[go: up one dir, main page]

CN114414882A - Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module - Google Patents

Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module Download PDF

Info

Publication number
CN114414882A
CN114414882A CN202210081622.6A CN202210081622A CN114414882A CN 114414882 A CN114414882 A CN 114414882A CN 202210081622 A CN202210081622 A CN 202210081622A CN 114414882 A CN114414882 A CN 114414882A
Authority
CN
China
Prior art keywords
voltage
power
calibration
detection module
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210081622.6A
Other languages
Chinese (zh)
Inventor
杜鹏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai TransCom Instruments Co Ltd
Original Assignee
Shanghai TransCom Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai TransCom Instruments Co Ltd filed Critical Shanghai TransCom Instruments Co Ltd
Priority to CN202210081622.6A priority Critical patent/CN114414882A/en
Publication of CN114414882A publication Critical patent/CN114414882A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种针对RF检波模块实现减小检测功率误差的二次拟合处理方法,包括以下步骤:对校准电压点的功率数据进行线性拟合,消除同一校准频点相邻电压点的功率误差;对非校准频点的相邻两个校准点取值进行拟合计算,得到功率数据。采用了本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质,在不同频率点功率检测时,消除校准时产生以及非校准频率点导致的误差,通过二次拟合算法,提高RF检波输入检测时拟合后功率的准确度。

Figure 202210081622

The invention relates to a quadratic fitting processing method for reducing detection power error for an RF detection module, comprising the following steps: performing linear fitting on power data of a calibration voltage point, and eliminating the power of adjacent voltage points at the same calibration frequency point Error: Fit and calculate the values of two adjacent calibration points of non-calibration frequency points to obtain power data. By adopting the quadratic fitting processing method, system, device, processor and computer-readable storage medium for reducing the detection power error for the RF detection module of the present invention, when the power is detected at different frequency points, the error caused during calibration is eliminated. The error caused by the calibration frequency point is improved by the quadratic fitting algorithm to improve the accuracy of the fitted power during RF detection input detection.

Figure 202210081622

Description

针对RF检波模块减小检测功率误差的二次拟合处理方法、系 统、装置、处理器及存储介质Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module

技术领域technical field

本发明涉及射频仪表领域,尤其涉及信号源功率校准领域,具体是指一种针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质。The invention relates to the field of radio frequency instruments, in particular to the field of signal source power calibration, and in particular to a quadratic fitting processing method, system, device, processor and computer-readable storage medium for reducing detection power error for an RF detection module .

背景技术Background technique

将受测的RF信号施加于检波器。在测量模式下,输出电压与输入信号电平呈线性dB关系(标称值应基于选用对数检波器手册),典型输出电压范围为a V至f V(a和f值应基于选用对数检波器手册)。测量结果作为数字码在一个12位ADC的输出端提供,RF检波器的输出端可与ADC实现无缝接口。The RF signal under test is applied to the detector. In measurement mode, the output voltage has a linear dB relationship with the input signal level (nominal values should be based on the manual of the selected log detector), and the typical output voltage range is a V to f V (values of a and f should be based on the selected log detector manual). The measurement results are provided as digital codes at the output of a 12-bit ADC, and the output of the RF detector can be seamlessly interfaced with the ADC.

发明内容SUMMARY OF THE INVENTION

本发明的目的是克服了上述现有技术的缺点,提供了一种满足准确度高、误差小、适用范围较为广泛的针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and to provide a quadratic fitting processing method and system for reducing the detection power error for an RF detection module that satisfies the requirements of high accuracy, small error and wide application range. , an apparatus, a processor, and a computer-readable storage medium.

为了实现上述目的,本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质如下:In order to achieve the above object, the quadratic fitting processing method, system, device, processor and computer-readable storage medium for reducing the detection power error for the RF detection module of the present invention are as follows:

该针对RF检波模块实现减小检测功率误差的二次拟合处理方法,其主要特点是,所述的方法包括以下步骤:The main feature of the quadratic fitting processing method for reducing the detection power error for the RF detection module is that the method includes the following steps:

(1)对校准电压点的功率数据进行线性拟合,消除同一校准频点相邻电压点的功率误差;(1) Perform linear fitting on the power data of the calibration voltage point to eliminate the power error of adjacent voltage points at the same calibration frequency point;

(2)对非校准频点的相邻两个校准点取值进行拟合计算,得到功率数据。(2) Fitting and calculating the values of two adjacent calibration points of non-calibration frequency points to obtain power data.

较佳地,所述的步骤(1)具体包括以下步骤:Preferably, the step (1) specifically includes the following steps:

(1.1)判断当前电压PowInV是否处于检波器的电压范围内,即判断是否满足a<当前电压PowInV<f,其中检波器的电压范围为[a,f],如果是,则继续步骤(1.2);否则,计算当前电压PowInV<a以及当前电压PowInV>f的情况下对应的功率值;(1.1) Judging whether the current voltage PowInV is within the voltage range of the detector, that is, judging whether a<current voltage PowInV<f, where the voltage range of the detector is [a, f], if so, continue to step (1.2) ; otherwise, calculate the corresponding power value when the current voltage PowInV<a and the current voltage PowInV>f;

(1.2)计算校准表位置interval和超出校准电压点电压量RemainderInV;(1.2) Calculate the position interval of the calibration table and the voltage RemainderInV beyond the calibration voltage point;

(1.3)计算获取当前电压拟合的功率值PowIndBmSim。(1.3) Calculate and obtain the power value PowIndBmSim of the current voltage fitting.

较佳地,所述的步骤(1.2)中计算校准表位置interval,具体为:Preferably, the calibration table position interval is calculated in the step (1.2), specifically:

根据以下公式计算校准表位置interval:Calculate the calibration table position interval according to the following formula:

Figure BDA0003486132800000021
Figure BDA0003486132800000021

其中,PowInV为当前电压,StartPowInV为落入范围的起始电压,Step为电压范围的间隔,add为累加数。Among them, PowInV is the current voltage, StartPowInV is the starting voltage falling into the range, Step is the interval of the voltage range, and add is the accumulated number.

较佳地,所述的步骤(1.2)中计算超出校准电压点电压量RemainderInV,具体为:Preferably, in the step (1.2), calculate the voltage amount RemainderInV beyond the calibration voltage point, specifically:

根据以下公式计算超出校准电压点电压量RemainderInV:Calculate the voltage beyond the calibration voltage point, RemainderInV, according to the following formula:

RemainderInV=PowInV-StartPowInV-(interval-add)×Step;RemainderInV=PowInV-StartPowInV-(interval-add)×Step;

其中,PowInV为当前电压,StartPowInV为落入范围的起始电压,Step为电压范围的间隔,add为累加数,interval为校准表位置。Among them, PowInV is the current voltage, StartPowInV is the starting voltage falling into the range, Step is the interval of the voltage range, add is the accumulated number, and interval is the calibration table position.

较佳地,所述的步骤(1.3)中计算获取当前电压拟合的功率值PowIndBmSim,具体为:Preferably, in the step (1.3), the power value PowIndBmSim fitted by the current voltage is calculated and obtained, specifically:

根据以下公式计算获取当前电压拟合的功率值PowIndBmSim:Calculate the power value PowIndBmSim for the current voltage fit according to the following formula:

PowIndBm1=CaliForm[freqLocation][interval-1];PowIndBm1=CaliForm[freqLocation][interval-1];

PowIndBm2=CaliForm[freqLocation][interval];PowIndBm2=CaliForm[freqLocation][interval];

Figure BDA0003486132800000022
Figure BDA0003486132800000022

其中,FreqLocation为校准频点,interval为电压间隔,RemainderInV为超出校准电压点电压量,Step为电压范围的间隔,PowIndBm1和PowIndBm2分别为根据二维数组得到的功率值。Among them, FreqLocation is the calibration frequency point, interval is the voltage interval, RemainderInV is the voltage beyond the calibration voltage point, Step is the interval of the voltage range, and PowIndBm1 and PowIndBm2 are the power values obtained from the two-dimensional array, respectively.

较佳地,所述的步骤(2)具体包括以下步骤:Preferably, the step (2) specifically includes the following steps:

(2.1)如果设置的频点为校准频点,则计算电压对应的功率值PowIndBmSim;如果设置的频点不在校准频点上且频点在校准点F0和F1之间,其中F0<F1,则继续步骤(2.2);(2.1) If the set frequency point is the calibration frequency point, calculate the power value PowIndBmSim corresponding to the voltage; if the set frequency point is not on the calibration frequency point and the frequency point is between the calibration points F0 and F1, where F0<F1, then Proceed to step (2.2);

(2.2)得到频点为F0时对应的电压功率值PowIndBmSim1,以及频点为F1时对应的电压功率值PowIndBmSim2;(2.2) Obtain the corresponding voltage power value PowIndBmSim1 when the frequency point is F0, and the corresponding voltage power value PowIndBmSim2 when the frequency point is F1;

(2.3)线性拟合得到当前频率下电压对应的功率值。(2.3) The power value corresponding to the voltage at the current frequency is obtained by linear fitting.

较佳地,所述的步骤(2.3)中计算电压对应的功率值,具体为:Preferably, in the step (2.3), the power value corresponding to the voltage is calculated, specifically:

根据以下公式计算电压对应的功率值:Calculate the power value corresponding to the voltage according to the following formula:

Figure BDA0003486132800000023
Figure BDA0003486132800000023

其中,PowIndBmSim1为频点为F0时对应的电压功率值,PowIndBmSim2为频点为F1时对应的电压功率值,Freq为频率值。Among them, PowIndBmSim1 is the corresponding voltage power value when the frequency point is F0, PowIndBmSim2 is the corresponding voltage power value when the frequency point is F1, and Freq is the frequency value.

该针对RF检波模块实现减小检测功率误差的二次拟合处理系统,其主要特点是,所述的系统包括功分器、检波模块和功率计,所述的功分器的输入端与信号源相连,所述的功分器的输出端的一端与检波模块相连,另一端与功率计相连,所述的检波模块校准信号源输出的信号。The main feature of the quadratic fitting processing system for reducing the detection power error for the RF detection module is that the system includes a power divider, a detection module and a power meter, and the input end of the power divider is connected to the signal One end of the output end of the power divider is connected to the detection module, and the other end is connected to the power meter, and the detection module calibrates the signal output by the signal source.

该用于实现针对RF检波模块减小检测功率误差的二次拟合处理装置,其主要特点是,所述的装置包括:The main feature of the quadratic fitting processing device for reducing the detection power error for the RF detection module is that the device includes:

处理器,被配置成执行计算机可执行指令;a processor configured to execute computer-executable instructions;

存储器,存储一个或多个计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The memory stores one or more computer-executable instructions, and when the computer-executable instructions are executed by the processor, each of the above-mentioned quadratic fitting processing methods for reducing the detection power error for the RF detection module is implemented. step.

该用于实现针对RF检波模块减小检测功率误差的二次拟合处理的处理器,其主要特点是,所述的处理器被配置成执行计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The main feature of the processor for implementing quadratic fitting processing for reducing the detected power error of the RF detection module is that the processor is configured to execute computer-executable instructions, and the computer-executable instructions are When executed by the processor, each step of the above-mentioned quadratic fitting processing method for reducing the detected power error for the RF detection module is implemented.

该计算机可读存储介质,其主要特点是,其上存储有计算机程序,所述的计算机程序可被处理器执行以实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The computer-readable storage medium is mainly characterized in that a computer program is stored thereon, and the computer program can be executed by a processor to realize the above-mentioned quadratic fitting processing method for reducing the detection power error for the RF detection module. of the various steps.

采用了本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质,在不同频率点功率检测时,消除校准时产生以及非校准频率点导致的误差,通过二次拟合算法,提高RF检波输入检测时拟合后功率的准确度。与现有技术相比,第一次拟合消除功率计带来的误差,为非校准频点第二次拟合提供了更准确的功率,通过查询校准表不会增加冗余度且响应时间不会增加过多。By adopting the quadratic fitting processing method, system, device, processor and computer-readable storage medium for reducing the detection power error for the RF detection module of the present invention, when the power is detected at different frequency points, the error caused during calibration is eliminated. The error caused by the calibration frequency point is improved by the quadratic fitting algorithm to improve the accuracy of the fitted power during RF detection input detection. Compared with the prior art, the first fitting eliminates the error caused by the power meter, and provides more accurate power for the second fitting of non-calibrated frequency points. By querying the calibration table, the redundancy and response time will not be increased. will not increase too much.

附图说明Description of drawings

图1为本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理系统的检波模块校准示意图。FIG. 1 is a schematic diagram of the calibration of the detection module of the quadratic fitting processing system for reducing the detection power error for the RF detection module of the present invention.

图2为本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的流程示意图。FIG. 2 is a schematic flowchart of a quadratic fitting processing method for reducing the detection power error for an RF detection module according to the present invention.

具体实施方式Detailed ways

为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。In order to describe the technical content of the present invention more clearly, further description will be given below with reference to specific embodiments.

本发明的该针对RF检波模块实现减小检测功率误差的二次拟合处理方法,其中包括以下步骤:The quadratic fitting processing method for reducing the detection power error for the RF detection module of the present invention includes the following steps:

(1)对校准电压点的功率数据进行线性拟合,消除同一校准频点相邻电压点的功率误差;(1) Perform linear fitting on the power data of the calibration voltage point to eliminate the power error of adjacent voltage points at the same calibration frequency point;

(2)对非校准频点的相邻两个校准点取值进行拟合计算,得到功率数据。(2) Fitting and calculating the values of two adjacent calibration points of non-calibration frequency points to obtain power data.

作为本发明的优选实施方式,所述的步骤(1)具体包括以下步骤:As a preferred embodiment of the present invention, the step (1) specifically includes the following steps:

(1.1)判断当前电压PowInV是否处于检波器的电压范围内,即判断是否满足a<当前电压PowInV<f,其中检波器的电压范围为[a,f],如果是,则继续步骤(1.2);否则,计算当前电压PowInV<a以及当前电压PowInV>f的情况下对应的功率值;(1.1) Judging whether the current voltage PowInV is within the voltage range of the detector, that is, judging whether a<current voltage PowInV<f, where the voltage range of the detector is [a, f], if so, continue to step (1.2) ; otherwise, calculate the corresponding power value when the current voltage PowInV<a and the current voltage PowInV>f;

(1.2)计算校准表位置interval和超出校准电压点电压量RemainderInV;(1.2) Calculate the position interval of the calibration table and the voltage RemainderInV beyond the calibration voltage point;

(1.3)计算获取当前电压拟合的功率值PowIndBmSim。(1.3) Calculate and obtain the power value PowIndBmSim of the current voltage fitting.

作为本发明的优选实施方式,所述的步骤(1.2)中计算校准表位置interval,具体为:As a preferred embodiment of the present invention, the calibration table position interval is calculated in the step (1.2), specifically:

根据以下公式计算校准表位置interval:Calculate the calibration table position interval according to the following formula:

Figure BDA0003486132800000041
Figure BDA0003486132800000041

其中,PowInV为当前电压,StartPowInV为落入范围的起始电压,Step为电压范围的间隔,add为累加数。Among them, PowInV is the current voltage, StartPowInV is the starting voltage falling into the range, Step is the interval of the voltage range, and add is the accumulated number.

作为本发明的优选实施方式,所述的步骤(1.2)中计算超出校准电压点电压量RemainderInV,具体为:As a preferred embodiment of the present invention, in the step (1.2), the voltage amount RemainderInV that exceeds the calibration voltage point is calculated, specifically:

根据以下公式计算超出校准电压点电压量RemainderInV:Calculate the voltage beyond the calibration voltage point, RemainderInV, according to the following formula:

RemainderInV=PowInV-StartPowInV-(interval-add)×Step;RemainderInV=PowInV-StartPowInV-(interval-add)×Step;

其中,PowInV为当前电压,StartPowInV为落入范围的起始电压,Step为电压范围的间隔,add为累加数,interval为校准表位置。Among them, PowInV is the current voltage, StartPowInV is the starting voltage falling into the range, Step is the interval of the voltage range, add is the accumulated number, and interval is the calibration table position.

作为本发明的优选实施方式,所述的步骤(1.3)中计算获取当前电压拟合的功率值PowIndBmSim,具体为:As a preferred embodiment of the present invention, in the step (1.3), the power value PowIndBmSim of the current voltage fitting is calculated and obtained, specifically:

根据以下公式计算获取当前电压拟合的功率值PowIndBmSim:Calculate the power value PowIndBmSim for the current voltage fit according to the following formula:

PowIndBm1=CaliForm[freqLocation][interval-1];PowIndBm1=CaliForm[freqLocation][interval-1];

PowIndBm2=CaliForm[freqLocation][interval];PowIndBm2=CaliForm[freqLocation][interval];

Figure BDA0003486132800000042
Figure BDA0003486132800000042

其中,FreqLocation为校准频点,interval为电压间隔,RemainderInV为超出校准电压点电压量,Step为电压范围的间隔,PowIndBm1和PowIndBm2分别为根据二维数组得到的功率值。Among them, FreqLocation is the calibration frequency point, interval is the voltage interval, RemainderInV is the voltage beyond the calibration voltage point, Step is the interval of the voltage range, and PowIndBm1 and PowIndBm2 are the power values obtained from the two-dimensional array, respectively.

作为本发明的优选实施方式,所述的步骤(2)具体包括以下步骤:As a preferred embodiment of the present invention, the step (2) specifically includes the following steps:

(2.1)如果设置的频点为校准频点,则计算电压对应的功率值PowIndBmSim;如果设置的频点不在校准频点上且频点在校准点F0和F1之间,其中F0<F1,则继续步骤(2.2);(2.1) If the set frequency point is the calibration frequency point, calculate the power value PowIndBmSim corresponding to the voltage; if the set frequency point is not on the calibration frequency point and the frequency point is between the calibration points F0 and F1, where F0<F1, then Proceed to step (2.2);

(2.2)得到频点为F0时对应的电压功率值PowIndBmSim1,以及频点为F1时对应的电压功率值PowIndBmSim2;(2.2) Obtain the corresponding voltage power value PowIndBmSim1 when the frequency point is F0, and the corresponding voltage power value PowIndBmSim2 when the frequency point is F1;

(2.3)线性拟合得到当前频率下电压对应的功率值。(2.3) The power value corresponding to the voltage at the current frequency is obtained by linear fitting.

作为本发明的优选实施方式,所述的步骤(2.3)中计算电压对应的功率值,具体为:As a preferred embodiment of the present invention, in the step (2.3), the power value corresponding to the voltage is calculated, specifically:

根据以下公式计算电压对应的功率值:Calculate the power value corresponding to the voltage according to the following formula:

Figure BDA0003486132800000051
Figure BDA0003486132800000051

其中,PowIndBmSim1为频点为F0时对应的电压功率值,PowIndBmSim2为频点为F1时对应的电压功率值,Freq为频率值。Among them, PowIndBmSim1 is the corresponding voltage power value when the frequency point is F0, PowIndBmSim2 is the corresponding voltage power value when the frequency point is F1, and Freq is the frequency value.

本发明的该针对RF检波模块实现减小检测功率误差的二次拟合处理系统,其中所述的系统包括功分器、检波模块和功率计,所述的功分器的输入端与信号源相连,所述的功分器的输出端的一端与检波模块相连,另一端与功率计相连,所述的检波模块校准信号源输出的信号。The RF detection module of the present invention realizes a quadratic fitting processing system for reducing detection power error, wherein the system includes a power divider, a detection module and a power meter, and the input end of the power divider is connected to a signal source. One end of the output end of the power divider is connected to the detection module, and the other end is connected to the power meter, and the detection module calibrates the signal output by the signal source.

本发明的该用于实现针对RF检波模块减小检测功率误差的二次拟合处理装置,其中所述的装置包括:The present invention is used to realize the quadratic fitting processing device for reducing the detection power error for the RF detection module, wherein the device includes:

处理器,被配置成执行计算机可执行指令;a processor configured to execute computer-executable instructions;

存储器,存储一个或多个计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The memory stores one or more computer-executable instructions, and when the computer-executable instructions are executed by the processor, each of the above-mentioned quadratic fitting processing methods for reducing the detection power error for the RF detection module is implemented. step.

本发明的该用于实现针对RF检波模块减小检测功率误差的二次拟合处理的处理器,其中所述的处理器被配置成执行计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The processor of the present invention for implementing quadratic fitting processing for reducing detected power error for an RF detection module, wherein the processor is configured to execute computer-executable instructions, and the computer-executable instructions are When the processor is executed, each step of the above-mentioned quadratic fitting processing method for reducing the detected power error for the RF detection module is implemented.

本发明的该计算机可读存储介质,其中存储有计算机程序,所述的计算机程序可被处理器执行以实现上述的针对RF检波模块实现减小检测功率误差的二次拟合处理方法的各个步骤。The computer-readable storage medium of the present invention stores a computer program therein, and the computer program can be executed by a processor to implement the steps of the above-mentioned quadratic fitting processing method for reducing the detected power error for the RF detection module. .

本发明的具体实施方式中,提供了一种RF检波模块减少检测功率误差的二次拟合算法。本方案采用的技术方案是先对校准电压点的功率数据进行线性拟合,消除同一校准频点相邻电压点的功率误差,然后对校准频率点的数据进行二次利用,对非校准点的相邻两个校准点取值进行拟合计算,从而获得较理想的功率。In a specific embodiment of the present invention, a quadratic fitting algorithm for reducing the detection power error of the RF detection module is provided. The technical scheme adopted in this scheme is to first perform linear fitting on the power data of the calibration voltage point to eliminate the power error of the adjacent voltage points at the same calibration frequency point, and then re-use the data of the calibration frequency point. The fitting calculation is performed by taking the values of two adjacent calibration points, so as to obtain the ideal power.

如图1所示,检波模块校准使用信号源输出信号,通过功分器后一端接入功率计,一端接入检波模块。如表1所示,需要校准的频率为x~y MHz,校准频点的间隔为z MHz。如表2所示,检波模块中检波器的电压范围为[a,f],每个电压校准范围的间隔为Kn。As shown in Figure 1, the calibration of the detection module uses the output signal of the signal source, and the rear end of the power divider is connected to the power meter, and the other end is connected to the detection module. As shown in Table 1, the frequency to be calibrated is x to y MHz, and the interval between the calibration frequency points is z MHz. As shown in Table 2, the voltage range of the detector in the detection module is [a, f], and the interval of each voltage calibration range is Kn.

表1校准频率点及间隔Table 1 Calibration frequency points and intervals

校准频率范围(单位:MHz)Calibration frequency range (unit: MHz) 频点间隔(单位:MHz)Frequency point interval (unit: MHz) [x,y][x,y] zz

表2校准电压范围及间隔Table 2 Calibration voltage range and interval

电压范围(单位:V)Voltage range (unit: V) 间隔(单位:V)Interval (unit: V) [a,b)[a,b) K1K1 [b,c)[b,c) K2K2 [c,d)[c,d) K3K3 [d,e)[d,e) K4K4 [e,f][e,f] K5K5

通过校准后,将数据记录在CaliForm[FreqLocation][interval]为float类型数组[cal1][cal2]二维数组中。After calibration, record the data in CaliForm[FreqLocation][interval] which is a two-dimensional array of float type [cal1][cal2].

其中,in,

FreqLocation=(y-x)/z+1=cal1;FreqLocation=(y-x)/z+1=cal1;

interval=(b-a)/K1+(c-b)/K2+(d-c)/K3+(e-d)/K4+(f-e)/K5+1=cal2;interval=(b-a)/K1+(c-b)/K2+(d-c)/K3+(e-d)/K4+(f-e)/K5+1=cal2;

其中,FreqLocation为校准频点,interval为电压间隔,二维数组中对应的参数表示功率值,单位为dBm。Among them, FreqLocation is the calibration frequency point, interval is the voltage interval, and the corresponding parameter in the two-dimensional array represents the power value, and the unit is dBm.

步骤1:校准电压点的拟合:Step 1: Fitting of calibration voltage points:

判断电压范围,记录当前电压为PowInV,落入范围的起始电压为StartPowInV,范围的间隔记为Step。Determine the voltage range, record the current voltage as PowInV, the starting voltage falling into the range as StartPowInV, and the interval of the range as Step.

当PowInV<a时,When PowInV<a,

PowIndBm=CaliForm[freqLocation][0];PowIndBm=CaliForm[freqLocation][0];

当PowInV>f时,When PowInV>f,

PowIndBm=CaliForm[freqLocation][cal2];PowIndBm=CaliForm[freqLocation][cal2];

当a<PowInV<f时,校准表位置interval计算公式为:When a<PowInV<f, the calculation formula of calibration table position interval is:

Figure BDA0003486132800000071
Figure BDA0003486132800000071

超出校准电压点电压量记为RemainderInV,计算公式为:The voltage beyond the calibration voltage point is recorded as RemainderInV, and the calculation formula is:

RemainderInV=PowInV-StartPowInV-(interval-add)×Step;RemainderInV=PowInV-StartPowInV-(interval-add)×Step;

其中interval计算公式内floor为C语言内floor函数;add为累加数,根据下面表3得到具体数值。The floor in the interval calculation formula is the floor function in the C language; add is the accumulated number, and the specific value is obtained according to Table 3 below.

表3.add值表Table 3. add value table

Figure BDA0003486132800000072
Figure BDA0003486132800000072

根据上述获得两个功率值:Two power values are obtained according to the above:

PowIndBm1=CaliForm[freqLocation][interval-1];PowIndBm1=CaliForm[freqLocation][interval-1];

PowIndBm2=CaliForm[freqLocation][interval];PowIndBm2=CaliForm[freqLocation][interval];

获得当前电压拟合出的功率值:Get the power value fitted by the current voltage:

Figure BDA0003486132800000073
Figure BDA0003486132800000073

步骤2:非校准频点的拟合:Step 2: Fitting of non-calibrated frequency points:

当设置的频点为校准频点,电压对应的功率值为PowIndBmSim;When the set frequency is the calibration frequency, the power value corresponding to the voltage is PowIndBmSim;

当频率不在校准频点上时,假如频点在校准点F0和F1之间(F0<F1);When the frequency is not on the calibration frequency, if the frequency is between the calibration points F0 and F1 (F0 < F1);

取出对应校准表中频点为F0,电压的功率值PowIndBmSim1;取出对应校准表中频点为F1,电压的功率值PowIndBmSim2;Take out the corresponding calibration table IF point as F0, the voltage power value PowIndBmSim1; take out the corresponding calibration table IF point as F1, the voltage power value PowIndBmSim2;

线性拟合当前频率下电压对应的功率的计算公式如下:The formula for linearly fitting the power corresponding to the voltage at the current frequency is as follows:

Figure BDA0003486132800000074
Figure BDA0003486132800000074

通过以上方式实现RF检波模块减少检测误差功率的二次拟合。The quadratic fitting of the RF detection module to reduce the detection error power is realized in the above manner.

本实施例的具体实现方案可以参见上述实施例中的相关说明,此处不再赘述。For the specific implementation solution of this embodiment, reference may be made to the relevant descriptions in the foregoing embodiments, which will not be repeated here.

可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。It can be understood that, the same or similar parts in the above embodiments may refer to each other, and the content not described in detail in some embodiments may refer to the same or similar content in other embodiments.

需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是指至少两个。It should be noted that, in the description of the present invention, the terms "first", "second", etc. are only used for the purpose of description, and should not be construed as indicating or implying relative importance. Furthermore, in the description of the present invention, unless otherwise specified, the meaning of "plurality" means at least two.

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the present invention includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present invention belong.

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行装置执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present invention may be implemented in hardware, software, firmware or a combination thereof. In the above-described embodiments, various steps or methods may be implemented in software or firmware stored in memory and executed by suitable instruction execution means. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those skilled in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing the relevant hardware through a program, and the corresponding program can be stored in a computer-readable storage medium, and the program can be executed when the program is executed. , including one or a combination of the steps of the method embodiment.

此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.

上述提到的存储介质可以是只读存储器,磁盘或光盘等。The above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

采用了本发明的针对RF检波模块实现减小检测功率误差的二次拟合处理方法、系统、装置、处理器及计算机可读存储介质,在不同频率点功率检测时,消除校准时产生以及非校准频率点导致的误差,通过二次拟合算法,提高RF检波输入检测时拟合后功率的准确度。与现有技术相比,第一次拟合消除功率计带来的误差,为非校准频点第二次拟合提供了更准确的功率,通过查询校准表不会增加冗余度且响应时间不会增加过多。By adopting the quadratic fitting processing method, system, device, processor and computer-readable storage medium for reducing the detection power error for the RF detection module of the present invention, when the power is detected at different frequency points, the error caused during calibration is eliminated. The error caused by the calibration frequency point is improved by the quadratic fitting algorithm to improve the accuracy of the fitted power during RF detection input detection. Compared with the prior art, the first fitting eliminates the error caused by the power meter, and provides more accurate power for the second fitting of non-calibrated frequency points. By querying the calibration table, the redundancy and response time will not be increased. will not increase too much.

在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。In this specification, the invention has been described with reference to specific embodiments thereof. However, it will be evident that various modifications and changes can still be made without departing from the spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims (11)

1. A quadratic fit processing method for reducing detection power error aiming at an RF detection module is characterized by comprising the following steps:
(1) performing linear fitting on the power data of the calibration voltage points, and eliminating power errors of adjacent voltage points of the same calibration frequency point;
(2) and performing fitting calculation on two adjacent calibration point values of the non-calibration frequency points to obtain power data.
2. The method according to claim 1, wherein the step (1) specifically comprises the following steps:
(1.1) judging whether the current voltage PowInV is in a voltage range of the detector, namely judging whether a is more than the current voltage PowInV and less than f, wherein the voltage range of the detector is [ a, f ], and if so, continuing the step (1.2); otherwise, calculating corresponding power values under the conditions that the current voltage PowInV is less than a and the current voltage PowInV is greater than f;
(1.2) calculating a calibration table position interval and a voltage amount RemaindenInV exceeding a calibration voltage point;
(1.3) calculating a power value PowIndBmSim for obtaining the current voltage fitting.
3. The method of claim 2, wherein the step (1.2) of calculating the inter-calibration value is specifically:
the calibration table position interval is calculated according to the following formula:
Figure FDA0003486132790000011
wherein PowInV is the current voltage, StartPowInV is the starting voltage falling within the range, Step is the interval of the voltage range, and add is the cumulative number.
4. The method of claim 2, wherein the step (1.2) of calculating the amount of voltage beyond the calibration voltage point, RemainderInV, is performed by:
calculating the voltage amount RemainderInV beyond the calibration voltage point according to the following formula:
RemainderInV=PowInV-StartPowInV-(interval-add)×Step;
wherein PowInV is the current voltage, StartPowInV is the initial voltage falling in the range, Step is the interval of the voltage range, add is the cumulative number, and interval is the position of the calibration table.
5. The method according to claim 2, wherein the step (1.3) of calculating the power value powdndbmsmim for obtaining the current voltage fit includes:
calculating a power value PowIndBmSim for obtaining current voltage fitting according to the following formula:
PowIndBm1=CaliForm[freqLocation][interval-1];
PowIndBm2=CaliForm[freqLocation][interval];
Figure FDA0003486132790000021
wherein Freqlocation is a calibration frequency point, interval is a voltage interval, RemainderInV is a voltage amount exceeding the calibration voltage point, Step is an interval of a voltage range, and PowIndBm1 and PowIndBm2 are power values obtained according to the two-dimensional array respectively.
6. The method according to claim 1, wherein the step (2) specifically comprises the following steps:
(2.1) if the set frequency point is a calibration frequency point, calculating a power value PowIndBmSim corresponding to the voltage; if the set frequency point is not on the calibration frequency point and the frequency point is between the calibration points F0 and F1, wherein F0 < F1, continuing the step (2.2);
(2.2) obtaining a voltage power value PowIndBmSim1 corresponding to the frequency point F0 and a voltage power value PowIndBmSim2 corresponding to the frequency point F1;
and (2.3) carrying out linear fitting to obtain a power value corresponding to the voltage under the current frequency.
7. The method according to claim 6, wherein the step (2.3) of calculating the power value corresponding to the voltage includes:
and calculating the power value corresponding to the voltage according to the following formula:
Figure FDA0003486132790000022
the PowIndBmSim1 is a voltage power value corresponding to the frequency point F0, the PowIndBmSim2 is a voltage power value corresponding to the frequency point F1, and Freq is a frequency value.
8. The quadratic fitting processing system for reducing the detection power error aiming at the RF detection module is characterized by comprising a power divider, a detection module and a power meter, wherein the input end of the power divider is connected with a signal source, one end of the output end of the power divider is connected with the detection module, the other end of the output end of the power divider is connected with the power meter, and the detection module calibrates a signal output by the signal source.
9. A quadratic fit processing apparatus for reducing detection power error for an RF detection module, the apparatus comprising:
a processor configured to execute computer-executable instructions;
a memory storing one or more computer-executable instructions that, when executed by the processor, perform the steps of any of claims 1 to 7 for a method of implementing a quadratic fit process for an RF detection module that reduces detection power errors.
10. A processor for implementing a quadratic fit process for reducing detection power errors for an RF detection module, wherein the processor is configured to execute computer executable instructions which, when executed by the processor, implement the steps of the quadratic fit process for reducing detection power errors for an RF detection module of any of claims 1 to 7.
11. A computer-readable storage medium having stored thereon a computer program executable by a processor to perform the steps of the method for RF detection module quadratic fit reduction of detected power error of any of claims 1 to 7.
CN202210081622.6A 2022-01-24 2022-01-24 Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module Pending CN114414882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210081622.6A CN114414882A (en) 2022-01-24 2022-01-24 Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210081622.6A CN114414882A (en) 2022-01-24 2022-01-24 Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module

Publications (1)

Publication Number Publication Date
CN114414882A true CN114414882A (en) 2022-04-29

Family

ID=81276533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210081622.6A Pending CN114414882A (en) 2022-01-24 2022-01-24 Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module

Country Status (1)

Country Link
CN (1) CN114414882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421087A (en) * 2022-07-25 2022-12-02 中国电子科技集团公司第二十九研究所 A power adaptive closed-loop calibration method and system based on a broadband frequency source
CN115833967A (en) * 2022-11-21 2023-03-21 创远信科(上海)技术股份有限公司 Method, device, processor and storage medium for realizing automatic calibration processing for CINR of 5G NR scanner device
CN116047441A (en) * 2023-04-03 2023-05-02 南京天朗防务科技有限公司 Automatic test method and system for TR (transmitter-receiver) component
CN119692038A (en) * 2024-12-17 2025-03-25 成都玖锦科技有限公司 Signal source measurement error detection model construction and measurement error correction method, device, medium and equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254376A (en) * 1977-10-21 1981-03-03 Siemens Aktiengesellschaft Apparatus for measuring the electric power or energy in an A-C network
CN1489406A (en) * 2002-10-10 2004-04-14 华为技术有限公司 System and method for automatic calibration and compensation of mobile terminal
US20050221765A1 (en) * 2004-04-01 2005-10-06 Ying Shen System and method for calibrating modules of a wide-range transceiver
CN103633971A (en) * 2013-12-09 2014-03-12 北京无线电计量测试研究所 High-power microwave pulse signal calibration unit
CN104635035A (en) * 2015-03-03 2015-05-20 上海创远仪器技术股份有限公司 System for quickly calibrating power of signal source based on segmenting type structure
CN105242226A (en) * 2014-12-30 2016-01-13 北京无线电计量测试研究所 Calibration apparatus of pulse peak power meter
CN111510228A (en) * 2020-04-13 2020-08-07 河北东森电子科技有限公司 Automatic calibration device and method for millimeter wave satellite communication detection assembly
CN113098635A (en) * 2021-03-26 2021-07-09 展讯通信(上海)有限公司 Power compensation method and device and electronic equipment
CN113411143A (en) * 2021-06-28 2021-09-17 上海创远仪器技术股份有限公司 Power fitting processing method, system, device, processor and storage medium for eliminating uncertainty of numerical control attenuator in signal source
CN113419101A (en) * 2021-08-23 2021-09-21 睿控智行汽车技术(南通)有限公司 Shunt type current measurement compensation method and device
CN215005610U (en) * 2021-04-25 2021-12-03 大富科技(安徽)股份有限公司 RF power detection device and production test platform of radio frequency product

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254376A (en) * 1977-10-21 1981-03-03 Siemens Aktiengesellschaft Apparatus for measuring the electric power or energy in an A-C network
CN1489406A (en) * 2002-10-10 2004-04-14 华为技术有限公司 System and method for automatic calibration and compensation of mobile terminal
US20050221765A1 (en) * 2004-04-01 2005-10-06 Ying Shen System and method for calibrating modules of a wide-range transceiver
CN103633971A (en) * 2013-12-09 2014-03-12 北京无线电计量测试研究所 High-power microwave pulse signal calibration unit
CN105242226A (en) * 2014-12-30 2016-01-13 北京无线电计量测试研究所 Calibration apparatus of pulse peak power meter
CN104635035A (en) * 2015-03-03 2015-05-20 上海创远仪器技术股份有限公司 System for quickly calibrating power of signal source based on segmenting type structure
CN111510228A (en) * 2020-04-13 2020-08-07 河北东森电子科技有限公司 Automatic calibration device and method for millimeter wave satellite communication detection assembly
CN113098635A (en) * 2021-03-26 2021-07-09 展讯通信(上海)有限公司 Power compensation method and device and electronic equipment
CN215005610U (en) * 2021-04-25 2021-12-03 大富科技(安徽)股份有限公司 RF power detection device and production test platform of radio frequency product
CN113411143A (en) * 2021-06-28 2021-09-17 上海创远仪器技术股份有限公司 Power fitting processing method, system, device, processor and storage medium for eliminating uncertainty of numerical control attenuator in signal source
CN113419101A (en) * 2021-08-23 2021-09-21 睿控智行汽车技术(南通)有限公司 Shunt type current measurement compensation method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张鲁宁: "宽频带微波功率自动电平控制技术的研究", 中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑), no. 1, 15 January 2021 (2021-01-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421087A (en) * 2022-07-25 2022-12-02 中国电子科技集团公司第二十九研究所 A power adaptive closed-loop calibration method and system based on a broadband frequency source
CN115833967A (en) * 2022-11-21 2023-03-21 创远信科(上海)技术股份有限公司 Method, device, processor and storage medium for realizing automatic calibration processing for CINR of 5G NR scanner device
CN116047441A (en) * 2023-04-03 2023-05-02 南京天朗防务科技有限公司 Automatic test method and system for TR (transmitter-receiver) component
CN119692038A (en) * 2024-12-17 2025-03-25 成都玖锦科技有限公司 Signal source measurement error detection model construction and measurement error correction method, device, medium and equipment

Similar Documents

Publication Publication Date Title
CN114414882A (en) Quadratic fitting processing method, system, device, processor and storage medium for reducing detection power error for RF detection module
US11340286B2 (en) On-wafer S-parameter calibration method
JP6562562B2 (en) On-chip analog-to-digital converter (ADC) linearity test for embedded devices
CN103475369A (en) High-precision ADC test method based on signal-source-error one-time correction and identification
CN114448435B (en) Comparator threshold error calibration method, device, equipment and medium
CN114614825B (en) Low-cost high-speed pulse signal data sampling and peak value detection method
KR101018702B1 (en) Partial discharge amount calibrator with self calibration and tracking
EP3793333A1 (en) Filament current control method and apparatus
CN113411143B (en) Power fitting processing method, system, device, processor and storage medium for eliminating uncertainty of numerical control attenuator in signal source
CN111665431A (en) Method, device, equipment and medium for calibrating clock source in chip
CN108897034B (en) Method and system for channel coefficient acquisition and amplitude automatic calibration of digital BPM
CN115642913A (en) Analog-to-digital converter ADC calibration method, device, equipment and storage medium
US8312327B2 (en) Correcting apparatus, PDF measurement apparatus, jitter measurement apparatus, jitter separation apparatus, electric device, correcting method, program, and recording medium
CN117856931A (en) System, method, device, processor and storage medium for realizing acquisition of amplitude correction data of vector network analyzer receiver
CN114070426B (en) Method, device, processor and storage medium for eliminating abnormal calibration data of MIMO channel simulator
CN114553330A (en) Compensation processing method, device, processor and storage medium for improving influence of environmental temperature on radio frequency output aiming at signal source
CN110728013B (en) Fault detection and modeling method, device and storage medium for V2X communication module
CN110895645B (en) Target correction code determining method and device, electronic equipment and storage medium
CN102735269A (en) Correction method and device
CN116660176A (en) Fourier spectrum automatic baseline correction method, device and storage medium
CN106468754A (en) A kind of travelling-wave tube gain linearity degree method for automatic measurement
CN114356705A (en) Anomaly detection method, device, device and medium for IoT devices
CN114422046B (en) Method, device, processor and storage medium for screening abnormal phase calibration data based on multi-channel consistency
CN115833967B (en) Method, device, processor and storage medium for realizing automatic calibration processing for 5GNR frequency sweeper device CINR
CN115079072A (en) Method, device, equipment and medium for correcting current sensor of battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination