[go: up one dir, main page]

CN114386860B - Method for determining regional atmospheric precipitation pattern index - Google Patents

Method for determining regional atmospheric precipitation pattern index Download PDF

Info

Publication number
CN114386860B
CN114386860B CN202210044462.8A CN202210044462A CN114386860B CN 114386860 B CN114386860 B CN 114386860B CN 202210044462 A CN202210044462 A CN 202210044462A CN 114386860 B CN114386860 B CN 114386860B
Authority
CN
China
Prior art keywords
precipitation
water vapor
regional
index
vapor transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210044462.8A
Other languages
Chinese (zh)
Other versions
CN114386860A (en
Inventor
权全
邓嘉祥
董宇翔
李平治
杨思敏
许美娇
秦毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202210044462.8A priority Critical patent/CN114386860B/en
Publication of CN114386860A publication Critical patent/CN114386860A/en
Application granted granted Critical
Publication of CN114386860B publication Critical patent/CN114386860B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a method for determining regional atmospheric precipitation pattern index R, belongs to the technical field of atmospheric precipitation index analysis, and can solve the problems that the existing precipitation pattern index cannot reflect the change of the spatial and temporal distribution of precipitation and cannot reflect the amount and supply condition of regional aerial water vapor resources. The determination method comprises the following steps: acquiring precipitation data of a time period to be measured in a research area, and obtaining an area precipitation index M according to the precipitation data; acquiring the total water vapor transmission flux Q of the whole atmosphere of the unit gas column in the research area, and acquiring an area water vapor transmission index T according to the total water vapor transmission flux Q; and calculating to obtain a regional atmospheric precipitation pattern index R according to the regional precipitation index M and the regional water vapor transmission index T.

Description

一种区域大气降水格局指标的确定方法A Determination Method of Regional Atmospheric Precipitation Pattern Index

技术领域technical field

本发明涉及一种区域大气降水格局指标的确定方法,属于大气降水指标分析技术领域。The invention relates to a method for determining a regional atmospheric precipitation pattern index, and belongs to the technical field of atmospheric precipitation index analysis.

背景技术Background technique

区域降水的变化可以看作两个方面:一方面是总量的变化,另一方面是水汽供应。总量的变化相对容易量化,现有的对区域降水的研究主要是在降水量上,对降水的集中程度和集中时期的研究较少。区域要形成降水需要充足的水汽供应,空中水汽资源作为一种潜在的水资源,大气中水汽含量及其输送是区域降水的一个重要组成部分,与区域大气降水格局关系密切。The change of regional precipitation can be regarded as two aspects: one is the change of the total amount, and the other is the water vapor supply. The change of the total amount is relatively easy to quantify. The existing research on regional precipitation is mainly on the amount of precipitation, and there are few studies on the concentration degree and concentration period of precipitation. To form precipitation in a region, sufficient water vapor supply is required. Airborne water vapor resources are a potential water resource. The content and transportation of water vapor in the atmosphere is an important part of regional precipitation, which is closely related to the regional atmospheric precipitation pattern.

目前,反映区域降水格局的指标有区域年均降水量与年均降水日数,这些指标在一定程度上揭示了变化环境下降水的演变规律,但降水作为水循环的重要环节之一,其变化包括降水量和时空分布的变化,降水的时空分布过于集中会增加洪旱灾害发生的可能性,威胁流域水利工程的安全运行与设计实施,区域内的供水、灌溉、发电等都会受到不同程度的影响。现有的降水格局指标无法反映出降水的时空分布的变化,也无法反映区域空中水汽资源量与供给情况。At present, the indicators that reflect the regional precipitation pattern include the regional average annual precipitation and the average annual precipitation days. These indicators reveal the evolution law of precipitation in a changing environment to a certain extent. The concentration of precipitation in time and space will increase the possibility of floods and droughts, threatening the safe operation and design of water conservancy projects in the basin, and the water supply, irrigation, and power generation in the region will be affected to varying degrees. The existing precipitation pattern indicators cannot reflect changes in the temporal and spatial distribution of precipitation, nor can they reflect the amount and supply of regional airborne water vapor resources.

发明内容Contents of the invention

本发明提供了一种区域大气降水格局指标的确定方法,能够解决现有的降水格局指标无法反映出降水的时空分布的变化,也无法反映区域空中水汽资源量与供给情况的问题。The invention provides a method for determining a regional atmospheric precipitation pattern index, which can solve the problem that the existing precipitation pattern index cannot reflect changes in the temporal and spatial distribution of precipitation, nor can it reflect the amount and supply of regional airborne water vapor resources.

本发明提供了一种区域大气降水格局指标的确定方法,所述方法包括:The invention provides a method for determining a regional atmospheric precipitation pattern index, the method comprising:

获取研究区域的待测时间段的降水数据,并根据所述降水数据得到区域降水指标M;Obtain the precipitation data of the time period to be measured in the research area, and obtain the regional precipitation index M according to the precipitation data;

获取所述研究区域的单位气柱整层大气的水汽总输送通量Q,并根据所述水汽总输送通量Q得到区域水汽输送指标T;Obtain the total water vapor transport flux Q of the whole layer of atmosphere per unit air column in the research area, and obtain the regional water vapor transport index T according to the total water vapor transport flux Q;

根据所述区域降水指标M与所述区域水汽输送指标T计算得到区域大气降水格局指标R。The regional atmospheric precipitation pattern index R is calculated according to the regional precipitation index M and the regional water vapor transport index T.

可选的,所述降水数据包括所述研究区域的待测时间段的日降水量;Optionally, the precipitation data includes daily precipitation in the time period to be measured in the study area;

所述根据所述降水数据得到区域降水指标M,具体包括:The regional precipitation index M obtained according to the precipitation data specifically includes:

将所述日降水量由小到大划分为多个级别,并得到每个级别的累积降雨日百分比与累积降雨量百分比;Divide the daily precipitation into multiple levels from small to large, and obtain the cumulative rainfall day percentage and cumulative rainfall percentage for each level;

根据每个级别的所述累积降雨日百分比与所述累积降雨量百分比在平面直角坐标系绘制累积降雨日与累积降雨量的关系曲线;According to the percentage of cumulative rainfall days and the percentage of cumulative rainfall of each level, the relationship curve of cumulative rainfall days and cumulative rainfall is drawn in a plane Cartesian coordinate system;

根据所述关系曲线与所述平面直角坐标系的第一象限的象限平分线计算得到区域降水集中指数CI;Calculate and obtain the regional precipitation concentration index CI according to the quadrant bisector of the first quadrant of the described relationship curve and the plane Cartesian coordinate system;

根据所述区域降水集中指数CI计算所述区域降水指标M。The regional precipitation index M is calculated according to the regional precipitation concentration index CI.

可选的,所述将所述日降水量由小到大划分为多个级别,并得到每个级别的累积降雨日百分比与累积降雨量百分比,具体包括:Optionally, the daily precipitation is divided into multiple levels from small to large, and the cumulative rainfall day percentage and cumulative rainfall percentage of each level are obtained, specifically including:

将所述日降水量由小到大划分为多个级别,得到每个级别的所述日降水量对应的降水天数,记为降雨日;The daily precipitation is divided into multiple levels from small to large, and the number of precipitation days corresponding to the daily precipitation of each level is obtained, which is recorded as a rainy day;

获取所述降雨日与对应的级别的日降水量的乘积,并将所述乘积记为每个级别的降雨量;Obtain the product of the rainfall day and the daily precipitation of the corresponding level, and record the product as the rainfall of each level;

根据每个级别的所述降雨日与所述降雨量得到每个级别的累积降雨日百分比与累积降雨量百分比。According to the rainfall days and the rainfall of each level, the cumulative rainfall day percentage and the cumulative rainfall percentage of each level are obtained.

可选的,所述区域降水集中指数CI为所述关系曲线与所述平面直角坐标系的第一象限的象限平分线围成的区域的面积。Optionally, the regional precipitation concentration index CI is the area of the area enclosed by the relationship curve and the quadrant bisector of the first quadrant of the plane Cartesian coordinate system.

可选的,所述降水数据还包括研究区域的待测时间段的总降水日数;Optionally, the precipitation data also includes the total number of precipitation days in the time period to be measured in the study area;

所述根据所述区域降水集中指数CI计算所述区域降水指标M,具体包括:The calculation of the regional precipitation index M according to the regional precipitation concentration index CI specifically includes:

根据所述日降水量与所述总降水日数得到所述研究区域的降雨强度I;Obtain the rainfall intensity I of the study area according to the daily precipitation and the total precipitation days;

计算所述降雨强度I的标准差σI和所述区域降水集中指数CI的标准差σCICalculate the standard deviation σ I of the rainfall intensity I and the standard deviation σ CI of the regional precipitation concentration index CI ;

通过第一公式计算所述区域降水指标M,所述第一公式为:The regional precipitation index M is calculated by a first formula, and the first formula is:

Figure BDA0003471568700000031
Figure BDA0003471568700000031

通过第二公式计算参数n的值,所述第二公式为:The value of parameter n is calculated by a second formula, which is:

Figure BDA0003471568700000032
Figure BDA0003471568700000032

可选的,所述获取所述研究区域的水汽总输送通量Q,具体包括:Optionally, the obtaining the total water vapor transport flux Q of the research area specifically includes:

根据第三公式计算所述水汽总输送通量Q,所述第三公式为:The total water vapor transport flux Q is calculated according to the third formula, and the third formula is:

Figure BDA0003471568700000033
Figure BDA0003471568700000033

其中,

Figure BDA0003471568700000034
Qλ=Wm×u,
Figure BDA0003471568700000035
为经向输送水汽通量,Qλ为纬向输送水汽通量,Wm为大气中单位面积空气柱内的水汽含量,v为各层大气的纬向风速,u为各层大气的径向风速;in,
Figure BDA0003471568700000034
Q λ =W m ×u,
Figure BDA0003471568700000035
is the water vapor flux transported in the meridional direction, Q λ is the water vapor transported in the latitudinal direction, W m is the water vapor content in the air column per unit area in the atmosphere, v is the latitudinal wind speed of each layer of the atmosphere, and u is the radial direction of each layer of the atmosphere wind speed;

根据第四公式计算所述大气中单位面积空气柱内的水汽含量Wm,所述第四公式为:According to the fourth formula, the water vapor content W m in the air column per unit area in the atmosphere is calculated, and the fourth formula is:

Figure BDA0003471568700000036
Figure BDA0003471568700000036

式中,q为比湿,g为重力加速度,ps为地面气压,p为大气顶处的气压。In the formula, q is the specific humidity, g is the acceleration of gravity, p s is the surface air pressure, and p is the air pressure at the top of the atmosphere.

可选的,所述根据所述水汽总输送通量Q得到区域水汽输送指标T,具体包括:Optionally, the regional water vapor transport index T is obtained according to the total water vapor transport flux Q, which specifically includes:

根据所述水汽总输送通量Q计算水汽输送通量信息熵NiCalculate the water vapor transport flux information entropy N i according to the total water vapor transport flux Q;

根据所述水汽总输送通量Q与所述水汽输送通量信息熵Ni计算所述区域水汽输送指标T。The regional water vapor transport index T is calculated according to the total water vapor transport flux Q and the water vapor transport flux information entropy N i .

可选的,所述根据所述水汽总输送通量Q计算水汽输送通量信息熵Ni,具体包括:Optionally, the calculating the water vapor transport flux information entropy N i according to the total water vapor transport flux Q specifically includes:

根据第五公式计算所述水汽输送通量信息熵Ni,所述第五公式为:Calculate the water vapor transport flux information entropy N i according to the fifth formula, the fifth formula is:

Figure BDA0003471568700000041
Figure BDA0003471568700000041

其中,s为待测时间段的时间长度,qi,j为单次降水水汽输送贡献率;Among them, s is the time length of the time period to be measured, q i, j is the contribution rate of single precipitation water vapor transport;

根据第六公式计算所述单次降水水汽输送贡献率qi,j,所述第六公式为:Calculate the single precipitation water vapor transport contribution rate q i,j according to the sixth formula, the sixth formula is:

Figure BDA0003471568700000042
Figure BDA0003471568700000042

其中,Qi,j为第i年第j月的水汽总输送通量,Qi为第i年的水汽总输送通量。Among them, Q i, j is the total water vapor transport flux in the jth month of the i-th year, and Q i is the total water vapor transport flux in the i-th year.

可选的,所述根据所述水汽总输送通量Q与所述水汽输送通量信息熵Ni计算所述区域水汽输送指标T,具体包括:Optionally, the calculation of the regional water vapor transport index T according to the total water vapor transport flux Q and the water vapor transport flux information entropy N i specifically includes:

根据第七公式计算所述区域水汽输送指标T,所述第七公式为:Calculate the regional water vapor transport index T according to the seventh formula, the seventh formula is:

Figure BDA0003471568700000043
Figure BDA0003471568700000043

通过第八公式计算参数m的值,所述第八公式为:Calculate the value of the parameter m by the eighth formula, the eighth formula is:

Figure BDA0003471568700000044
Figure BDA0003471568700000044

其中,σQ为所述水汽总输送通量Q的标准差,所述σN为所述水汽输送通量信息熵Ni的标准差。Wherein, σ Q is the standard deviation of the total water vapor transport flux Q, and the σ N is the standard deviation of the water vapor transport flux information entropy N i .

可选的,所述根据所述区域降水指标M与所述区域水汽输送指标T计算得到区域大气降水格局指标R,具体包括:Optionally, the calculation of the regional atmospheric precipitation pattern index R according to the regional precipitation index M and the regional water vapor transport index T includes:

根据第九公式计算所述区域大气降水格局指标R,所述第九公式为:Calculate the regional atmospheric precipitation pattern index R according to the ninth formula, and the ninth formula is:

Figure BDA0003471568700000045
Figure BDA0003471568700000045

通过第十公式计算参数s的值,所述第十公式为:The value of the parameter s is calculated by a tenth formula, which is:

Figure BDA0003471568700000046
Figure BDA0003471568700000046

其中,σT为所述区域水汽输送指标T的标准差,所述σM为所述区域大气降水格局指标R的标准差。。Wherein, σ T is the standard deviation of the regional water vapor transport index T, and the σ M is the standard deviation of the regional atmospheric precipitation pattern index R. .

本发明能产生的有益效果包括:The beneficial effects that the present invention can produce include:

本发明通过区域降水指标M和区域水汽输送指标T计算得到了区域大气降水格局指标R;在计算区域降水指标M时计算了降雨强度I,用于描述降雨总量变化情况的参数,还计算了区域降水集中指数CI,用于反映区域降水总量的变化以及降水集中程度的变化;在计算区域水汽输送指标T时,计算了水汽总输送通量Q与水汽输送通量信息熵Ni,因此,区域水汽输送指标T可以很好的反映区域水汽输送量情况及水汽输送的稳定度。The present invention obtains the regional atmospheric precipitation pattern index R through the calculation of the regional precipitation index M and the regional water vapor transport index T; when calculating the regional precipitation index M, the rainfall intensity I is calculated, which is used to describe the parameters of the total rainfall change situation, and also calculates The regional precipitation concentration index CI is used to reflect the change of the total amount of regional precipitation and the change of the degree of precipitation concentration; when calculating the regional water vapor transport index T, the total water vapor transport flux Q and the water vapor transport flux information entropy N i are calculated, so , the regional water vapor transport index T can well reflect the regional water vapor transport volume and the stability of water vapor transport.

本发明的区域大气降水格局指标R将现有的反映区域降水格局的指标与反映区域降水时空分布变化规律的降水集中指数、反映区域水汽输送情况的大气水汽总输送量、反映区域水汽输送的信息熵相结合,既能体现区域降水总量变化,又能体现区域降水时空分布,还能反映区域水汽输送状况。The regional atmospheric precipitation pattern index R of the present invention combines the existing index reflecting the regional precipitation pattern with the precipitation concentration index reflecting the temporal and spatial distribution of regional precipitation, the total atmospheric water vapor transportation amount reflecting the regional water vapor transportation situation, and the information reflecting the regional water vapor transportation The combination of entropy can not only reflect the change of total regional precipitation, but also reflect the spatial and temporal distribution of regional precipitation, and also reflect the regional water vapor transport status.

附图说明Description of drawings

图1为本发明实施例提供的一种区域大气降水格局指标的确定方法的方法流程图;Fig. 1 is a method flowchart of a method for determining a regional atmospheric precipitation pattern index provided by an embodiment of the present invention;

图2为绘制的累积降雨日与累积降雨量的关系曲线图。Figure 2 is a graph showing the relationship between cumulative rainfall days and cumulative rainfall.

具体实施方式Detailed ways

下面结合实施例详述本发明,但本发明并不局限于这些实施例。The present invention is described in detail below in conjunction with examples, but the present invention is not limited to these examples.

本发明实施例提供了一种区域大气降水格局指标的确定方法,如图1所示,确定方法包括:The embodiment of the present invention provides a method for determining the regional atmospheric precipitation pattern index, as shown in Figure 1, the determination method includes:

S1、获取研究区域的待测时间段的降水数据,并根据降水数据得到区域降水指标M。S1. Obtain the precipitation data of the time period to be measured in the research area, and obtain the regional precipitation index M according to the precipitation data.

S2、获取研究区域的单位气柱整层大气的水汽总输送通量Q,并根据水汽总输送通量Q得到区域水汽输送指标T。S2. Obtain the total water vapor transport flux Q of the entire atmosphere per unit air column in the study area, and obtain the regional water vapor transport index T according to the total water vapor transport flux Q.

S3、根据区域降水指标M与区域水汽输送指标T计算得到区域大气降水格局指标R。S3. Calculate the regional atmospheric precipitation pattern index R according to the regional precipitation index M and the regional water vapor transport index T.

本实施例中,研究区域为甘肃省西峰南小沟流域,待测时间段为2016年段和2017年段。降水数据包括甘肃省西峰南小沟流域2016年段和2017年段的日降水量和总降水日数。In this example, the research area is the Nanxiaogou River Basin in Xifeng, Gansu Province, and the time periods to be tested are 2016 and 2017. Precipitation data include daily precipitation and total precipitation days in 2016 and 2017 in the Nanxiaogou watershed in Xifeng, Gansu Province.

S1中根据降水数据得到区域降水指标M,具体包括:In S1, the regional precipitation index M is obtained according to the precipitation data, including:

S11、剔除日降水量中小于0.1mm的数据,将剩余日降水量由小到大划分为多个级别,并得到每个级别的日降水量对应的降水天数,记为降雨日。S11. Eliminate the data of less than 0.1mm in the daily precipitation, divide the remaining daily precipitation into multiple levels from small to large, and obtain the number of precipitation days corresponding to the daily precipitation of each level, which is recorded as the rainy day.

S12、获取降雨日与对应的级别的日降水量的乘积,并将乘积记为每个级别的降雨量。S12. Obtain the product of the rainy day and the daily precipitation of the corresponding level, and record the product as the rainfall of each level.

例如:2016年某一级别的日降水量为2mm,2016年日降水量为2mm的降水天数为6天,那么该级别的降雨量为12mm。For example: in 2016, the daily precipitation of a certain level is 2mm, and the number of precipitation days with daily precipitation of 2mm in 2016 is 6 days, then the rainfall of this level is 12mm.

S13、根据每个级别的降雨日与降雨量得到每个级别的累积降雨日百分比与累积降雨量百分比。S13. Obtain the cumulative rainfall day percentage and cumulative rainfall percentage for each level according to the rainfall days and rainfall amounts of each level.

具体的,将每个级别及该级别之前级别的降雨日累加,得到每个级别的累积降雨日;将每个级别及该级别之前级别的降雨量累加,得到累积降雨量。Specifically, the cumulative rainfall days of each level and the level before the level are accumulated to obtain the accumulated rainfall days of each level; the rainfall of each level and the level before the level is accumulated to obtain the accumulated rainfall.

用每个级别的降雨日除以待测时间段的总降雨日,得到该级别的降雨日百分比,将该级别及其之前级别的降雨日百分比累加,得到该级别的累积降雨日百分比;用每个级别的降雨量除以待测时间段的总降雨量,得到该级别的降雨量百分比,将该级别及其之前级别的降雨量百分比累加,得到该级别的累积降雨量百分比。Divide the rainy days of each level by the total rainy days in the time period to be measured to obtain the percentage of rainy days of this level, and add up the percentages of rainy days of this level and its previous level to obtain the cumulative percentage of rainy days of this level; The rainfall of a level is divided by the total rainfall of the time period to be measured to obtain the percentage of rainfall of this level, and the percentage of rainfall of this level and its previous level is accumulated to obtain the percentage of cumulative rainfall of this level.

本实施例中,划分的级别及其对应的降雨日、累积降雨日、降雨量、累积降雨量、累积降雨日百分比、累积降雨量百分比如表1所示。In this embodiment, the divided levels and their corresponding rainfall days, cumulative rainfall days, rainfall, cumulative rainfall, percentage of cumulative rainfall days, and percentage of cumulative rainfall are shown in Table 1.

表1研究区域待测时间段的累积降雨日与累积降雨量关系曲线计算表Table 1 Calculation table of the relationship curve between cumulative rainfall days and cumulative rainfall in the time period to be measured in the study area

级别level 降雨日rainy day 累积降雨日accumulated rainfall days 降雨量rainfall 累积降雨量Cumulative rainfall 累积降雨日百分比Cumulative rainfall percentage 累积降雨量百分比Cumulative Rainfall Percentage 11 1111 1111 1111 1111 11.311.3 0.20.2 22 55 1616 1010 21twenty one 16.516.5 0.30.3 33 44 2020 1212 3333 20.620.6 0.50.5 44 11 21twenty one 44 3737 21.621.6 0.50.5 55 44 2525 2020 5757 25.825.8 0.80.8 66 11 2626 66 6363 26.826.8 0.90.9 77 33 2929 21twenty one 8484 29.929.9 1.21.2 99 22 3131 1818 102102 32.032.0 1.51.5 1010 11 3232 1010 112112 33.033.0 1.71.7 1111 22 3434 22twenty two 134134 35.135.1 2.02.0 1414 33 3737 4242 176176 38.138.1 2.62.6 1515 22 3939 3030 206206 40.240.2 3.03.0 1717 11 4040 1717 223223 41.241.2 3.33.3 1818 11 4141 1818 241241 42.342.3 3.63.6 2020 22 4343 4040 281281 44.344.3 4.24.2 22twenty two 22 4545 4444 325325 46.446.4 4.84.8 2525 11 4646 2525 350350 47.447.4 5.25.2 2626 11 4747 2626 376376 48.548.5 5.65.6 2727 22 4949 5454 430430 50.550.5 6.46.4 2828 55 5454 140140 570570 55.755.7 8.48.4 3030 11 5555 3030 600600 56.756.7 8.98.9

S14、根据每个级别的累积降雨日百分比与累积降雨量百分比在平面直角坐标系绘制累积降雨日与累积降雨量的关系曲线。S14. Draw a relationship curve between cumulative rainfall days and cumulative rainfall in a plane Cartesian coordinate system according to the cumulative rainfall day percentage and cumulative rainfall percentage for each level.

具体的,以累积降雨日百分比数值为X坐标,以累积降雨量百分比数值为Y坐标,在平面直角坐标系绘制每个级别对应的点,使用平滑的曲线依次将每个级别对应的点连接,得到累积降雨日与累积降雨量的关系曲线。关系曲线如图2所示,图2中曲线为累积降雨日与累积降雨量的关系曲线,直线为平面直角坐标系的第一象限的象限平分线。Specifically, take the cumulative rainfall percentage value as the X coordinate, and the cumulative rainfall percentage value as the Y coordinate, draw the points corresponding to each level in the plane Cartesian coordinate system, and use a smooth curve to connect the points corresponding to each level in turn, The relationship curve between cumulative rainfall days and cumulative rainfall is obtained. The relationship curve is shown in Figure 2. The curve in Figure 2 is the relationship curve between cumulative rainfall days and cumulative rainfall, and the straight line is the quadrant bisector of the first quadrant of the plane Cartesian coordinate system.

S15、根据关系曲线与平面直角坐标系的第一象限的象限平分线计算得到区域降水集中指数CI。S15. Calculate the regional precipitation concentration index CI according to the relationship curve and the quadrant bisector of the first quadrant of the plane Cartesian coordinate system.

如图2所示,区域降水集中指数CI为关系曲线与平面直角坐标系的第一象限的象限平分线围成的区域的面积。这个面积越大说明该研究区域的降水越分散,越容易发生极端降水或极端干旱事件。As shown in Figure 2, the regional precipitation concentration index CI is the area enclosed by the relationship curve and the quadrant bisector of the first quadrant of the plane Cartesian coordinate system. The larger the area, the more dispersed the precipitation in the study area, and the more prone to extreme precipitation or extreme drought events.

具体的,将累积降雨日百分比记为Y,累积降雨量百分比记为X,由表1和图2可知,X和Y之间满足指数分布曲线的关系,可将关系曲线表示为:Y=aXexp(bX)dX。Specifically, the cumulative rainfall percentage is recorded as Y, and the cumulative rainfall percentage is recorded as X. From Table 1 and Figure 2, it can be seen that the relationship between X and Y satisfies the exponential distribution curve, and the relationship curve can be expressed as: Y=aXexp (bX)dX.

其中,a与b为由最小二乘法求出的常数。Among them, a and b are constants obtained by the least square method.

根据

Figure BDA0003471568700000071
求出CI的值。according to
Figure BDA0003471568700000071
Find the value of CI.

S16、根据区域降水集中指数CI计算区域降水指标M。S16. Calculate the regional precipitation index M according to the regional precipitation concentration index CI.

根据区域降水集中指数CI计算区域降水指标M,具体包括:Calculate the regional precipitation index M according to the regional precipitation concentration index CI, including:

S161、根据日降水量与总降水日数得到研究区域的降雨强度I。S161. Obtain the rainfall intensity I of the study area according to the daily precipitation and the total precipitation days.

具体的,获取研究区域目标时间段的日降水量的总和,记为总降水量,降雨强度I为总降水量除以总降水日数。Specifically, the sum of the daily precipitation in the target time period of the study area is obtained, which is recorded as the total precipitation, and the rainfall intensity I is the total precipitation divided by the total number of precipitation days.

S162、计算降雨强度I的标准差σI和区域降水集中指数CI的标准差σCIS162, calculate the standard deviation σ I of the rainfall intensity I and the standard deviation σ CI of the regional precipitation concentration index CI ;

通过第一公式计算区域降水指标M,第一公式为:The regional precipitation index M is calculated by the first formula, which is:

Figure BDA0003471568700000081
Figure BDA0003471568700000081

通过第二公式计算参数n的值,即令降雨强度I与降水集中指数CI对区域降水指标M的影响均等,计算参数n的值,第二公式为:The value of the parameter n is calculated by the second formula, that is, the influence of the rainfall intensity I and the precipitation concentration index CI on the regional precipitation index M is equal, and the value of the parameter n is calculated. The second formula is:

Figure BDA0003471568700000082
Figure BDA0003471568700000082

区域降水指标M的计算包含了降雨强度I与降水集中指数CI的计算,降雨强度I用于描述降雨总量的变化情况,降水集中指数CI用于描述降雨集中程度,因此,区域降水指标M可以很好的反应区域降水总量的变化以及降水集中程度的变化。The calculation of the regional precipitation index M includes the calculation of the rainfall intensity I and the precipitation concentration index CI. The rainfall intensity I is used to describe the change of the total rainfall, and the precipitation concentration index CI is used to describe the degree of rainfall concentration. Therefore, the regional precipitation index M can be It is a good response to changes in the total amount of precipitation in the region and changes in the concentration of precipitation.

S2中获取研究区域的水汽总输送通量Q,具体包括:In S2, the total water vapor transport flux Q in the study area is obtained, including:

S21、根据第三公式计算水汽总输送通量Q,第三公式为:S21. Calculate the total water vapor transport flux Q according to the third formula, the third formula is:

Figure BDA0003471568700000083
Figure BDA0003471568700000083

其中,

Figure BDA0003471568700000084
Qλ=Wm×u,
Figure BDA0003471568700000085
为经向输送水汽通量,Qλ为纬向输送水汽通量,Wm为大气中单位面积空气柱内的水汽含量,v为各层大气的纬向风速,u为各层大气的径向风速。in,
Figure BDA0003471568700000084
Q λ =W m ×u,
Figure BDA0003471568700000085
is the water vapor flux transported in the meridional direction, Q λ is the water vapor transported in the latitudinal direction, W m is the water vapor content in the air column per unit area in the atmosphere, v is the latitudinal wind speed of each layer of the atmosphere, and u is the radial direction of each layer of the atmosphere wind speed.

根据第四公式计算大气中单位面积空气柱内的水汽含量Wm,第四公式为:Calculate the water vapor content W m in the air column per unit area in the atmosphere according to the fourth formula, the fourth formula is:

Figure BDA0003471568700000086
Figure BDA0003471568700000086

式中,q为比湿,g为重力加速度,ps为地面气压,p为大气顶处的气压。In the formula, q is the specific humidity, g is the acceleration of gravity, p s is the surface air pressure, and p is the air pressure at the top of the atmosphere.

本实施例中,ps取1000hPa,p取300hPa。In this embodiment, p s is taken as 1000hPa, and p is taken as 300hPa.

本实施例中2016年和2017年的比湿数据如表2所示:The specific humidity data in 2016 and 2017 in this embodiment are as shown in Table 2:

表2比湿数据表Table 2 Specific humidity data table

Figure BDA0003471568700000091
Figure BDA0003471568700000091

本实施例中2016年和2017年的径向风速数据如表3所示:The radial wind speed data in 2016 and 2017 in this embodiment are as shown in table 3:

表3径向风速数据表Table 3 Radial wind speed data table

Figure BDA0003471568700000101
Figure BDA0003471568700000101

本实施例中2016年和2017年的纬向风速数据如表4所示:The zonal wind speed data in 2016 and 2017 in this embodiment are shown in Table 4:

表4纬向风速数据表Table 4 Zonal wind speed data table

Figure BDA0003471568700000102
Figure BDA0003471568700000102

S2中根据水汽总输送通量Q得到区域水汽输送指标T,具体包括:In S2, the regional water vapor transport index T is obtained according to the total water vapor transport flux Q, including:

S22、根据水汽总输送通量Q计算水汽输送通量信息熵NiS22. Calculate the water vapor transport flux information entropy N i according to the total water vapor transport flux Q.

S23、根据水汽总输送通量Q与水汽输送通量信息熵Ni计算区域水汽输送指标T。S23. Calculate the regional water vapor transport index T according to the total water vapor transport flux Q and the water vapor transport flux information entropy N i .

其中,S22、根据水汽总输送通量Q计算水汽输送通量信息熵Ni,具体包括:Among them, S22. Calculate the water vapor transport flux information entropy N i according to the total water vapor transport flux Q, specifically including:

根据第五公式计算水汽输送通量信息熵Ni,第五公式为:Calculate the water vapor transport flux information entropy N i according to the fifth formula, the fifth formula is:

Figure BDA0003471568700000111
Figure BDA0003471568700000111

其中,s为待测时间段的时间长度,即待测时间段的月份个数,qi,j为单次降水水汽输送贡献率;Among them, s is the time length of the time period to be measured, that is, the number of months in the time period to be measured, q i, j is the contribution rate of single precipitation water vapor transport;

根据第六公式计算单次降水水汽输送贡献率qi,j,第六公式为:Calculate the contribution rate q i, j of single precipitation water vapor transport according to the sixth formula, the sixth formula is:

Figure BDA0003471568700000112
Figure BDA0003471568700000112

其中,Qi,j为第i年第j月的水汽总输送通量,Qi为第i年的水汽总输送通量。Among them, Q i, j is the total water vapor transport flux in the jth month of the i-th year, and Q i is the total water vapor transport flux in the i-th year.

其中,水汽输送通量信息熵Ni的取值为:0≤Ni≤1。Wherein, the value of the water vapor transport flux information entropy N i is: 0≤N i ≤1.

其中,S23、根据水汽总输送通量Q与水汽输送通量信息熵Ni计算区域水汽输送指标T,具体包括:Among them, S23. Calculate the regional water vapor transport index T according to the total water vapor transport flux Q and the water vapor transport flux information entropy N i , specifically including:

根据第七公式计算区域水汽输送指标T,第七公式为:Calculate the regional water vapor transport index T according to the seventh formula, which is:

Figure BDA0003471568700000113
Figure BDA0003471568700000113

通过第八公式计算参数m的值,即令单位气柱整层大气水汽总输送通量Q与水汽输送通量信息熵Ni对区域水汽输送指标T的影响均等,计算参数m的值,第八公式为:The value of the parameter m is calculated by the eighth formula, that is, the total atmospheric water vapor transport flux Q and the water vapor transport flux information entropy N i of the unit air column have an equal influence on the regional water vapor transport index T, and the value of the parameter m is calculated, the eighth The formula is:

Figure BDA0003471568700000114
Figure BDA0003471568700000114

其中,σQ为水汽总输送通量Q的标准差,σN为水汽输送通量信息熵Ni的标准差。Among them, σ Q is the standard deviation of the total water vapor transport flux Q, and σ N is the standard deviation of the water vapor transport flux information entropy N i .

S3、根据区域降水指标M与区域水汽输送指标T计算得到区域大气降水格局指标R,具体包括:S3. Calculate the regional atmospheric precipitation pattern index R according to the regional precipitation index M and the regional water vapor transport index T, specifically including:

根据第九公式计算区域大气降水格局指标R,第九公式为:Calculate the regional atmospheric precipitation pattern index R according to the ninth formula, the ninth formula is:

Figure BDA0003471568700000115
Figure BDA0003471568700000115

通过第十公式计算参数s的值,即令区域降水指标M与区域水汽输送指标T对区域大气降水格局指标R的影响均等,计算参数s的值,第十公式为:The value of the parameter s is calculated by the tenth formula, that is, the influence of the regional precipitation index M and the regional water vapor transport index T on the regional atmospheric precipitation pattern index R is equal, and the value of the parameter s is calculated. The tenth formula is:

Figure BDA0003471568700000121
Figure BDA0003471568700000121

其中,σT为区域水汽输送指标T的标准差,σM为区域大气降水格局指标R的标准差。Among them, σ T is the standard deviation of the regional water vapor transport index T, and σ M is the standard deviation of the regional atmospheric precipitation pattern index R.

本实施例中2016年和2017年的区域降水指标M、区域水汽输送指标T和区域大气降水格局指标R的计算结果如表5所示:The calculation results of regional precipitation index M, regional water vapor transport index T and regional atmospheric precipitation pattern index R in 2016 and 2017 in this example are shown in Table 5:

表5计算结果Table 5 calculation results

年份years 区域降水指标Regional Precipitation Index 区域水汽输送指标Regional Water Vapor Transport Index 区域降水气候格局指标Regional Precipitation Climatic Pattern Indicators 20172017 2843.442843.44 52.2552.25 559.0073138559.0073138 20162016 1900.791900.79 89.2689.26 665.3755716665.3755716 标准差standard deviation 14.2350545114.23505451 10.816380710.8163807 0.8969308510.896930851

本发明通过区域降水指标M和区域水汽输送指标T计算得到了区域大气降水格局指标R;在计算区域降水指标M时计算了降雨强度I,用于描述降雨总量变化情况的参数,还计算了区域降水集中指数CI,用于反映区域降水总量的变化以及降水集中程度的变化;在计算区域水汽输送指标T时,计算了水汽总输送通量Q与水汽输送通量信息熵Ni,因此,区域水汽输送指标T可以很好的反映区域水汽输送量情况及水汽输送的稳定度。The present invention obtains the regional atmospheric precipitation pattern index R through the calculation of the regional precipitation index M and the regional water vapor transport index T; when calculating the regional precipitation index M, the rainfall intensity I is calculated, which is used to describe the parameters of the total rainfall change situation, and also calculates The regional precipitation concentration index CI is used to reflect the change of the total amount of regional precipitation and the change of the degree of precipitation concentration; when calculating the regional water vapor transport index T, the total water vapor transport flux Q and the water vapor transport flux information entropy N i are calculated, so , the regional water vapor transport index T can well reflect the regional water vapor transport volume and the stability of water vapor transport.

本发明的区域大气降水格局指标R将现有的反映区域降水格局的指标与反映区域降水时空分布变化规律的降水集中指数、反映区域水汽输送情况的大气水汽总输送量、反映区域水汽输送的信息熵相结合,既能体现区域降水总量变化,又能体现区域降水时空分布,还能反映区域水汽输送状况。The regional atmospheric precipitation pattern index R of the present invention combines the existing index reflecting the regional precipitation pattern with the precipitation concentration index reflecting the temporal and spatial distribution of regional precipitation, the total atmospheric water vapor transportation amount reflecting the regional water vapor transportation situation, and the information reflecting the regional water vapor transportation The combination of entropy can not only reflect the change of total regional precipitation, but also reflect the spatial and temporal distribution of regional precipitation, and also reflect the regional water vapor transport status.

以上,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the application, and do not limit the application in any form. Although the application is disclosed as above with preferred embodiments, it is not intended to limit the application. Within the scope of the technical solution of the present application, slight changes or modifications made using the technical content disclosed above are equivalent to equivalent implementation cases, and all belong to the scope of the technical solution.

Claims (8)

1.一种区域大气降水格局指标的确定方法,其特征在于,所述方法包括:1. a method for determining regional atmospheric precipitation pattern index, is characterized in that, described method comprises: 获取研究区域的待测时间段的降水数据,所述降水数据包括所述研究区域的待测时间段的日降水量;Acquiring the precipitation data of the time period to be measured in the research area, the precipitation data including the daily precipitation of the time period to be measured in the research area; 将所述日降水量由小到大划分为多个级别,并得到每个级别的累积降雨日百分比与累积降雨量百分比;Divide the daily precipitation into multiple levels from small to large, and obtain the cumulative rainfall day percentage and cumulative rainfall percentage for each level; 根据每个级别的所述累积降雨日百分比与所述累积降雨量百分比在平面直角坐标系绘制累积降雨日与累积降雨量的关系曲线;According to the percentage of cumulative rainfall days and the percentage of cumulative rainfall of each level, the relationship curve of cumulative rainfall days and cumulative rainfall is drawn in a plane Cartesian coordinate system; 根据所述关系曲线与所述平面直角坐标系的第一象限的象限平分线计算得到区域降水集中指数CI;Calculate and obtain the regional precipitation concentration index CI according to the quadrant bisector of the first quadrant of the described relationship curve and the plane Cartesian coordinate system; 根据所述区域降水集中指数CI计算区域降水指标M;Calculate the regional precipitation index M according to the regional precipitation concentration index CI; 获取所述研究区域的单位气柱整层大气的水汽总输送通量Q,并根据所述水汽总输送通量Q计算水汽输送通量信息熵NiObtain the total water vapor transport flux Q of the entire atmosphere per unit column of the study area, and calculate the water vapor transport flux information entropy N i according to the total water vapor transport flux Q; 根据所述水汽总输送通量Q与所述水汽输送通量信息熵Ni计算区域水汽输送指标T;Calculate the regional water vapor transport index T according to the total water vapor transport flux Q and the water vapor transport flux information entropy N i ; 根据所述区域降水指标M及其标准差、以及所述区域水汽输送指标T及其标准差计算得到区域大气降水格局指标R。The regional atmospheric precipitation pattern index R is calculated according to the regional precipitation index M and its standard deviation, and the regional water vapor transport index T and its standard deviation. 2.根据权利要求1所述的确定方法,其特征在于,所述将所述日降水量由小到大划分为多个级别,并得到每个级别的累积降雨日百分比与累积降雨量百分比,具体包括:2. The determination method according to claim 1, wherein the daily precipitation is divided into multiple levels from small to large, and the cumulative rainfall day percentage and cumulative rainfall percentage of each level are obtained, Specifically include: 将所述日降水量由小到大划分为多个级别,得到每个级别的所述日降水量对应的降水天数,记为降雨日;The daily precipitation is divided into multiple levels from small to large, and the number of precipitation days corresponding to the daily precipitation of each level is obtained, which is recorded as a rainy day; 获取所述降雨日与对应的级别的日降水量的乘积,并将所述乘积记为每个级别的降雨量;Obtain the product of the rainfall day and the daily precipitation of the corresponding level, and record the product as the rainfall of each level; 根据每个级别的所述降雨日与所述降雨量得到每个级别的累积降雨日百分比与累积降雨量百分比。According to the rainfall days and the rainfall of each level, the cumulative rainfall day percentage and the cumulative rainfall percentage of each level are obtained. 3.根据权利要求2所述的确定方法,其特征在于,所述区域降水集中指数CI为所述关系曲线与所述平面直角坐标系的第一象限的象限平分线围成的区域的面积。3. The determination method according to claim 2, wherein the regional precipitation concentration index CI is the area of the area enclosed by the relationship curve and the quadrant bisector of the first quadrant of the plane Cartesian coordinate system. 4.根据权利要求1-3任一项所述的确定方法,其特征在于,所述降水数据还包括研究区域的待测时间段的总降水日数;4. according to the described determination method of any one of claim 1-3, it is characterized in that, described precipitation data also comprises the total precipitation days of the period to be measured in the study area; 所述根据所述区域降水集中指数CI计算所述区域降水指标M,具体包括:The calculation of the regional precipitation index M according to the regional precipitation concentration index CI specifically includes: 根据所述日降水量与所述总降水日数得到所述研究区域的降雨强度I;Obtain the rainfall intensity I of the study area according to the daily precipitation and the total precipitation days; 计算所述降雨强度I的标准差σI和所述区域降水集中指数CI的标准差σCICalculate the standard deviation σ I of the rainfall intensity I and the standard deviation σ CI of the regional precipitation concentration index CI ; 通过第一公式计算所述区域降水指标M,所述第一公式为:The regional precipitation index M is calculated by a first formula, and the first formula is:
Figure FDA0003891236210000021
Figure FDA0003891236210000021
通过第二公式计算参数n的值,所述第二公式为:The value of parameter n is calculated by a second formula, which is:
Figure FDA0003891236210000022
Figure FDA0003891236210000022
5.根据权利要求1所述的确定方法,其特征在于,所述获取所述研究区域的水汽总输送通量Q,具体包括:5. The determination method according to claim 1, wherein said obtaining the total water vapor transport flux Q of said research area specifically comprises: 根据第三公式计算所述水汽总输送通量Q,所述第三公式为:The total water vapor transport flux Q is calculated according to the third formula, and the third formula is:
Figure FDA0003891236210000023
Figure FDA0003891236210000023
其中,
Figure FDA0003891236210000024
Qλ=Wm×u,
Figure FDA0003891236210000025
为经向输送水汽通量,Qλ为纬向输送水汽通量,Wm为大气中单位面积空气柱内的水汽含量,v为各层大气的纬向风速,u为各层大气的径向风速;
in,
Figure FDA0003891236210000024
Q λ =W m ×u,
Figure FDA0003891236210000025
is the water vapor flux transported in the meridional direction, Q λ is the water vapor transported in the latitudinal direction, W m is the water vapor content in the air column per unit area in the atmosphere, v is the latitudinal wind speed of each layer of the atmosphere, and u is the radial direction of each layer of the atmosphere wind speed;
根据第四公式计算所述大气中单位面积空气柱内的水汽含量Wm,所述第四公式为:According to the fourth formula, the water vapor content W m in the air column per unit area in the atmosphere is calculated, and the fourth formula is:
Figure FDA0003891236210000031
Figure FDA0003891236210000031
式中,q为比湿,g为重力加速度,ps为地面气压,p为大气顶处的气压。In the formula, q is the specific humidity, g is the acceleration of gravity, p s is the surface air pressure, and p is the air pressure at the top of the atmosphere.
6.根据权利要求5所述的确定方法,其特征在于,所述根据所述水汽总输送通量Q计算水汽输送通量信息熵Ni,具体包括:6. The determination method according to claim 5, wherein the calculation of the water vapor transport flux information entropy N i according to the total water vapor transport flux Q includes: 根据第五公式计算所述水汽输送通量信息熵Ni,所述第五公式为:Calculate the water vapor transport flux information entropy N i according to the fifth formula, the fifth formula is:
Figure FDA0003891236210000032
Figure FDA0003891236210000032
其中,Ni为第i年的水汽输送通量信息熵,s为待测时间段的时间长度,qi,j为单次降水水汽输送贡献率;Among them, N i is the water vapor transport flux information entropy of the i-th year, s is the time length of the time period to be measured, q i, j is the contribution rate of single precipitation water vapor transport; 根据第六公式计算所述单次降水水汽输送贡献率qi,j,所述第六公式为:Calculate the single precipitation water vapor transport contribution rate q i,j according to the sixth formula, the sixth formula is:
Figure FDA0003891236210000033
Figure FDA0003891236210000033
其中,Qi,j为第i年第j月的水汽总输送通量,Qi为第i年的水汽总输送通量。Among them, Q i, j is the total water vapor transport flux in the jth month of the i-th year, and Q i is the total water vapor transport flux in the i-th year.
7.根据权利要求5所述的确定方法,其特征在于,所述根据所述水汽总输送通量Q与所述水汽输送通量信息熵Ni计算所述区域水汽输送指标T,具体包括:7. The determination method according to claim 5, wherein the calculation of the regional water vapor transport index T according to the total water vapor transport flux Q and the water vapor transport flux information entropy Ni includes: 根据第七公式计算所述区域水汽输送指标T,所述第七公式为:Calculate the regional water vapor transport index T according to the seventh formula, the seventh formula is:
Figure FDA0003891236210000034
Figure FDA0003891236210000034
通过第八公式计算参数m的值,所述第八公式为:Calculate the value of the parameter m by the eighth formula, the eighth formula is:
Figure FDA0003891236210000035
Figure FDA0003891236210000035
其中,σQ为所述水汽总输送通量Q的标准差,所述σN为所述水汽输送通量信息熵Ni的标准差。Wherein, σ Q is the standard deviation of the total water vapor transport flux Q, and the σ N is the standard deviation of the water vapor transport flux information entropy N i .
8.根据权利要求1所述的确定方法,其特征在于,所述根据所述区域降水指标M及其标准差、以及所述区域水汽输送指标T及其标准差计算得到区域大气降水格局指标R,具体包括:8. The determination method according to claim 1, characterized in that, the regional atmospheric precipitation pattern index R is calculated according to the regional precipitation index M and its standard deviation, and the regional water vapor transport index T and its standard deviation , including: 根据第九公式计算所述区域大气降水格局指标R,所述第九公式为:Calculate the regional atmospheric precipitation pattern index R according to the ninth formula, and the ninth formula is:
Figure FDA0003891236210000041
Figure FDA0003891236210000041
通过第十公式计算参数s的值,所述第十公式为:The value of the parameter s is calculated by a tenth formula, which is:
Figure FDA0003891236210000042
Figure FDA0003891236210000042
其中,σT为所述区域水汽输送指标T的标准差,所述σM为所述区域降水指标M的标准差。Wherein, σ T is the standard deviation of the regional water vapor transport index T, and the σ M is the standard deviation of the regional precipitation index M.
CN202210044462.8A 2022-01-14 2022-01-14 Method for determining regional atmospheric precipitation pattern index Active CN114386860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210044462.8A CN114386860B (en) 2022-01-14 2022-01-14 Method for determining regional atmospheric precipitation pattern index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210044462.8A CN114386860B (en) 2022-01-14 2022-01-14 Method for determining regional atmospheric precipitation pattern index

Publications (2)

Publication Number Publication Date
CN114386860A CN114386860A (en) 2022-04-22
CN114386860B true CN114386860B (en) 2022-11-29

Family

ID=81202777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210044462.8A Active CN114386860B (en) 2022-01-14 2022-01-14 Method for determining regional atmospheric precipitation pattern index

Country Status (1)

Country Link
CN (1) CN114386860B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113627690A (en) * 2021-09-03 2021-11-09 中国人民解放军国防科技大学 Method for predicting seasonal precipitation in southern China

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375038B2 (en) * 1997-04-16 2003-02-10 日本電信電話株式会社 Precipitation pattern change prediction method and apparatus
US7698927B2 (en) * 2007-01-30 2010-04-20 The Boeing Company Methods and systems for measuring atmospheric water content
US7630835B2 (en) * 2007-10-31 2009-12-08 Honeywell International Inc. Terahertz sensor to measure humidity and water vapor
JP6099318B2 (en) * 2012-04-23 2017-03-22 日本無線株式会社 Water vapor observation device and weather radar
US10633835B1 (en) * 2018-10-09 2020-04-28 Joseph Aoun Methods, systems to facilitate atmospheric water generation, and regulation of an environment of atmospheric water generation
CN109992746A (en) * 2019-03-11 2019-07-09 中国气象科学研究院 Calculation methods of total atmospheric water mass, total water vapor and their corresponding precipitation efficiency
CN112508352A (en) * 2020-11-18 2021-03-16 河北工程大学 Method for quantitatively distinguishing contributions of different factors in water circulation evolution process
CN112418684B (en) * 2020-11-26 2024-11-05 青海海清新能源科技有限公司 Evaluation methods, devices, equipment and media for the temporal and spatial distribution of aerial water resources
CN113806948A (en) * 2021-09-23 2021-12-17 西安理工大学 Method and system for determining air water circulation influence factors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113627690A (en) * 2021-09-03 2021-11-09 中国人民解放军国防科技大学 Method for predicting seasonal precipitation in southern China

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
近50年江苏省月降水分配格局的时空变化特征;王莹等;《人民长江》;20180628;第69-73页 *

Also Published As

Publication number Publication date
CN114386860A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
Skamarock et al. The impact of positive-definite moisture transport on NWP precipitation forecasts
Wu et al. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China
Jilo et al. Evaluation of the impacts of climate change on sediment yield from the Logiya Watershed, Lower Awash Basin, Ethiopia
Du et al. Potential wind erosion rate response to climate and land‐use changes in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China, 1986–2013
Saddique et al. Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, Northern Pakistan
Yuan et al. Using SWAT to evaluate streamflow and lake sediment loading in the Xinjiang River Basin with limited data
Touseef et al. Assessment of surface water availability under climate change using coupled SWAT-WEAP in Hongshui River Basin, China
Remilekun et al. Integrated assessment of the influence of climate change on current and future intra-annual water availability in the Vaal River catchment
Onyutha et al. How well do climate models reproduce variability in observed rainfall? A case study of the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations
Zhang et al. Hydrological components variability under the impact of climate change in a semi-arid river basin
Wei et al. Recent trends of extreme precipitation and their teleconnection with atmospheric circulation in the Beijing-Tianjin sand source region, China, 1960–2014
CN113592186B (en) Hydrological prediction state variable real-time correction method based on real-time measured diameter flow data
Shetty et al. Comparing the hydrological performance of an irrigated native vegetation green roof with a conventional Sedum spp. green roof in New York City
Makra et al. Assessment of the daily ragweed pollen concentration with previous-day meteorological variables using regression and quantile regression analysis for Szeged, Hungary
Seong et al. Hydroclimatic variability and change in the Chesapeake Bay watershed
Mamat et al. Ecological effect of the riparian ecosystem in the lower reaches of the Tarim River in northwest China
Lee et al. Added value of dynamical downscaling for hydrological projections in the Chungju Basin, Korea
Kim et al. The parametric hurricane rainfall model with moisture and its application to climate change projections
Hasanzadeh Saray et al. Regionalization of potential evapotranspiration using a modified region of influence
Somos-Valenzuela et al. Use of WRF-hydro over the Northeast of the US to estimate water budget tendencies in small watersheds
Safari et al. Trends and variability in temperature and related extreme indices in Rwanda during the past four decades
Kumar et al. Impact of environmental variables on the North Indian Ocean tropical cyclones radial parameters
Guo et al. Identification of critical source areas of nitrogen load in the miyun reservoir watershed under different hydrological conditions
Kalugin Process-based modeling of the high flow of a semi-mountain river under current and future climatic conditions: A case study of the Iya River (Eastern Siberia)
Bossa et al. Managing new risks of and opportunities for the agricultural development of West-African floodplains: Hydroclimatic conditions and implications for rice production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant