CN114429426B - Low-illumination image quality improvement method based on Retinex model - Google Patents
Low-illumination image quality improvement method based on Retinex model Download PDFInfo
- Publication number
- CN114429426B CN114429426B CN202111561917.5A CN202111561917A CN114429426B CN 114429426 B CN114429426 B CN 114429426B CN 202111561917 A CN202111561917 A CN 202111561917A CN 114429426 B CN114429426 B CN 114429426B
- Authority
- CN
- China
- Prior art keywords
- image
- layer image
- illumination
- pixel value
- detail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/04—Context-preserving transformations, e.g. by using an importance map
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
一种基于Retinex模型的低照度图像质量改善方法,它属于图像处理技术领域。本发明解决了采用现有的低照度图像质量改善算法对低照度图像进行处理时,获得的图像的质量差的问题。本发明首先通过Retinex模型对数字图像进行分层得到细节层图像以及光照层图像;其次设计一种非线性全局亮度映射函数,对于光照层图像进行映射得到光照层增强图像;再次设计一种非线性细节层图像映射函数,对于细节层图像进行拉伸得到细节层增强图像;最后对细节层增强图像以及光照层增强图像每个像素进行乘运算,合成低照度增强图像。本发明方法可以应用于改善低照度图像的质量。
The invention relates to a low-light image quality improvement method based on a Retinex model, which belongs to the technical field of image processing. The invention solves the problem that the quality of the obtained image is poor when using the existing low-illumination image quality improvement algorithm to process the low-illumination image. The invention firstly obtains the detail layer image and the illumination layer image by layering the digital image through the Retinex model; secondly, a nonlinear global brightness mapping function is designed to map the illumination layer image to obtain the illumination layer enhanced image; The detail layer image mapping function is used to stretch the detail layer image to obtain the detail layer enhanced image; finally, each pixel of the detail layer enhanced image and the illumination layer enhanced image is multiplied to synthesize the low illumination enhanced image. The method of the present invention can be applied to improve the quality of low-light images.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种基于Retinex模型的低照度图像质量改善方法。The invention belongs to the technical field of image processing, and in particular relates to a low-illumination image quality improvement method based on a Retinex model.
背景技术Background technique
由于光线在传播路径中易受到环境的影响,导致数字相机拍摄到的图像存在亮度分布不均,低照度区域的细节、纹理不清晰,图像质量、人眼可视化效果较差。因此如何改善低照度效应对于图像质量的影响,已经成为近年来图像处理领域的热点问题。Due to the fact that light is easily affected by the environment in the propagation path, the images captured by digital cameras have uneven brightness distribution, unclear details and textures in low-illumination areas, and poor image quality and visual effects for the human eye. Therefore, how to improve the influence of low illumination effect on image quality has become a hot issue in the field of image processing in recent years.
经典的低照度图像质量改善算法主要包括图像灰度分段映射算法、直方图均衡化算法以及Gamma校正算法等。虽然经典的低照度图像质量改善算法能够在一定程度上抑制低照度效应引起的视觉问题,但是自由参数的选择、图像过度增强、较为模糊的细节等问题影响了增强图像的图像质量,因此,采用现有的低照度图像质量改善算法对低照度图像进行处理后,所获得的图像的质量仍然较差。The classic low-illumination image quality improvement algorithms mainly include image grayscale segmentation mapping algorithm, histogram equalization algorithm, and Gamma correction algorithm. Although the classic low-light image quality improvement algorithm can suppress the visual problems caused by the low-light effect to a certain extent, the selection of free parameters, excessive image enhancement, and relatively blurred details affect the image quality of the enhanced image. Therefore, the use of After the existing low-illumination image quality improvement algorithms process the low-illumination image, the quality of the obtained image is still poor.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为解决采用现有的低照度图像质量改善算法对低照度图像进行处理时,获得的图像的质量差的问题,而提出了一种基于Retinex模型的低照度图像质量改善方法。The purpose of the present invention is to solve the problem of poor image quality when using the existing low-illumination image quality improvement algorithm to process the low-illumination image, and propose a low-illumination image quality improvement method based on the Retinex model.
本发明为解决上述技术问题所采取的技术方案是:The technical scheme that the present invention takes to solve the above-mentioned technical problems is:
一种基于Retinex模型的低照度图像质量改善方法,所述方法具体包括以下步骤:A low-light image quality improvement method based on a Retinex model, the method specifically comprises the following steps:
步骤一、将获取的图像从RGB通道转化到HSV通道后,分别获得V通道、H通道和S通道的数据;
再将V通道数据分解为光照层图像和细节层图像;Then decompose the V channel data into the light layer image and the detail layer image;
步骤二、对光照层图像进行全局亮度映射处理,获得全局亮度映射后的光照层图像;Step 2: Perform global brightness mapping processing on the illumination layer image to obtain an illumination layer image after global brightness mapping;
再对全局亮度映射后的光照层图像进行像素值域扩展,获得像素值域扩展后的光照层图像;Then perform pixel value domain expansion on the illumination layer image after global brightness mapping, and obtain the illumination layer image after pixel value domain expansion;
步骤三、利用细节层图像映射函数对细节层图像进行拉伸,获得拉伸后的细节层图像;
步骤四、将像素值域扩展后的光照层图像和拉伸后的细节层图像合成为新的图像;再将合成的图像与步骤一获得的H通道和S通道数据转换为输出图像。Step 4: Synthesize the image of the illumination layer after pixel value range expansion and the image of the detail layer after stretching into a new image; and then convert the synthesized image and the H channel and S channel data obtained in
进一步地,所述步骤一中,将V通道数据分解为光照层图像和细节层图像,其具体过程为:Further, in the
I(x,y)=c(x,y)×L(x,y) (1)I(x,y)=c(x,y)×L(x,y) (1)
其中,I(x,y)代表V通道数据在像素点(x,y)处的像素值,L(x,y)代表光照层图像在像素点(x,y)处的像素值,c(x,y)代表细节层图像在像素点(x,y)处的像素值。Among them, I(x,y) represents the pixel value of the V channel data at the pixel point (x,y), L(x,y) represents the pixel value of the illumination layer image at the pixel point (x,y), c( x, y) represents the pixel value of the detail layer image at the pixel point (x, y).
进一步地,所述光照层图像通过V通道数据与方差为1的高斯核进行卷积计算得到。Further, the illumination layer image is calculated by convolving the V channel data with a Gaussian kernel with a variance of 1.
进一步地,所述步骤二的具体过程为:Further, the concrete process of described
步骤二一、对光照层图像进行归一化处理,获得归一化处理后的光照层图像;Step 21: Normalize the illumination layer image to obtain a normalized illumination layer image;
其中,代表归一化处理后的光照层图像在像素点(x,y)处的像素值,max表示取最大值运算;in, Represents the pixel value of the normalized illumination layer image at the pixel point (x, y), and max represents the operation of taking the maximum value;
步骤二二、采用最大类间方差法确定归一化处理后的光照层图像的亮度分割阈值T;Step 22: Use the maximum inter-class variance method to determine the brightness segmentation threshold T of the normalized illumination layer image;
步骤二三、根据亮度分割阈值T和全局亮度映射函数,对归一化处理后的光照层图像进行全局亮度映射,获得全局亮度映射后的光照层图像;
全局亮度映射函数为:The global luminance mapping function is:
其中,代表全局亮度映射后的光照层图像在像素点(x,y)处的像素值;in, Represents the pixel value at the pixel point (x, y) of the illumination layer image after global luminance mapping;
步骤二四、对全局亮度映射后的光照层图像进行像素值域扩展:Step 24: Expand the pixel value range of the illumination layer image after global brightness mapping:
其中,Ld(x,y)代表像素值域扩展后的光照层图像在像素点(x,y)处的像素值。Among them, L d (x, y) represents the pixel value at the pixel point (x, y) of the illumination layer image after the pixel value range is extended.
进一步地,所述细节层图像映射函数为:Further, the detail layer image mapping function is:
其中,e是自然对数的底数,A,B,D是细节层图像映射函数的系数,S(c(x,y))代表拉伸后的细节层图像中像素点(x,y)的值。Among them, e is the base of the natural logarithm, A, B, D are the coefficients of the detail layer image mapping function, and S(c(x,y)) represents the pixel point (x,y) in the stretched detail layer image. value.
进一步地,所述细节层图像映射函数的系数A,B,D为:Further, the coefficients A, B and D of the detail layer image mapping function are:
其中,[h0,h1]为细节层图像中像素值c(x,y)的定义域,c(x,y)∈[h0,h1],即h0为细节层图像中像素值c(x,y)的最小值,h1为细节层图像中像素值c(x,y)的最大值。Among them, [h 0 , h 1 ] is the definition domain of the pixel value c(x, y) in the detail layer image, c(x,y)∈[h 0 ,h 1 ], that is, h 0 is the pixel value in the detail layer image The minimum value of the value c(x, y), and h 1 is the maximum value of the pixel value c(x, y) in the detail layer image.
更进一步地,所述步骤四中,将像素值域扩展后的光照层图像和拉伸后的细节层图像合成为新的图像,其具体过程为:Further, in the fourth step, the image of the illumination layer after the pixel value range has been expanded and the image of the detail layer after being stretched are synthesized into a new image, and the specific process is as follows:
将在像素值域扩展后的光照层图像与拉伸后的细节层图像中处于相同位置的像素值进行相乘,将相乘结果作为合成的新图像中对应位置上的像素值。Multiply the pixel values in the same position in the image of the illumination layer after the pixel value range is expanded and the image of the detail layer after being stretched, and use the multiplication result as the pixel value at the corresponding position in the synthesized new image.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明为了改善低照度图像的整体对比度,增强低照度图像的细节、纹理特性,提出一种基于Retinex模型的低照度图像质量改善方法。本发明首先通过Retinex模型对数字图像进行分层得到细节层图像以及光照层图像;其次设计一种非线性全局亮度映射函数,对于光照层图像进行映射得到光照层增强图像;再次设计一种非线性细节层图像映射函数,对于细节层图像进行拉伸得到细节层增强图像;最后对细节层增强图像以及光照层增强图像每个像素进行乘运算,合成低照度增强图像。实验结果表明,本发明设计算法可以有效地提高低照度图像的图像质量。In order to improve the overall contrast of the low-illumination image and enhance the details and texture characteristics of the low-illumination image, the present invention proposes a low-illumination image quality improvement method based on a Retinex model. The invention firstly obtains the detail layer image and the illumination layer image by layering the digital image through the Retinex model; secondly, a nonlinear global brightness mapping function is designed to map the illumination layer image to obtain the illumination layer enhanced image; The detail layer image mapping function stretches the detail layer image to obtain the detail layer enhanced image; finally, each pixel of the detail layer enhanced image and the illumination layer enhanced image is multiplied to synthesize the low illumination enhanced image. The experimental results show that the design algorithm of the present invention can effectively improve the image quality of low-illumination images.
附图说明Description of drawings
图1为本发明方法的一种基于Retinex模型的低照度图像质量改善方法的流程图;1 is a flowchart of a method for improving low-light image quality based on a Retinex model according to the method of the present invention;
图2为亮度分割阈值T=0.2时,所对应的光照层全局亮度映射函数的曲线图;FIG. 2 is a graph of the corresponding global luminance mapping function of the illumination layer when the luminance segmentation threshold T=0.2;
图3为亮度分割阈值T=0.5时,所对应的光照层全局亮度映射函数的曲线图;FIG. 3 is a graph of the global luminance mapping function of the corresponding illumination layer when the luminance segmentation threshold T=0.5;
图4为细节层图像映射函数的曲线图;Fig. 4 is the graph of detail layer image mapping function;
其中,原始图像细节层强度值域为[0.1,3];Among them, the intensity value range of the original image detail layer is [0.1, 3];
图5(a)为原始图像一;Figure 5(a) is the original image one;
图5(b)为图5(a)对应的增强图像;Fig. 5(b) is the enhanced image corresponding to Fig. 5(a);
图6(a)为原始图像二;Figure 6(a) is the second original image;
图6(b)为图6(a)对应的增强图像。Fig. 6(b) is the enhanced image corresponding to Fig. 6(a).
具体实施方式Detailed ways
具体实施方式一、结合图1说明本实施方式。本实施方式所述的一种基于Retinex模型的低照度图像质量改善方法,所述方法具体包括以下步骤:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present embodiment will be described with reference to FIG. 1 . A method for improving low-light image quality based on the Retinex model described in this embodiment, the method specifically includes the following steps:
步骤一、将获取的图像从RGB通道转化到HSV通道后,分别获得V通道、H通道和S通道的数据;
再将V通道数据分解为光照层图像和细节层图像;Then decompose the V channel data into the light layer image and the detail layer image;
步骤二、对光照层图像进行全局亮度映射处理,获得全局亮度映射后的光照层图像;Step 2: Perform global brightness mapping processing on the illumination layer image to obtain an illumination layer image after global brightness mapping;
再对全局亮度映射后的光照层图像进行像素值域扩展,获得像素值域扩展后的光照层图像,即光照增强图像;Then, extend the pixel value range of the illumination layer image after the global brightness mapping, and obtain the illumination layer image after the pixel value range expansion, that is, the illumination enhancement image;
步骤三、利用细节层图像映射函数对细节层图像进行拉伸,获得拉伸后的细节层图像,即细节增强图像;
步骤四、将像素值域扩展后的光照层图像和拉伸后的细节层图像合成为新的图像;再将合成的图像与步骤一获得的H通道和S通道数据转换为输出图像。Step 4: Synthesize the image of the illumination layer after pixel value range expansion and the image of the detail layer after stretching into a new image; and then convert the synthesized image and the H channel and S channel data obtained in
本实施方式中,首先图像输入到RGB转HSV模块进行颜色转化;再单独对V通道数据进行如式(1)所示的Retinex分层模型得到光照层图像与细节层图像;单独对光照层图像进行如式(3)所示的全局亮度映射,得到光照层增强图像;单独对细节层图像进行如式(5)所示的细节层图像进行映射,得到细节层增强图像;对细节层增强图像与光照层增强图像进行逐个像素相乘,合成新图像;通过HSV转RGB模块,将合成的新图像、原始H通道和S通道数据转换为可以直接显示的输出图像,所得到的输出图像的质量明显提高。In this embodiment, firstly, the image is input to the RGB to HSV module for color conversion; then the Retinex layered model shown in formula (1) is separately performed on the V channel data to obtain the illumination layer image and the detail layer image; Perform global brightness mapping as shown in formula (3) to obtain an enhanced image of the illumination layer; map the detail layer image as shown in formula (5) on the detail layer image separately to obtain an enhanced image of the detail layer; Multiply the enhanced image with the illumination layer pixel by pixel to synthesize a new image; through the HSV to RGB module, convert the synthesized new image, the original H channel and S channel data into an output image that can be directly displayed, and the quality of the obtained output image Significantly improved.
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中,将V通道数据分解为光照层图像和细节层图像,其具体过程为:Embodiment 2: The difference between this embodiment and
I(x,y)=c(x,y)×L(x,y) (1)I(x,y)=c(x,y)×L(x,y) (1)
其中,I(x,y)代表V通道数据在像素点(x,y)处的像素值,L(x,y)代表光照层图像在像素点(x,y)处的像素值,c(x,y)代表细节层图像在像素点(x,y)处的像素值。Among them, I(x,y) represents the pixel value of the V channel data at the pixel point (x,y), L(x,y) represents the pixel value of the illumination layer image at the pixel point (x,y), c( x, y) represents the pixel value of the detail layer image at the pixel point (x, y).
根据Retinex模型可知,数字图像可以分解为光照层图像与细节层图像,光照层图像决定图像整体明暗对比,细节层图像决定图像的细节、纹理。像素点(x,y)是在图像坐标系下的坐标,以图像的宽度方向为x轴,以图像的高度方向为y轴。According to the Retinex model, digital images can be decomposed into illumination layer images and detail layer images. The illumination layer image determines the overall light-dark contrast of the image, and the detail layer image determines the details and texture of the image. The pixel point (x, y) is the coordinate in the image coordinate system, with the width direction of the image as the x-axis, and the height direction of the image as the y-axis.
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as in the first embodiment.
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述光照层图像通过V通道数据与方差为1的高斯核进行卷积计算得到。Embodiment 3: The difference between this embodiment and
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as in the first or second embodiment.
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤二的具体过程为:Embodiment 4: The difference between this embodiment and one of
步骤二一、对光照层图像进行归一化处理,获得归一化处理后的光照层图像;Step 21: Normalize the illumination layer image to obtain a normalized illumination layer image;
其中,代表归一化处理后的光照层图像在像素点(x,y)处的像素值,max表示取最大值运算;in, Represents the pixel value of the normalized illumination layer image at the pixel point (x, y), and max represents the operation of taking the maximum value;
步骤二二、采用最大类间方差法(OTSU)确定归一化处理后的光照层图像的亮度分割阈值T;Step 22: Use the maximum inter-class variance method (OTSU) to determine the brightness segmentation threshold T of the normalized illumination layer image;
步骤二三、根据亮度分割阈值T和全局亮度映射函数,对归一化处理后的光照层图像进行全局亮度映射,获得全局亮度映射后的光照层图像;
全局亮度映射函数为:The global luminance mapping function is:
其中,代表全局亮度映射后的光照层图像在像素点(x,y)处的像素值;in, Represents the pixel value at the pixel point (x, y) of the illumination layer image after global luminance mapping;
通过全局亮度映射可以增强图像的整体对比度,由图2和图3可知,全局亮度映射函数对于小于阈值T的亮度进行了拉伸,进而提高了这一部分像素的亮度,而对于大于阈值T的亮度进行压缩,进而降低了这部分像素的亮度。The overall contrast of the image can be enhanced by global brightness mapping. As can be seen from Figures 2 and 3, the global brightness mapping function stretches the brightness less than the threshold T, thereby improving the brightness of this part of the pixels, while for the brightness greater than the threshold T Compression is performed to reduce the brightness of this part of the pixel.
步骤二四、对全局亮度映射后的光照层图像进行像素(亮度)值域扩展:Step 24: Expand the pixel (brightness) value range of the illumination layer image after global brightness mapping:
其中,Ld(x,y)代表像素值域扩展后的光照层图像在像素点(x,y)处的像素值。Among them, L d (x, y) represents the pixel value at the pixel point (x, y) of the illumination layer image after the pixel value range is extended.
通过本实施方式的方法对光照层图像L进行拉伸,可以增强低照度图像的整体明暗对比。By stretching the illumination layer image L by the method of this embodiment, the overall light-dark contrast of the low-illumination image can be enhanced.
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as one of the first to third embodiments.
具体实施方式五:结合图4说明本实施方式。本实施方式与具体实施方式一至四之一不同的是,所述细节层图像映射函数为:Embodiment 5: This embodiment is described with reference to FIG. 4 . The difference between this embodiment and one of
其中,e是自然对数的底数,A,B,D是细节层图像映射函数的系数,S(c(x,y))代表拉伸后的细节层图像中像素点(x,y)的值。Among them, e is the base of the natural logarithm, A, B, D are the coefficients of the detail layer image mapping function, and S(c(x,y)) represents the pixel point (x,y) in the stretched detail layer image. value.
本实施方式设计的非线性细节层图像映射函数是为了增强细节层图像的细节和纹理特性,丰富低照度图像的细节、纹理特征。The nonlinear detail layer image mapping function designed in this embodiment is to enhance the detail and texture characteristics of the detail layer image, and enrich the detail and texture characteristics of the low-illumination image.
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as one of the first to fourth embodiments.
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述细节层图像映射函数的系数A,B,D为:Embodiment 6: The difference between this embodiment and one of
其中,[h0,h1]为细节层图像中像素值c(x,y)的定义域,c(x,y)∈[h0,h1],即h0为细节层图像中像素值c(x,y)的最小值,h1为细节层图像中像素值c(x,y)的最大值。Among them, [h 0 , h 1 ] is the definition domain of the pixel value c(x, y) in the detail layer image, c(x,y)∈[h 0 ,h 1 ], that is, h 0 is the pixel value in the detail layer image The minimum value of the value c(x, y), and h 1 is the maximum value of the pixel value c(x, y) in the detail layer image.
A,B,D是三个待定系数,决定函数的定义域、值域、原始图像细节强度(即像素值)为1对应的增强图像细节强度。由于当原始细节层图像强度为1时图像最模糊,因此细节增强图像强度也应为1,即S(1)=1。另外,细节层图像增强需使定义域与值域保持一致,即S(h0)=h0、S(h1)=h1。因此将这三个对应关系分别带入函数(5)中,得到如式(6)所示的三个待定系数的值。A, B, and D are three undetermined coefficients, which determine the definition domain, value domain, and original image detail intensity (ie, pixel value) of the function to be 1 corresponding to the enhanced image detail intensity. Since the image is the most blurred when the original detail layer image intensity is 1, the detail enhancement image intensity should also be 1, that is, S(1)=1. In addition, the image enhancement of the detail layer needs to keep the definition domain and the value domain consistent, that is, S(h 0 )=h 0 , S(h 1 )=h 1 . Therefore, these three correspondences are respectively brought into the function (5) to obtain the values of the three undetermined coefficients as shown in the formula (6).
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the specific embodiments one to five.
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述步骤四中,将像素值域扩展后的光照层图像和拉伸后的细节层图像合成为新的图像,其具体过程为:Embodiment 7: The difference between this embodiment and one of
将在像素值域扩展后的光照层图像与拉伸后的细节层图像中处于相同位置的像素值进行相乘,将相乘结果作为合成的新图像中对应位置上的像素值。Multiply the pixel values in the same position in the image of the illumination layer after the pixel value range is expanded and the image of the detail layer after being stretched, and use the multiplication result as the pixel value at the corresponding position in the synthesized new image.
即,将像素值域扩展后的光照层图像中像素点(x,y)的像素值与拉伸后的细节层图像中像素点(x,y)的像素值相乘,将相乘结果作为合成的新图像中像素点(x,y)的像素值。That is, multiply the pixel value of the pixel point (x, y) in the illumination layer image after the pixel value range is extended by the pixel value of the pixel point (x, y) in the stretched detail layer image, and use the multiplication result as The pixel value of the pixel point (x,y) in the synthesized new image.
其它步骤及参数与具体实施方式一至六之一相同。Other steps and parameters are the same as one of
实验结果分析Analysis of results
本发明采用的仿真软件是Matlab 2018a。硬件平台是一个台式计算机,其硬件组成为:i9-11900H规格CPU、16GB DDR4规格内存、RTX 3060规格的显示卡。仿真程序的输入、输出为bmp格式标准图像。The simulation software used in the present invention is Matlab 2018a. The hardware platform is a desktop computer, and its hardware consists of: i9-11900H specification CPU, 16GB DDR4 specification memory, and RTX 3060 specification graphics card. The input and output of the simulation program are standard images in bmp format.
本发明方法的仿真结果如图5(a)和图5(b)以及如图6(a)和图6(b)所示。The simulation results of the method of the present invention are shown in Fig. 5(a) and Fig. 5(b) and Fig. 6(a) and Fig. 6(b).
从如图5(a)和图5(b)以及如图6(a)和图6(b)可知,由于光照强度比较低且分布不均匀,原始图像画面呈现较为灰暗的效果,导致人眼无法分辨原始图像中景物的细节与轮廓,因此图像质量较差;本发明设计的低照度图像质量改善算法提高了低照度区域的图像亮度且增强图像的局部细节较为清晰、丰富。因此,本发明算法可以有效提高低照度图像的整体可视化效果,增强图像的图像质量得到有效地提高。As can be seen from Figure 5(a) and Figure 5(b) and Figure 6(a) and Figure 6(b), due to the relatively low light intensity and uneven distribution, the original image presents a darker effect, causing the human eye The details and outlines of the scene in the original image cannot be distinguished, so the image quality is poor; the low-illumination image quality improvement algorithm designed in the present invention improves the image brightness in the low-illumination area and enhances the local details of the image to be clearer and richer. Therefore, the algorithm of the present invention can effectively improve the overall visualization effect of the low-illumination image, and the image quality of the enhanced image can be effectively improved.
本发明的上述算例仅为详细地说明本发明的计算模型和计算流程,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。The above calculation examples of the present invention are only to illustrate the calculation model and calculation process of the present invention in detail, but are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, on the basis of the above description, other different forms of changes or changes can also be made, and it is impossible to list all the embodiments here. Obvious changes or modifications are still within the scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111561917.5A CN114429426B (en) | 2021-12-20 | 2021-12-20 | Low-illumination image quality improvement method based on Retinex model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111561917.5A CN114429426B (en) | 2021-12-20 | 2021-12-20 | Low-illumination image quality improvement method based on Retinex model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114429426A CN114429426A (en) | 2022-05-03 |
| CN114429426B true CN114429426B (en) | 2022-08-16 |
Family
ID=81311806
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111561917.5A Expired - Fee Related CN114429426B (en) | 2021-12-20 | 2021-12-20 | Low-illumination image quality improvement method based on Retinex model |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114429426B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115660994B (en) * | 2022-10-31 | 2023-06-09 | 哈尔滨理工大学 | Image enhancement method based on regional least square estimation |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105046663A (en) * | 2015-07-10 | 2015-11-11 | 西南科技大学 | Human visual perception simulation-based self-adaptive low-illumination image enhancement method |
| CN110163815A (en) * | 2019-04-22 | 2019-08-23 | 桂林电子科技大学 | Low-light (level) restoring method based on multistage variation self-encoding encoder |
| CN110298796A (en) * | 2019-05-22 | 2019-10-01 | 中山大学 | Based on the enhancement method of low-illumination image for improving Retinex and Logarithmic image processing |
| CN111105359A (en) * | 2019-07-22 | 2020-05-05 | 浙江万里学院 | Tone mapping method for high dynamic range image |
| CN112950596A (en) * | 2021-03-09 | 2021-06-11 | 宁波大学 | Tone mapping omnidirectional image quality evaluation method based on multi-region and multi-layer |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7590303B2 (en) * | 2005-09-29 | 2009-09-15 | Samsung Electronics Co., Ltd. | Image enhancement method using local illumination correction |
| CN100562067C (en) * | 2007-07-26 | 2009-11-18 | 上海交通大学 | Enhancement method of real-time digital image processing with denoising function |
| WO2009012659A1 (en) * | 2007-07-26 | 2009-01-29 | Omron Corporation | Digital image processing and enhancing system and method with function of removing noise |
| CN103295225B (en) * | 2013-04-10 | 2016-09-28 | 苏州大学 | Train bogie edge detection method under the conditions of low-light |
| JP5907938B2 (en) * | 2013-09-26 | 2016-04-26 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus and program |
| CN105654437B (en) * | 2015-12-24 | 2019-04-19 | 广东迅通科技股份有限公司 | A kind of Enhancement Method of pair of low-light (level) image |
| CN107045715B (en) * | 2017-02-22 | 2019-06-07 | 西南科技大学 | A kind of method that single width low dynamic range echograms generate high dynamic range images |
| CN112734650B (en) * | 2019-10-14 | 2022-09-30 | 武汉科技大学 | Virtual multi-exposure fusion based uneven illumination image enhancement method |
| CN112308793A (en) * | 2020-10-21 | 2021-02-02 | 淮阴工学院 | Novel method for enhancing contrast and detail of non-uniform illumination image |
| CN113256533B (en) * | 2021-06-15 | 2022-08-09 | 北方民族大学 | Self-adaptive low-illumination image enhancement method and system based on MSRCR |
-
2021
- 2021-12-20 CN CN202111561917.5A patent/CN114429426B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105046663A (en) * | 2015-07-10 | 2015-11-11 | 西南科技大学 | Human visual perception simulation-based self-adaptive low-illumination image enhancement method |
| CN110163815A (en) * | 2019-04-22 | 2019-08-23 | 桂林电子科技大学 | Low-light (level) restoring method based on multistage variation self-encoding encoder |
| CN110298796A (en) * | 2019-05-22 | 2019-10-01 | 中山大学 | Based on the enhancement method of low-illumination image for improving Retinex and Logarithmic image processing |
| CN111105359A (en) * | 2019-07-22 | 2020-05-05 | 浙江万里学院 | Tone mapping method for high dynamic range image |
| CN112950596A (en) * | 2021-03-09 | 2021-06-11 | 宁波大学 | Tone mapping omnidirectional image quality evaluation method based on multi-region and multi-layer |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114429426A (en) | 2022-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | Low-light image enhancement via the absorption light scattering model | |
| Fu et al. | A fusion-based enhancing method for weakly illuminated images | |
| Wang et al. | Biologically inspired image enhancement based on Retinex | |
| CN103593830B (en) | A low-light video image enhancement method | |
| Gupta et al. | Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework | |
| CN100562067C (en) | Enhancement method of real-time digital image processing with denoising function | |
| CN103578084B (en) | Color image enhancement method based on bright channel filtering | |
| CN101951523B (en) | Adaptive colour image processing method and system | |
| Lai et al. | Improved local histogram equalization with gradient-based weighting process for edge preservation | |
| CN105205794B (en) | A kind of synchronous enhancing denoising method of low-light (level) image | |
| Liu et al. | VNDHR: Variational single nighttime image Dehazing for enhancing visibility in intelligent transportation systems via hybrid regularization | |
| CN110298792B (en) | Low-light image enhancement and denoising method, system and computer equipment | |
| WO2014169579A1 (en) | Color enhancement method and device | |
| CN115115554B (en) | Image processing method and device based on enhanced image and computer equipment | |
| CN102063706A (en) | Rapid defogging method | |
| WO2009120830A1 (en) | Methods and apparatus for visual sub-band decomposition of signals | |
| Mu et al. | Low and non-uniform illumination color image enhancement using weighted guided image filtering | |
| CN105184748A (en) | Image bit depth enhancing method | |
| Jeon et al. | Low-light image enhancement using inverted image normalized by atmospheric light | |
| CN114862694A (en) | High dynamic range image reconstruction method and device for ensuring image quality | |
| CN112927160B (en) | Single low-light image enhancement method based on depth Retinex | |
| CN112308793A (en) | Novel method for enhancing contrast and detail of non-uniform illumination image | |
| CN114429426B (en) | Low-illumination image quality improvement method based on Retinex model | |
| Kim | Image enhancement using patch-based principal energy analysis | |
| Tung et al. | ICEBIN: Image contrast enhancement based on induced norm and local patch approaches |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220816 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |