CN114417031A - Search method and device and search tag expansion method and device - Google Patents
Search method and device and search tag expansion method and device Download PDFInfo
- Publication number
- CN114417031A CN114417031A CN202210060286.7A CN202210060286A CN114417031A CN 114417031 A CN114417031 A CN 114417031A CN 202210060286 A CN202210060286 A CN 202210060286A CN 114417031 A CN114417031 A CN 114417031A
- Authority
- CN
- China
- Prior art keywords
- image
- similarity
- corpus
- signed
- search
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/48—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/483—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/43—Querying
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/45—Clustering; Classification
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Abstract
本公开提供了一种搜索方法和装置,涉及深度学习、图像处理、语音识别等技术领域。具体实现方案为:获取搜索语料;响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。该实施方式提升用户搜索的召回率。
The present disclosure provides a search method and device, which relate to the technical fields of deep learning, image processing, and speech recognition. The specific implementation scheme is: obtaining the search corpus; in response to determining that the preset mapping relationship database does not include the search corpus, comparing the similarity between the search corpus and the reference corpus in the mapping relationship database to obtain a first similarity value, and the mapping relationship database It is used to characterize the correspondence between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image; compare the similarity between the historical image and the reference image cluster in the mapping relationship library, and obtain a second similarity value; The first similarity and the second similarity determine historical images related to the search corpus. This implementation improves the recall rate of user searches.
Description
技术领域technical field
本公开涉及计算机技术领域,具体涉及深度学习、图像处理、语音识别等技术领域,尤其涉及一种搜索方法和装置、搜索标签扩展方法和装置、电子设备、计算机可读介质以及计算机程序产品。The present disclosure relates to the field of computer technologies, in particular to the technical fields of deep learning, image processing, and speech recognition, and in particular, to a search method and apparatus, a search tag extension method and apparatus, electronic equipment, computer-readable media, and computer program products.
背景技术Background technique
传统技术中,搜索依赖标签的丰富度和细粒度,比如,用户搜索“猫”,模型需要覆盖到“猫”这个标签,当用户需要搜索“波斯猫”时,模型也需要能覆盖到“猫”的子标签“波斯猫”。而多标签模型进行标签扩充成本较高,数据标注、整理、效果测试等流程周期长,刷库成本高。In traditional technology, search relies on the richness and fine-grainedness of tags. For example, when a user searches for "cat", the model needs to cover the tag "cat". When the user needs to search for "Persian cat", the model also needs to cover "cat". ' sub-tab "Persian cat". On the other hand, the multi-label model has a high cost for label expansion, and the process cycle of data labeling, sorting, and effect testing is long, and the cost of brushing the library is high.
发明内容SUMMARY OF THE INVENTION
提供了一种搜索方法和装置、搜索标签扩展方法和装置、电子设备、计算机可读介质以及计算机程序产品。Provided are a search method and apparatus, a search tag extension method and apparatus, an electronic device, a computer-readable medium, and a computer program product.
根据第一方面,提供了一种搜索方法,该方法包括:获取搜索语料;响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。According to a first aspect, a search method is provided, the method comprising: acquiring a search corpus; in response to determining that the preset mapping relation library does not include the search corpus, comparing the similarity between the search corpus and a reference corpus in the mapping relation library , obtain the first similarity value, the mapping relationship library is used to represent the corresponding relationship between the benchmark corpus and the benchmark image cluster, and the benchmark image cluster includes at least one benchmark image; By comparison, a second similarity value is obtained; based on the first similarity and the second similarity, a historical image related to the search corpus is determined.
根据第二方面,提供了一种搜索标签扩展方法,该方法包括:获取待签图像;响应于确定预设的映射关系库中不包括待签图像,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;基于映射相似度值,确定待签图像对应的基准语料;将待签图像与该基准语料的对应关系添加到映射关系库中。According to a second aspect, a search tag extension method is provided, the method comprising: acquiring an image to be signed; in response to determining that the image to be signed is not included in a preset mapping relationship library, comparing the image to be signed with a reference in the mapping relationship library The similarity of the image clusters is compared to obtain a mapping similarity value. The mapping relationship library is used to represent the corresponding relationship between the reference corpus and the reference image cluster. The reference image cluster includes at least one reference image; based on the mapping similarity value, the image to be signed is determined. Corresponding reference corpus; add the corresponding relationship between the image to be signed and the reference corpus into the mapping relationship library.
根据第三方面,提供了一种搜索装置,该装置包括:语料获取单元,被配置成获取搜索语料;第一比较单元,被配置成响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;第二比较单元,被配置成将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;图像确定单元,被配置化成基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。According to a third aspect, a search device is provided, the device comprising: a corpus acquisition unit, configured to acquire a search corpus; a first comparison unit, configured to respond to determining that the preset mapping relation library does not include the search corpus, Comparing the similarity between the search corpus and the reference corpus in the mapping relationship library, to obtain a first similarity value, the mapping relationship library is used to represent the correspondence between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image; The second comparison unit is configured to compare the similarity between the historical image and the reference image cluster in the mapping relationship library to obtain a second similarity value; the image determination unit is configured to be based on the first similarity and the second similarity, Identify historical images relevant to the search corpus.
根据第四方面,提供了一种搜索标签扩展装置,该装置包括:图像获取单元,被配置成获取待签图像;比较单元,被配置成响应于确定预设的映射关系库中不包括待签图像,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;语料确定单元,被配置成基于映射相似度值,确定待签图像对应的基准语料;映射单元,被配置成将待签图像与该基准语料的对应关系添加到映射关系库中。According to a fourth aspect, a search tag extension device is provided, the device includes: an image acquisition unit configured to acquire an image to be signed; a comparison unit configured to respond to determining that the preset mapping relationship library does not include the image to be signed Image, compare the similarity between the to-be-signed image and the benchmark image cluster in the mapping relationship library to obtain the mapping similarity value, the mapping relationship library is used to represent the corresponding relationship between the benchmark corpus and the benchmark image cluster, and the benchmark image cluster includes at least one a reference image; a corpus determination unit configured to determine a reference corpus corresponding to the image to be signed based on the mapping similarity value; a mapping unit configured to add the correspondence between the to-be-signed image and the reference corpus into the mapping relation library.
根据第五方面,提供了一种电子设备,该电子设备包括:至少一个处理器;以及与至少一个处理器通信连接的存储器,其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如第一方面或第二方面任一实现方式描述的方法。According to a fifth aspect, there is provided an electronic device comprising: at least one processor; and a memory communicatively coupled to the at least one processor, wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor. The at least one processor executes to enable the at least one processor to perform a method as described in any implementation of the first aspect or the second aspect.
根据第六方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,计算机指令用于使计算机执行如第一方面或第二方面任一实现方式描述的方法。According to a sixth aspect, there is provided a non-transitory computer-readable storage medium storing computer instructions for causing a computer to perform a method as described in any implementation of the first aspect or the second aspect.
根据第七方面,提供了一种计算机程序产品,包括计算机程序,计算机程序在被处理器执行时实现如第一方面或第二方面任一实现方式描述的方法。According to a seventh aspect, there is provided a computer program product comprising a computer program which, when executed by a processor, implements the method as described in any one of the implementations of the first aspect or the second aspect.
本公开的实施例提供的搜索方法和装置,首先,获取搜索语料;其次,响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;再次,将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;最后,基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。由此,通过低成本快速定制的用户搜索语料到用户图片的映射关系,可以快速自动的覆盖到所有的用户搜索场景,还可在保证搜索准确率的情况下,提升用户搜索的召回率。In the search method and device provided by the embodiments of the present disclosure, first, the search corpus is obtained; secondly, in response to determining that the preset mapping relationship database does not include the search corpus, the similarity between the search corpus and the reference corpus in the mapping relationship database is compared. , obtain the first similarity value, the mapping relationship library is used to represent the corresponding relationship between the benchmark corpus and the benchmark image cluster, and the benchmark image cluster includes at least one benchmark image; The similarity is compared to obtain a second similarity value; finally, based on the first similarity and the second similarity, historical images related to the search corpus are determined. Therefore, through the low-cost and fast customized mapping relationship between user search corpus and user pictures, all user search scenarios can be quickly and automatically covered, and the recall rate of user search can be improved while ensuring the search accuracy.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or critical features of embodiments of the disclosure, nor is it intended to limit the scope of the disclosure. Other features of the present disclosure will become readily understood from the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present disclosure. in:
图1是根据本公开搜索方法的一个实施例的流程图;1 is a flow chart of one embodiment of a search method according to the present disclosure;
图2是本公开中采用搜索语料与映射关系库进行搜索的示意图;FIG. 2 is a schematic diagram of searching using a search corpus and a mapping relation library in the present disclosure;
图3是根据本公开搜索标签扩展方法的一个实施例的流程图;FIG. 3 is a flowchart of one embodiment of a search tag extension method according to the present disclosure;
图4是根据本公开搜索装置的一个实施例的结构示意图;4 is a schematic structural diagram of an embodiment of a search apparatus according to the present disclosure;
图5是根据本公开搜索标签扩展装置的一个实施例的结构示意图;5 is a schematic structural diagram of an embodiment of a search tag extension apparatus according to the present disclosure;
图6是用来实现本公开实施例的搜索方法或搜索标签扩展方法的电子设备的框图。FIG. 6 is a block diagram of an electronic device used to implement the search method or the search tag extension method according to an embodiment of the present disclosure.
具体实施方式Detailed ways
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present disclosure are described below with reference to the accompanying drawings, which include various details of the embodiments of the present disclosure to facilitate understanding and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present disclosure. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
图1示出了根据本公开搜索方法的一个实施例的流程100,上述搜索方法包括以下步骤:FIG. 1 shows a
步骤101,获取搜索语料。
本实施例中,获取的搜索语料为对应至少一种模态信息的语料,其中,模态信息在不同应用或者网站中表示形式多样,例如模态信息可以包括:文本、视频、图片、音频中的一种或多种,通过对不同模态信息进行分析,可以得到模态信息对应的搜索语料,例如,对网页上的文本进行实体和关系抽取,得到该文本对应的搜索语料。再如,对应用上的介绍视频进行视频片段提取,得到该视频对应的搜索语料。再如,针对搜索领域,搜索所有向搜索引擎输入问题,得到该搜索引擎对应的搜索语料。In this embodiment, the acquired search corpus is a corpus corresponding to at least one modal information, wherein the modal information is represented in various forms in different applications or websites. For example, the modal information may include: text, video, picture, audio One or more of the modal information can be obtained by analyzing different modal information, for example, entity and relationship extraction is performed on the text on the webpage to obtain the search corpus corresponding to the text. For another example, a video segment is extracted from an introduction video on an application to obtain a search corpus corresponding to the video. For another example, for the search field, search all the questions input to the search engine, and obtain the search corpus corresponding to the search engine.
步骤102,响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值。
本实施例中,预设的映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像。其中,映射关系库可以包括多类基准语料,每类基准语料中的一个基准语料对应一个基准图像簇,每个基准图像簇包括至少一个基准图像,比如当搜索语料属于狗类别,狗类别包括很多子类,如泰迪,泰迪对应包括多种泰迪图片的基准图像簇,通过将基准图像簇与基准语料相对应,可以保证搜索的多样性效果。In this embodiment, the preset mapping relationship library is used to represent the correspondence between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image. The mapping relation library may include multiple types of benchmark corpus, one benchmark corpus in each type of benchmark corpus corresponds to one benchmark image cluster, and each benchmark image cluster includes at least one benchmark image. For example, when the search corpus belongs to the dog category, the dog category includes many Subcategories, such as Teddy, correspond to benchmark image clusters that include multiple Teddy pictures. By mapping benchmark image clusters to benchmark corpus, the diversity effect of search can be guaranteed.
本实施例中,预设的映射关系库可以通过人工标注的方式选取各个基准语料以及与各个基准语料对应的基准图像簇,各个基准语料的模态可以包括:文本、视频、图片、音频中的一种或多种。基准图像簇是与各个基准语料对应的至少一个图像,如图2所示,映射关系库中基准语料为文本模态,文本模态的马对应多个与马相关的基准图像。可选地,映射关系库还可以通过网络爬虫爬取基准语料的基准图像,得到基准图像簇,通过网络爬虫爬取基准图像实现了映射关系库的流程的自动化。In this embodiment, the preset mapping relation library can select each reference corpus and the reference image cluster corresponding to each reference corpus by manual annotation, and the modalities of each reference corpus can include: text, video, picture, audio one or more. The reference image cluster is at least one image corresponding to each reference corpus. As shown in Figure 2, the reference corpus in the mapping relation database is a text modality, and the horses in the text modality correspond to multiple reference images related to horses. Optionally, the mapping relationship library can also crawl the reference image of the reference corpus through a web crawler to obtain a reference image cluster, and the process of the mapping relationship library can be automated by crawling the reference image through the web crawler.
本实施例中,当搜索语料与映射关系库中的基准语料相同时,确定该映射关系库包括搜索语料,在映射关系库包括搜索语料时,直接输出与搜索语料对应的基准图像簇。In this embodiment, when the search corpus is the same as the reference corpus in the mapping relationship database, it is determined that the mapping relationship database includes the search corpus, and when the mapping relationship database includes the search corpus, the reference image cluster corresponding to the search corpus is directly output.
可选地,当搜索语料与映射关系库中的基准语料相似度大于预设阈值(例如90%)时,确定该映射关系库包括搜索语料。Optionally, when the similarity between the search corpus and the reference corpus in the mapping relationship library is greater than a preset threshold (eg, 90%), it is determined that the mapping relationship library includes the search corpus.
可选地,上述确定预设的映射关系库中不包括搜索语料包括:将搜索语料与映射关系库中的各个基准语料进行相似度比较,响应于搜索语料与基准语料的相似度大于预设阈值,获取与该基准语料相关的基准图像簇;检测搜索语料是否与该基准图像簇中的任意一个基准图像属于同一类别,若属于同一类别,确定映射关系库包括搜索语料。Optionally, the above-mentioned determining that the preset mapping relationship library does not include the search corpus includes: comparing the similarity between the search corpus and each reference corpus in the mapping relationship library, and in response to the similarity between the search corpus and the reference corpus being greater than a preset threshold value. , obtain the reference image cluster related to the reference corpus; detect whether the search corpus and any one of the reference images in the reference image cluster belong to the same category, and if they belong to the same category, determine that the mapping relation library includes the search corpus.
本实施例中,上述将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值包括:计算搜索语料与基准语料之间的相似度,得到第一相似度值,其中,相似度的计算方式可以有多种,例如欧式距离算法、夹角余弦算法等。In this embodiment, comparing the similarity between the search corpus and the reference corpus in the mapping relationship database to obtain the first similarity value includes: calculating the similarity between the search corpus and the reference corpus to obtain the first similarity value, wherein , there are many ways to calculate similarity, such as Euclidean distance algorithm, included angle cosine algorithm, etc.
本实施例中,在搜索语料为文本模态时,还可以采用基于深度学习的模型,比如BERT(Bidirectional Encoder Representations from Transformers,双向转换的编码器)、Ernie(用于语言理解的持续预训练框架)等计算搜索语料与基准语料之间的相似度,得到第一相似度值。In this embodiment, when the search corpus is a text modality, a model based on deep learning can also be used, such as BERT (Bidirectional Encoder Representations from Transformers), Ernie (continuous pre-training framework for language understanding) ) etc. to calculate the similarity between the search corpus and the reference corpus to obtain a first similarity value.
本实施例中,由于映射关系库中的基准语料可以有至少一个,与搜索语料进行相似度比较的基准语料为映射关系库中的基准语料有至少一个,因此,第一相似度值具有至少一个,每个相似度值为搜索语料与一个基准语料之间的相似度。In this embodiment, since there may be at least one reference corpus in the mapping relationship database, and the reference corpus for similarity comparison with the search corpus is at least one reference corpus in the mapping relationship database, the first similarity value has at least one , each similarity value is the similarity between the search corpus and a reference corpus.
步骤103,将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值。
本实施例中,历史图像可以是预设时间段在目标站点收集的大量的历史图像,例如,历史图像为通过搜索引擎获取的在过去三个月之中用户搜索的问题对应的图像。可选地,在收集到大量历史图像之后,可以通过聚类算法将得到的历史图像进行聚类,可以得到不同类型的历史图像。历史图像的类型可以基于历史图像的功能或属性或者特征进行划分。例如,历史图像的类型包括:介绍型、详情型、疑问型。In this embodiment, the historical images may be a large number of historical images collected at the target site in a preset time period. For example, the historical images are images corresponding to the questions searched by the user in the past three months obtained through a search engine. Optionally, after a large number of historical images are collected, the obtained historical images can be clustered by a clustering algorithm, and different types of historical images can be obtained. Types of historical images may be classified based on functions or attributes or characteristics of historical images. For example, the types of historical images include: introductory, detailed, interrogative.
本实施例中,第二相似度值具有至少一个,第二相似度值的数量与基准图像簇的数量相同,并且每个基准图像簇对应一个第二相似度值,In this embodiment, there is at least one second similarity value, the number of second similarity values is the same as the number of reference image clusters, and each reference image cluster corresponds to one second similarity value,
本实施例中,搜索方法运行于其上的执行主体可以将历史图像与所有基准图像簇中每个基准图像簇进行相似度比较,得到每个基准图像簇对应的第二相似度值。In this embodiment, the execution subject on which the search method runs may compare the similarity between the historical image and each reference image cluster in all reference image clusters, and obtain the second similarity value corresponding to each reference image cluster.
可选地,搜索方法运行于其上的执行主体可以将历史图像与各个基准图像簇中任意一个基准图像簇进行相似度比较,得到各个基准图像簇对应的第二相似度值。Optionally, the execution subject on which the search method runs may compare the similarity between the historical image and any one of the reference image clusters in each reference image cluster, and obtain the second similarity value corresponding to each reference image cluster.
可选地,搜索方法运行于其上的执行主体在得到历史图像之后,还可以将历史图像的类型与映射关系库中不同类型的基准图像簇进行匹配,确定与历史图像的类型对应的基准图像,计算历史图像与该类型的基准图像中各个基准图像的相似度,求相似度均值,得到第二相似度值。Optionally, after obtaining the historical image, the execution subject on which the search method operates can also match the type of the historical image with different types of reference image clusters in the mapping relationship library, and determine the reference image corresponding to the type of the historical image. , calculate the similarity between the historical image and each reference image in this type of reference image, calculate the average of the similarity, and obtain the second similarity value.
步骤104,基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。Step 104: Determine historical images related to the search corpus based on the first similarity and the second similarity.
本实施例中,映射关系库中一个基准语料与一个基准图像簇相对应,即该基准语料和该基准图像簇为一个对应关系,可以将该基准语料的第一相似度值与该基准图像簇的第二相似度值加权求和,得到该对应关系的相似度值,通过排序映射关系库中所有对应关系的相似度值,确定与搜索语料相似度最高的对应关系,将与该对应关系相似度最高的历史图像作为搜索语料相关的历史图像。In this embodiment, a reference corpus in the mapping relationship database corresponds to a reference image cluster, that is, the reference corpus and the reference image cluster are in a corresponding relationship, and the first similarity value of the reference corpus can be associated with the reference image cluster. The second similarity value is weighted and summed to obtain the similarity value of the corresponding relationship. By sorting the similarity values of all the corresponding relationships in the mapping relationship database, the corresponding relationship with the highest similarity with the search corpus is determined, which will be similar to the corresponding relationship. The historical image with the highest degree is used as the historical image related to the search corpus.
可选地,上述基于第一相似度和第二相似度,确定与搜索语料相关的历史图像包括:针对映射关系库中的各个对应关系,可以将该对应的关系中的基准语料的第一相似度值与该对应关系的基准图像簇的第二相似度值相乘,得到该对应关系的相似值。通过排序映射关系库中所有对应关系的相似度值,确定与搜索语料相似度最高的对应关系,将与该对应关系相似度最高的历史图像作为搜索语料相关的历史图像。Optionally, determining the historical images related to the search corpus based on the first similarity and the second similarity includes: for each corresponding relationship in the mapping relationship database, the first similarity of the reference corpus in the corresponding relationship can be performed. The degree value is multiplied by the second similarity value of the reference image cluster of the corresponding relationship to obtain the similarity value of the corresponding relationship. By sorting the similarity values of all correspondences in the mapping relationship database, the correspondence with the highest similarity to the search corpus is determined, and the historical image with the highest similarity with the correspondence is used as the historical image related to the search corpus.
在本实施例的一些可选实现方式中,基于第一相似度和第二相似度,确定与搜索语料相关的历史图像,包括:确定映射关系库中各个对应关系对应的第一相似度和第二相似度;针对各个对应关系,将该对应关系的第一相似度和第二相似度相乘,得到该对应关系的相似度;对所有对应关系的相似度进行升序或降序排列;基于升序或降序排列的排列结果,确定与搜索语料相关的历史图像。In some optional implementations of this embodiment, determining the historical images related to the search corpus based on the first similarity and the second similarity includes: determining the first similarity and the first similarity corresponding to each corresponding relationship in the mapping relationship database. Two degrees of similarity; for each corresponding relationship, multiply the first similarity and the second similarity of the corresponding relationship to obtain the similarity of the corresponding relationship; sort the similarities of all the corresponding relationships in ascending or descending order; Sort results in descending order to identify historical images relevant to the search corpus.
本可选实现方式中,可以基于降序的排列结果中前设定位(例如前5位)的对应关系,确定前设定位对应关系的历史图像,从该前设定位的历史图像中选取与搜索语料最相关的历史图像。In this optional implementation, based on the corresponding relationship of the top set positions (for example, the top 5 positions) in the descending order, the historical images of the corresponding relationship of the top set positions can be determined, and the historical images of the top set positions can be selected from the historical images of the top set positions. Historical images most relevant to the search corpus.
本可选实现方式中,可以基于升序的排列结果中后设定位(例如后5位)的对应关系,确定后设定位对应关系的历史图像,从该后设定位的历史图像中选取与搜索语料最相关的历史图像。In this optional implementation manner, based on the corresponding relationship between the last set bits (for example, the last 5 digits) in the ascending order, the historical image of the corresponding relationship of the last set position can be determined, and the historical image of the last set position can be selected from the historical images of the last set position. Historical images most relevant to the search corpus.
本可选实现方式中,将该对应关系的第一相似度和第二相似度相乘,得到该对应关系的相似度;对所有对应关系的相似度进行升序或降序排列;基于升序或降序排列的排列结果,确定与搜索语料相关的历史图像,为选取搜索语料的历史图像提供了可靠实现方式,保证了历史图像与搜索语料的对应的准确性。In this optional implementation manner, multiply the first similarity and the second similarity of the corresponding relationship to obtain the similarity of the corresponding relationship; sort the similarities of all the corresponding relationships in ascending or descending order; arranging based on the ascending or descending order The arrangement results of the search corpus determine the historical images related to the search corpus, which provides a reliable implementation method for selecting the historical images of the search corpus, and ensures the accuracy of the correspondence between the historical images and the search corpus.
本公开的实施例提供的搜索方法,可以提升网盘与相册搜索场景的准确性和召回。The search method provided by the embodiments of the present disclosure can improve the accuracy and recall of search scenarios of online disks and albums.
本公开的实施例提供的搜索方法,首先,获取搜索语料;其次,响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;再次,将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;最后,基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。由此,通过低成本快速定制的用户搜索语料到用户图片的映射关系,可以快速自动的覆盖到所有的用户搜索场景,还可在保证搜索准确率的情况下,提升用户搜索的召回率。In the search method provided by the embodiments of the present disclosure, first, the search corpus is acquired; secondly, in response to determining that the preset mapping relation library does not include the search corpus, the similarity between the search corpus and the reference corpus in the mapping relation library is compared, and the result is obtained: The first similarity value, the mapping relationship library is used to represent the corresponding relationship between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image; again, the similarity between the historical image and the reference image cluster in the mapping relationship library is calculated. By comparison, a second similarity value is obtained; finally, based on the first similarity and the second similarity, historical images related to the search corpus are determined. Therefore, through the low-cost and fast customized mapping relationship between user search corpus and user pictures, all user search scenarios can be quickly and automatically covered, and the recall rate of user search can be improved while ensuring the search accuracy.
在本公开的另一个实施例中,上述方法还包括:建立基准语料、搜索语料以及与搜索语料相关的历史图像之间的对应关系。In another embodiment of the present disclosure, the above method further includes: establishing a correspondence between the reference corpus, the search corpus, and the historical images related to the search corpus.
本实施例中,建立基准语料、搜索语料以及与搜索语料相关的历史图像之间的对应关系之后,可以实时存储基准语料、搜索语料以及与搜索语料相关的历史图像之间的对应关系,并在用户检索时基于该对应关系,为用户提供可靠检索结果,提高了用户的检索体验。In this embodiment, after the correspondence between the reference corpus, the search corpus, and the historical images related to the search corpus is established, the correspondence between the reference corpus, the search corpus, and the historical images related to the search corpus can be stored in real time, and the When a user searches, based on the corresponding relationship, a reliable search result is provided for the user, and the search experience of the user is improved.
在本实施例的一些可选实现方式中,将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值,包括:提取历史图像的第一图像特征;提取基准图像簇的第二图像特征;对第一图像特征和第二图像特征进行相似度比较,得到第二相似度值。In some optional implementations of this embodiment, the similarity between the historical image and the reference image cluster in the mapping relationship library is compared to obtain the second similarity value, including: extracting the first image feature of the historical image; extracting the reference image The second image feature of the cluster; the similarity between the first image feature and the second image feature is compared to obtain a second similarity value.
本可选实现方式中,可以通过特征提取器得到第一图像特征和第二图像特征,其中,特征提取器可以采用基于深度学习的模型,比如CNN(卷积神经网络)、Transformer等。In this optional implementation manner, the first image feature and the second image feature may be obtained through a feature extractor, wherein the feature extractor may use a model based on deep learning, such as CNN (Convolutional Neural Network), Transformer, and the like.
本可选实现方式中,第二图像特征可以是特征提取器提取基准图像簇中的任意一种图像的特征得到。In this optional implementation manner, the second image feature may be obtained by extracting a feature of any image in the reference image cluster by a feature extractor.
本可选实现方式中提供的得到第二相似度值的方法,通过第一图像特征和第二图像特征计算第二相似度值,为搜索语料与基准图像之间的相似度计算提供了一种可靠的方式。In the method for obtaining the second similarity value provided in this optional implementation, the second similarity value is calculated by using the first image feature and the second image feature, which provides a method for calculating the similarity between the search corpus and the reference image. reliable way.
在本实施例的一些可选实现方式中,上述提取基准图像簇的第二图像特征,包括:获取基准图像簇中各个基准图像的图像特征;对所有基准图像的图像特征取均值,得到第二图像特征。In some optional implementations of this embodiment, the above-mentioned extracting the second image features of the reference image cluster includes: acquiring the image features of each reference image in the reference image cluster; averaging the image features of all the reference images to obtain the second image feature. image features.
本可选实现方式中,在获取基准图像簇中各个基准图像的图像特征之后,对所有基准图像的图像特征取均值,可以使得到的第二图像特征具有所有基准图像的特征,保证了第二图像特征得到的可靠性。In this optional implementation manner, after acquiring the image features of each reference image in the reference image cluster, the image features of all reference images are averaged, so that the obtained second image features have the features of all reference images, ensuring that the second image feature has the features of all reference images. The reliability of the image features obtained.
在本实施例的一些可选实现方式中,上述将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值,包括:提取历史图像的第一图像特征;获取基准图像簇中各个基准图像的图像特征;计算第一图像特征与各个基准图像的图像特征的相似度,得到相似度序列;基于相似度序列,得到第二图像特征;对第一图像特征和第二图像特征进行相似度比较,得到第二相似度值。In some optional implementations of this embodiment, the above-mentioned comparison of the similarity between the historical image and the reference image cluster in the mapping relationship library to obtain the second similarity value includes: extracting the first image feature of the historical image; obtaining the reference The image features of each reference image in the image cluster; the similarity between the first image feature and the image features of each reference image is calculated to obtain a similarity sequence; the second image feature is obtained based on the similarity sequence; the first image feature and the second image feature are obtained. The image features are compared for similarity to obtain a second similarity value.
本可选实现方式中,基于相似度序列,得到第二图像特征包括:选取相似度序列中相似度最大的基准图像的图像特征作为第二图像特征。可选地,上述基于相似度序列,得到第二图像特征包括:对相似度序列中各个相似度进行升序排序,选取后设定的基准图像的图像特征计算平均值,得到第二图像特征。In this optional implementation manner, obtaining the second image feature based on the similarity sequence includes: selecting the image feature of the reference image with the greatest similarity in the similarity sequence as the second image feature. Optionally, obtaining the second image feature based on the similarity sequence includes: sorting each similarity in the similarity sequence in ascending order, and calculating an average value of the image features of the reference image set after selecting to obtain the second image feature.
可选地,上述将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值,包括:提取历史图像的第一图像特征;获取基准图像簇中各个基准图像的图像特征;计算第一图像特征与各个基准图像的图像特征的相似度,得到相似度序列;基于相似度序列,得到第二相似度值。Optionally, the above-mentioned comparison of the similarity between the historical image and the reference image cluster in the mapping relationship library to obtain the second similarity value includes: extracting the first image feature of the historical image; obtaining the image of each reference image in the reference image cluster. feature; calculate the similarity between the first image feature and the image features of each reference image to obtain a similarity sequence; and obtain a second similarity value based on the similarity sequence.
本可选实现方式中,相似度序列包括至少一个第一图像特征与基准图像的图像特征的相似度值,可以取相似度序列中TOPK的平均相似度分数作为第二相似度值,其中,当K=1时,取相似度序列中的最大相似度值;当K=基准图像簇中基准图像的数量时,可以取相似度序列中所有相似度的平均,得到第二相似度值。In this optional implementation, the similarity sequence includes at least one similarity value between the first image feature and the image feature of the reference image, and the average similarity score of the TOPK in the similarity sequence can be taken as the second similarity value, where, when When K=1, the maximum similarity value in the similarity sequence is taken; when K=the number of reference images in the reference image cluster, the average of all the similarities in the similarity sequence can be taken to obtain the second similarity value.
本可选实现方式中提供的得到第二相似度值的方法,基于相似度序列计算第二图像特征,再通过第一图像特征和第二图像特征计算第二相似度值,为搜索语料与基准图像之间的相似度计算提供了另一种可靠的方式。In the method for obtaining the second similarity value provided in this optional implementation, the second image feature is calculated based on the similarity sequence, and then the second similarity value is calculated by using the first image feature and the second image feature, which is used for the search corpus and benchmark. Similarity calculation between images provides another reliable way.
如图2所示,通过预先设置的文本相似度检索器,可以得到搜索语料与预先设置的映射关系库中的基准语料之间的第一相似度值,记作St。As shown in Fig. 2, through the preset text similarity retriever, the first similarity value between the search corpus and the reference corpus in the preset mapping relation database can be obtained, which is denoted as St.
通过计算还可以得到用户的历史图像与基准图像的第二相似度值,记作Si。具体地,用户的历史图像通过预先设置的特征提取器,提取得到第一图像特征(N维,N>1)。映射关系库中的基准图像簇通过预先设置的特征提取器,得到第二图像特征(N维,N>1)。对第一图像特征与第二图像特征计算相似度,得到第二相似度值。The second similarity value between the user's historical image and the reference image can also be obtained by calculation, denoted as Si. Specifically, the user's historical image is extracted by a preset feature extractor to obtain the first image feature (N dimension, N>1). The reference image cluster in the mapping relation library obtains the second image feature (N dimension, N>1) through the preset feature extractor. Calculate the similarity between the first image feature and the second image feature to obtain a second similarity value.
第二相似度值是用户的每一张历史图像需要与每一条基准语料的基准图像簇计算相似度得到,第二相似度可以记作该历史图像与基准语料之间相似度,历史图像与基准图像簇之间的相似度值可以根据不同场景使用不同的策略计算得到。历史图像与基准图像簇之间计算相似度的方式还可以采用如下两种:The second similarity value is obtained by calculating the similarity between each historical image of the user and the benchmark image cluster of each benchmark corpus. The second similarity can be recorded as the similarity between the historical image and the benchmark corpus. The historical image and benchmark The similarity value between image clusters can be calculated using different strategies according to different scenarios. There are two ways to calculate the similarity between the historical image and the reference image cluster:
1)对基准图像簇特征取均值,作为该基准图像簇的第二图像特征,第一图像特征与第二图像特征计算相似度,得到第二相似度值。1) Taking an average value of the features of the reference image cluster as the second image feature of the reference image cluster, calculating the similarity between the first image feature and the second image feature to obtain a second similarity value.
2)第一图像特征与基准图像簇中每个基准图像的图像特征计算相似度,取TOPK的平均相似度分数,说明:K=1时,取最大相似,K=基准图像簇中基准图像的数量,再取所有相似度的平均相似度,得到第二相似度值。2) Calculate the similarity between the first image feature and the image feature of each benchmark image in the benchmark image cluster, and take the average similarity score of TOPK, indicating: when K=1, take the maximum similarity, and K=the benchmark image in the benchmark image cluster. number, and then take the average similarity of all the similarities to obtain the second similarity value.
通过公式S=Si*St得到历史图像与搜索语料之间的相似度,从而对用户来说:输入搜索语料,就能得到一系列可根据相似度排序的历史图像。The similarity between the historical images and the search corpus is obtained through the formula S=S i *S t , so that for the user: inputting the search corpus, a series of historical images that can be sorted according to the similarity can be obtained.
图3示出了根据本公开搜索标签扩展方法的一个实施例的流程300,上述搜索标签扩展方法包括以下步骤:FIG. 3 shows a
步骤301,获取待签图像。
本实施例中,待签图像为向预设的映射关系库中增加的图像,通过向该映射关系库增加图像,可以增加映射关系库的图像的丰富度。In this embodiment, the image to be signed is an image added to a preset mapping relationship library. By adding an image to the mapping relationship library, the richness of the images in the mapping relationship library can be increased.
本实施例中,预设的映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像。映射关系库包括多类基准语料,每类基准语料中的一个基准语料对应一个基准图像簇,每个基准图像簇包括至少一个基准图像。In this embodiment, the preset mapping relationship library is used to represent the correspondence between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image. The mapping relation library includes multiple types of reference corpus, one reference corpus in each type of reference corpus corresponds to one reference image cluster, and each reference image cluster includes at least one reference image.
本实施例中,预设的映射关系库可以通过人工标注的方式选取各个基准语料以及与各个基准语料对应的基准图像簇,各个基准语料的模态可以包括:文本、视频、图片、音频中的一种或多种。基准图像簇是与各个基准语料对应的至少一个图像,如图2所示,映射关系库中基准语料为文本模态,文本马对应多个与马相关的基准图像。可选地,映射关系库还可以通过网络爬虫爬取基准语料的基准图像,得到基准图像簇,通过网络爬虫爬取基准图像实现了映射关系库的流程的自动化。In this embodiment, the preset mapping relation library can select each reference corpus and the reference image cluster corresponding to each reference corpus by manual annotation, and the modalities of each reference corpus can include: text, video, picture, audio one or more. The reference image cluster is at least one image corresponding to each reference corpus. As shown in Figure 2, the reference corpus in the mapping relationship database is a text mode, and the text horse corresponds to a plurality of reference images related to horses. Optionally, the mapping relationship library can also crawl the reference image of the reference corpus through a web crawler to obtain a reference image cluster, and the process of the mapping relationship library can be automated by crawling the reference image through the web crawler.
步骤302,响应于确定预设的映射关系库中不包括待签图像,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值。
本实施例中,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像。In this embodiment, the mapping relationship library is used to represent the correspondence between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image.
本实施例中,在将待签图像增加到映射关系库之前,可以将待签图像与映射关系库中的各个基准图像进行比较,在待签图像与每个基准图像均不相同时,确定映射关系库中不包括待签图像。In this embodiment, before adding the to-be-signed image to the mapping relationship database, the to-be-signed image can be compared with each reference image in the mapping relationship database, and when the to-be-signed image is different from each reference image, the mapping is determined. Images to be signed off are not included in the relationship library.
本实施例中,映射相似度值具有多个,每个映射相似度值与一个基准图像簇相对应,由于基准图像簇与基准语料基于对应关系,则每个映射相似度值与一个基准语料相对应。上述将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值包括:计算待签图像与映射关系库中的每个基准图像簇中的任意一个基准图像计算相似度,得到每个基准图像簇的映射相似度值。需要说明的是,本实施例中的映射相似度值与图1所示实施例的第二相似度值的计算方式类似,上述对第二相似度值的操作和描述,同样适用于本实施例中的映射相似度,在此不再赘述。In this embodiment, there are multiple mapping similarity values, and each mapping similarity value corresponds to a reference image cluster. Since the reference image cluster and the reference corpus are based on the corresponding relationship, each mapping similarity value corresponds to a reference corpus. correspond. The above-mentioned comparing the similarity between the image to be signed and the reference image clusters in the mapping relationship library, and obtaining the mapping similarity value includes: calculating the similarity between the image to be signed and any one of the reference image clusters in each reference image cluster in the mapping relationship library. , get the mapping similarity value of each benchmark image cluster. It should be noted that the mapping similarity value in this embodiment is similar to the calculation method of the second similarity value in the embodiment shown in FIG. 1 , and the above operations and descriptions for the second similarity value are also applicable to this embodiment. The mapping similarity in , will not be repeated here.
在本实施例的一些可选实现方式中,上述将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,包括:提取待签图像的待签图像特征;提取基准图像簇的基准图像特征;对待签图像特征与基准图像特征进行相似度比较,得到映射相似度。In some optional implementations of this embodiment, the similarity between the image to be signed and the reference image cluster in the mapping relationship library is compared to obtain the mapping similarity value, including: extracting the image features to be signed of the image to be signed; extracting The benchmark image features of the benchmark image cluster; the similarity between the to-be-signed image features and the benchmark image features is compared to obtain the mapping similarity.
本可选实现方式中,可以通过特征提取器得到待签图像特征,其中,特征提取器可以采用基于深度学习的模型,比如CNN、Transformer等。In this optional implementation manner, the features of the image to be signed may be obtained through a feature extractor, wherein the feature extractor may use a model based on deep learning, such as CNN, Transformer, and the like.
本可选实现方式中,待签图像特征可以是特征提取器提取基准图像簇中的任意一种图像的特征得到。In this optional implementation manner, the feature of the image to be signed may be obtained by extracting the feature of any image in the reference image cluster by the feature extractor.
本可选实现方式中提供的得到映射相似度值的方法,通过待签图像特征和基准图像特征计算映射相似度值,为待签图像与基准图像之间的相似度计算提供了一种可靠的方式。The method for obtaining the mapping similarity value provided in this optional implementation mode calculates the mapping similarity value through the features of the image to be signed and the feature of the reference image, which provides a reliable method for calculating the similarity between the image to be signed and the reference image. Way.
在本实施例的一些可选实现方式中,上述提取基准图像簇的基准图像特征,包括:获取基准图像簇中各个基准图像的图像特征;对所有基准图像的图像特征取均值,得到基准图像特征。In some optional implementations of this embodiment, the above-mentioned extraction of the reference image features of the reference image cluster includes: acquiring the image features of each reference image in the reference image cluster; averaging the image features of all reference images to obtain the reference image features .
本可选实现方式中,在获取基准图像簇中各个基准图像的图像特征之后,对所有基准图像的图像特征取均值,可以使得到的得到基准图像特征具有所有基准图像的特征,保证了基准图像特征得到的可靠性。In this optional implementation, after the image features of each reference image in the reference image cluster are acquired, the image features of all reference images are averaged, so that the obtained reference image features have the features of all reference images, ensuring that the reference images characteristic obtained reliability.
在本实施例的一些可选实现方式中,上述将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,包括:提取待签图像的待签图像特征;获取基准图像簇中各个基准图像的图像特征;计算待签图像特征与各个基准图像的图像特征的相似度,得到相似度序列;基于相似度序列,得到映射相似度值。In some optional implementations of this embodiment, the similarity between the image to be signed and the reference image cluster in the mapping relationship library is compared to obtain the mapping similarity value, including: extracting the image features to be signed of the image to be signed; obtaining The image features of each reference image in the reference image cluster; the similarity between the image features to be signed and the image features of each reference image is calculated to obtain a similarity sequence; based on the similarity sequence, a mapping similarity value is obtained.
本可选实现方式中,相似度序列包括待签图像特征与基准图像的图像特征的相似度值,该相似度值为至少一个,可以取相似度序列中TOPK的平均相似度分数作为映射相似度值,其中,当K=1时,取相似度序列中的最大值作为映射相似度值;当K=基准图像簇中基准图像的数量时,可以取相似度序列中所有相似度的平均,得到映射相似度值。In this optional implementation, the similarity sequence includes a similarity value between the image feature to be signed and the image feature of the reference image, the similarity value is at least one, and the average similarity score of TOPK in the similarity sequence can be taken as the mapping similarity where, when K=1, the maximum value in the similarity sequence is taken as the mapping similarity value; when K=the number of reference images in the reference image cluster, the average of all the similarities in the similarity sequence can be obtained to obtain Map similarity values.
本可选实现方式中提供的得到基准相似度值的方法,基于相似度序列计算基准相似度值,为待签图像与基准图像之间的相似度计算提供了另一种可靠的方式。The method for obtaining the reference similarity value provided in this optional implementation mode calculates the reference similarity value based on the similarity sequence, which provides another reliable method for calculating the similarity between the image to be signed and the reference image.
可选地,上述将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,包括:提取待签图像的待签图像特征;获取基准图像簇中各个基准图像的图像特征;计算待签图像特征与各个基准图像的图像特征的相似度,得到相似度序列;基于相似度序列,得到基准图像特征;对待签图像特征和基准图像特征进行相似度比较,得到映射相似度值。Optionally, the above-mentioned comparison of the similarity between the image to be signed and the reference image cluster in the mapping relationship library to obtain the mapping similarity value includes: extracting the image feature to be signed of the image to be signed; Image features; calculate the similarity between the image features to be signed and the image features of each reference image, and obtain a similarity sequence; based on the similarity sequence, obtain the reference image features; compare the similarity between the features of the image to be signed and the reference image features, and get the mapping similarity degree value.
可选地,基于相似度序列,得到基准图像特征包括:选取相似度序列中相似度最大的基准图像的图像特征作为基准图像特征。可选地,上述基于相似度序列,得到基准图像特征包括:对相似度序列中各个相似度进行升序排序,选取后设定的基准图像的图像特征计算平均值,得到基准图像特征。Optionally, obtaining the reference image feature based on the similarity sequence includes: selecting the image feature of the reference image with the greatest similarity in the similarity sequence as the reference image feature. Optionally, obtaining the reference image features based on the similarity sequence includes: sorting each similarity in the similarity sequence in ascending order, and calculating the average value of the image features of the reference image set after selecting to obtain the reference image features.
步骤303,基于映射相似度值,确定待签图像对应的基准语料。
本实施例中,在得到每个基准图像簇的映射相似度值之后,可以确定所有映射相似度值中最大值对应的基准图像簇,进一步,将该基准图像簇对应的基准语料,作为待签图像对应的基准语料。In this embodiment, after the mapping similarity value of each benchmark image cluster is obtained, the benchmark image cluster corresponding to the maximum value among all the mapped similarity values can be determined, and further, the benchmark corpus corresponding to the benchmark image cluster is used as the to-be-signed The benchmark corpus corresponding to the image.
步骤304,将待签图像与该基准语料的对应关系添加到映射关系库中。
本实施例中,将待签图像与该基准语料的对应关系添加到映射关系库中,可以丰富映射关系库中的基准图像。进一步,还可以将待签图像、该基准语料对应的基准图像簇之间的对应关系添加到映射关系库中。In this embodiment, the corresponding relationship between the image to be signed and the reference corpus is added to the mapping relationship database, which can enrich the reference images in the mapping relationship database. Further, the correspondence between the image to be signed and the reference image cluster corresponding to the reference corpus can also be added to the mapping relationship library.
本实施例提供的搜索标签扩展方法,获取待签图像,在预设的映射关系库中不包括待签图像时,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值;基于映射相似度值,确定代签图像对应的基准语料,将待签图像与该基准语料的对应关系添加到映射关系库中,为扩展映射关系库提供了可靠的手段,保证了标签生成的可靠性,易扩展搜索标签,缩短研发周期,降低迭代成本。In the search label extension method provided in this embodiment, an image to be signed is obtained, and when the image to be signed is not included in the preset mapping relation library, the similarity between the image to be signed and the reference image cluster in the mapping relation library is compared to obtain a mapping Similarity value; based on the mapping similarity value, determine the reference corpus corresponding to the signed image, and add the corresponding relationship between the image to be signed and the reference corpus into the mapping relationship library, which provides a reliable means for expanding the mapping relationship library and ensures that The reliability of tag generation, easy to expand and search tags, shorten the development cycle and reduce the iteration cost.
在本公开的另一个实施例中,上述搜索标签扩展方法还包括:获取搜索语料,响应于确定映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。In another embodiment of the present disclosure, the above-mentioned search tag extension method further includes: acquiring a search corpus, and in response to determining that the search corpus is not included in the mapping relationship database, comparing the similarity between the search corpus and the reference corpus in the mapping relationship database, The first similarity value is obtained, and the mapping relationship library is used to represent the corresponding relationship between the reference corpus and the reference image cluster, and the reference image cluster includes at least one reference image; the similarity between the historical image and the reference image cluster in the mapping relationship library is compared. , obtain a second similarity value; based on the first similarity and the second similarity, determine the historical images related to the search corpus.
进一步参考图4,作为对上述各图所示方法的实现,本公开提供了搜索装置的一个实施例,该装置实施例与图1所示的方法实施例相对应。Further referring to FIG. 4 , as an implementation of the methods shown in the above figures, the present disclosure provides an embodiment of a search apparatus, which corresponds to the method embodiment shown in FIG. 1 .
如图4所示,本实施例提供的搜索装置400包括:语料获取单元401、第一比较单元402、第二比较单元403、图像确定单元404。其中,上述语料获取单元401,可以被配置成获取搜索语料。上述第一比较单元402,可以被配置成响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像。上述第二比较单元403,可以被配置成将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值。上述图像确定单元404,可以被配置化成基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。As shown in FIG. 4 , the
在本实施例中,搜索装置400中:语料获取单元401、第一比较单元402、第二比较单元403、图像确定单元404的具体处理及其所带来的技术效果可分别参考图1对应实施例中的步骤101、步骤102、步骤103、步骤104的相关说明,在此不再赘述。In this embodiment, in the search device 400: the specific processing of the
在本实施例的一些可选的实现方式中,上述装置400还包括:关系建立单元(图中未示出)。其中,上述关系建立单元,可以被配置成建立基准语料、搜索语料以及与搜索语料相关的历史图像之间的对应关系。In some optional implementations of this embodiment, the foregoing
在本实施例的一些可选的实现方式中,上述第二比较单元403包括:第一提取模块(图中未示出)、第二提取模块(图中未示出)、第一比较模块(图中未示出)。上述第一提取模块,可以被配置成提取历史图像的第一图像特征。上述第二提取模块,可以被配置成提取基准图像簇的第二图像特征。上述第一比较模块,可以被配置成对第一图像特征和第二图像特征进行相似度比较,得到第二相似度值。In some optional implementations of this embodiment, the above-mentioned
在本实施例的一些可选实现方式中,上述第二提取模块包括:获取子模块(图中未示出)、均值子模块(图中未示出)。其中,上述获取子模块,可以被配置成获取基准图像簇中各个基准图像的图像特征。上述均值子模块,可以被配置成对所有基准图像的图像特征取均值,得到第二图像特征。In some optional implementations of this embodiment, the above-mentioned second extraction module includes: an acquisition sub-module (not shown in the figure) and an average sub-module (not shown in the figure). Wherein, the above-mentioned obtaining sub-module may be configured to obtain the image features of each reference image in the reference image cluster. The above-mentioned averaging sub-module may be configured to average the image features of all the reference images to obtain the second image feature.
在本实施例的一些可选的实现方式中,上述第二比较单元403包括:特征提取模块(图中未示出)、特征获取模块(图中未示出)、第一计算模块(图中未示出)、特征得到模块(图中未示出)、第二比较模块(图中未示出)。其中,上述特征提取模块,可以被配置成提取历史图像的第一图像特征。上述特征获取模块,可以被配置成获取基准图像簇中各个基准图像的图像特征。上述第一计算模块,可以被配置成计算第一图像特征与各个基准图像的图像特征的相似度,得到相似度序列。上述特征得到模块,可以被配置成基于相似度序列,得到第二图像特征。上述第二比较模块,可以被配置成对第一图像特征和第二图像特征进行相似度比较,得到第二相似度值。In some optional implementations of this embodiment, the above-mentioned
在本实施例的一些可选实现方式中,上述图像确定单元404包括:相似度确定模块(图中未示出)、相乘模块(图中未示出)、排列模块(图中未示出)、图像确定模块(图中未示出)。其中,相似度确定模块,被配置成确定映射关系库中各个对应关系对应的第一相似度和第二相似度;相乘模块,被配置成针对各个对应关系,将该对应关系的第一相似度和第二相似度相乘,得到该对应关系的相似度;排列模块,被配置成对所有对应关系的相似度进行升序或降序排列;图像确定模块,被配置成基于升序或降序排列的排列结果,确定与搜索语料相关的历史图像。In some optional implementations of this embodiment, the
本公开的实施例提供的搜索装置,首先,语料获取单元401获取搜索语料;其次,第一比较单元402响应于确定预设的映射关系库中不包括搜索语料,将搜索语料与映射关系库中的基准语料进行相似度比较,得到第一相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像;再次,第二比较单元403将历史图像与映射关系库中的基准图像簇进行相似度比较,得到第二相似度值;最后,图像确定单元404基于第一相似度和第二相似度,确定与搜索语料相关的历史图像。由此,通过低成本快速定制的用户搜索语料到用户图片的映射关系,可以快速自动的覆盖到所有的用户搜索场景,还可在保证搜索准确率的情况下,提升用户搜索的召回率。In the search apparatus provided by the embodiments of the present disclosure, firstly, the
进一步参考图5,作为对上述各图所示方法的实现,本公开提供了搜索标签扩展装置的一个实施例,该装置实施例与图3所示的方法实施例相对应。Further referring to FIG. 5 , as an implementation of the methods shown in the above figures, the present disclosure provides an embodiment of a search tag extension apparatus, which corresponds to the method embodiment shown in FIG. 3 .
如图5所示,本实施例提供的搜索标签扩展装置500包括:图像获取单元501、比较单元502、语料确定单元503、映射单元504。其中,上述图像获取单元501,可以被配置成获取待签图像。上述比较单元502,可以被配置成响应于确定预设的映射关系库中不包括待签图像,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值,映射关系库用于表征基准语料与基准图像簇之间的对应关系,基准图像簇包括至少一个基准图像。上述语料确定单元503,可以被配置成基于映射相似度值,确定待签图像对应的基准语料。上述映射单元,可以被配置成将待签图像与该基准语料的对应关系添加到映射关系库中。As shown in FIG. 5 , the search
在本实施例中,搜索标签扩展装置500中:图像获取单元501、比较单元502、语料确定单元503、映射单元504的具体处理及其所带来的技术效果可分别参考图3对应实施例中的步骤301、步骤302、步骤303、步骤304的相关说明,在此不再赘述。In this embodiment, in the search tag extension device 500 : the specific processing of the
在本实施例的一些可选实现方式中,上述比较单元502包括:标签提取模块(图中未示出)、基准提取模块(图中未示出)、映射比较模块(图中未示出)。其中,上述标签提取模块,可以被配置成提取待签图像的待签图像特征。上述基准提取模块,可以被配置成提取基准图像簇的基准图像特征。上述映射比较模块,可以被配置成对待签图像特征与基准图像特征进行相似度比较,得到映射相似度。In some optional implementations of this embodiment, the
在本实施例的一些可选实现方式中,上述基准提取模块包括:获取子模块(图中未示出)、均值子模块(图中未示出)。其中,上述获取子模块,可以被配置成获取基准图像簇中各个基准图像的图像特征。上述均值子模块,可以被配置成对所有基准图像的图像特征取均值,得到基准图像特征。In some optional implementations of this embodiment, the above-mentioned reference extraction module includes: an acquisition sub-module (not shown in the figure) and an average sub-module (not shown in the figure). Wherein, the above-mentioned obtaining sub-module may be configured to obtain the image features of each reference image in the reference image cluster. The above-mentioned averaging sub-module may be configured to average the image features of all the reference images to obtain the reference image features.
在本实施例的一些可选实现方式中,上述比较单元502包括:待签提取模块(图中未示出)、获取模块(图中未示出)、待签计算模块(图中未示出)、映射得到模块(图中未示出)。其中,上述待签提取模块,可以被配置成提取待签图像的待签图像特征。上述获取模块,可以被配置成获取基准图像簇中各个基准图像的图像特征。上述待签计算模块,可以被配置成计算待签图像特征与各个基准图像的图像特征的相似度,得到相似度序列。上述映射得到模块,可以被配置成基于相似度序列,得到基准相似度值。In some optional implementations of this embodiment, the
本公开的实施例提供的搜索标签扩展装置,图像获取单元501获取待签图像,比较单元502在预设的映射关系库中不包括待签图像时,将待签图像与映射关系库中的基准图像簇进行相似度比较,得到映射相似度值;语料确定单元503基于映射相似度值,确定代签图像对应的基准语料,映射单元504将待签图像与该基准语料的对应关系添加到映射关系库中,为扩展映射关系库提供了可靠的手段,保证了标签生成的可靠性。In the search tag extension device provided by the embodiment of the present disclosure, the
本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。In the technical solutions of the present disclosure, the collection, storage, use, processing, transmission, provision, and disclosure of the user's personal information involved are all in compliance with relevant laws and regulations, and do not violate public order and good customs.
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to embodiments of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.
图6示出了可以用来实施本公开的实施例的示例电子设备600的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG. 6 shows a schematic block diagram of an example
如图6所示,设备600包括计算单元601,其可以根据存储在只读存储器(ROM)602中的计算机程序或者从存储单元608加载到随机访问存储器(RAM)603中的计算机程序,来执行各种适当的动作和处理。在RAM 603中,还可存储设备600操作所需的各种程序和数据。计算单元601、ROM 602以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。As shown in FIG. 6 , the
设备600中的多个部件连接至I/O接口605,包括:输入单元606,例如键盘、鼠标等;输出单元607,例如各种类型的显示器、扬声器等;存储单元608,例如磁盘、光盘等;以及通信单元609,例如网卡、调制解调器、无线通信收发机等。通信单元609允许设备600通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the
计算单元601可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元601的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元601执行上文所描述的各个方法和处理,例如搜索方法或搜索标签扩展方法。例如,在一些实施例中,搜索方法或搜索标签扩展方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元608。在一些实施例中,计算机程序的部分或者全部可以经由ROM 602和/或通信单元609而被载入和/或安装到设备600上。当计算机程序加载到RAM 603并由计算单元601执行时,可以执行上文描述的搜索方法或搜索标签扩展方法的一个或多个步骤。备选地,在其他实施例中,计算单元601可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行搜索方法或搜索标签扩展方法。Computing unit 601 may be various general-purpose and/or special-purpose processing components with processing and computing capabilities. Some examples of computing units 601 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various specialized artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc. The computing unit 601 performs the various methods and processes described above, such as a search method or a search tag expansion method. For example, in some embodiments, the search method or the search tag extension method may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein above may be implemented in digital electronic circuitry, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips system (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程搜索装置或搜索标签扩展装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program code for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable search device or search tag extension device, such that the program codes, when executed by the processor or controller, cause all of the flowcharts and/or block diagrams The specified function/operation is implemented. The program code may execute entirely on the machine, partly on the machine, partly on the machine and partly on a remote machine as a stand-alone software package or entirely on the remote machine or server.
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with the instruction execution system, apparatus or device. The machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, a distributed system server, or a server combined with blockchain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present disclosure can be executed in parallel, sequentially, or in different orders, as long as the desired results of the technical solutions disclosed in the present disclosure can be achieved, no limitation is imposed herein.
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present disclosure. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements, and improvements made within the spirit and principles of the present disclosure should be included within the protection scope of the present disclosure.
Claims (23)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210060286.7A CN114417031A (en) | 2022-01-19 | 2022-01-19 | Search method and device and search tag expansion method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210060286.7A CN114417031A (en) | 2022-01-19 | 2022-01-19 | Search method and device and search tag expansion method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114417031A true CN114417031A (en) | 2022-04-29 |
Family
ID=81276090
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210060286.7A Pending CN114417031A (en) | 2022-01-19 | 2022-01-19 | Search method and device and search tag expansion method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114417031A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6285995B1 (en) * | 1998-06-22 | 2001-09-04 | U.S. Philips Corporation | Image retrieval system using a query image |
| KR20130100550A (en) * | 2012-03-02 | 2013-09-11 | 주식회사 내비오닉스코리아 | System and method for searching images |
| CN109815355A (en) * | 2019-01-28 | 2019-05-28 | 网易(杭州)网络有限公司 | Image search method and device, storage medium, and electronic device |
| CN111506750A (en) * | 2020-06-15 | 2020-08-07 | 北京金山云网络技术有限公司 | Picture retrieval method and device and electronic equipment |
| CN113407746A (en) * | 2021-07-16 | 2021-09-17 | 厦门熵基科技有限公司 | Method and system for searching picture by picture |
-
2022
- 2022-01-19 CN CN202210060286.7A patent/CN114417031A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6285995B1 (en) * | 1998-06-22 | 2001-09-04 | U.S. Philips Corporation | Image retrieval system using a query image |
| KR20130100550A (en) * | 2012-03-02 | 2013-09-11 | 주식회사 내비오닉스코리아 | System and method for searching images |
| CN109815355A (en) * | 2019-01-28 | 2019-05-28 | 网易(杭州)网络有限公司 | Image search method and device, storage medium, and electronic device |
| CN111506750A (en) * | 2020-06-15 | 2020-08-07 | 北京金山云网络技术有限公司 | Picture retrieval method and device and electronic equipment |
| CN113407746A (en) * | 2021-07-16 | 2021-09-17 | 厦门熵基科技有限公司 | Method and system for searching picture by picture |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113590645A (en) | Searching method, searching device, electronic equipment and storage medium | |
| CN111930962A (en) | Document data value evaluation method and device, electronic equipment and storage medium | |
| CN114780746A (en) | Knowledge graph-based document retrieval method and related equipment thereof | |
| CN112528146B (en) | Content resource recommendation method and device, electronic equipment and storage medium | |
| CN113988157A (en) | Semantic retrieval network training method and device, electronic equipment and storage medium | |
| CN114187448A (en) | Document image recognition method and apparatus, electronic device, computer readable medium | |
| CN113360711B (en) | Model training and execution methods, devices, equipment and media for video understanding tasks | |
| CN112784102B (en) | Video retrieval method, device and electronic equipment | |
| CN111782785B (en) | Automatic question and answer method, device, equipment and storage medium | |
| CN117609418B (en) | Document processing method, device, electronic device and storage medium | |
| CN117275005B (en) | Text detection, text detection model optimization and data annotation method and device | |
| CN112925883B (en) | Search request processing method and device, electronic equipment and readable storage medium | |
| CN116127111A (en) | Image search method, device, electronic device and computer-readable storage medium | |
| CN114417878A (en) | Semantic recognition method and device, electronic equipment and storage medium | |
| JP2024003750A (en) | Language model training methods, equipment, electronic devices and storage media | |
| CN116069967A (en) | Picture processing method and device, electronic equipment and storage medium | |
| CN113051472B (en) | Modeling method, device, equipment and storage medium of click through rate estimation model | |
| CN114647751A (en) | Image retrieval method, model training method, device, equipment, medium and product | |
| CN114998678A (en) | Model training method, target tracking method and device | |
| CN114492370A (en) | Webpage identification method and device, electronic equipment and medium | |
| CN113642495A (en) | Training methods, equipment, and program products for evaluating time-series nominated models | |
| CN112818167A (en) | Entity retrieval method, entity retrieval device, electronic equipment and computer-readable storage medium | |
| CN116824609A (en) | Document format detection method, device and electronic equipment | |
| CN116597443A (en) | Material tag processing method, device, electronic device and medium | |
| CN114417031A (en) | Search method and device and search tag expansion method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |