the titanium nitride layer, and the anti-reflection layer covers the titanium nitride layer.
可选的,所述衬底与所述金属层之间还形成有阻挡层。Optionally, a barrier layer is further formed between the substrate and the metal layer.
可选的,对所述衬底进行退火工艺之后,还包括:Optionally, after the annealing process is performed on the substrate, the method further includes:
重新形成图形化的光刻胶;Re-form patterned photoresist;
刻蚀所述氮化钛层、所述钛沉积层及所述金属层,剩余的所述氮化钛层、所述钛沉积层及所述金属层构成金属布线层;etching the titanium nitride layer, the titanium deposition layer and the metal layer, and the remaining titanium nitride layer, the titanium deposition layer and the metal layer constitute a metal wiring layer;
在所述金属布线层上依次形成介质层和钝化层。A dielectric layer and a passivation layer are sequentially formed on the metal wiring layer.
可选的,所述退火工艺的温度为340℃~600℃。Optionally, the temperature of the annealing process is 340°C to 600°C.
本发明提供一种半导体结构的制备方法,包括:提供衬底,在所述衬底上依次形成金属层及图形化的光刻胶层,所述金属层包含铜和铝;判断所述图形化的光刻胶层是否需要返工;当判定所述图形化的光刻胶层需要返工时,依次执行灰化工艺及湿法清洗工艺,以去除所述图形化的光刻胶层;对所述衬底执行退火工艺。通过在光刻返工后增加一步退火工艺,使所述金属层中在灰化工艺中由于温度变化产生的难以刻蚀的铝的theta相转化为其它容易刻蚀的空间结构,均匀所述金属层各处的刻蚀速度,避免出现金属残留及小丘缺陷。The present invention provides a method for preparing a semiconductor structure, comprising: providing a substrate, and sequentially forming a metal layer and a patterned photoresist layer on the substrate, the metal layer comprising copper and aluminum; Whether the photoresist layer needs to be reworked; when it is determined that the patterned photoresist layer needs to be reworked, an ashing process and a wet cleaning process are sequentially performed to remove the patterned photoresist layer; The substrate is subjected to an annealing process. By adding a one-step annealing process after photolithography rework, the theta phase of aluminum in the metal layer, which is difficult to etch due to temperature changes in the ashing process, is transformed into other spatial structures that are easy to etch, and the metal layer is uniform. Etch speed everywhere to avoid metal residue and hillock defects.
此外,加厚所述钛沉积层的厚度,避免所述氮化钛层及所述钛沉积层在退火过程中产生裂缝,进而避免对所述金属层再次刻蚀时,显影液通过所述裂缝与所述金属层反应形成难以刻蚀的氧化铝,进一步保证半导体器件的性能。In addition, the thickness of the titanium deposition layer is increased to avoid cracks in the titanium nitride layer and the titanium deposition layer during the annealing process, so as to prevent the developer from passing through the cracks when the metal layer is etched again. It reacts with the metal layer to form aluminum oxide which is difficult to etch, which further ensures the performance of the semiconductor device.
附图说明Description of drawings
图1为一种半导体结构的制备方法的结构示意图;1 is a schematic structural diagram of a method for preparing a semiconductor structure;
图2为图1所示的半导体器件金属层的扫描电镜形貌图;Fig. 2 is the scanning electron microscope topography of the metal layer of the semiconductor device shown in Fig. 1;
图3为正常批次的半导体器件的缺陷目检图;Fig. 3 is a defect visual inspection diagram of a normal batch of semiconductor devices;
图4为图2中半导体器件的缺陷目检图;Fig. 4 is a defect visual inspection diagram of the semiconductor device in Fig. 2;
图5为本发明实施例一提供的一种半导体结构的制备方法的流程图;FIG. 5 is a flowchart of a method for fabricating a semiconductor structure provided in Embodiment 1 of the present invention;
图6~9为本发明实施例一提供的一种半导体结构的制备方法的相应步骤对应的结构示意图;6 to 9 are schematic structural diagrams corresponding to corresponding steps of a method for preparing a semiconductor structure provided in Embodiment 1 of the present invention;
图10为本发明实施例二提供的一种半导体结构的结构示意图;10 is a schematic structural diagram of a semiconductor structure according to Embodiment 2 of the present invention;
图11~12为所述氮化钛层产生裂缝时半导体器件的扫描电镜形貌图;11-12 are scanning electron microscope topography diagrams of the semiconductor device when the titanium nitride layer is cracked;
其中,附图说明为:Among them, the accompanying drawings are as follows:
100、200-衬底;204-阻挡层;206、102-金属层;208-钛沉积层;208a-第一钛沉积层;208b-第二钛沉积层;210-氮化钛层;104、207-二铝化铜颗粒;106-介质层;108-钝化层。100, 200-substrate; 204-barrier layer; 206, 102-metal layer; 208-titanium deposition layer; 208a-first titanium deposition layer; 208b-second titanium deposition layer; 210-titanium nitride layer; 104, 207-copper dialuminide particles; 106-dielectric layer; 108-passivation layer.
具体实施方式Detailed ways
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The specific embodiments of the present invention will be described in more detail below with reference to the schematic diagrams. The advantages and features of the present invention will become more apparent from the following description. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
在下文中,术语“第一”“第二”等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换。类似的,如果本文所述的方法包括一系列步骤,且本文所呈现的这些步骤并非必须是可执行这些步骤的唯一顺序,且一些所述的步骤可被省略和/或一些文本未描述的其它步骤可被添加到该方法。In the following, the terms "first," "second," etc. are used to distinguish between similar elements, and are not necessarily used to describe a particular order or temporal order. It is to be understood that these terms so used may be substituted under appropriate circumstances. Similarly, if a method described herein includes a series of steps, the steps presented herein are not necessarily the only order in which the steps may be performed, and some of the steps described may be omitted and/or some others not described by the text Steps can be added to the method.
实施例一Example 1
图5为本实施例提供的一种半导体结构的制备方法的流程图,如图5所示,本发明提供了一种半导体结构的制备方法,包括:FIG. 5 is a flowchart of a method for preparing a semiconductor structure provided in this embodiment. As shown in FIG. 5 , the present invention provides a method for preparing a semiconductor structure, including:
步骤S1:提供衬底,在所述衬底上依次形成金属层及图形化的光刻胶层,所述金属层包含铜和铝;Step S1: providing a substrate, and sequentially forming a metal layer and a patterned photoresist layer on the substrate, the metal layer comprising copper and aluminum;
步骤S2:判断所述图形化的光刻胶层是否需要返工;Step S2: judging whether the patterned photoresist layer needs to be reworked;
步骤S3:当判定所述图形化的光刻胶层需要返工时,依次执行灰化工艺及湿法清洗工艺,以去除所述图形化的光刻胶层;Step S3: when it is determined that the patterned photoresist layer needs to be reworked, an ashing process and a wet cleaning process are sequentially performed to remove the patterned photoresist layer;
步骤S4:对所述衬底执行退火工艺。Step S4: performing an annealing process on the substrate.
图6~9为本实施例提供的一种半导体结构的制备方法的相应步骤对应的结构示意图,下面结合附图6~9对本实施例提供的一种半导体结构的制备方法进行更详细的描述,其中图示了本发明的可选实施例。6 to 9 are schematic structural diagrams corresponding to corresponding steps of a method for preparing a semiconductor structure provided in this embodiment. The following describes the method for preparing a semiconductor structure provided in this embodiment in more detail with reference to FIGS. 6 to 9 . Alternative embodiments of the present invention are illustrated therein.
如图6所示,提供衬底200,在所述衬底200上形成金属层206,所述金属层206的材料包含铜和铝,例如为铝铜合金。所述衬底200中可以形成器件结构,所述金属层206与器件结构之间可以通过插塞结构电性连接。As shown in FIG. 6 , a
在所述衬底200与所述金属层206之间还可以形成阻挡层204,所述阻挡层204的材料可以是金属钛或氮化钛,所述阻挡层204可以使金属层206与所述衬底200及所述插塞结构之间形成良好的电性连接。A
其中,所述阻挡层204的厚度为所述金属层206的厚度为 Wherein, the thickness of the
如图7所示,在所述金属层206上形成钛沉积层208及氮化钛层210。As shown in FIG. 7 , a
具体的,先通过化学气相沉积工艺或物理气相沉积工艺在所述金属层206上形成第一钛沉积层208a。然后将所述衬底200放置于真空腔内,向所述真空腔内通入含钛气体以在所述第一钛沉积层208a上形成第二钛沉积层208b,所述第一钛沉积层208a和所述第二钛沉积层208b构成所述钛沉积层208;最后向所述真空腔内通入氮气,所述氮气与所述含钛气体反应,以在所述钛沉积层208上形成所述氮化钛层210。Specifically, a first
本实施例中,所述含钛气体气态为卤化钛。In this embodiment, the gaseous state of the titanium-containing gas is titanium halide.
其中,所述钛沉积层的厚度大于通入的所述氮气的流量为3000sccm~3600sccm。Wherein, the thickness of the titanium deposition layer is greater than The flow rate of the introduced nitrogen gas is 3000 sccm to 3600 sccm.
如图8所示,在所述氮化钛层210上形成图形化的光刻胶层,用于作为刻蚀所述氮化钛层、所述钛沉积层及所述金属层形成金属布线层的掩模。As shown in FIG. 8 , a patterned photoresist layer is formed on the
判断所述光刻胶层是否需要返工,当所述图形化的光刻胶层需要进行返工时,则采用灰化工艺除去所述图形化的光刻胶层,并使用湿法清洗工艺除去残余的所述图形化的光刻胶层。Determine whether the photoresist layer needs to be reworked. When the patterned photoresist layer needs to be reworked, an ashing process is used to remove the patterned photoresist layer, and a wet cleaning process is used to remove residues of the patterned photoresist layer.
其中,所述灰化工艺的温度为200℃~300℃。Wherein, the temperature of the ashing process is 200°C to 300°C.
由于所述金属层206在材料为铝铜合金,铝铜合金在200℃~300℃的温度条件下空间结构会发生变化,产生铝的theta相,所述铝的theta相为二铝化铜,所述二铝化铜颗粒难以刻蚀,若不消除所述二铝化铜颗粒直接进行再次光刻,会在所述二铝化铜颗粒对应位置产生金属残留及小丘缺陷。Since the material of the
如图9所示,对所述衬底200进行退火工艺,所述退火工艺的温度为340℃~600℃,铝铜合金在340℃~600℃的温度条件下,所述金属层206内部的铝的theta相将会转化为其它容易刻蚀的空间结构,进而消除所述二铝化铜颗粒,均匀所述金属层206各处的刻蚀速度。As shown in FIG. 9 , an annealing process is performed on the
进一步的,在对所述衬底进行退火工艺后还包括:Further, after the annealing process is performed on the substrate, the method further includes:
在所述氮化钛层210上重新形成图形化的光刻胶层;刻蚀所述氮化钛层210、所述钛沉积层208及所述金属层206,剩余的所述氮化钛层210、所述钛沉积层208及所述金属层206组成金属布线层;然后在所述金属布线层上依次形成介质层和钝化层。Re-form a patterned photoresist layer on the
应当所说明的是,当对所述衬底200进行退火工艺时,所述氮化钛层210会由于温度的变化产生较大的应力,若所述钛沉积层小于则难以抵所述氮化钛层210产生的应力,使所述氮化钛层210产生裂缝,所述裂缝会暴露出所述金属层206。当对所述氮化钛层210、所述钛沉积层208及所述金属层206进行再次光刻时,显影液会通过所述裂缝与所述金属层206反应产生氧化铝,而氧化铝的性质与铝铜合金不同且不溶于有机溶剂,刻蚀形成所述金属布线层时,难以刻蚀所述氧化铝及所述氧化铝下方的所述金属层206,使各金属布线之间存在金属残留,容易导致半导体器件的短路。与此同时所述金属残留对后续器件的平坦化及膜层厚度的均匀性都会产生影响,进一步影响半导体器件的性能。图11~12为所述氮化钛层产生裂缝时半导体器件的扫描电镜形貌图,如图11及图12所示,产生所述氧化铝的位置在后续的钝化层沉积过程中出现了明显的凸起。It should be noted that when the
在本实施例中,所述钛沉积层208的厚度大于以保证所述钛沉积层208可以在后续工艺中减小所述氮化钛层210的应力,避免产生所述裂缝。In this embodiment, the thickness of the
在其它可选实施例中,还可以在所述氮化钛层210上形成抗反射涂层(BARC,Bottom Anti-Reflective Coatings),所述抗反射涂层覆盖所述氮化钛层210,所述抗反射涂层可以在光刻胶的显影过程中保护下方的所述金属层206不与所述显影液反应。In other optional embodiments, an anti-reflection coating (BARC, Bottom Anti-Reflective Coatings) may also be formed on the
实施例二Embodiment 2
图10为本实施例提供的一种半导体结构的结构示意图,如图10所示,本实施例与实施例一的区别仅在于,在真空腔内一步形成所述钛沉积层208。FIG. 10 is a schematic structural diagram of a semiconductor structure provided in this embodiment. As shown in FIG. 10 , the difference between this embodiment and Embodiment 1 is only that the
具体的,在所述衬底200上形成所述金属层206后,将所述衬底200放置于真空腔内,向所述真空腔内通入含钛气体以在所述金属层206上形成满足厚度要求的所述钛沉积层208,所述钛沉积层208的厚度大于 Specifically, after the
综上,本发明提供一种半导体结构的制备方法,包括:提供衬底200,在所述衬底200上依次形成金属层206及图形化的光刻胶层,所述金属层206包含铜和铝;判断所述图形化的光刻胶层是否需要返工;当判定所述图形化的光刻胶层需要返工时,依次执行灰化工艺及湿法清洗工艺,以去除所述图形化的光刻胶层;对所述衬底执行退火工艺。通过在光刻返工后增加一步退火工艺,使所述金属层206中在灰化工艺中由于温度变化产生的难以刻蚀的铝的theta相转化为其它空间结构,均匀所述金属层206各处的刻蚀速度,避免出现金属残留及小丘缺陷。此外,加厚所述钛沉积层208的厚度,避免所述氮化钛层210及所述钛沉积层208在退火过程中产生裂缝,进而避免对所述金属层206再次刻蚀时,显影液通过所述裂缝与所述金属层206反应形成难以刻蚀的氧化铝,进一步保证半导体器件的性能。In conclusion, the present invention provides a method for fabricating a semiconductor structure, including: providing a
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。The above are only preferred embodiments of the present invention, and do not have any limiting effect on the present invention. Any person skilled in the art, within the scope of not departing from the technical solution of the present invention, makes any form of equivalent replacement or modification to the technical solution and technical content disclosed in the present invention, and does not depart from the technical solution of the present invention. content still falls within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210165374.3A CN114373673A (en) | 2022-02-18 | 2022-02-18 | Preparation method of semiconductor structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210165374.3A CN114373673A (en) | 2022-02-18 | 2022-02-18 | Preparation method of semiconductor structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114373673A true CN114373673A (en) | 2022-04-19 |
Family
ID=81146175
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210165374.3A Pending CN114373673A (en) | 2022-02-18 | 2022-02-18 | Preparation method of semiconductor structure |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114373673A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115159449A (en) * | 2022-07-25 | 2022-10-11 | 上海华虹宏力半导体制造有限公司 | Method for improving etching defect |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050009323A1 (en) * | 2003-07-09 | 2005-01-13 | Seung Hee Han | Method for forming metal wiring of semiconductor device |
| US20070066055A1 (en) * | 2005-09-20 | 2007-03-22 | Chien-Hsin Huang | Method of fabricating conductive layer |
| US20070166979A1 (en) * | 2006-01-04 | 2007-07-19 | Tza-Hao Wang | Metal etching process and rework method thereof |
| CN102110656A (en) * | 2009-12-29 | 2011-06-29 | 中芯国际集成电路制造(上海)有限公司 | Method for forming self-aligned source region |
| CN109557774A (en) * | 2019-01-22 | 2019-04-02 | 上海华虹宏力半导体制造有限公司 | Photoresist minimizing technology and aluminum manufacturing procedure process |
| CN111799155A (en) * | 2020-07-16 | 2020-10-20 | 上海华力微电子有限公司 | Method for removing photoresist layer and method for forming semiconductor device |
-
2022
- 2022-02-18 CN CN202210165374.3A patent/CN114373673A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050009323A1 (en) * | 2003-07-09 | 2005-01-13 | Seung Hee Han | Method for forming metal wiring of semiconductor device |
| US20070066055A1 (en) * | 2005-09-20 | 2007-03-22 | Chien-Hsin Huang | Method of fabricating conductive layer |
| US20070166979A1 (en) * | 2006-01-04 | 2007-07-19 | Tza-Hao Wang | Metal etching process and rework method thereof |
| CN102110656A (en) * | 2009-12-29 | 2011-06-29 | 中芯国际集成电路制造(上海)有限公司 | Method for forming self-aligned source region |
| CN109557774A (en) * | 2019-01-22 | 2019-04-02 | 上海华虹宏力半导体制造有限公司 | Photoresist minimizing technology and aluminum manufacturing procedure process |
| CN111799155A (en) * | 2020-07-16 | 2020-10-20 | 上海华力微电子有限公司 | Method for removing photoresist layer and method for forming semiconductor device |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115159449A (en) * | 2022-07-25 | 2022-10-11 | 上海华虹宏力半导体制造有限公司 | Method for improving etching defect |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111584348A (en) | Reworking method of three-layer photoetching material | |
| JPH02276248A (en) | Method of forming conductive stud and conductor | |
| CN110931354A (en) | Semiconductor structure and method for manufacturing semiconductor structure | |
| CN108565216A (en) | The reworking method of dual damascene via technique | |
| CN111128692A (en) | Reworking process method for three-layer thin film stacking structure sheet of photoetching station | |
| US20080003831A1 (en) | Method for forming metal pattern in semiconductor device | |
| CN114373673A (en) | Preparation method of semiconductor structure | |
| TW201901896A (en) | Semiconductor device and fabrication method thereof | |
| US11626289B2 (en) | Semiconductor structure and method for forming the same | |
| JP5164446B2 (en) | Method for forming fine pattern of semiconductor element | |
| CN110391136B (en) | Patterning method | |
| US8222143B2 (en) | Reworking method for integrated circuit devices | |
| JP4120272B2 (en) | Insulating film etching method and semiconductor device contact forming method | |
| CN114695252A (en) | Method for forming metal layer | |
| CN114050107A (en) | Silicon nitride etching method | |
| CN113745150B (en) | Semiconductor structure and method for forming the same | |
| US12341007B2 (en) | Method of patterning underlying structure | |
| JP5596403B2 (en) | Manufacturing method of semiconductor device | |
| JP3304309B2 (en) | Method for forming a metal-containing structure | |
| CN114050106B (en) | Mask layer reworking method and silicon nitride etching method | |
| KR100613573B1 (en) | Manufacturing method of semiconductor device | |
| JPH11238732A (en) | Wiring structure and formation of bonding pad opening | |
| TW473826B (en) | A method for reworking photoresist pattern on metal layer | |
| CN120280341A (en) | Etching method of buffer layer | |
| JP2006041364A (en) | Wiring forming method and electronic device manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |