CN114492673A - A method, apparatus, device and storage medium for training a model - Google Patents
A method, apparatus, device and storage medium for training a model Download PDFInfo
- Publication number
- CN114492673A CN114492673A CN202210179767.XA CN202210179767A CN114492673A CN 114492673 A CN114492673 A CN 114492673A CN 202210179767 A CN202210179767 A CN 202210179767A CN 114492673 A CN114492673 A CN 114492673A
- Authority
- CN
- China
- Prior art keywords
- training
- model
- algorithm
- file
- preset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Stored Programmes (AREA)
Abstract
Description
技术领域technical field
本发明涉及模型构建技术领域,特别涉及一种训练模型的方法、装置、设备及存储介质。The present invention relates to the technical field of model construction, and in particular, to a method, apparatus, device and storage medium for training a model.
背景技术Background technique
随着人工智能领域的发展,分类算法模型在人机对话领域有了很广泛的应用,针对人机对话领域中不同的业务场景,需要在每个业务场景中运用对应业务场景的分类算法模型,因此需要根据目标业务场景的需求对分类算法模型进行训练以生成应用于目标业务场景的目标模型。With the development of artificial intelligence, the classification algorithm model has been widely used in the field of human-computer dialogue. For different business scenarios in the field of human-computer dialogue, it is necessary to use the classification algorithm model corresponding to the business scenario in each business scenario. Therefore, it is necessary to train the classification algorithm model according to the requirements of the target business scenario to generate a target model applied to the target business scenario.
在现有技术中,训练分类算法模型的过程需要人为的整理训练数据、控制训练任务的执行顺序、分配训练使用的资源信息、将训练后的模型部署在指定场景中,过多的人为干预耗费了大量人力资源,同时,随着需要训练的分类算法模型的数据增加,付出的人为调整时间也随之增加,进而导致训练效率下降。In the prior art, the process of training a classification algorithm model requires manual sorting of training data, controlling the execution sequence of training tasks, allocating resource information used for training, and deploying the trained model in a specified scene. Excessive human intervention costs At the same time, as the data of the classification algorithm model to be trained increases, the artificial adjustment time also increases, which in turn leads to a decrease in training efficiency.
因此,如何自动、高效训练分类算法模型成为本领域技术人员亟需解决的技术问题。Therefore, how to automatically and efficiently train the classification algorithm model has become an urgent technical problem to be solved by those skilled in the art.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种训练模型的方法、装置、设备及存储介质,解决了现有技术存在的技术问题,能够自动、高效的训练模型。The purpose of the present invention is to provide a method, apparatus, device and storage medium for training a model, which solves the technical problems existing in the prior art and can train the model automatically and efficiently.
根据本发明的一个方面,提供了一种训练模型的方法,该方法包括以下步骤:According to one aspect of the present invention, there is provided a method for training a model, the method comprising the following steps:
当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法;When a model training instruction is received, attribute information is parsed from the model training instruction, and an algorithm to be trained corresponding to the attribute information is obtained from a preset model library;
从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件;Obtain resource information corresponding to the attribute information from a preset training configuration table, and obtain a training file for training the algorithm to be trained through a preset upload interface;
利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件;Use the resource information and train the algorithm to be trained through the training file to obtain a training result file;
将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型;adding the training result file to a preset model loading component to instantiate the target model;
对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。A configuration file in the model loading component is modified to deploy the target model into a model consuming object.
可选的,所述从预设模型库中获取与所述属性信息对应的待训练算法,具体包括:Optionally, obtaining the algorithm to be trained corresponding to the attribute information from a preset model library specifically includes:
从所述属性信息中解析出算法类型;Parse the algorithm type from the attribute information;
从所述预设模型库中查找到和所述算法类型对应的算法模板;Find the algorithm template corresponding to the algorithm type from the preset model library;
从所述属性信息中解析出算法参数,并将所述算法参数添加到所述算法模板中以生成所述待训练算法。Algorithm parameters are parsed from the attribute information, and the algorithm parameters are added to the algorithm template to generate the to-be-trained algorithm.
可选的,所述从预设的训练配置表中获取与所述属性信息对应的资源信息,具体包括:Optionally, the obtaining resource information corresponding to the attribute information from a preset training configuration table specifically includes:
获取预设的训练配置表;其中,通过所述训练配置表设置了多种三元组信息和多个资源信息的一一对应关系、且所述三元组信息包括以下参数项:算法类型、模型使用对象的所属行业、所属行业的业务场景;Acquire a preset training configuration table; wherein, a one-to-one correspondence between various triples information and multiple resource information is set through the training configuration table, and the triplet information includes the following parameter items: algorithm type, The industry to which the model uses the object, and the business scenario of the industry to which it belongs;
从所述属性信息中解析出算法类型、模型使用对象的所属行业、所属行业的业务场景的参数值,并将解析出的参数值形成参考三元组信息;From the attribute information, the algorithm type, the industry to which the model is used, and the parameter values of the business scenarios of the industry are parsed, and the parsed parameter values are formed into reference triplet information;
判断在所述训练配置表中是否存在所述参考三元组信息,若是,则从所述训练配置表中获取与所述参考三元组信息对应的资源信息,若否,则使用预设的公共资源信息。Judging whether the reference triplet information exists in the training configuration table, if so, obtain resource information corresponding to the reference triplet information from the training configuration table, if not, use the preset public resource information.
可选的,所述利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件,具体包括:Optionally, the use of the resource information and the training of the algorithm to be trained through the training file to obtain a training result file specifically include:
将所述属性信息、所述待训练算法、所述资源信息和所述训练文件构成训练任务,并将所述训练任务存储到预设的等待队列中;The attribute information, the algorithm to be trained, the resource information and the training file constitute a training task, and the training task is stored in a preset waiting queue;
当接收到训练指令时,获取位于所述等待队列中的各个训练任务的等待时长;When receiving the training instruction, obtain the waiting duration of each training task located in the waiting queue;
从每个训练任务的属性信息中解析出用于表征所述训练任务重要程度的预设权重值;A preset weight value used to characterize the importance of the training task is parsed from the attribute information of each training task;
将每个训练任务的等待时长与预设权重值相加得到对应训练任务的优先级值;The priority value of the corresponding training task is obtained by adding the waiting time of each training task to the preset weight value;
基于各个训练任务的优先级值,并按照由大到小的顺序,对所述等待队列中的各个训练任务进行排序;Sort each training task in the waiting queue based on the priority value of each training task and in descending order;
按照排序结果顺序执行各个训练任务,以得到各个训练任务的训练结果文件。Execute each training task in the order of the sorted results to obtain the training result file of each training task.
可选的,所述将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型,具体包括:Optionally, adding the training result file to a preset model loading component to instantiate the target model specifically includes:
定期扫描用于存储所述训练结果文件的存储区域,并当扫描到所述训练结果文件时,将所述训练结果文件添加至所述模型加载组件中并通过所述模型加载组件运行所述训练结果文件以实例化出目标模型;Periodically scan the storage area for storing the training result file, and when the training result file is scanned, add the training result file to the model loading component and run the training through the model loading component result file to instantiate the target model;
其中,所述模型加载组件为:Tensorflow Serving组件。Wherein, the model loading component is: Tensorflow Serving component.
可选的,所述对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中,具体包括:Optionally, the modifying the configuration file in the model loading component to deploy the target model to the model usage object specifically includes:
从所述属性信息中解析出模型使用对象的接口路径,并将所述接口路径添加到所述模型加载组件中配置文件的预设部署接口中,以将所述目标模型部署到模型使用对象中。The interface path of the model usage object is parsed from the attribute information, and the interface path is added to the preset deployment interface of the configuration file in the model loading component, so as to deploy the target model into the model usage object .
可选的,在所述将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型之后,所述方法还包括:Optionally, after adding the training result file to a preset model loading component to instantiate the target model, the method further includes:
接收有校验终端发送的验证指令,并从所述验证指令中解析出用于验证所述目标模型的验证文件;其中,所述验证文件包括:标准输入和标准输出;Receive the verification instruction sent by the verification terminal, and parse out the verification file for verifying the target model from the verification instruction; wherein, the verification file includes: standard input and standard output;
将所述验证文件中的所有标准输入依次输入到所述目标模型中,以得到实际输出;Input all standard inputs in the verification file into the target model in turn to obtain the actual output;
根据所有的实际输出与所述验证文件中的所有标准输出计算出校验结果;其中,所述校验结果包括:准确率、错误率、拒识率;The verification result is calculated according to all actual outputs and all standard outputs in the verification file; wherein, the verification results include: accuracy rate, error rate, and rejection rate;
将所述校验结果发送至所述校验终端。Send the verification result to the verification terminal.
为了实现上述目的,本发明还提供一种训练模型的装置,该装置具体包括以下组成部分:In order to achieve the above purpose, the present invention also provides a device for training a model, the device specifically includes the following components:
接收模块,用于当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法;a receiving module, configured to parse the attribute information from the model training instruction when receiving the model training instruction, and obtain the algorithm to be trained corresponding to the attribute information from the preset model library;
上传模块,用于从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件;an uploading module, configured to obtain resource information corresponding to the attribute information from a preset training configuration table, and obtain a training file for training the algorithm to be trained through a preset upload interface;
训练模块,用于利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件;a training module for using the resource information and training the algorithm to be trained through the training file to obtain a training result file;
实例模块,用于将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型;an instance module for adding the training result file to a preset model loading component to instantiate a target model;
部署模块,用于对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。The deployment module is used for modifying the configuration file in the model loading component to deploy the target model into the model usage object.
为了实现上述目的,本发明还提供一种计算机设备,该计算机设备具体包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述介绍的训练模型的方法的步骤。In order to achieve the above object, the present invention also provides a computer device, the computer device specifically includes: a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the computer program. The steps of implementing the above-described method for training a model when describing a computer program.
为了实现上述目的,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述介绍的训练模型的方法的步骤。In order to achieve the above object, the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-described method for training a model.
本发明提供的训练模型的方法、装置、设备及存储介质,能够通过模型训练指令中的属性信息找出需要训练的待训练算法,并通过预设的训练配置表和属性信息找出对应训练待训练算法使用的资源信息,以达到自动配置训练资源的效果;通过上传接口获取用于训练的训练文件,省去现有技术中人为整理训练数据的过程,使得获取训练文件更高效;创建训练待训练算法以得到目标模型的训练任务,在等待队列中根据训练任务的优先级控制训练任务的执行顺序进行训练,以生成训练结果文件,达到了自动控制训练任务执行顺序的效果;将训练生成的训练结果文件添加至模型加载组件中实例化出目标模型并对模型加载组件的配置文件进行修改以将目标模型部署到模型使用对象中,达到了自动部署目标模型的效果。The method, device, device and storage medium for training a model provided by the present invention can find out the algorithm to be trained that needs to be trained through the attribute information in the model training instruction, and find out the corresponding training algorithm through the preset training configuration table and attribute information. The resource information used by the training algorithm to achieve the effect of automatically configuring the training resources; the training files used for training are obtained through the upload interface, which saves the process of manually arranging the training data in the prior art, making the acquisition of training files more efficient; The training algorithm is used to obtain the training tasks of the target model, and the execution order of the training tasks is controlled in the waiting queue according to the priority of the training tasks for training to generate the training result file, which achieves the effect of automatically controlling the execution order of the training tasks; The training result file is added to the model loading component, the target model is instantiated, and the configuration file of the model loading component is modified to deploy the target model to the model using object, which achieves the effect of automatically deploying the target model.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:
图1为实施例一提供的训练模型的方法的一种可选的流程示意图;1 is an optional schematic flowchart of a method for training a model provided in Embodiment 1;
图2为实施例二提供的训练模型的装置的一种可选的程序模块示意图;2 is a schematic diagram of an optional program module of the apparatus for training a model provided in Embodiment 2;
图3为实施例三提供的计算机设备的一种可选的硬件架构示意图。FIG. 3 is a schematic diagram of an optional hardware architecture of the computer device provided in the third embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例一Example 1
本发明实施例提供了一种训练模型的方法,如图1所示,该方法具体包括以下步骤:An embodiment of the present invention provides a method for training a model. As shown in FIG. 1 , the method specifically includes the following steps:
步骤S101:当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法。Step S101: When a model training instruction is received, attribute information is parsed from the model training instruction, and an algorithm to be trained corresponding to the attribute information is acquired from a preset model library.
其中,属性信息是事先根据业务需求设置好的,属性信息包括:算法类型、模型使用对象的所属行业、所属行业的业务场景、用于生成待训练算法的算法参数、训练总次数、用于表征训练任务重要程度的预设权重值、模型使用对象的接口路径。Among them, the attribute information is set in advance according to the business requirements, and the attribute information includes: the type of algorithm, the industry to which the model is used, the business scenario of the industry, the algorithm parameters used to generate the algorithm to be trained, the total number of training times, and the parameters used to represent the The preset weight value of the importance of the training task and the interface path of the object used by the model.
具体的,步骤S101,包括:Specifically, step S101 includes:
步骤A1:从所述属性信息中解析出算法类型;Step A1: parse out the algorithm type from the attribute information;
其中,在人机对话场景中,算法类型包括:通用分类算法、坐席客服算法和质检分类算法;Among them, in the man-machine dialogue scenario, the algorithm types include: general classification algorithm, agent customer service algorithm and quality inspection classification algorithm;
在人机对话场景的实际应用中,通用分类算法用于确定人机对话中的目标问题属于预设的多种类型的意图中的哪一种类型;坐席客服算法用于为属于目标类型的意图的问题确定出对应的答案;质检分类算法用于将多个问题按照预设的多种类型的意图进行划分。In the practical application of the human-machine dialogue scene, the general classification algorithm is used to determine which type of the preset intentions the target question in the human-machine dialogue belongs to; the agent customer service algorithm is used to classify the intentions belonging to the target type. The corresponding answers are determined for the questions of the QA system; the quality inspection classification algorithm is used to divide the multiple questions according to the preset multiple types of intentions.
步骤A2:从所述预设模型库中查找到和所述算法类型对应的算法模板;Step A2: Find the algorithm template corresponding to the algorithm type from the preset model library;
在本实施例中,预先在模型库中设置通用分类算法模板、坐席客服算法模板和质检分类算法模板,以便于按照算法类型从模型库中找出对应的算法模板。In this embodiment, a general classification algorithm template, an agent customer service algorithm template, and a quality inspection classification algorithm template are set in the model library in advance, so that the corresponding algorithm template can be found from the model library according to the algorithm type.
步骤A3:从所述属性信息中解析出算法参数,并将所述算法参数添加到所述算法模板中以生成所述待训练算法。Step A3: Parse out algorithm parameters from the attribute information, and add the algorithm parameters to the algorithm template to generate the algorithm to be trained.
在本实施例中,利用属性信息从预设的模型库中找出对应属性信息中算法类型的算法模板,并将属性信息的算法参数添加至算法模板中生成待训练算法,可以提高获取需要训练的待训练算法的速度。In this embodiment, the algorithm template corresponding to the algorithm type in the attribute information is found from the preset model library by using the attribute information, and the algorithm parameters of the attribute information are added to the algorithm template to generate the algorithm to be trained, which can improve the acquisition of the need for training. the speed of the algorithm to be trained.
步骤S102:从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件。Step S102: Acquire resource information corresponding to the attribute information from a preset training configuration table, and acquire a training file for training the algorithm to be trained through a preset upload interface.
具体的,步骤S102,包括:Specifically, step S102 includes:
步骤B1:获取预设的训练配置表;其中,通过所述训练配置表设置了多种三元组信息和多个资源信息的一一对应关系、且所述三元组信息包括以下参数项:算法类型、模型使用对象的所属行业、所属行业的业务场景;Step B1: Obtain a preset training configuration table; wherein, a one-to-one correspondence between various triples information and multiple resource information is set through the training configuration table, and the triplet information includes the following parameter items: Algorithm type, the industry of the model use object, and the business scenario of the industry;
在训练配置表中每行内容表征一种三元组信息和一个资源信息的对应关系,且在训练配置表中包含四个列内容,第一列内容表征算法类型,第二列内容表征模型使用对象的所属行业,第三列内容表征所属行业的业务场景,第四列内容表征资源信息。In the training configuration table, each row of content represents the correspondence between a triplet of information and a resource information, and the training configuration table contains four columns of content. The first column of content represents the algorithm type, and the second column of content represents the model used The industry of the object, the content in the third column represents the business scenario of the industry to which it belongs, and the content in the fourth column represents the resource information.
在人机对话场景的实际应用中,三元组信息中的模型使用对象的所属行业和所属行业的业务场景用于表示训练后的模型被使用于哪种行业下的哪个业务场景中,例如:将训练后的模型应用在电商行业下的后台客服场景中或应用在银行行业的信用卡服务咨询场景中。In the actual application of human-machine dialogue scenarios, the industry of the model usage object in the triplet information and the business scenario of the industry are used to indicate which business scenario under which industry the trained model is used, for example: Apply the trained model in the background customer service scenarios in the e-commerce industry or in the credit card service consultation scenarios in the banking industry.
步骤B2:从所述属性信息中解析出算法类型、模型使用对象的所属行业、所属行业的业务场景的参数值,并将解析出的参数值形成参考三元组信息;Step B2: parse out the algorithm type, the industry to which the model uses the object, and the parameter value of the business scenario of the industry from the attribute information, and form the parsed parameter value into reference triplet information;
步骤B3:判断在所述训练配置表中是否存在所述参考三元组信息,若是,则从所述训练配置表中获取与所述参考三元组信息对应的资源信息,若否,则使用预设的公共资源信息。Step B3: Determine whether the reference triplet information exists in the training configuration table, if so, obtain resource information corresponding to the reference triplet information from the training configuration table, if not, use Default public resource information.
在人机对话场景的实际应用中,预先在训练配置表中为算法类型为A1、模型使用对象所属行业为B1、所属行业的应用场景为C1的分类算法对应的资源信息设置为使用1号资源池;为算法类型为A1、模型使用者所属行业为B1、所属行业的应用场景为C2的分类算法对应的资源信息设置为使用2号资源池;为算法类型为A1、模型使用者所属行业为B2的分类算法对应的资源信息设置为使用3号资源池;为算法类型为A2、模型使用者所属行业为B3的分类算法对应的资源信息设置为使用4号资源池,依次类推,将模型库中所有分类算法按照三元组信息和对应的资源信息全部预先配置在训练配置表中,当从属性信息中解析出三元组信息时,从训练配置表中找出对应三元组信息的资源信息,以作为训练待训练算法使用的资源信息。In the actual application of the man-machine dialogue scene, the resource information corresponding to the classification algorithm in the training configuration table is set to use resource No. 1, the algorithm type is A1, the industry of the model use object is B1, and the application scenario of the industry is C1. Pool; the resource information corresponding to the classification algorithm whose algorithm type is A1, the industry to which the model user belongs is B1, and the application scenario of the industry is C2 is set to use resource pool No. 2; the algorithm type is A1, and the industry to which the model user belongs is The resource information corresponding to the classification algorithm of B2 is set to use resource pool No. 3; the resource information corresponding to the classification algorithm of algorithm type A2 and the industry to which the model user belongs is B3 is set to use resource pool No. 4, and so on. All classification algorithms are pre-configured in the training configuration table according to the triple information and the corresponding resource information. When the triple information is parsed from the attribute information, the resources corresponding to the triple information are found from the training configuration table. information, which is used as resource information for training the algorithm to be trained.
在本实施例中,从属性信息中解析出三元组信息,并利用三元组信息在预先配置好的训练配置表中找出对应的资源信息,以作为训练待训练算法使用的资源信息,相比于现有技术中需要人为的为待训练算法配置训练资源,起到了自动配置资源的效果。In this embodiment, the triplet information is parsed from the attribute information, and the triplet information is used to find the corresponding resource information in the preconfigured training configuration table, as the resource information used for training the algorithm to be trained, Compared with the need to manually configure training resources for the algorithm to be trained in the prior art, it has the effect of automatically configuring resources.
步骤S103:利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件。Step S103: Use the resource information and train the algorithm to be trained through the training file to obtain a training result file.
具体的,步骤S103,包括:Specifically, step S103 includes:
步骤C1:将所述属性信息、所述待训练算法、所述资源信息和所述训练文件构成训练任务,并将所述训练任务存储到预设的等待队列中;Step C1: The attribute information, the algorithm to be trained, the resource information and the training file constitute a training task, and the training task is stored in a preset waiting queue;
在人机对话场景的实际应用中,通过预设的上传接口获取由人机对话中的问题和问题对应的意图组成的训练文件,在训练文件中每一行用于存储一个问题和一个问题对应的意图,且在训练文件中有两个列内容,第一列用于表征人机对话中的问题,第一列用于表征第一列中每个问题对应的意图。In the actual application of the human-machine dialogue scene, a training file consisting of questions in the human-machine dialogue and the intent corresponding to the question is obtained through the preset upload interface, and each line in the training file is used to store a question and a question corresponding to a question. Intent, and there are two columns in the training file, the first column is used to represent the questions in the human-machine dialogue, and the first column is used to represent the intent corresponding to each question in the first column.
步骤C2:当接收到训练指令时,获取位于所述等待队列中的各个训练任务的等待时长;Step C2: when receiving the training instruction, obtain the waiting duration of each training task located in the waiting queue;
步骤C3:从每个训练任务的属性信息中解析出用于表征所述训练任务重要程度的预设权重值;Step C3: parse out a preset weight value used to characterize the importance of the training task from the attribute information of each training task;
在人机对话场景的实际应用中,每个训练任务的权重值是根据训练需求设置的,以使权重值更高的训练任务提前进行训练,未指定提前训练的训练任务对应的权重值为零。In the actual application of the human-machine dialogue scene, the weight value of each training task is set according to the training requirements, so that the training task with higher weight value is trained in advance, and the weight value corresponding to the training task without pre-training is zero. .
步骤C4:将每个训练任务的等待时长与预设权重值相加得到对应训练任务的优先级值;Step C4: adding the waiting time of each training task to the preset weight value to obtain the priority value of the corresponding training task;
步骤C5:基于各个训练任务的优先级值,并按照由大到小的顺序,对所述等待队列中的各个训练任务进行排序;Step C5: Based on the priority value of each training task, and in descending order, sort each training task in the waiting queue;
步骤C6:按照排序结果顺序执行各个训练任务,以得到各个训练任务的训练结果文件。Step C6: Execute each training task in the order of the sorting results to obtain training result files of each training task.
其中,生成的训练结果文件是一个pb(protocol buffer,协议缓存)格式的文件,无法直接打开文件生成目标模型,需要将训练结果文件添加至模型加载组件中以运行训练结果文件生成目标模型。The generated training result file is a file in pb (protocol buffer, protocol cache) format, which cannot be directly opened to generate the target model. The training result file needs to be added to the model loading component to run the training result file to generate the target model.
步骤S104:将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型。Step S104: Add the training result file to a preset model loading component to instantiate a target model.
具体的,步骤S104,包括:Specifically, step S104 includes:
定期扫描用于存储所述训练结果文件的存储区域,并当扫描到所述训练结果文件时,将所述训练结果文件添加至所述模型加载组件中并通过所述模型加载组件运行所述训练结果文件以实例化出目标模型;Periodically scan the storage area for storing the training result file, and when the training result file is scanned, add the training result file to the model loading component and run the training through the model loading component result file to instantiate the target model;
其中,所述模型加载组件为:Tensorflow Serving组件。Wherein, the model loading component is: Tensorflow Serving component.
在人机对话场景的实际应用中,由于训练待训练算法生成的训练文件无法直接打开生成目标模型,因此,利用模型加载组件定时扫描用于存储训练结果文件的存储区域,当扫描到所述训练结果文件时,将训练结果文件添加至模型加载组件中,模型加载组件根据自身的加载特性运行训练结果文件中的代码以实例化出目标模型。In the actual application of the human-machine dialogue scene, since the training file generated by training the algorithm to be trained cannot be directly opened to generate the target model, the model loading component is used to periodically scan the storage area for storing the training result file. When creating the result file, the training result file is added to the model loading component, and the model loading component runs the code in the training result file according to its own loading characteristics to instantiate the target model.
在本实施例中,利用Tensorflow Serving模型加载组件对无法直接打开的训练结果文件进行加载,得到目标模型,以便于后续对目标模型进行部署。In this embodiment, the Tensorflow Serving model loading component is used to load the training result file that cannot be directly opened to obtain the target model, so as to facilitate subsequent deployment of the target model.
步骤S105:对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。Step S105: Modify the configuration file in the model loading component to deploy the target model into a model usage object.
具体的,步骤S105,包括:Specifically, step S105 includes:
从所述属性信息中解析出模型使用对象的接口路径,并将所述接口路径添加到所述模型加载组件中配置文件的预设部署接口中,以将所述目标模型部署到模型使用对象中。The interface path of the model usage object is parsed from the attribute information, and the interface path is added to the preset deployment interface of the configuration file in the model loading component, so as to deploy the target model into the model usage object .
在本实施例中,模型加载组件的配置文件中预设有用于部署目标模型的部署接口,通过解析属性信息得到使用目标模型的对象对应的接口路径,并将该接口路径添加至配置文件中部署接口的对应区域,以将目标模型部署到模型使用对象中。In this embodiment, a deployment interface for deploying the target model is preset in the configuration file of the model loading component, the interface path corresponding to the object using the target model is obtained by parsing the attribute information, and the interface path is added to the configuration file for deployment The corresponding area of the interface to deploy the target model into the model consuming object.
进一步的,在步骤S104之后,所述方法还包括:Further, after step S104, the method further includes:
步骤D1:接收有校验终端发送的验证指令,并从所述验证指令中解析出用于验证所述目标模型的验证文件;其中,所述验证文件包括:标准输入和标准输出;Step D1: Receive a verification instruction sent by the verification terminal, and parse out a verification file for verifying the target model from the verification instruction; wherein, the verification file includes: standard input and standard output;
在人机对话场景的实际应用中,为了确定训练出的目标模型的部署效果,对目标模型进行验证,通过接收验证指令获取验证文件。当未指定验证文件时,利用目标模型的原训练文件作为验证文件。In the actual application of the human-machine dialogue scene, in order to determine the deployment effect of the trained target model, the target model is verified, and the verification file is obtained by receiving the verification instruction. When no verification file is specified, the original training file of the target model is used as the verification file.
步骤D2:将所述验证文件中的所有标准输入依次输入到所述目标模型中,以得到实际输出;Step D2: Input all standard inputs in the verification file into the target model in turn to obtain the actual output;
步骤D3:根据所有的实际输出与所述验证文件中的所有标准输出计算出校验结果;其中,所述校验结果包括:准确率、错误率、拒识率;Step D3: Calculate the verification result according to all actual outputs and all standard outputs in the verification file; wherein, the verification results include: accuracy rate, error rate, and rejection rate;
步骤D4:将所述校验结果发送至所述校验终端。Step D4: Send the verification result to the verification terminal.
在人机对话场景的实际应用中,校验结果以报告的形式展示在校验终端中,校验结果的报告中详细展示有准确率、错误率、拒识率以及目标模型对每个标准输入的实际输出,以便用户根据校验结果对目标模型进行调整。In the actual application of the man-machine dialogue scene, the verification result is displayed in the verification terminal in the form of a report, and the report of the verification result shows in detail the accuracy rate, error rate, rejection rate, and the target model for each standard input. The actual output, so that the user can adjust the target model according to the verification results.
在本实施例中,通过对目标模型再次进行验证的方式确定目标模型的部署效果,以使目标模型根据校验结果进行适配性的调整。In this embodiment, the deployment effect of the target model is determined by verifying the target model again, so that the target model can adjust the adaptability according to the verification result.
本发明提供的训练模型的方法、装置、设备及存储介质,能够通过模型训练指令中的属性信息找出需要训练的待训练算法,并通过预设的训练配置表和属性信息找出对应训练待训练算法使用的资源信息,以达到自动配置训练资源的效果;通过上传接口获取用于训练的训练文件,省去现有技术中人为整理训练数据的过程,使得获取训练文件更高效;创建训练待训练算法以得到目标模型的训练任务,在等待队列中根据训练任务的优先级控制训练任务的执行顺序进行训练,以生成训练结果文件,达到了自动控制训练任务执行顺序的效果;将训练生成的训练结果文件添加至模型加载组件中实例化出目标模型并对模型加载组件的配置文件进行修改以将目标模型部署到模型使用对象中,达到了自动部署目标模型的效果。The method, device, device and storage medium for training a model provided by the present invention can find out the algorithm to be trained that needs to be trained through the attribute information in the model training instruction, and find out the corresponding training algorithm through the preset training configuration table and attribute information. The resource information used by the training algorithm to achieve the effect of automatically configuring the training resources; the training files for training are obtained through the upload interface, which saves the process of manually arranging the training data in the prior art, making the acquisition of training files more efficient; The training algorithm is used to obtain the training tasks of the target model, and the execution order of the training tasks is controlled in the waiting queue according to the priority of the training tasks to generate training result files, which achieves the effect of automatically controlling the execution order of the training tasks; The training result file is added to the model loading component, the target model is instantiated, and the configuration file of the model loading component is modified to deploy the target model to the model using object, which achieves the effect of automatically deploying the target model.
实施例二Embodiment 2
本发明实施例提供了一种训练模型的装置,如图2所示,该装置具体包括以下组成部分:An embodiment of the present invention provides an apparatus for training a model, as shown in FIG. 2 , the apparatus specifically includes the following components:
接收模块201,用于当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法;The receiving module 201 is configured to, when receiving a model training instruction, parse out attribute information from the model training instruction, and obtain an algorithm to be trained corresponding to the attribute information from a preset model library;
上传模块202,用于从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件;An uploading module 202, configured to obtain resource information corresponding to the attribute information from a preset training configuration table, and obtain a training file for training the algorithm to be trained through a preset upload interface;
训练模块203,用于利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件;A training module 203, configured to use the resource information and train the algorithm to be trained through the training file to obtain a training result file;
实例模块204,用于将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型;The instance module 204 is used for adding the training result file to the preset model loading component to instantiate the target model;
部署模块205,用于对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。The deployment module 205 is configured to modify the configuration file in the model loading component to deploy the target model into the model usage object.
具体的,所述接收模块201,用于:Specifically, the receiving module 201 is used for:
从所述属性信息中解析出算法类型;Parse the algorithm type from the attribute information;
从所述预设模型库中查找到和所述算法类型对应的算法模板;Find the algorithm template corresponding to the algorithm type from the preset model library;
从所述属性信息中解析出算法参数,并将所述算法参数添加到所述算法模板中以生成所述待训练算法。Algorithm parameters are parsed from the attribute information, and the algorithm parameters are added to the algorithm template to generate the to-be-trained algorithm.
具体的,所述上传模块202,用于:Specifically, the uploading module 202 is used for:
获取预设的训练配置表;其中,通过所述训练配置表设置了多种三元组信息和多个资源信息的一一对应关系、且所述三元组信息包括以下参数项:算法类型、模型使用对象的所属行业、所属行业的业务场景;Acquire a preset training configuration table; wherein, a one-to-one correspondence between various triples information and multiple resource information is set through the training configuration table, and the triplet information includes the following parameter items: algorithm type, The industry to which the model uses the object, and the business scenario of the industry to which it belongs;
从所述属性信息中解析出算法类型、模型使用对象的所属行业、所属行业的业务场景的参数值,并将解析出的参数值形成参考三元组信息;From the attribute information, the algorithm type, the industry to which the model is used, and the parameter values of the business scenarios of the industry are parsed, and the parsed parameter values are formed into reference triplet information;
判断在所述训练配置表中是否存在所述参考三元组信息,若是,则从所述训练配置表中获取与所述参考三元组信息对应的资源信息,若否,则使用预设的公共资源信息。Judging whether the reference triplet information exists in the training configuration table, if so, obtain resource information corresponding to the reference triplet information from the training configuration table, if not, use the preset public resource information.
具体的,所述训练模块203,用于:Specifically, the training module 203 is used for:
将所述属性信息、所述待训练算法、所述资源信息和所述训练文件构成训练任务,并将所述训练任务存储到预设的等待队列中;The attribute information, the algorithm to be trained, the resource information and the training file constitute a training task, and the training task is stored in a preset waiting queue;
当接收到训练指令时,获取位于所述等待队列中的各个训练任务的等待时长;When receiving the training instruction, obtain the waiting duration of each training task located in the waiting queue;
从每个训练任务的属性信息中解析出用于表征所述训练任务重要程度的预设权重值;A preset weight value used to characterize the importance of the training task is parsed from the attribute information of each training task;
将每个训练任务的等待时长与预设权重值相加得到对应训练任务的优先级值;The priority value of the corresponding training task is obtained by adding the waiting time of each training task to the preset weight value;
基于各个训练任务的优先级值,并按照由大到小的顺序,对所述等待队列中的各个训练任务进行排序;Sort each training task in the waiting queue based on the priority value of each training task and in descending order;
按照排序结果顺序执行各个训练任务,以得到各个训练任务的训练结果文件。Execute each training task in the order of the sorted results to obtain the training result file of each training task.
具体的,所述生成模块204,用于:Specifically, the generating module 204 is used for:
定期扫描用于存储所述训练结果文件的存储区域,并当扫描到所述训练结果文件时,将所述训练结果文件添加至所述模型加载组件中并通过所述模型加载组件运行所述训练结果文件以实例化出目标模型;Periodically scan the storage area for storing the training result file, and when the training result file is scanned, add the training result file to the model loading component and run the training through the model loading component result file to instantiate the target model;
其中,所述模型加载组件为:Tensorflow Serving组件。Wherein, the model loading component is: Tensorflow Serving component.
具体的,所述部署模块205,用于:Specifically, the deployment module 205 is used for:
从所述属性信息中解析出模型使用对象的接口路径,并将所述接口路径添加到所述模型加载组件中配置文件的预设部署接口中,以将所述目标模型部署到模型使用对象中。The interface path of the model usage object is parsed from the attribute information, and the interface path is added to the preset deployment interface of the configuration file in the model loading component, so as to deploy the target model into the model usage object .
进一步的,所述装置还包括:Further, the device also includes:
验证模块,在所述将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型之后用于接收有校验终端发送的验证指令,并从所述验证指令中解析出用于验证所述目标模型的验证文件;其中,所述验证文件包括:标准输入和标准输出;将所述验证文件中的所有标准输入依次输入到所述目标模型中,以得到实际输出;根据所有的实际输出与所述验证文件中的所有标准输出计算出校验结果;其中,所述校验结果包括:准确率、错误率、拒识率;将所述校验结果发送至所述校验终端。The verification module is used to receive the verification instruction sent by the verification terminal after the training result file is added to the preset model loading component to instantiate the target model, and parse out the verification instruction from the verification instruction. A verification file for verifying the target model; wherein, the verification file includes: standard input and standard output; all standard inputs in the verification file are sequentially input into the target model to obtain the actual output; according to all The actual output of the verification file and all standard outputs in the verification file are used to calculate the verification result; wherein, the verification result includes: accuracy rate, error rate, and rejection rate; the verification result is sent to the verification terminal.
实施例三Embodiment 3
本实施例还提供一种计算机设备,如可以执行程序的智能手机、平板电脑、笔记本电脑、台式计算机、机架式服务器、刀片式服务器、塔式服务器或机柜式服务器(包括独立的服务器,或者多个服务器所组成的服务器集群)等。如图3所示,本实施例的计算机设备30至少包括但不限于:可通过系统总线相互通信连接的存储器301、处理器302。需要指出的是,图3仅示出了具有组件301-302的计算机设备30,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。This embodiment also provides a computer device, such as a smart phone, a tablet computer, a notebook computer, a desktop computer, a rack server, a blade server, a tower server, or a cabinet server (including independent servers, or A server cluster composed of multiple servers), etc. As shown in FIG. 3 , the computer device 30 in this embodiment at least includes but is not limited to: a
本实施例中,存储器301(即可读存储介质)包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,存储器301可以是计算机设备30的内部存储单元,例如该计算机设备30的硬盘或内存。在另一些实施例中,存储器301也可以是计算机设备30的外部存储设备,例如该计算机设备30上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,存储器301还可以既包括计算机设备30的内部存储单元也包括其外部存储设备。在本实施例中,存储器301通常用于存储安装于计算机设备30的操作系统和各类应用软件。此外,存储器301还可以用于暂时地存储已经输出或者将要输出的各类数据。In this embodiment, the memory 301 (that is, a readable storage medium) includes a flash memory, a hard disk, a multimedia card, a card-type memory (eg, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory, Magnetic Disk, Optical Disk, etc. In some embodiments, the
处理器302在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器302通常用于控制计算机设备30的总体操作。The processor 302 may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor, or other data processing chips in some embodiments. The processor 302 is typically used to control the overall operation of the computer device 30 .
具体的,在本实施例中,处理器302用于执行存储器301中存储的训练模型的方法的程序,所述训练模型的方法的程序被执行时实现如下步骤:Specifically, in this embodiment, the processor 302 is configured to execute the program of the method for training a model stored in the
当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法;When a model training instruction is received, attribute information is parsed from the model training instruction, and an algorithm to be trained corresponding to the attribute information is obtained from a preset model library;
从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件;Obtain resource information corresponding to the attribute information from a preset training configuration table, and obtain a training file for training the algorithm to be trained through a preset upload interface;
利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件;Use the resource information and train the algorithm to be trained through the training file to obtain a training result file;
将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型;adding the training result file to a preset model loading component to instantiate the target model;
对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。A configuration file in the model loading component is modified to deploy the target model into a model consuming object.
上述方法步骤的具体实施例过程可参见实施例一,本实施例在此不再重复赘述。For the specific embodiment process of the above method steps, reference may be made to Embodiment 1, which will not be repeated in this embodiment.
实施例四Embodiment 4
本实施例还提供一种计算机可读存储介质,如闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘、服务器、App应用商城等等,其上存储有计算机程序,所述计算机程序被处理器执行时实现如下方法步骤:This embodiment also provides a computer-readable storage medium, such as a flash memory, a hard disk, a multimedia card, a card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), only Read-only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), magnetic memory, magnetic disk, optical disk, server, App application mall, etc., on which computer programs are stored, When the computer program is executed by the processor, the following method steps are implemented:
当接收到模型训练指令时,从所述模型训练指令中解析出属性信息,并从预设模型库中获取与所述属性信息对应的待训练算法;When a model training instruction is received, attribute information is parsed from the model training instruction, and an algorithm to be trained corresponding to the attribute information is obtained from a preset model library;
从预设的训练配置表中获取与所述属性信息对应的资源信息,并通过预设上传接口获取用于训练所述待训练算法的训练文件;Obtain resource information corresponding to the attribute information from a preset training configuration table, and obtain a training file for training the algorithm to be trained through a preset upload interface;
利用所述资源信息,并通过所述训练文件对所述待训练算法进行训练,以得到训练结果文件;Use the resource information and train the algorithm to be trained through the training file to obtain a training result file;
将所述训练结果文件添加至预设的模型加载组件中以实例化出目标模型;adding the training result file to a preset model loading component to instantiate the target model;
对所述模型加载组件中的配置文件进行修改以将所述目标模型部署到模型使用对象中。A configuration file in the model loading component is modified to deploy the target model into a model consuming object.
上述方法步骤的具体实施例过程可参见实施例一,本实施例在此不再重复赘述。For the specific embodiment process of the above method steps, reference may be made to Embodiment 1, which will not be repeated in this embodiment.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210179767.XA CN114492673A (en) | 2022-02-25 | 2022-02-25 | A method, apparatus, device and storage medium for training a model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210179767.XA CN114492673A (en) | 2022-02-25 | 2022-02-25 | A method, apparatus, device and storage medium for training a model |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114492673A true CN114492673A (en) | 2022-05-13 |
Family
ID=81485376
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210179767.XA Pending CN114492673A (en) | 2022-02-25 | 2022-02-25 | A method, apparatus, device and storage medium for training a model |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114492673A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116432028A (en) * | 2023-03-22 | 2023-07-14 | 苏州浪潮智能科技有限公司 | Method, system, device and medium for model training based on training platform |
| CN116881717A (en) * | 2023-07-14 | 2023-10-13 | 苏州浪潮智能科技有限公司 | A data training method, device and medium |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106095545A (en) * | 2016-06-01 | 2016-11-09 | 东软集团股份有限公司 | Method for scheduling task and device |
| CN111861020A (en) * | 2020-07-27 | 2020-10-30 | 深圳壹账通智能科技有限公司 | Model deployment method, device, equipment and storage medium |
| CN112799850A (en) * | 2021-02-26 | 2021-05-14 | 重庆度小满优扬科技有限公司 | Model training method, model prediction method, and model control system |
-
2022
- 2022-02-25 CN CN202210179767.XA patent/CN114492673A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106095545A (en) * | 2016-06-01 | 2016-11-09 | 东软集团股份有限公司 | Method for scheduling task and device |
| CN111861020A (en) * | 2020-07-27 | 2020-10-30 | 深圳壹账通智能科技有限公司 | Model deployment method, device, equipment and storage medium |
| CN112799850A (en) * | 2021-02-26 | 2021-05-14 | 重庆度小满优扬科技有限公司 | Model training method, model prediction method, and model control system |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116432028A (en) * | 2023-03-22 | 2023-07-14 | 苏州浪潮智能科技有限公司 | Method, system, device and medium for model training based on training platform |
| CN116432028B (en) * | 2023-03-22 | 2025-06-13 | 苏州浪潮智能科技有限公司 | Method, system, device and medium for model training based on training platform |
| CN116881717A (en) * | 2023-07-14 | 2023-10-13 | 苏州浪潮智能科技有限公司 | A data training method, device and medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2024244271A1 (en) | Task generation method and system based on large language model, and device and storage medium | |
| CN110990053A (en) | Creation method, usage method and device of machine learning scheme template | |
| AU2017327824B2 (en) | Data integration job conversion | |
| CN113590308B (en) | A workflow processing method, device, equipment and medium for applying for cloud resources | |
| CN114492673A (en) | A method, apparatus, device and storage medium for training a model | |
| CN115794437B (en) | Microservice calling method, device, computer equipment and storage medium | |
| CN112035218A (en) | Method, device and equipment for providing model service | |
| CN116302464A (en) | Cloud platform resource arrangement method, device and electronic equipment based on singly linked list | |
| CN112699042B (en) | Unit test case generation method and device | |
| CN113962670A (en) | Document approval method, equipment and storage medium of document approval system | |
| CN114691953A (en) | Immersive interactive preference mining method and system combined with big data | |
| CN117056240A (en) | Data element development and debugging method and system supporting offline Jar package | |
| CN110532448B (en) | Document classification method, device, equipment and storage medium based on neural network | |
| CN115391004A (en) | Task scheduling system, method and device and electronic equipment | |
| US8036921B2 (en) | System and method for optimization process repeatability in an on-demand computing environment | |
| CN119338402A (en) | A workflow generation method, device, electronic device and storage medium | |
| CN114663568B (en) | Material conversion method, device, computer equipment and medium | |
| CN117235527A (en) | End-to-end containerized big data model construction method, device, equipment and media | |
| CN117830807A (en) | Task scheduling method, device and medium based on language big model | |
| CN114996117B (en) | Client GPU application evaluation system and method for SaaS model | |
| CN113672215B (en) | Deep learning distributed training adaptation method and device | |
| CN117234505A (en) | Interactive page generation method, device, equipment and storage medium thereof | |
| CN114879953A (en) | Model deployment method, device, equipment and medium | |
| CN114185962A (en) | Model training method and device, electronic equipment and storage medium | |
| US7428697B2 (en) | Preserving content or attribute information during conversion from a structured document to a computer program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |