[go: up one dir, main page]

CN114503019A - Quantum mechanics framework for OAM interaction with matter and applications in solid state, bioscience and quantum computing - Google Patents

Quantum mechanics framework for OAM interaction with matter and applications in solid state, bioscience and quantum computing Download PDF

Info

Publication number
CN114503019A
CN114503019A CN202080065884.2A CN202080065884A CN114503019A CN 114503019 A CN114503019 A CN 114503019A CN 202080065884 A CN202080065884 A CN 202080065884A CN 114503019 A CN114503019 A CN 114503019A
Authority
CN
China
Prior art keywords
oam
quantum
electrons
semiconductor material
angular momentum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080065884.2A
Other languages
Chinese (zh)
Inventor
苏莱曼·阿什拉斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NxGen Partners IP LLC
Original Assignee
NxGen Partners IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/660,246 external-priority patent/US10726353B2/en
Application filed by NxGen Partners IP LLC filed Critical NxGen Partners IP LLC
Publication of CN114503019A publication Critical patent/CN114503019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0418Architecture, e.g. interconnection topology using chaos or fractal principles
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • H10N99/05Devices based on quantum mechanical effects, e.g. quantum interference devices or metal single-electron transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

One method includes first generating a plane wave beam. At least one orbital angular momentum is applied to the plane wave beam to generate a sum OAM beam. Transitions of electrons between quantized states within the semiconductor material are controlled in response to at least one orbital angular momentum applied to the plane wave beam. An OAM beam is emitted at the semiconductor material to induce transitions of electrons between quantized states within the semiconductor material.

Description

用于OAM与物质相互作用的量子力学框架以及在固态、生物科 学和量子计算中的应用A quantum mechanical framework for OAM-matter interactions and applications in solid-state, bioscience, and quantum computing

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求2019年10月22日提交的题为“用于OAM与物质相互作用的量子力学框架以及在固态、生物科学和量子计算中的应用(QUANTUM MECHANICAL FRAMEWORK FORINTERACTION OF OAM WITH MATTER AND APPLICATIONS IN SOLID STATES,BIOSCIENCESAND QUANTUM COMPUTING)”(代理人案号NXGN60-34719)的16/660246号美国专利申请的优先权和/或权益。本申请还要求2019年9月18日提交的题为OAM BEAM INTERACTIONS WITHMATTER FOR APPLICATIONS TO SOLID STATES,BIOSCIENCES AND QUANTUM COMPUTING的62/902146号美国临时申请(代理人案号NXGN60-32718)的优先权和/或权益,它们的说明书通过引用整体并入本文。This application calls for a document entitled "QUANTUM MECHANICAL FRAMEWORK FORINTERACTION OF OAM WITH MATTER AND APPLICATIONS IN SOLID", entitled "QUANTUM MECHANICAL FRAMEWORK FORINTERACTION OF OAM WITH MATTER AND APPLICATIONS IN SOLID", filed on October 22, 2019 STATES, BIOSCIENCESAND QUANTUM COMPUTING)" (Attorney Docket No. NXGN60-34719) of US Patent Application No. 16/660246 priority and/or interest. This application also claims priority to U.S. Provisional Application No. 62/902146 (Attorney Docket No. NXGN60-32718), entitled OAM BEAM INTERACTIONS WITHMATTER FOR APPLICATIONS TO SOLID STATES, BIOSCIENCES AND QUANTUM COMPUTING, filed on September 18, 2019 and/or or interest, the specification of which is incorporated herein by reference in its entirety.

技术领域technical field

本发明涉及控制粒子在材料内的运动,更具体地,涉及使用施加到光束内的光子的轨道角动量来控制粒子的运动。The present invention relates to controlling the motion of particles within a material, and more particularly, to controlling the motion of particles using the orbital angular momentum of photons applied to a beam of light.

背景技术Background technique

在光子器件中,光能用于将电子激发到更高的能级并产生响应于光能的电能或电流。控制例如半导体、生物材料和量子计算机等材料中电子状态的能力相对于这些材料具有许多优势。目前,可用的技术存在许多缺陷。因此,用于增加控制各种类型材料内电子态的能力的某些方式将在这些材料的使用和操作方面提供许多改进。In photonic devices, light energy is used to excite electrons to higher energy levels and generate electrical energy or current in response to the light energy. The ability to control electronic states in materials such as semiconductors, biological materials, and quantum computers has many advantages over these materials. Currently, the available technology suffers from many flaws. Accordingly, certain means for increasing the ability to control electronic states within various types of materials would provide many improvements in the use and operation of these materials.

发明内容SUMMARY OF THE INVENTION

如本文所公开和描述的,本发明在其一个方面包括一种涉及首先生成平面波光束的方法。对平面波光束施加至少一轨道角动量以生成OAM光束。响应于施加到平面波光束的至少一个轨道角动量来控制半导体材料内的电子在量子化状态(quantized state)之间的跃迁。OAM光束在半导体材料处传输以诱导在半导体材料内的电子在量子化状态之间的跃迁。As disclosed and described herein, the present invention includes, in one aspect thereof, a method involving first generating a plane wave beam. At least one orbital angular momentum is applied to the plane wave beam to generate an OAM beam. Transitions of electrons within the semiconductor material between quantized states are controlled in response to at least one orbital angular momentum applied to the plane wave beam. The OAM beam is transmitted at the semiconductor material to induce transitions of electrons within the semiconductor material between quantized states.

附图说明Description of drawings

为了更完整的理解,现在参考以下结合附图进行的描述,其中:For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:

图1A示出了使用具有DLP的OAM量子迪特的通用量子计算机系统的各种部件的总体视图;Figure 1A shows a general view of various components of a general-purpose quantum computer system using OAM Quantum Dieter with DLP;

图1B示出了使用具有DLP的OAM量子迪特的通用量子计算机系统的框图;Figure 1B shows a block diagram of a general-purpose quantum computer system using OAM Quantum Dieter with DLP;

图2示出了使用自旋偏振进行量子门输入;Figure 2 shows the use of spin polarization for quantum gate input;

图3示出了使用OAM进行量子门输入;Figure 3 shows the use of OAM for quantum gate input;

图4示出了各种类型的量子逻辑电路;Figure 4 shows various types of quantum logic circuits;

图5示出了单比特旋转门;Figure 5 shows a single-bit revolving gate;

图6示出了两比特受控NOT门;以及Figure 6 shows a two-bit controlled NOT gate; and

图7示出了量子迪特网络。Figure 7 shows a quantum Dieter network.

图8示出了用于提高所发射信号内的频谱效率的各种技术;8 illustrates various techniques for increasing spectral efficiency within a transmitted signal;

图9示出了用于提高所发射信号内的频谱效率的特定技术;9 illustrates particular techniques for increasing spectral efficiency within a transmitted signal;

图10示出了在各种通信协议接口之间提供通信带宽的方式的一般概览;Figure 10 shows a general overview of the manner in which communication bandwidth is provided between various communication protocol interfaces;

图11是在通信系统内生成轨道角动量的系统的功能框图;11 is a functional block diagram of a system for generating orbital angular momentum within a communication system;

图12是图6中的轨道角动量信号处理块的功能框图;Figure 12 is a functional block diagram of the orbital angular momentum signal processing block in Figure 6;

图13是示出从包括多个数据流的接收信号中去除轨道角动量的方式的功能框图;13 is a functional block diagram illustrating the manner in which orbital angular momentum is removed from a received signal comprising multiple data streams;

图14示出了具有两个量子自旋偏振的单波长,其提供无限数量的具有与其相关联的各种轨道角动量的信号;Figure 14 shows a single wavelength with two quantum spin polarizations providing an infinite number of signals with various orbital angular momentums associated therewith;

图15A示出了具有自旋角动量的物体;Figure 15A shows an object with spin angular momentum;

图15B示出了具有轨道角动量的物体;Figure 15B shows an object with orbital angular momentum;

图15C示出了携带自旋角动量的圆偏振光束;Figure 15C shows a circularly polarized beam carrying spin angular momentum;

图15D示出了携带轨道角动量的光束的相位结构;Figure 15D shows the phase structure of a beam carrying orbital angular momentum;

图16A示出了仅具有自旋角动量变化的平面波;Figure 16A shows a plane wave with only a change in spin angular momentum;

图16B示出了施加有自旋和轨道角动量的信号;Figure 16B shows a signal with spin and orbital angular momentum applied;

图17A至图17C示出了施加有不同轨道角动量的各种信号;Figures 17A-17C show various signals applied with different orbital angular momentum;

图17D示出了各种本征模式的坡印廷矢量的传播;Figure 17D shows the propagation of Poynting vectors for various eigenmodes;

图17E示出了螺旋相位板;Figure 17E shows a spiral phase plate;

图18示出了使用HG模态组的正交性进行自由空间空间复用的系统;Figure 18 shows a system for free-space spatial multiplexing using the orthogonality of the HG modality;

图19示出了用于将高斯光束转换为OAM光束的各种方式;Figure 19 shows various ways for converting a Gaussian beam to an OAM beam;

图20示出了用于生成包含正交函数的光束的方式;Figure 20 shows a manner for generating a beam comprising orthogonal functions;

图21A至图21H示出了可用于调制光束的全息图;Figures 21A-21H show holograms that can be used to modulate light beams;

图22A是数字式微反射镜器件的框图;22A is a block diagram of a digital micromirror device;

图22B示出了微反射镜与光源相互作用的方式;Figure 22B shows the way the micromirror interacts with the light source;

图23示出了微反射镜的机械结构;Figure 23 shows the mechanical structure of the micromirror;

图24是微反射镜的功能部件的框图;24 is a block diagram of the functional components of a micromirror;

图25示出了用于改变微反射镜的位置的过程的流程图;Figure 25 shows a flowchart of a process for changing the position of a micromirror;

图26示出了用于测量所生成的光束的强度和相位的相位干涉仪的强度;Figure 26 shows the intensity of a phase interferometer used to measure the intensity and phase of the generated beam;

图27A示出了可以实时实现不同OAM模式之间切换的方式;Figure 27A illustrates the manner in which switching between different OAM modes can be achieved in real time;

图27B示出了发射机(transmitter)处理穿过柱面透镜到达聚焦透镜的多个数据信道的方式;Figure 27B illustrates the manner in which a transmitter processes multiple data channels passing through a cylindrical lens to a focusing lens;

图28示出了康宁7056的窗口透射曲线;Figure 28 shows the window transmission curve for Corning 7056;

图29至图33是康宁7056的可见光和UV AR涂层窗口透射率的放大视图;Figures 29-33 are enlarged views of the visible and UV AR coating window transmittance of Corning 7056;

图34示出了用于使用微机电设备内的全息图来生成OAM扭转光束的电路;Figure 34 shows a circuit for generating an OAM twisted beam using a hologram within a microelectromechanical device;

图35示出了使用多个单全息图进行复用;Figure 35 illustrates multiplexing using multiple single holograms;

图36示出了用于应用OAM水平的全息图的各种简化二进制;Figure 36 shows various simplified binaries for applying OAM level holograms;

图37A示出了OAM和偏振处理的结合使用;Figure 37A shows the combined use of OAM and polarization processing;

图37B示出了基本量子模块;Figure 37B shows a basic quantum module;

图38示出了量子门的示例;Figure 38 shows an example of a quantum gate;

图39示出了使用OAM自由度实现的量子迪特门;Figure 39 shows a quantum Dieter gate implemented using OAM degrees of freedom;

图40示出了基于OAM的量子迪特隐形传输(teleportation)模块;Figure 40 shows an OAM-based quantum Dieter teleportation module;

图41示出了校正子计算器模块;Figure 41 shows the syndrome calculator module;

图42示出了用于基于校正子测量来识别量子错误的校正子;42 shows syndromes for identifying quantum errors based on syndrome measurements;

图43示出了量子计算机的框图;Figure 43 shows a block diagram of a quantum computer;

图44示出了E/O调制器;Figure 44 shows an E/O modulator;

图45示出了广义CNOT门;Figure 45 shows a generalized CNOT gate;

图46示出了由两个量子比特组成的量子寄存器上的CNOT门的运算;Figure 46 shows the operation of a CNOT gate on a quantum register consisting of two qubits;

图47示出了利用量子密钥分配的OAM处理系统的框图;Figure 47 shows a block diagram of an OAM processing system utilizing quantum key distribution;

图48示出了基本量子密钥分配系统;Figure 48 shows a basic quantum key distribution system;

图49示出了其中两个分离的状态被组合成量子密钥分配内的单个共轭对的方式;Figure 49 shows the manner in which two separate states are combined into a single conjugate pair within a quantum key distribution;

图50示出了可以在量子密钥分配系统内使用不同基础发送0和1比特的一种方式;Figure 50 illustrates one way in which 0 and 1 bits can be sent using different bases within a quantum key distribution system;

图51是示出发射机发送量子密钥的过程的流程图;Figure 51 is a flowchart illustrating a process by which a transmitter sends a quantum key;

图52示出了接收机可以接收和确定共享的量子密钥的方式;Figure 52 illustrates the manner in which a receiver can receive and determine a shared quantum key;

图53更具体地示出了发射机和接收机可以确定共享的量子密钥的方式;Figure 53 shows in more detail the manner in which a transmitter and receiver can determine a shared quantum key;

图54是示出用于确定是否保持或放弃所确定的密钥的过程的流程图;54 is a flowchart illustrating a process for determining whether to keep or relinquish a determined key;

图55示出了利用自由空间量子密钥分配系统的发射机和接收机的功能框图;Figure 55 shows a functional block diagram of a transmitter and receiver utilizing a free-space quantum key distribution system;

图56示出了基于网络云的量子密钥分配系统;Figure 56 shows a network cloud-based quantum key distribution system;

图57示出了与多个用户通信的高速单光子探测器;Figure 57 shows a high-speed single-photon detector in communication with multiple users;

图58示出了节点量子密钥分配网络;Figure 58 shows a node quantum key distribution network;

图59示出了光束;Figure 59 shows the beam;

图60示出了平面波前;Figure 60 shows a plane wavefront;

图61示出了螺旋波前;Figure 61 shows a helical wavefront;

图62示出了使用光捕获复合物(Light Harvesting Complex,LHC)生成电子-空穴对;Figure 62 shows the generation of electron-hole pairs using a Light Harvesting Complex (LHC);

图63示出了使用有机光伏电池(Organic Photovoltaic Cell,OPV)生成电子-空穴对;Figure 63 shows the generation of electron-hole pairs using an Organic Photovoltaic Cell (OPV);

图64示出了自旋和分散对电子-空穴复合的影响;Figure 64 shows the effect of spin and dispersion on electron-hole recombination;

图65示出了OAM扭转光束对电子-空穴复合的影响;Figure 65 shows the effect of an OAM twisted beam on electron-hole recombination;

图66示出了用于改进抑制光子电路中电子-空穴复合的一种方式的功能框图;Figure 66 shows a functional block diagram of one approach for improved suppression of electron-hole recombination in photonic circuits;

图67示出了在有机光伏电池内电子在不同状态之间移动的方式;Figure 67 shows the way electrons move between different states within an organic photovoltaic cell;

图68是示出了用于使用对光束施加轨道角动量来控制电子-空穴复合的过程的流程图;68 is a flow chart illustrating a process for controlling electron-hole recombination using orbital angular momentum applied to a beam;

图69示出了用于使用光束将OAM应用于电子的过程的流程图;Figure 69 shows a flowchart of a process for applying OAM to electrons using a beam;

图70示出了用于执行图69中所示操作的系统的框图;Figure 70 shows a block diagram of a system for performing the operations shown in Figure 69;

图71示出了通过光激发可以激发半导体的各种能带的方式;Figure 71 illustrates the manner in which various energy bands of a semiconductor can be excited by photoexcitation;

图72示出了使用光子中的轨道角动量将轨道角动量施加到电子上,从而产生电流和磁场;Figure 72 illustrates the use of orbital angular momentum in photons to impart orbital angular momentum to electrons, resulting in current and magnetic fields;

图73示出了用于确定由一组电子提供的总电流/磁场的过程的流程图;Figure 73 shows a flowchart of a process for determining the total current/magnetic field provided by a set of electrons;

图74示出了用于确定扭转光的平均场和碰撞项的影响的流程图;Figure 74 shows a flow chart for determining the effect of the mean field and collision terms of twisted light;

图75示出了用于使用想象为圆柱体的固体来确定体系统的光束相互作用的流程图;Figure 75 shows a flow diagram for determining beam interactions of a volume system using a solid imagined as a cylinder;

图76示出了固体内的离子晶格内的电子;Figure 76 shows electrons within an ionic lattice within a solid;

图77示出了用于通过扭转状态函数(波函数)来对信息进行编码的方式;Figure 77 shows a manner for encoding information by twisting a state function (wave function);

图78示出了编织任意子的示例;Figure 78 shows an example of weaving anyons;

图79示出了任意子支架的编织;Figure 79 shows the braiding of any sub-stent;

图80示出了编织的另一个示例;Figure 80 shows another example of weaving;

图81示出了OAM光与石墨烯之间的相互作用;Figure 81 shows the interaction between OAM light and graphene;

图82示出了蜂窝结构中的石墨烯晶格;以及Figure 82 shows a graphene lattice in a honeycomb structure; and

图83示出了用于使用OAM光束来使用CRISPR-CAS9技术对基因序列进行修正的方式。Figure 83 shows the means for making corrections to gene sequences using CRISPR-CAS9 technology using OAM beams.

具体实施方式Detailed ways

现在参考附图,其中相同的附图标记在本文中用于始终指示相同的元件,说明和描述了用于OAM与固态、生物科学和量子计算中的应用相互作用的量子力学框架的各种视图和实施例,并且描述了其他可能的实施例。附图不一定按比例绘制,并且在某些情况下,附图在某些地方被放大和/或简化以仅用于说明目的。基于以下可能实施例的示例,本领域的普通技术人员将理解到许多可能的应用和变化。Referring now to the drawings, wherein like reference numerals are used throughout to refer to like elements throughout, various views of the quantum mechanical framework for the interaction of OAM with applications in solid state, biological science, and quantum computing are illustrated and described and embodiments, and other possible embodiments are described. The drawings are not necessarily to scale, and in some instances, the drawings have been exaggerated and/or simplified in places for illustrative purposes only. Based on the following examples of possible embodiments, those of ordinary skill in the art will appreciate many possible applications and variations.

现在参考图1A,示出了有助于使用具有DLP的OAM量子迪特(qudit)的通用量子计算机系统的各种部件的总体视图。本发明使用了一种用于量子通信和量子计算应用程序100两者的方法,以使用OAM量子迪特同时工作,以实现具有集成光子学(即DLP)106的量子-迪特门102和量子迪特量子密钥分配(Quantum Key Distribution,QKD)104。OAM信号使用DLP 106生成,并允许利用OAM传播以通过光纤108来传播。OAM传播的信号在量子-迪特门102内使用,并且可以利用量子迪特QKD 104以执行量子计算、通信和加密100。量子迪特包含一个量子单位的信息,可以采取d个状态中的任意一个状态,其中d是一个变量。Referring now to FIG. 1A , there is shown a general view of various components that facilitate the use of a general-purpose quantum computer system using OAM quantum dits (qudits) with DLP. The present invention uses a method for both quantum communication and quantum computing applications 100 to work simultaneously using OAM Quantum Dieter to achieve Quantum-Dieter Gate 102 and Quantum with Integrated Photonics (ie DLP) 106 Dieter Quantum Key Distribution (QKD) 104. The OAM signal is generated using DLP 106 and allowed to propagate through fiber 108 using OAM propagation. OAM-propagated signals are used within a quantum-Dieter gate 102 and a quantum-Dieter QKD 104 may be utilized to perform quantum computation, communication, and encryption 100 . A quantum diet contains a quantum unit of information that can take any of d states, where d is a variable.

现在参考图1B,示出了使用具有DLP的OAM量子迪特的通用量子计算机系统的框图。输入数据流120被提供给OAM 122以将OAM值应用于数据120。OAM处理使光子能够携带每光子任意数量的比特。如下文所述,使用DLP处理123的DLP技术将经OAM处理的数据比特应用于光子。来自DLP处理123的信号被提供给量子迪特门124。量子迪特门124可以包括广义X门、广义Z门和广义CNOT门,它们是现有量子比特(qubit)门的量子迪特版本。量子迪特门124还可以包括模块,例如容错量子计算模块、QKD模块等。这些模块可以提供量子纠错(即非二进制校正子模块);纠缠辅助QKD(即广义贝尔(Bell)态等)。基本量子迪特门124将包括QFT(量子傅里叶变换)。因此,量子迪特上的F门与量子比特上的哈达玛(Hadamard)门具有相同的效果,|0>被映射到1/sqrt(2){|0>+|1>},|1>被映射到1/sqrt(2){|0>-|1>}。从量子迪特门124发出的信号然后可以用于例如量子密钥分配(QKD)过程126。具有高速通信和计算的现有QKD非常缓慢。通过使用本文描述的系统,可以同时增加安全性和吞吐量,同时进一步增加系统的计算和处理能力。Referring now to FIG. 1B , a block diagram of a general-purpose quantum computer system using OAM Quantum Dieter with DLP is shown. Input data stream 120 is provided to OAM 122 to apply OAM values to data 120 . OAM processing enables photons to carry any number of bits per photon. As described below, the OAM processed data bits are applied to photons using DLP techniques of DLP processing 123 . The signal from the DLP process 123 is provided to a quantum Dieter 124 . Quantum Dieter gates 124 may include generalized X gates, generalized Z gates, and generalized CNOT gates, which are quantum Dieter versions of existing quantum bit (qubit) gates. Quantum Dieter 124 may also include modules, such as fault-tolerant quantum computing modules, QKD modules, and the like. These modules can provide quantum error correction (ie, non-binary syndrome modules); entanglement-assisted QKD (ie, generalized Bell states, etc.). The basic quantum Dieter 124 will include a QFT (Quantum Fourier Transform). Therefore, an F gate on a quantum ditter has the same effect as a Hadamard gate on a qubit, |0> is mapped to 1/sqrt(2){|0>+|1>}, |1> is mapped to 1/sqrt(2){|0>-|1>}. The signal emitted from the quantum Dieter gate 124 may then be used, for example, in a quantum key distribution (QKD) process 126 . Existing QKDs with high-speed communication and computation are very slow. By using the system described herein, both security and throughput can be increased while further increasing the computational and processing power of the system.

光子的光子角动量可用于携带自旋角动量(Spin Angular Momentum,SAM)和轨道角动量(Orbital Angular Momentum,OAM)以传输多个数据比特。SAM与偏振相关,而OAM与复电场的方位角相位依赖性相关。假定OAM本征态是相互正交的,则每个单光子可以传输大量的比特。关于图2和图3更具体地说明了这一点。图2示出了如何将偏振自旋202施加到数据比特值204以生成量子比特值206。因为每个数据比特值204可以仅具有施加到其上的正自旋偏振或负自旋偏振,所以对于每个数据值只有一对量子比特状态可用。然而,如图3中所示,如果OAM值302被应用于每个数据比特值304,则可以为每个数据比特值304获得更多数量的量子迪特值306。量子迪特值的数量可以在1至N的范围内,其中N是应用于数据值304的不同OAM态的最大数量。用于将OAM值302应用于数据比特值304的方式可以使用下面将更全面描述的DLP处理123。The photon angular momentum of photons can be used to carry spin angular momentum (Spin Angular Momentum, SAM) and orbital angular momentum (Orbital Angular Momentum, OAM) to transmit multiple data bits. SAM is polarization dependent, whereas OAM is related to the azimuthal phase dependence of the complex electric field. Assuming that the OAM eigenstates are mutually orthogonal, each single photon can transmit a large number of bits. This is explained in more detail with respect to FIGS. 2 and 3 . FIG. 2 shows how polarization spins 202 are applied to data bit values 204 to generate qubit values 206 . Because each data bit value 204 may only have positive or negative spin polarization applied to it, only one pair of qubit states is available for each data value. However, as shown in FIG. 3 , if an OAM value 302 is applied to each data bit value 304 , a greater number of quantum Ditt values 306 may be obtained for each data bit value 304 . The number of quantum Ditt values may range from 1 to N, where N is the maximum number of distinct OAM states applied to the data value 304 . The manner for applying the OAM value 302 to the data bit value 304 may use the DLP process 123 described more fully below.

现在回到图1,可以使用光纤108中的OAM传播来传输经OAM处理的信号。通过使用全息方法来生成/分析具有施加于其上的不同光子角动量的状态的能力允许在多维希尔伯特(Hilbert)空间中实现量子态。因为OAM态提供无限的基态,而SAM态仅为2-D的,所以OAM态还可用于增加量子密钥分配(QKD)应用104的安全性并提高量子计算应用100的计算能力。该系统的目标是建立基于角动量的确定性通用量子量子迪特门102,即,广义X量子门、广义Z量子门和广义CNOT量子门,以及对于各种应用具有重要性的不同量子模块,包括容错量子计算、隐形传态、QKD和量子纠错。例如,用于量子隐形传态应用的基本量子模块包括广义贝尔态生成模块和QFT模块。用于纠缠辅助QKD的基本模块是广义贝尔态生成模块或韦尔(Weyl)算符模块。该方法是使用DLP上的多维量子迪特来在集成光学器件中实现所有这些模块。Returning now to FIG. 1, OAM propagation in optical fiber 108 may be used to transmit the OAM processed signal. The ability to generate/analyze states with different photon angular momentums imposed on them by using holographic methods allows quantum states to be realized in multidimensional Hilbert space. Because the OAM state provides an infinite ground state, whereas the SAM state is only 2-D, the OAM state can also be used to increase the security of quantum key distribution (QKD) applications 104 and increase the computational power of quantum computing applications 100 . The goal of this system is to build deterministic universal quantum quantum Dieter gates 102 based on angular momentum, i.e., generalized X quantum gates, generalized Z quantum gates, and generalized CNOT quantum gates, as well as different quantum modules of importance for various applications, Includes fault-tolerant quantum computing, teleportation, QKD, and quantum error correction. For example, basic quantum modules for quantum teleportation applications include generalized Bell state generation modules and QFT modules. The basic module for entanglement-assisted QKD is the generalized Bell state generation module or the Weyl operator module. The approach is to implement all these modules in integrated optics using a multidimensional quantum ditter on DLP.

在量子计算中,量子比特或量子位是量子信息的基本单位,并且包括使用两态器件物理实现的经典二进制位的量子版本。量子比特是两态量子力学系统,是显示量子力学特性的最简单量子系统之一。示例包括:电子的自旋,其中两个能级可以被认为是自旋向上和自旋向下;或者单光子的偏振,其中两个状态可以被认为是垂直偏振和水平偏振。在经典系统中,比特必须处于一个状态或另一个状态。然而,量子力学允许量子比特同时处于两个状态/能级的相干叠加,这是量子力学和因此是量子计算的基础的性质。In quantum computing, a quantum bit, or qubit, is the fundamental unit of quantum information, and includes a quantum version of a classical binary bit that is physically implemented using two-state devices. Qubits are two-state quantum mechanical systems, one of the simplest quantum systems that exhibit quantum mechanical properties. Examples include: the spin of an electron, where the two energy levels can be thought of as spin-up and spin-down; or the polarization of a single photon, where the two states can be thought of as vertical and horizontal polarization. In classical systems, bits must be in one state or the other. However, quantum mechanics allows qubits to be in a coherent superposition of two states/energy levels at the same time, a property of quantum mechanics and thus the basis of quantum computing.

在量子计算中,“量子比特”的概念已被引入,作为传统计算机中“比特”的经典概念的对应物。标记为|0>和|1>的两个量子比特状态分别对应于经典比特0和1。任意量子比特状态|

Figure BDA0003553842120000064
>保持状态|0>和|1>的相干叠加:In quantum computing, the concept of "qubit" has been introduced as the counterpart to the classical concept of "bit" in conventional computers. The two qubit states labeled |0> and |1> correspond to classical bits 0 and 1, respectively. Arbitrary Qubit State|
Figure BDA0003553842120000064
>Keep the coherent superposition of states |0> and |1>:

Figure BDA0003553842120000061
Figure BDA0003553842120000061

其中a和b是称为概率幅度的复数。也就是说,量子比特状态|

Figure BDA0003553842120000062
>以概率|a|2塌陷为|0>状态,抑或以概率|b|2塌陷为|1>状态,且满足|a|2+|b|2=1。where a and b are complex numbers called probability magnitudes. That is, the qubit state|
Figure BDA0003553842120000062
> collapse into the |0> state with probability |a| 2 , or collapse into |1> state with probability |b| 2 , and satisfy |a| 2 +|b| 2 =1.

量子比特状态|

Figure BDA0003553842120000063
>被描述为Qubit State|
Figure BDA0003553842120000063
> is described as

Figure BDA0003553842120000071
Figure BDA0003553842120000071

这被称为布洛赫(Bloch)球面表示。为了给出基本量子逻辑门的最小表示,通过将概率幅度a和b分别对应为函数的实部和虚部,将其重写为具有复值表示的函数。具有复值表示的量子态被描述为This is called a Bloch spherical representation. To give a minimal representation of an elementary quantum logic gate, it is rewritten as a function with a complex-valued representation by corresponding the probability magnitudes a and b as the real and imaginary parts of the function, respectively. A quantum state with a complex-valued representation is described as

f(θ)=e=cosθ+i sinθ,f(θ)=e =cosθ+i sinθ,

在量子计算特别是计算的量子电路模型中,量子逻辑门(或简称量子门)是在少量量子比特上工作的基本量子电路。它们是量子电路的构建块,就像用于传统的数字电路的经典逻辑门一样。In quantum computing, especially the quantum circuit model of computing, quantum logic gates (or simply quantum gates) are basic quantum circuits that work on a small number of qubits. They are the building blocks of quantum circuits, just like the classical logic gates used in traditional digital circuits.

量子门quantum gate

在量子计算特别是计算的量子电路模型中,量子逻辑门(或简称量子门)是在少量量子比特上工作的基本量子电路。它们是量子电路的构建块,就像用于传统的数字电路的经典逻辑门一样。In quantum computing, especially the quantum circuit model of computing, quantum logic gates (or simply quantum gates) are basic quantum circuits that work on a small number of qubits. They are the building blocks of quantum circuits, just like the classical logic gates used in traditional digital circuits.

与许多经典逻辑门不同,量子逻辑门是可逆的。然而,可以仅使用可逆门来执行经典计算。例如,可逆托佛利(Toffoli)门可以实现所有布尔(Boolean)函数,通常以不得不使用辅助比特为代价。托佛利门具有直接量子等价物,表明量子电路可以执行由经典电路执行的所有操作。Unlike many classical logic gates, quantum logic gates are reversible. However, classical computations can be performed using only reversible gates. For example, a reversible Toffoli gate can implement all Boolean functions, usually at the expense of having to use auxiliary bits. Tofley gates have direct quantum equivalents, showing that quantum circuits can perform all the operations performed by classical circuits.

量子逻辑门由酉矩阵表示。最常见的量子门在一个或两个量子比特的空间上操作,正如常见的经典逻辑门在一个或两个比特上操作一样。作为矩阵,量子门可以由2n×2n大小的酉矩阵来描述,其中n是门所作用的量子比特的数量。门所作用的变量,即量子态,是2n个复维数的向量,其中n又是变量的量子比特的数量。如果测量的话,基向量是可能的结果,而量子态是这些结果的线性组合。Quantum logic gates are represented by unitary matrices. The most common quantum gates operate on a space of one or two qubits, just as common classical logic gates operate on one or two bits. As a matrix, a quantum gate can be described by a unitary matrix of size 2 n × 2 n , where n is the number of qubits the gate acts on. The variable that the gate acts on, the quantum state, is a vector of 2n complex dimensions, where n is again the number of qubits of the variable. Basis vectors are possible outcomes if measured, and quantum states are linear combinations of these outcomes.

现在参考图4,在量子逻辑电路中,基本量子门3802是单比特旋转门404和两比特受控NOT门406。可以通过这两个门的组合来构造任何量子逻辑电路。如图5中所示,单比特旋转门404以量子态作为其输入502,并在其输出504处输出复平面内的旋转态。该门可以描述为f(θ12)=f(θ1)·f(θ2)。Referring now to FIG. 4 , in a quantum logic circuit, the elementary quantum gates 3802 are a single-bit rotating gate 404 and a two-bit controlled NOT gate 406 . Any quantum logic circuit can be constructed by the combination of these two gates. As shown in FIG. 5 , a single-bit spin gate 404 takes a quantum state as its input 502 and outputs a spin state in the complex plane at its output 504 . The gate can be described as f(θ 12 )=f(θ 1 )·f(θ 2 ).

如图6中所示,一个两比特受控的NOT门602以两个量子态作为其输入602,并给出两个输出:输入态之一604和两个输入的异或结果606。为了描述该操作,需要表示量子态的反转和非反转,因此引入了受控输入参数

Figure BDA0003553842120000072
As shown in FIG. 6, a two-bit controlled NOT gate 602 takes as its input 602 two quantum states and gives two outputs: one of the input states 604 and the XOR result 606 of the two inputs. To describe this operation, one needs to represent the inversion and non-inversion of the quantum state, so a controlled input parameter is introduced
Figure BDA0003553842120000072

Figure BDA0003553842120000073
Figure BDA0003553842120000073

表示为xk的神经元k的输出状态给出为:The output state of neuron k denoted as x k is given as:

Figure BDA0003553842120000081
Figure BDA0003553842120000081

还可以提供用于量子迪特的类似公式和相应的神经网络方法。Similar formulations for quantum diets and corresponding neural network methods are also available.

近年来,科学家已经开发了量子神经计算,在量子神经计算中,量子计算的算法用于提高神经计算系统的效率。在信息处理系统中,量子态和量子计算算符对于分别实现并行性和可塑性都是重要的。这些量子概念的复数值表示允许神经计算系统在学习能力方面取得进展并扩大其实际应用的可能性。上述将非线性建模和预测应用于AI的应用可以根据两个具体建议来实现。一是使用基于二维量子比特的量子比特神经网络模型,二是将量子比特扩展到多维量子比特并进一步研究其特征,例如以将量子计算应用于神经网络的方式的量子叠加和概率解释的效果。In recent years, scientists have developed quantum neural computing, in which quantum computing algorithms are used to improve the efficiency of neural computing systems. In information processing systems, both quantum states and quantum computing operators are important to achieve parallelism and plasticity, respectively. Complex-valued representations of these quantum concepts allow neural computing systems to advance in their ability to learn and expand the possibilities for their practical applications. The aforementioned application of nonlinear modeling and prediction to AI can be implemented according to two specific proposals. One is to use a qubit neural network model based on two-dimensional qubits, and the other is to extend qubits to multi-dimensional qubits and further study their characteristics, such as the effects of quantum superposition and probabilistic interpretation in a way that applies quantum computing to neural networks .

量子网络的应用之一是通过其各种应用从动态系统,特别是从混沌系统预测时间序列。已有若干尝试使用实值神经网络进行预测,但是尚未有尝试使用非线性吸引子重建的基于复值量子迪特的神经网络进行预测,其中可以检查学习迭代、学习成功率和预测错误。因此,如图7中所示,基于量子迪特的网络702可以实现对AI 704的非线性建模和预测,AI 704根据时间序列数据708生成非线性吸引子重建706。One of the applications of quantum networks is the prediction of time series from dynamical systems, especially from chaotic systems, through its various applications. There have been several attempts to use real-valued neural networks for prediction, but no attempt has been made to use a complex-valued quantum Dieter-based neural network for nonlinear attractor reconstruction, where learning iterations, learning success rates, and prediction errors can be examined. Thus, as shown in FIG. 7 , a quantum Dieter-based network 702 can enable nonlinear modeling and prediction of AI 704 , which generates nonlinear attractor reconstructions 706 from time series data 708 .

该过程实现了量子神经计算的发展,在量子神经计算中,量子计算的算法被用于提高神经计算系统的效率,并且这些算法可以与用于预测未来行为的吸引子结合使用。吸引子方法完全是经典的而不是量子力学的。例如,当延迟嵌入以重构吸引子时,延迟嵌入的一个简单过程并行地发生多次,因此量子计算可用于实时实现并行以执行延迟嵌入的过程。第一种实现方式是使用基于二维量子比特的量子比特神经网络模型来构造吸引子并提供如本文所述的未来行为的预测,第二种实现方式是为了相同的目的将量子比特扩展到多维量子迪特,并进一步研究它们的特征,例如以将量子计算应用于神经网络的方式的量子叠加和概率解释的效果。The process enables the development of quantum neural computing, where algorithms from quantum computing are used to improve the efficiency of neural computing systems, and these algorithms can be combined with attractors for predicting future behavior. The attractor method is entirely classical rather than quantum mechanical. For example, a simple process of delayed embedding occurs multiple times in parallel when delaying embedding to reconstruct attractors, so quantum computing can be used to parallelize the process of performing delayed embedding in real time. The first implementation is to use a two-dimensional qubit-based neural network model of qubits to construct attractors and provide predictions of future behavior as described in this paper, and the second implementation is to extend qubits to multiple dimensions for the same purpose Quantum Diet, and further study their characteristics, such as the effects of quantum superposition and probabilistic interpretation in the way quantum computing is applied to neural networks.

OAM生成OAM generation

将轨道角动量应用于作为对量子门的输入而提供的光子使得能够向每个单独的光子提供更大量的数据。OAM的使用使得每个光子能够携带任意数量的比特。实现更高的数据携带能力可能是计算社区的主要兴趣之一。这导致了使用用于通信和数据传输的光波的不同物理性质,包括幅度、相位、波长和偏振的研究。空间位置上的正交模式也在研究中,并且似乎也是有用的。通常这些研究工作可以归纳为两类:1)在单个光脉冲上编码和解码更多的比特;一个典型的示例是使用高级调制格式,其对关于幅度、相位和偏振状态的信息进行编码,和2)允许多个独立数据信道的并行传播的多路复用和解复用技术,每个数据信道具有不同的光性质(例如,波长、偏振和空间,分别对应于波分复用(Wavelength-DivisionMultiplexing,WDM)、偏分复用(Polarization-Division Multiplexing,PDM)和空分复用(Space Division Multiplexing,SDM))。用于实现更高的数据容量的一种方式是通过使用OAM通信和计算,这是将轨道角动量应用于通信/量子计算信号以防止信号之间的干扰并提供增加的带宽的过程,如在14/864511号美国专利申请中所描述的,该14/864511号专利申请申请名称为“将轨道角动量应用于光纤、FSO和射频(RF)”,其通过引用整体并入本文。Applying orbital angular momentum to the photons provided as inputs to the quantum gate enables a larger amount of data to be provided to each individual photon. The use of OAM enables each photon to carry any number of bits. Achieving higher data portability may be one of the main interests of the computing community. This has led to studies using different physical properties of light waves for communication and data transmission, including amplitude, phase, wavelength and polarization. Orthogonal modes in spatial locations are also under investigation and appear to be useful as well. Generally these research efforts can be grouped into two categories: 1) encoding and decoding more bits on a single optical pulse; a typical example is the use of advanced modulation formats, which encode information about amplitude, phase and polarization state, and 2) Multiplexing and demultiplexing techniques that allow parallel propagation of multiple independent data channels, each with different optical properties (e.g. wavelength, polarization, and space, corresponding to Wavelength-Division Multiplexing, WDM), Polarization-Division Multiplexing (PDM), and Space Division Multiplexing (SDM)). One way to achieve higher data capacity is through the use of OAM communications and computing, which is the process of applying orbital angular momentum to communications/quantum computing signals to prevent interference between signals and provide increased bandwidth, as in As described in US Patent Application No. 14/864,511, entitled "Application of Orbital Angular Momentum to Optical Fiber, FSO, and Radio Frequency (RF)," which is incorporated herein by reference in its entirety.

对轨道角动量(OAM)在通信和量子计算中的已有应用的认识已使其成为一个有趣的研究课题。众所周知,光子可以携带自旋角动量和轨道角动量。与以电场方向鉴别的自旋角动量(例如,圆偏振光)相反,OAM通常由具有螺旋相位波前的光束携带。由于螺旋相位结构,携带OAM的光束通常具有环形强度分布,在光束中心具有相位奇点。重要的是,取决于螺旋相位的离散扭转速度,可以量化OAM光束是不同的状态,这些状态在同轴传播时是完全可区分的。这种性质允许OAM光束潜在地有用于上述两个类别中的任一者,以帮助改进自由空间或光纤通信或量子计算系统的性能。具体地,OAM态可以用作不同维数以编码单个脉冲(或单个光子)上的比特,或用于在SDM系统中创建额外的数据载体。The recognition of the existing applications of orbital angular momentum (OAM) in communications and quantum computing has made it an interesting research topic. It is well known that photons can carry spin angular momentum and orbital angular momentum. In contrast to spin angular momentum (eg, circularly polarized light) discriminated in the direction of the electric field, OAM is typically carried by a beam with a helical phase wavefront. Owing to the helical phase structure, OAM-carrying beams typically have annular intensity distributions with a phase singularity at the center of the beam. Importantly, depending on the discrete twist velocities of the helical phase, it is possible to quantify that OAM beams are distinct states that are fully distinguishable when propagating on-axis. This property allows OAM beams to potentially be used in either of the above two categories to help improve the performance of free-space or fiber-optic communication or quantum computing systems. Specifically, OAM states can be used as different dimensions to encode bits on a single pulse (or single photon), or to create additional data carriers in SDM systems.

将OAM用于通信和量子计算具有一些潜在的好处,一些特殊设计的新型光纤在光纤中传播时允许更少的模式耦合和串扰。此外,具有不同状态的OAM光束共享环形光束分布,该分布指示用于接收光束的旋转不敏感度。由于OAM光束的区别不依赖于波长或偏振,因此除了WDM和PDM技术之外还可以使用OAM复用,从而可以提供潜在地改进系统性能。There are several potential benefits to using OAM for communications and quantum computing, and some new types of specially designed fibers allow for less mode coupling and crosstalk when propagating in the fiber. Furthermore, OAM beams with different states share a ring-shaped beam profile that indicates the rotational insensitivity for receiving the beam. Since the differentiation of OAM beams does not depend on wavelength or polarization, OAM multiplexing can be used in addition to WDM and PDM techniques, which can provide potentially improved system performance.

现在参考附图,更具体地参考图8,其中示出了提高通信系统或量子计算系统的频谱效率的两种方式。通常,基本上有两种方式来提高通信系统或量子计算系统的频谱效率802。该提高可以由调制方案中的信号处理技术804来实现,或使用多址接入技术来实现。另外,可以通过在电磁传播内创建新的本征信道806来提高频谱效率。这两种技术彼此完全独立,一种类别的创新可以添加到另一种类别的创新。因此,这种技术的结合引入了进一步的创新。Referring now to the drawings, and more particularly to FIG. 8, two ways of increasing the spectral efficiency of a communication system or quantum computing system are shown. Generally, there are basically two ways to improve the spectral efficiency 802 of a communication system or quantum computing system. This improvement can be achieved by signal processing techniques 804 in the modulation scheme, or by using multiple access techniques. Additionally, spectral efficiency can be improved by creating new eigenchannels 806 within electromagnetic propagation. The two technologies are completely independent of each other, and innovations in one category can be added to innovations in the other. Therefore, this combination of technologies introduces further innovations.

频谱效率802是通信系统或量子计算系统的商业模式的关键驱动。频谱效率以比特/秒/hz为单位定义,频谱效率越高,商业模式越好。这是因为频谱效率可以转换为更大的用户数量、更高的处理量、更高的质量或者通信系统或量子计算系统内前述每个的其中一部分。Spectral efficiency 802 is a key driver of business models for communication systems or quantum computing systems. Spectral efficiency is defined in bits/sec/hz, and the higher the spectral efficiency, the better the business model. This is because spectral efficiency can translate to a larger number of users, higher throughput, higher quality, or some of each of the foregoing within a communication system or quantum computing system.

关于使用信号处理技术或多址接入技术的技术。这些技术包括诸如TDMA、FDMA、CDMA、EVDO、GSM、WCDMA、HSPA以及在4G WIMAX和LTE中使用的最新OFDM技术等创新。几乎所有这些技术都使用基于被称为QAM调制的正弦本征函数的数十年之久的调制技术。在涉及创建新的本征信道806的第二类技术中,创新包括分集技术(diversity technique,包括空间和偏振分集)以及多输入/多输出(Multiple Input/Multiple Output,MIMO),其中不相关的无线电路径(radio path)创建独立的本征信道和电磁波传播。Regarding techniques using signal processing techniques or multiple access techniques. These technologies include innovations such as TDMA, FDMA, CDMA, EVDO, GSM, WCDMA, HSPA, and the latest OFDM technology used in 4G WIMAX and LTE. Almost all of these techniques use a decades-old modulation technique based on sinusoidal eigenfunctions known as QAM modulation. In a second category of techniques involving the creation of new eigenchannels 806, innovations include diversity techniques (including spatial and polarization diversity) and Multiple Input/Multiple Output (MIMO), where uncorrelated The radio path creates independent eigenchannels and electromagnetic wave propagation.

现在参考图9,本系统配置引入彼此完全独立的两种技术,一种来自信号处理技术804类别,一种来自创建新本征信道806类别。它们的组合提供了一种独特的方式来中断端对端通信系统或量子计算系统的接入部分,从双绞线和电缆到光纤,到自由空间光学器件,到在蜂窝、回程和卫星中使用的RF,到RF卫星,到RF广播,到RF点对点,到RF点对多点,到RF点对点(回传),到RF点对点(前传以提供用于RAN和云化HetNet的云化和虚拟化的更高吞吐量CPRI接口),到物联网(Internet of Things,IOT),到Wi-Fi,到蓝牙,到个人设备电缆更换,到RF和FSO混合系统,到雷达,到电磁标签和到所有类型的无线接入。第一种技术涉及使用新的信号处理技术,其使用新的正交信号来升级使用非正弦函数的QAM调制。这被称为量子水平叠加(Quantum Level Overlay,QLO)902。第二种技术涉及使用被称为轨道角动量(Orbital Angular Momentum,QAM)104的电磁波或光子的特性来应用新的电磁波前。在量子水平层叠加技术902和轨道角动量应用904的组合中,对其中每一个的应用独特地提供通信系统或量子计算系统内的更高数量级的频谱效率906。Referring now to Figure 9, the present system configuration introduces two techniques that are completely independent of each other, one from the category of signal processing techniques 804 and one from the category of creating new eigenchannels 806. Their combination provides a unique way to disrupt the access portion of an end-to-end communication system or quantum computing system, from twisted pair and cable to fiber optics, to free space optics, to use in cellular, backhaul and satellite RF, to RF satellite, to RF broadcast, to RF point-to-point, to RF point-to-multipoint, to RF point-to-point (backhaul), to RF point-to-point (fronthaul to provide cloudification and virtualization for RAN and cloud HetNet higher throughput CPRI interface), to Internet of Things (IOT), to Wi-Fi, to Bluetooth, to personal device cable replacement, to hybrid RF and FSO systems, to radar, to electromagnetic tags and to all type of wireless access. The first technique involves the use of new signal processing techniques that use new quadrature signals to upgrade QAM modulation using non-sinusoidal functions. This is called Quantum Level Overlay (QLO) 902. The second technique involves applying a new electromagnetic wavefront using a property of electromagnetic waves or photons known as Orbital Angular Momentum (QAM) 104 . In the combination of quantum level layer stacking technique 902 and orbital angular momentum application 904, the application of each uniquely provides an order of magnitude higher spectral efficiency 906 within a communication system or quantum computing system.

关于量子水平叠加技术209,引入新的本征函数,其在叠加时(在一个符号内彼此重叠)显著提高系统的频谱效率。量子水平层叠加技术902从量子力学借用了减少时间带宽积的特殊正交信号,从而提高信道的频谱效率。每个正交信号在符号内作为独立的信道被叠加。这些独立的信道将该技术与现有的调制技术区分开来。Regarding the quantum level superposition technique 209, new eigenfunctions are introduced which, when superimposed (overlapping each other within one symbol), significantly improve the spectral efficiency of the system. The quantum horizontal layer superposition technique 902 borrows special quadrature signals that reduce the time-bandwidth product from quantum mechanics, thereby improving the spectral efficiency of the channel. Each quadrature signal is superimposed as an independent channel within the symbol. These independent channels differentiate this technique from existing modulation techniques.

关于轨道角动量904的应用,该技术引入具有携带了轨道角动量(OAM)的螺旋波前的扭转的(twisted)电磁波或光束。携带波/光束的不同的OAM可以在空间域内彼此相互正交,允许波/光束在链路内被有效地复用和解复用。OAM光束在通信或量子计算中是引人关注的,这是由于它们在特殊复用多个独立数据携带信道方面的潜在能力。Regarding the application of orbital angular momentum 904, the technique introduces a twisted electromagnetic wave or beam with a helical wavefront carrying orbital angular momentum (OAM). The different OAMs carrying the waves/beams can be mutually orthogonal to each other in the spatial domain, allowing the waves/beams to be efficiently multiplexed and demultiplexed within the link. OAM beams are of interest in communications or quantum computing due to their potential ability to specifically multiplex multiple independent data-carrying channels.

关于量子水平层叠加技术902和轨道角动量应用904的组合,该组合是独特的,因为OAM复用技术与诸如波长和偏振分割复用的其它电磁技术兼容。这表明进一步提高系统性能的可能性。这些技术在高容量数据传输中的一起应用中断了端对端通信系统或量子计算系统的接入部分,从双绞线和电缆到光纤,到自由空间光学器件,到在蜂窝/回程和卫星中使用的RF,到RF卫星,到RF广播,到RF点对点,到RF点对多点,到RF点对点(回传),到RF点对点(前传以提供用于RAN和云化HetNet的云化和虚拟化的更高吞吐量CPRI接口),到物联网(Internet of Things,IOT),到Wi-Fi,到蓝牙,到个人设备电缆更换,到RF和FSO混合系统,到雷达,到电磁标签和到所有类型的无线接入。Regarding the combination of quantum horizontal layer stacking technique 902 and orbital angular momentum application 904, this combination is unique in that OAM multiplexing techniques are compatible with other electromagnetic techniques such as wavelength and polarization division multiplexing. This indicates the possibility of further improving system performance. The combined application of these technologies in high-capacity data transmission disrupts the access portion of end-to-end communication systems or quantum computing systems, from twisted pair and cable to fiber optics, to free space optics, to cellular/backhaul and satellite RF used, to RF satellite, to RF broadcast, to RF point-to-point, to RF point-to-multipoint, to RF point-to-point (backhaul), to RF point-to-point (fronthaul to provide cloudification and virtualization for RAN and cloud HetNet enhanced higher throughput CPRI interfaces), to the Internet of Things (IOT), to Wi-Fi, to Bluetooth, to personal device cable replacement, to hybrid RF and FSO systems, to radar, to electromagnetic tags and to All types of wireless access.

这些技术中的每一种可以彼此独立地应用,但是该组合提供了不仅提高频谱效率而且在不牺牲距离或信噪比的情况下提高频谱效率的独特机会。Each of these techniques can be applied independently of each other, but the combination offers a unique opportunity to improve not only spectral efficiency but also spectral efficiency without sacrificing distance or signal-to-noise ratio.

使用香农容量方程式,可以确定频谱效率是否有提高。这可以在数学上转换为更多的带宽。由于带宽具有价值,因此可以容易地将频谱效率增益转换为财务收益,从而估计出使用较高频谱效率所带来的商业影响。此外,当使用复杂的前向纠错(Forward ErrorCorrection,FEC)技术时,净影响是具有更高的质量,但是牺牲了一些带宽。然而,如果可以实现更高的频谱效率(或更多的虚拟带宽),就可以允许因为FEC而牺牲一些所获得的带宽,因此更高的频谱效率也可以转换为更高的质量。Using the Shannon capacity equation, it is possible to determine if there is an increase in spectral efficiency. This mathematically translates to more bandwidth. Because bandwidth has value, spectral efficiency gains can easily be converted into financial benefits to estimate the commercial impact of using higher spectral efficiencies. Furthermore, when using sophisticated Forward Error Correction (FEC) techniques, the net effect is higher quality at the expense of some bandwidth. However, if higher spectral efficiency (or more virtual bandwidth) can be achieved, some of the gained bandwidth can be allowed to be sacrificed due to FEC, so higher spectral efficiency can also translate to higher quality.

系统供应商对提高频谱效率感兴趣。然而,关于这种提高的问题是成本。在协议的不同层处的每种技术具有与其相关联的不同的价格标签。在物理层实现的技术具有最大的影响,因为其他技术可以被叠加在下层技术的顶部上,并且因此进一步提高频谱效率。当考虑其他相关成本时,一些技术的价格标签可能是显著的。例如,多输入多输出(MIMO)技术使用附加天线来创建附加路径,其中每个RF路径可以被视为独立信道,并且因此提高了合计频谱效率。在MIMO场景中,运营商具有处理诸如天线安装等结构问题的其他相关软成本。这些技术不仅具有巨大的成本,而且它们具有巨大的时序问题,因为结构方面的活动需要花时间,并且实现更高的频谱效率会有重大延误,也会转化为经济损失。System vendors are interested in improving spectral efficiency. However, the problem with this improvement is cost. Each technology at different layers of the protocol has a different price tag associated with it. Technologies implemented at the physical layer have the greatest impact, as other technologies can be superimposed on top of the underlying technologies and thus further improve spectral efficiency. The price tag of some technologies can be significant when other associated costs are considered. For example, multiple-input multiple-output (MIMO) techniques use additional antennas to create additional paths, where each RF path can be treated as an independent channel, and thus improve aggregate spectral efficiency. In a MIMO scenario, the operator has other associated soft costs of dealing with structural issues such as antenna installation. Not only do these techniques have huge costs, but they have huge timing issues, as structural activities take time and there are significant delays in achieving greater spectral efficiency, which also translate into financial losses.

量子水平层叠加技术902具有在符号内创建独立信道。与其他技术相比,这将具有巨大的成本和时间效益。此外,量子水平层叠加技术902是物理层技术,这意味着存在位于协议的较高层处的可以均位于QLO技术902的顶部上的其他技术,并且因此甚至进一步提高频谱效率。QLO技术902使用了在基于OFDM的多址接入技术(例如WIMAX或LTE)中使用的标准QAM调制。QLO技术902基本上通过将新信号注入到基带的I&Q分量、并在QAM调制之前将它们叠加,来增强收发器处的QAM调制,如下文将更全面地进行描述。在接收机处,使用相反的过程来分离叠加的信号,并且净效应是脉冲整形,其能实现与标准QAM或甚至根升余弦相比更好的频谱定位。这种技术的影响是具有显著更高的频谱效率。The quantum level layer superposition technique 902 has the ability to create independent channels within the symbols. This would have huge cost and time benefits compared to other techniques. Furthermore, the quantum level layer stacking technique 902 is a physical layer technique, which means that there are other techniques at higher layers of the protocol that can all sit on top of the QLO technique 902, and thus improve spectral efficiency even further. The QLO technique 902 uses the standard QAM modulation used in OFDM-based multiple access technologies such as WIMAX or LTE. QLO technique 902 essentially enhances QAM modulation at the transceiver by injecting new signals into the baseband I&Q components and adding them up before QAM modulation, as will be described more fully below. At the receiver, the inverse process is used to separate the superimposed signals, and the net effect is pulse shaping, which enables better spectral localization than standard QAM or even root raised cosine. The effect of this technique is to have significantly higher spectral efficiency.

现在更具体地参考图10,示出了使用多级叠加调制1004和轨道角动量1006的应用的组合来增加通信信道的数量或传输的数据的量,从而在各种接口1002内提供改进的通信带宽和/或数据传输带宽的方式的一般概览。Referring now more specifically to FIG. 10 , there is shown the use of a combination of multi-level superposition modulation 1004 and application of orbital angular momentum 1006 to increase the number of communication channels or the amount of data transmitted, thereby providing improved communication within various interfaces 1002 A general overview of how bandwidth and/or data transfer bandwidth.

各种接口1002可以包括各种链路,诸如RF通信,有线通信(诸如电缆或双绞线连接),或者利用光波长的光通信(诸如光纤通信或自由空间光学)。各种类型的RF通信可以包括RF微波或RF卫星通信的组合,以及RF和自由空间光学信号之间的实时复用。The various interfaces 1002 may include various links, such as RF communications, wired communications (such as cable or twisted pair connections), or optical communications utilizing optical wavelengths (such as fiber optic communications or free space optics). Various types of RF communications can include a combination of RF microwave or RF satellite communications, and real-time multiplexing between RF and free-space optical signals.

通过组合多层叠加调制技术1004与轨道角动量(OAM)技术1006,可以在各种类型的链路1002上实现更高的处理量。在没有OAM的情况下单独使用多级叠加调制可以提高通信链路1002的频谱效率,无论是有线通信,光通信还是无线通信。然而,如果具有OAM,则频谱效率的提高更加显著。By combining the multi-layer superposition modulation technique 1004 with the orbital angular momentum (OAM) technique 1006, higher throughput can be achieved on various types of links 1002. The use of multi-level superposition modulation alone without OAM can improve the spectral efficiency of the communication link 1002, whether wired, optical, or wireless. However, with OAM, the increase in spectral efficiency is more significant.

多级叠加调制技术1004提供超过常规的2自由度的新自由度,其中时间T和频率F是定义信息图中的正交轴的二维符号空间中的独立变量。这包括更一般的方法,而不是将信号建模为固定频域或固定时域。先前使用固定时间或固定频率的建模方法被认为是使用多级叠加调制1004的一般方法中的更多限制性的情况。在多级叠加调制技术304内,信号可以在二维空间中而不是沿单个轴进行区分。因此,通信信道的信息携带能力可以由占据不同时间和频率坐标的多个信号确定,并且可以在符号(notational)二维空间中被区分。The multi-level superposition modulation technique 1004 provides new degrees of freedom beyond the conventional 2 degrees of freedom, where time T and frequency F are independent variables in a two-dimensional symbol space that defines orthogonal axes in the information graph. This includes a more general approach than modeling the signal as a fixed frequency domain or fixed time domain. Previous modeling methods using fixed time or fixed frequency were considered to be more restrictive cases in the general method using multi-level superposition modulation 1004 . Within the multi-level superposition modulation technique 304, signals can be differentiated in two-dimensional space rather than along a single axis. Thus, the information carrying capacity of a communication channel can be determined by multiple signals occupying different time and frequency coordinates and can be distinguished in a notational two-dimensional space.

在符号二维空间内,时间带宽积的最小化,即,该空间中信号所占据的面积使得在所分配的信道内能够更密集地封装,并且因此使用更多信号和/或数据,具有更高的所得到的信息携带能力。给定频率信道增量(Δf),在最小时间Δt中通过其传输的给定信号将具有由某些时间带宽最小化信号所描述的包络。这些信号的时间带宽积采用以下形式:In the symbol two-dimensional space, the minimization of the time-bandwidth product, i.e. the area occupied by the signal in this space, enables denser packing within the allocated channel, and therefore more signal and/or data use, with more High obtained information carrying capacity. Given a frequency channel increment (Δf), a given signal transmitted through it in a minimum time Δt will have an envelope described by some temporal bandwidth minimization signal. The time-bandwidth product of these signals takes the form:

ΔtΔf=1/2(2n+1)ΔtΔf=1/2(2n+1)

其中n是0至无穷大范围内的整数,表示信号的阶数。where n is an integer in the range 0 to infinity, representing the order of the signal.

这些信号形成无限元的正交集合,其中每个具有有限量的能量。它们在时域和频域中都是有限的,并且可以通过相关(correlation),例如通过匹配滤波,从其他信号和噪声的混合中被检测出来。与其他小波不同,这些正交信号具有相似的时间和频率形式。These signals form an orthogonal set of infinite elements, each of which has a finite amount of energy. They are finite in both the time and frequency domains and can be detected from a mixture of other signals and noise by correlation, eg by matched filtering. Unlike other wavelets, these quadrature signals have similar time and frequency patterns.

轨道角动量过程306向携带数据流的电磁场的波前提供扭转,其可能实现在相同频率,波长或其他信号支持机制上的多个数据流的传输。类似地,可以将其它正交信号施加到不同的数据流以使得能够在相同频率、波长或其它信号支持机构上传输多个数据流。这将通过允许单个频率或波长支持多个本征信道来增加通信链路上的带宽,每个单独信道具有与其相关联的信道不同的正交和独立的轨道角动量。The orbital angular momentum process 306 provides a twist to the wavefront of the electromagnetic field carrying the data stream, which may enable transmission of multiple data streams at the same frequency, wavelength, or other signal support mechanism. Similarly, other quadrature signals may be applied to different data streams to enable transmission of multiple data streams on the same frequency, wavelength, or other signal support mechanism. This would increase bandwidth on a communication link by allowing a single frequency or wavelength to support multiple intrinsic channels, each individual channel having a different orthogonal and independent orbital angular momentum than its associated channel.

现在更具体地参考图11,示出了用于在诸如关于图10所示的通信系统或量子计算系统内生成轨道角动量“扭转”的系统的功能框图,以提供可以与多个其他数据流组合、用于在相同波长或频率上传输的数据流。多个数据流1102被提供给传输处理电路1100。每个数据流1102包括,例如,携带语音呼叫或通过数据连接传输非电路交换封装的数据的包连接的端到端链路连接。多个数据流1102由调制/解调电路1104处理。调制/解调电路1104使用多级叠加调制技术将接收的数据流1102调制到波长或频率信道上,如下文将更全面地描述。通信链路可以包括光纤链路、自由空间光学链路、RF微波链路、RF卫星链路、有线链路(无扭转)等。Referring now more specifically to FIG. 11, there is shown a functional block diagram of a system for generating an orbital angular momentum "twist" within a communication system or quantum computing system, such as that shown in relation to FIG. A combination of data streams for transmission on the same wavelength or frequency. A plurality of data streams 1102 are provided to the transport processing circuit 1100 . Each data flow 1102 includes, for example, an end-to-end link connection that carries a voice call or a packet connection that transports non-circuit-switched encapsulated data over the data connection. Multiple data streams 1102 are processed by modulation/demodulation circuitry 1104. Modulation/demodulation circuitry 1104 modulates the received data stream 1102 onto wavelength or frequency channels using a multi-level superposition modulation technique, as will be described more fully below. Communication links may include fiber optic links, free space optical links, RF microwave links, RF satellite links, wireline links (untwisted), and the like.

调制后的数据流被提供给轨道角动量(OAM)信号处理块1106。轨道角动量信号处理块1106在一个实施例中对信号应用轨道角动量。在其他实施例中,处理块1106可以将任何正交函数应用到正在传输的信号。这些正交函数可以是空间贝塞尔(Bessel)函数、拉盖尔-高斯(Laguerre-Gaussian)函数、埃尔米特-高斯(Hermite-Gaussian)函数或任何其他正交函数。来自调制/解调1104的每个调制数据流由轨道角动量电磁块1106提供不同的轨道角动量,使得每个调制数据流具有与其相关联的唯一且不同的轨道角动量。具有相关联的轨道角动量的每个调制信号被提供给光发射机1108,光发射机1108在相同波长上发射具有唯一轨道角动量的每个调制数据流。每个波长具有选定数量的带宽时隙B,并且可以使其数据传输能力以从OAM电磁块1106提供的轨道角动量l的度数为因子增加。以单波长传输信号的光学发射机1108可以发送B组信息。光发射机1108和OAM电磁块1106可以根据本文描述的配置发送l×B组信息。The modulated data stream is provided to an orbital angular momentum (OAM) signal processing block 1106 . The orbital angular momentum signal processing block 1106 applies orbital angular momentum to the signal in one embodiment. In other embodiments, the processing block 1106 may apply any orthogonal function to the signal being transmitted. These orthogonal functions may be spatial Bessel functions, Laguerre-Gaussian functions, Hermite-Gaussian functions or any other orthogonal functions. Each modulated data stream from modulation/demodulation 1104 is provided with a different orbital angular momentum by orbital angular momentum electromagnetic block 1106 such that each modulated data stream has a unique and different orbital angular momentum associated with it. Each modulated signal with an associated orbital angular momentum is provided to an optical transmitter 1108, which transmits each modulated data stream with a unique orbital angular momentum at the same wavelength. Each wavelength has a selected number of bandwidth time slots B, and can have its data transfer capability increased by a factor of degrees of orbital angular momentum 1 provided from the OAM electromagnetic block 1106 . An optical transmitter 1108 that transmits a signal at a single wavelength can transmit group B information. Optical transmitter 1108 and OAM electromagnetic block 1106 may transmit 1×B sets of information according to the configurations described herein.

在接收模式中,光学发射机1108将具有包括多个信号的波长,所述多个信号在其中传输,并具有嵌入其中的不同轨道角动量。光学发射机1108将这些信号转发到OAM信号处理块1106,OAM信号处理块1106分离具有不同轨道角动量的每个信号,并将分离的信号提供给解调电路1104。解调过程从调制信号中提取数据流1102,并使用多层叠加解调技术将其设置在接收端。In the receive mode, the optical transmitter 1108 will have a wavelength that includes multiple signals transmitting therein and having different orbital angular momentums embedded therein. Optical transmitter 1108 forwards these signals to OAM signal processing block 1106 , which separates each signal having a different orbital angular momentum and provides the separated signal to demodulation circuit 1104 . The demodulation process extracts the data stream 1102 from the modulated signal and places it at the receiving end using a multi-layer additive demodulation technique.

现在参考图12,提供了OAM信号处理块1106的更详细的功能描述。每个输入数据流被提供给OAM电路1202。每个OAM电路1202向接收的数据流提供不同的轨道角动量。不同的轨道角动量通过施加不同的电流来产生正被传输的信号以产生与其相关联的特定轨道角动量来实现。由每个OAM电路1202提供的轨道角动量对于提供给它的数据流是唯一的。无限数量的轨道角动量可以使用许多不同的电流施加到不同的输入数据流或光子。每个单独生成的数据流被提供给信号组合器704,信号组合器704将信号组合到用于从发射机706传输的波长上。组合器1204执行空间模式划分多路复用以将所有信号置于空间域中的相同载波信号上。Referring now to FIG. 12, a more detailed functional description of the OAM signal processing block 1106 is provided. Each input data stream is provided to OAM circuit 1202 . Each OAM circuit 1202 provides a different orbital angular momentum to the received data stream. Different orbital angular momentums are achieved by applying different currents to generate the signal being transmitted to generate a specific orbital angular momentum associated with it. The orbital angular momentum provided by each OAM circuit 1202 is unique to the data stream provided to it. An infinite number of orbital angular momentum can be applied to different input data streams or photons using many different currents. Each individually generated data stream is provided to a signal combiner 704 which combines the signals onto wavelengths for transmission from transmitter 706 . Combiner 1204 performs spatial mode division multiplexing to place all signals on the same carrier signal in the spatial domain.

现在参考图13,示出了OAM处理电路1106可以将接收到的信号分离成多个数据流的方式。接收机1302在单波长上接收组合的OAM信号,并将该信息提供给信号分离器1304。信号分离器1304将具有不同轨道角动量的每个信号与接收的波长分离,并将分离的信号提供给OAM去扭转电路1306。OAM去扭转电路1306从每个相关信号中去除相关联的OAM扭转,并提供接收的调制数据流用于进一步处理。信号分离器1304将已经从其中移除了轨道角动量的每个接收信号分离成单独的接收信号。单独的接收信号被提供给接收机1302,用于使用例如多级叠加解调进行解调,这将在下面更全面地描述。Referring now to FIG. 13, the manner in which the OAM processing circuit 1106 may separate a received signal into multiple data streams is shown. Receiver 1302 receives the combined OAM signal on a single wavelength and provides this information to demultiplexer 1304. Signal separator 1304 separates each signal with a different orbital angular momentum from the received wavelength and provides the separated signal to OAM de-twist circuit 1306 . OAM de-twist circuit 1306 removes the associated OAM twist from each correlated signal and provides the received modulated data stream for further processing. Signal separator 1304 separates each received signal from which orbital angular momentum has been removed into a separate received signal. The individual received signals are provided to receiver 1302 for demodulation using, for example, multi-stage superposition demodulation, as described more fully below.

图14以其中具有两个量子自旋偏振的单波长或频率可以提供具有与其相关联的各种轨道角动量的无限数量的扭转的方式示出。l轴表示可施加到所选频率或波长处的特定信号的各种量化轨道角动量状态。符号欧米伽(omega,ω)表示可施加不同轨道角动量的信号的各种频率。顶部网格1402表示用于左手信号偏振的潜在可用信号,而底部网格1404用于具有右手偏振的潜在可用信号。Figure 14 is shown in a way where a single wavelength or frequency with two quantum spin polarizations can provide an infinite number of twists with various orbital angular momentums associated therewith. The l-axis represents the various quantified orbital angular momentum states that can be applied to a particular signal at a selected frequency or wavelength. The notation omega (ω) denotes the various frequencies of the signal that can impart different orbital angular momentum. Top grid 1402 represents potentially usable signals for left-hand signal polarization, while bottom grid 1404 is for potentially usable signals with right-hand polarization.

通过将不同的轨道角动量状态施加于特定频率或波长的信号,可以在频率或波长处提供潜在无限数量的状态。因此,左手偏振平面1402和右手偏振平面1404中的频率Δω或波长1406处的状态可以提供在不同轨道角动量状态Δl下的无限数量的信号。块1408和1410分别表示在右手偏振平面1404和左手偏振平面1410中的频率Δω或波长处具有轨道角动量Δl的特定信号。通过改变到相同频率Δω或波长1406内的不同轨道角动量,也可以传输不同的信号。每个角动量状态对应于用于从光学发射机传输的不同的确定的电流水平。通过估计用于在光域内产生特定轨道角动量的等效电流,并且施加该电流用于信号的传输,可以在所需的轨道角动量状态下实现信号的传输。By applying different orbital angular momentum states to a signal at a particular frequency or wavelength, a potentially infinite number of states can be provided at the frequency or wavelength. Thus, states at frequency Δω or wavelength 1406 in left-hand polarization plane 1402 and right-hand polarization plane 1404 can provide an infinite number of signals at different orbital angular momentum states Δl. Blocks 1408 and 1410 represent particular signals having orbital angular momentum Δl at frequencies Δω or wavelengths in right-hand polarization plane 1404 and left-hand polarization plane 1410, respectively. Different signals can also be transmitted by changing to different orbital angular momentum within the same frequency Δω or wavelength 1406 . Each angular momentum state corresponds to a different determined current level for transmission from the optical transmitter. By estimating the equivalent current for generating a specific orbital angular momentum in the optical domain, and applying this current for the transmission of the signal, the transmission of the signal can be achieved in the desired state of orbital angular momentum.

因此,图15的图示示出了两个可能的角动量,自旋角动量和轨道角动量。自旋形式表现在宏观电磁学的偏振之内,并且由于上下自旋方向,仅具有左手偏振和右手偏振。然而,轨道角动量指示被量化的无限多个状态。路径多于两个,并且在理论上通过量化的轨道角动量水平可以是无限的。Thus, the diagram of Figure 15 shows two possible angular momentums, spin angular momentum and orbital angular momentum. The spin form manifests within the polarization of macroscopic electromagnetism, and has only left-hand and right-hand polarization due to the up and down spin directions. However, orbital angular momentum indicates an infinite number of states that are quantized. There are more than two paths, and in theory the level of orbital angular momentum through the quantization could be infinite.

众所周知,线性动量的概念通常与沿直线移动的物体相关联。如果物体具有旋转运动,例如自旋(即,自旋角动量(SAM)1502)或围绕轴1506(即,OAM 1504)旋转(分别如图15A和图15B中所示),则该物体也可以携带角动量。光束也可以在其传播时具有旋转运动。在近轴近似中,如果电场沿着光束轴1506旋转(即,圆偏振光1505),则光束携带SAM 1502,并且如果波矢围绕光束轴1506螺旋运动,则光束携带OAM 1504,从而导致螺旋相位波前1508,如图15C和15D中所示。在其解析表达式中,该螺旋相位波前1508通常与横向平面中的

Figure BDA0003553842120000143
的相位项有关,其中θ是角坐标,并且
Figure BDA0003553842120000141
是指示缠绕螺旋的数量的整数(即,沿着围绕光束轴的圆的2π相移的数量)。
Figure BDA0003553842120000142
可以是正整数、负整数或零,分别对应于顺时针、逆时针相位螺旋或没有螺旋的高斯光束。It is well known that the concept of linear momentum is often associated with objects moving in a straight line. If the object has rotational motion, such as spin (ie, spin angular momentum (SAM) 1502) or rotation about axis 1506 (ie, OAM 1504) (as shown in Figures 15A and 15B, respectively), the object may also carry angular momentum. The light beam can also have rotational motion as it propagates. In the paraxial approximation, if the electric field rotates along the beam axis 1506 (ie, circularly polarized light 1505), the beam carries the SAM 1502, and if the wave vector spirals around the beam axis 1506, the beam carries the OAM 1504, resulting in a helical phase A wavefront 1508, as shown in Figures 15C and 15D. In its analytical expression, the helical phase wavefront 1508 is generally related to the
Figure BDA0003553842120000143
is related to the phase term of , where θ is the angular coordinate, and
Figure BDA0003553842120000141
is an integer indicating the number of winding spirals (ie, the number of 2π phase shifts along a circle around the beam axis).
Figure BDA0003553842120000142
Can be a positive integer, a negative integer, or zero, corresponding to a Gaussian beam with a clockwise, counterclockwise phase helix, or no helix, respectively.

与OAM相关的两个重要概念包括:(1)OAM和偏振:如上所述,OAM光束显现为具有螺旋相位波前的光束,并因此显现为扭转波矢,而偏振态只能连接到SAM 1502。如果光束是左圆偏振或右圆偏振的,则该光束每光子携带±h/2π(h是普朗克常数)的SAM 1502,而如果光束是线性偏振的,则该光束不携带SAM 1502。尽管在某些情况下可以将光的SAM 1502和OAM1504彼此耦合,但是对于近轴光束可以清楚地区分它们。因此,在近轴假设下,可以将OAM1504和偏振视为光的两个独立性质。2)OAM光束和拉盖尔-高斯光束:一般来说,携带OAM的光束可以指任何螺旋相控光束,而不管其径向分布如何(尽管有时OAM也可以由非螺旋相控的光束携带)。LG光束是所有携带OAM的光束中的特殊子集,因为LG光束的解析表达式是在圆柱坐标中的波动方程的近轴形式的本征解。对于LG光束,方位角和径向波前分布都是明确定义的,并且由两个指数

Figure BDA0003553842120000151
和p表示,其中
Figure BDA0003553842120000152
具有与一般OAM光束相同的含义,并且p指强度分布中的径向节点。LG光束的数学表达式在空间域中形成正交且完整的基。相反,由于没有径向定义,一般的OAM光束实际上包括一组LG光束(每个光束具有相同的
Figure BDA0003553842120000153
指数但不同的p指数)。术语“OAM光束”指的是所有的螺旋相控光束,并且用于与LG光束区分开。Two important concepts related to OAM include: (1) OAM and polarization: As mentioned above, an OAM beam appears as a beam with a helical phase wavefront and thus a twisted wave vector, while the polarization state can only be connected to the SAM 1502 . If the beam is left circularly polarized or right circularly polarized, the beam carries ±h/2π (h is Planck's constant) SAM 1502 per photon, while if the beam is linearly polarized, the beam carries no SAM 1502. Although in some cases the SAM 1502 and OAM 1504 of light can be coupled to each other, they can be clearly distinguished for paraxial beams. Therefore, under the paraxial assumption, OAM1504 and polarization can be considered as two independent properties of light. 2) OAM beams and Laguerre-Gaussian beams: In general, an OAM-carrying beam can refer to any helical phased beam, regardless of its radial distribution (although sometimes OAM can also be carried by a non-spiral-phased beam) . The LG beam is a special subset of all OAM-carrying beams because the analytical expression for the LG beam is an eigensolution of the paraxial form of the wave equation in cylindrical coordinates. For LG beams, both the azimuthal and radial wavefront distributions are well-defined and are defined by two exponents
Figure BDA0003553842120000151
and p denotes, where
Figure BDA0003553842120000152
Has the same meaning as a general OAM beam, and p refers to a radial node in the intensity distribution. The mathematical expression of the LG beam forms an orthogonal and complete basis in the spatial domain. In contrast, since there is no radial definition, a general OAM beam actually consists of a set of LG beams (each with the same
Figure BDA0003553842120000153
index but a different p-index). The term "OAM beam" refers to all helical phased beams and is used to distinguish them from LG beams.

使用传输能量信号的轨道角动量状态,物理信息可以嵌入在由信号传输的辐射内。麦克斯韦-海维赛德(Maxwell-Heaviside)方程可以表示为:Using the orbital angular momentum state of the transmitted energy signal, physical information can be embedded within the radiation transmitted by the signal. The Maxwell-Heaviside equation can be expressed as:

Figure BDA0003553842120000154
Figure BDA0003553842120000154

Figure BDA0003553842120000155
Figure BDA0003553842120000155

Figure BDA0003553842120000156
Figure BDA0003553842120000156

Figure BDA0003553842120000157
Figure BDA0003553842120000157

其中

Figure BDA0003553842120000158
是del算符,E是电场强度,B是磁通密度。使用这些方程,可以从麦克斯韦的原始方程导出23个对称/守恒量。然而,只有十个众所周知的守恒量,并且这些中只有一些是商业上使用的。历史上,如果麦克斯韦方程保持在其原始的四元数形式,将更容易看到对称/守恒量,但当他们被海维赛德修改为他们目前的矢量形式时,变得在麦克斯韦方程中更难以看到这样的固有对称性。in
Figure BDA0003553842120000158
is the del operator, E is the electric field strength, and B is the magnetic flux density. Using these equations, 23 symmetric/conserved quantities can be derived from Maxwell's original equations. However, there are only ten well-known conserved quantities, and only some of these are used commercially. Historically, it would have been easier to see symmetric/conserved quantities if Maxwell's equations were kept in their original quaternion form, but when they were modified by Heaviside to their current vector form, became more in Maxwell's equations It is difficult to see such inherent symmetry.

麦克斯韦线性理论带有具有阿贝尔(Abelian)对易关系的U(1)对称性。它们可以被扩展到具有解决全局(空间非局部)特性的非阿贝尔(non-Abelian)对易关系的更高对称性组SU(2)形式。麦克斯韦理论的Wu-Yang和Harmuth解释暗示了磁单极子和磁荷的存在。就经典领域而言,这些理论结构是伪粒子或瞬时子。麦克斯韦的工作的解释实际上在很大的方面从麦克斯韦的初衷出发。在麦克斯韦的原始公式中,法拉第的电子状态(Aμ场)是中心的,使它们与杨-米尔斯(Yang-Mills)理论(在海维赛德之前)兼容。被称为孤子的数学动态实体可以是经典的或量子的,线性的或非线性的,并且描述EM波。然而,孤子具有SU(2)对称形式。为了使传统解释的经典麦克斯韦U(1)对称的理论描述这样的实体,该理论必须被扩展到SU(2)形式。Maxwell's linear theory has U(1) symmetry with Abelian commutation relations. They can be extended to higher symmetry group SU(2) forms with non-Abelian commutation relations that resolve global (spatially nonlocal) properties. The Wu-Yang and Harmuth interpretation of Maxwell's theory hints at the existence of magnetic monopoles and magnetic charges. In the classical realm, these theoretical structures are pseudoparticles or instantons. The interpretation of Maxwell's work actually proceeds in a large way from Maxwell's original intention. In Maxwell's original formulation, Faraday's electronic states (Aμ fields) were centered, making them compatible with Yang-Mills theory (before Heaviside). Mathematically dynamic entities called solitons can be classical or quantum, linear or nonlinear, and describe EM waves. However, the soliton has the form of SU(2) symmetry. In order for the classically interpreted theory of classical Maxwell's U(1) symmetry to describe such entities, the theory must be extended to the SU(2) form.

除了几十个物理现象(这不能用传统的麦克斯韦理论解释),最近制定的HarmuthAnsatz也解决了麦克斯韦理论的不完全性。Harmuth修正麦克斯韦方程可以用于计算EM信号速度,条件是添加磁场电流密度和磁荷,这与杨-米尔斯方程一致。因此,利用正确的几何形状和拓扑,Aμ电位总是具有物理意义。In addition to dozens of physical phenomena (which cannot be explained by traditional Maxwell's theory), the recently formulated Harmuth Ansatz also addresses the incompleteness of Maxwell's theory. Harmuth's modified Maxwell equation can be used to calculate the EM signal velocity, provided the magnetic field current density and magnetic charge are added, which is consistent with the Young-Mills equation. Therefore, with the correct geometry and topology, the Aμ potential always has physical meaning.

守恒量和电磁场可以根据系统能量的守恒和系统线性动量的守恒来表示。时间对称性,即系统能量的守恒可以使用坡印廷定理根据以下方程表示:Conserved quantities and electromagnetic fields can be expressed in terms of the conservation of system energy and the conservation of system linear momentum. Time symmetry, the conservation of system energy, can be expressed using Poynting's theorem according to the following equation:

Figure BDA0003553842120000161
哈密尔顿算符(总能量)
Figure BDA0003553842120000161
Hamiltonian (total energy)

Figure BDA0003553842120000162
能量守恒
Figure BDA0003553842120000162
Conservation of energy

空间对称性,即表示电磁多普勒频移的系统线性动量的守恒可以由以下方程表示:Spatial symmetry, that is, the conservation of the linear momentum of the system representing the electromagnetic Doppler shift, can be expressed by the following equation:

Figure BDA0003553842120000163
线性动量
Figure BDA0003553842120000163
Linear Momentum

Figure BDA0003553842120000164
线性动量守恒
Figure BDA0003553842120000164
Conservation of Linear Momentum

能量的系统中心的守恒由以下方程表示:The conservation of energy at the system center is represented by the following equation:

Figure BDA0003553842120000165
Figure BDA0003553842120000165

类似地,引起方位角多普勒频移的系统角动量的守恒由以下等式表示:Similarly, the conservation of the angular momentum of the system causing the azimuthal Doppler shift is expressed by the following equation:

Figure BDA0003553842120000166
角动量守恒
Figure BDA0003553842120000166
Conservation of Angular Momentum

对于自由空间中的辐射束,EM场角动量Jem可以分为两部分:For a radiation beam in free space, the EM field angular momentum Je can be divided into two parts:

Figure BDA0003553842120000167
Figure BDA0003553842120000167

对于实值表示中的每个奇异傅立叶模式:For each singular Fourier mode in the real-valued representation:

Figure BDA0003553842120000168
Figure BDA0003553842120000168

第一部分是EM自旋角动量Sem,其经典表现是波偏振。第二部分是EM轨道角动量Lem,它的经典表现是波螺旋。一般来说,EM线性动量Pem和EM角动量Jem=Lem+Sem一直被辐射到远场。The first part is the EM spin angular momentum S em , whose classical manifestation is wave polarization. The second part is the EM orbital angular momentum Lem , which is classically represented as a wave spiral. In general, the EM linear momentum Pem and the EM angular momentum Jem = Lem + Sem are radiated all the way to the far field.

通过使用坡印廷定理,可以根据光速度方程确定信号的光学涡度:By using Poynting's theorem, the optical vorticity of a signal can be determined from the light velocity equation:

Figure BDA0003553842120000169
连续性方程
Figure BDA0003553842120000169
Continuity Equation

其中S是坡印廷(Poynting)矢量where S is the Poynting vector

Figure BDA0003553842120000171
Figure BDA0003553842120000171

U是能量密度U is the energy density

Figure BDA0003553842120000172
Figure BDA0003553842120000172

其中E和H分别包括电场和磁场,并且ε和μ0分别是介质的介电常数和磁导率。然后可以根据以下方程通过光学速度的卷曲来确定光学涡度V:where E and H include the electric and magnetic fields, respectively, and ε and μ0 are the dielectric constant and permeability of the medium, respectively. The optical vorticity V can then be determined from the curling of the optical velocity according to the following equation:

Figure BDA0003553842120000173
Figure BDA0003553842120000173

Figure BDA0003553842120000174
Figure BDA0003553842120000174

现在参考图16A和16B,示出了在平面波情况下信号及其相关的坡印廷矢量的方式。在通常在1602处示出的平面波情形中,所发射信号可以采用三种配置中的一种。当电场矢量在相同方向上时,提供线性信号,如在1604总体所示。在圆偏振1606内,电场矢量以相同的幅度旋转。在椭圆偏振1608内,电场矢量旋转,但具有不同的幅度。坡印廷矢量保持在恒定方向上,用于图16A的信号配置,并且总是垂直于电场和磁场。现在参考图16B,当将唯一的轨道角动量施加到如上所述信号时,坡印廷矢量S1610将围绕信号的传播方向成螺旋形。可以改变该螺旋,以使信号能够在如本文所述的相同频率上传输。Referring now to Figures 16A and 16B, the manner of the signal and its associated Poynting vector in the case of a plane wave is shown. In the plane wave case shown generally at 1602, the transmitted signal can take one of three configurations. When the electric field vectors are in the same direction, a linear signal is provided, as shown generally at 1604 . Within circular polarization 1606, the electric field vector rotates by the same magnitude. Within elliptical polarization 1608, the electric field vector rotates, but with different magnitudes. The Poynting vector remains in a constant direction for the signal configuration of Figure 16A and is always perpendicular to the electric and magnetic fields. Referring now to Figure 16B, when a unique orbital angular momentum is applied to a signal as described above, the Poynting vector S1610 will spiral around the direction of propagation of the signal. The helix can be altered to enable the transmission of signals on the same frequencies as described herein.

图17A至17C示出了具有不同螺旋度(即,轨道角动量)的信号的差异。与信号1702、1704和1706相关联的螺旋坡印廷矢量中的每一个提供不同形状的信号。信号1702具有+1轨道角动量,信号1704具有+3轨道角动量,信号1706具有-4轨道角动量。每个信号具有不同的角动量和相关联的坡印廷矢量,使得能够将信号与同一频率内的其他信号区分开。这允许在相同频率上发送不同类型的信息,因为这些信号是可单独检测的,并且彼此不干扰(本征信道)。Figures 17A to 17C show the difference in signals with different helicity (ie, orbital angular momentum). Each of the spiral Poynting vectors associated with signals 1702, 1704, and 1706 provides a different shape of the signal. Signal 1702 has +1 orbital angular momentum, signal 1704 has +3 orbital angular momentum, and signal 1706 has -4 orbital angular momentum. Each signal has a different angular momentum and associated Poynting vector, enabling the signal to be distinguished from other signals within the same frequency. This allows different types of information to be sent on the same frequency because the signals are individually detectable and do not interfere with each other (eigenchannels).

图17D示出了各种本征模的坡印廷矢量的传播。每个环1720表示在相同频率内表示不同轨道角动量的不同的本征模或扭转。这些环1720中的每一个表示不同的正交信道。每个本征模具有与其相关联的坡印廷矢量1722。Figure 17D shows the propagation of Poynting vectors for various eigenmodes. Each ring 1720 represents a different eigenmode or twist representing a different orbital angular momentum within the same frequency. Each of these rings 1720 represents a different orthogonal channel. Each eigendie has a Poynting vector 1722 associated with it.

拓扑电荷可以被复用到用于线性偏振或圆偏振的频率。在线性偏振的情况下,拓扑电荷将在垂直和水平偏振上复用。在圆偏振的情况下,拓扑电荷将在左手圆偏振和右手圆偏振上复用。拓扑电荷是螺旋度指数“I”或施加到信号的扭转或OAM的量的另一名称。此外,为了传输多个信息流,也可以将上面讨论的正交函数的使用一起复用到同一信号上。螺旋度指数可以是正的或负的。在无线通信中,可以创建不同的拓扑电荷/正交函数并且将它们一起复用和解复用以分离拓扑电荷电荷/正交函数。具有不同正交函数的信号在同一信号上空间地组合在一起,但不相互干扰,因为它们彼此正交。Topological charges can be multiplexed to frequencies for linear or circular polarization. In the case of linear polarization, topological charges will be multiplexed across vertical and horizontal polarizations. In the case of circular polarization, the topological charges will be multiplexed on left-hand circular polarization and right-hand circular polarization. Topological charge is another name for the helicity index "I" or the amount of twist or OAM applied to a signal. Furthermore, the use of the orthogonal functions discussed above can also be multiplexed together onto the same signal in order to transmit multiple information streams. The helicity index can be positive or negative. In wireless communications, different topological charge/orthogonal functions can be created and multiplexed and demultiplexed together to separate topological charge/orthogonal functions. Signals with different orthogonal functions are spatially combined on the same signal, but do not interfere with each other because they are orthogonal to each other.

拓扑电荷l可以使用螺旋相位板(Spiral Phase Plate,SPP)产生,如图17E中所示,使用具有特定折射率和加工车间能力或相位掩模的适当材料,由新材料制成的全息图或使用一种新技术创建RF形式的空间光调制器(Spatial Light Modulator,SLM),其通过调整该装置上的电压来进行RF波的扭转(与光束相反)从而得到特定拓扑电荷的RF波扭转。螺旋相位板可以将RF平面波(l=0)变换为具有特定螺旋度(即l=+1)的扭转RF波。Topological charges l can be generated using a Spiral Phase Plate (SPP), as shown in Figure 17E, using appropriate materials with specific refractive indices and shop capabilities or phase masks, holograms made from new materials, or A new technique was used to create an RF form of Spatial Light Modulator (SLM) that twists the RF wave (as opposed to the beam) by adjusting the voltage across the device to obtain a topologically charged RF wave twist. A helical phase plate can transform an RF plane wave (l=0) into a twisted RF wave with a specific helicity (ie, l=+1).

串扰和多路径干扰可以使用RF多输入多输出(MIMO)来进行校正。大多数信道损伤可以使用控制或导频信道来检测,并使用算法技术(闭合环路控制系统)来校正。Crosstalk and multipath interference can be corrected using RF Multiple Input Multiple Output (MIMO). Most channel impairments can be detected using control or pilot channels and corrected using algorithmic techniques (closed loop control systems).

虽然将轨道角动量应用于各种信号允许信号彼此正交并且在相同的信号携带介质上使用,但是可以将其他正交函数/信号应用于数据流以在相同的信号介质载波上创建正交信号。While applying orbital angular momentum to various signals allows the signals to be orthogonal to each other and used on the same signal-carrying medium, other orthogonal functions/signals can be applied to data streams to create orthogonal signals on the same signal medium carrier .

在符号二维空间内,将时间带宽积(即,在该空间中由信号占用的面积)最小化,使得能够具有更密集的包装,并因而能够在分配的信道内使用更多的信号,具有更高的所得信息携带能力。在给定频率信道德尔塔(Δf)的情况下,在最短时间Δt内通过其传输的给定信号将具有由某些时间带宽最小化信号描述的包络。这些信号的时间-带宽积的形式为:Minimizing the time-bandwidth product (ie, the area occupied by the signal in this space) within the symbol two-dimensional space enables denser packing and thus more signals to be used within the allocated channel, with Higher resulting information carrying capacity. Given a frequency channel delta (Δf), a given signal transmitted through it for the shortest time Δt will have an envelope described by some temporal bandwidth minimization signal. The time-bandwidth product of these signals is of the form:

ΔtΔf=1/2(2n+1)ΔtΔf=1/2(2n+1)

其中n是从0至无穷大范围内的整数,表示信号的顺序。where n is an integer ranging from 0 to infinity, indicating the order of the signal.

这些信号形成一组正交的无限元素,其中每个都具有有限的能量。它们在时域和频域上都是有限的,并且可以通过相关性(例如,通过匹配过滤)从其他信号和噪声的混合中检测到。与其它小波不同,这些正交信号具有相似的时间和频率形式。这些类型的正交信号减少了时间带宽积,从而增加了信道的频谱效率。These signals form a set of orthogonal infinite elements, each of which has finite energy. They are finite in both the time and frequency domains, and can be detected from a mixture of other signals and noise by correlation (for example, by matched filtering). Unlike other wavelets, these quadrature signals have similar time and frequency patterns. These types of quadrature signals reduce the time-bandwidth product, thereby increasing the spectral efficiency of the channel.

埃尔米特-高斯多项式是经典的正交多项式序列的一个示例,其是量子谐波振荡器的本征态。基于埃尔米特-高斯多项式的信号具有上述最小时间带宽积属性,并且可以用于系统的实施例。然而,应当理解,也可以使用其他信号,例如正交多项式,该正交多项式诸如是雅可比(Jacobi)多项式、盖根堡(Gegenbauer)多项式、勒让德(Legendre)多项式、切比雪夫(Chebyshev)多项式、以及拉盖尔-高斯多项式等。Q函数是可以用作MLO信号的基础的另一类函数。The Hermitian-Gaussian polynomial is an example of a classical sequence of orthogonal polynomials, which are the eigenstates of quantum harmonic oscillators. Signals based on Hermitian-Gaussian polynomials have the minimum time-bandwidth product property described above and can be used in embodiments of the system. However, it should be understood that other signals, such as orthogonal polynomials such as Jacobi polynomials, Gegenbauer polynomials, Legendre polynomials, Chebyshev polynomials, may also be used ) polynomial, and Laguerre-Gaussian polynomial, etc. Q-functions are another class of functions that can be used as the basis for MLO signals.

除了进行上述时间带宽最小化之外,还可以对所述多个数据流进行处理以提供空间调制中的空间动量积的最小化。在这种情况下:In addition to performing the temporal bandwidth minimization described above, the plurality of data streams may also be processed to provide minimization of the spatial momentum product in the spatial modulation. in this case:

Figure BDA0003553842120000191
Figure BDA0003553842120000191

以这种方式处理数据流产生空间波前。该处理产生也与OAM扭转函数一样彼此正交的波前,但是这些波前包括在空间域而不是时间域中的不同类型的正交函数。Processing the data stream in this way produces a spatial wavefront. This process produces wavefronts that are also orthogonal to each other like the OAM twist functions, but these wavefronts include different types of orthogonal functions in the spatial domain rather than the time domain.

上述方案适用于双绞线、同轴电缆、光纤、RF卫星、RF广播、射频点对点、RF点对多点、RF点对点(回传)、RF点对点(前传以为RAN和云化HetNet的云化和虚拟化提供更高吞吐量的CPRI接口)、自由空间光学器件(Free-Space Optics,FSO)、物联网(IOT)、WiFi、蓝牙,作为个人设备电缆替代品、RF和FSO混合系统、雷达、电磁标签和所有类型的无线接入。该方法和系统与许多当前和未来的多路存取系统兼容,包括EV-DO、UMB、WIMAX、WCDMA(有或没有)、多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)/多输入多输出(MIMO)、HSPA演进和LTE。The above solutions are applicable to twisted pair, coaxial cable, optical fiber, RF satellite, RF broadcast, RF point-to-point, RF point-to-multipoint, RF point-to-point (backhaul), RF point-to-point (fronthaul is cloudification and cloudification of RAN and cloud HetNet). Virtualization provides higher throughput CPRI interfaces), Free-Space Optics (FSO), Internet of Things (IOT), WiFi, Bluetooth as a cable replacement for personal devices, RF and FSO hybrid systems, radar, Magnetic tags and all types of wireless access. The method and system are compatible with many current and future multiple access systems, including EV-DO, UMB, WIMAX, WCDMA (with or without), Multimedia Broadcast Multicast Service (MBMS)/Multiple Input Multiple output (MIMO), HSPA evolution and LTE.

埃尔米特高斯光束Hermitian Gaussian beam

埃尔米特高斯光束也可以用于传输正交数据流。在标量场近似中(例如,忽略电磁场的矢量特征),任何电场幅度分布都可以表示为平面波的叠加,即:Hermitian Gaussian beams can also be used to transmit orthogonal data streams. In a scalar field approximation (for example, ignoring the vector character of electromagnetic fields), any electric field amplitude distribution can be represented as a superposition of plane waves, namely:

Figure BDA0003553842120000201
Figure BDA0003553842120000201

这种表示也称为平面波的角谱或电磁场的平面波展开。这里,A(kx,ky)是平面波的幅度。该表示以这样的方式选择:使得与电磁场连接的净能量通量朝向传播轴z。每平面波与具有方向k的能量流连接。实际激光器产生空间相干电磁场,该空间相干电磁场具有有限的横向延伸并且以适度扩展的方式传播。这意味着,与光束的波长和有限宽度相比,波幅仅沿传播轴(z轴)缓慢变化。因此,假设幅度函数A(kx,ky)随着(kx,ky)的值的增加而足够快地下降,则可以应用近轴近似。This representation is also known as the angular spectrum of the plane wave or the plane wave expansion of the electromagnetic field. Here, A(k x , ky ) is the amplitude of the plane wave. The representation is chosen in such a way that the net energy flux connected to the electromagnetic field is towards the propagation axis z. Each plane wave is connected to an energy flow with direction k. Practical lasers generate spatially coherent electromagnetic fields that have limited lateral extension and propagate in a moderately extended manner. This means that the wave amplitude only varies slowly along the propagation axis (z-axis) compared to the wavelength and finite width of the beam. Therefore, assuming that the magnitude function A(k x , ky ) decreases fast enough with increasing values of (k x , ky ), a paraxial approximation can be applied.

可以考虑总能量通量的两个主要特征:发散度(在波向量空间中的平面波幅度的扩展),定义为:Two main characteristics of the total energy flux can be considered: divergence (spread of plane wave amplitude in wave vector space), defined as:

Figure BDA0003553842120000202
Figure BDA0003553842120000202

并且横向空间延伸(垂直于z方向的场强的扩展)被定义为:And the lateral spatial extension (the extension of the field strength perpendicular to the z direction) is defined as:

Figure BDA0003553842120000203
Figure BDA0003553842120000203

现在,我们将光束的基本模式看作同时具有最小发散度和最小横向延伸的电磁场,即,看作使发散度和延伸的乘积最小化的场。由于对称性原因,这导致寻找使乘积最小化的幅度函数:We now consider the fundamental mode of a beam as an electromagnetic field with both minimal divergence and minimal lateral extension, ie as a field that minimizes the product of divergence and extension. Due to symmetry, this leads to finding a magnitude function that minimizes the product:

Figure BDA0003553842120000204
Figure BDA0003553842120000204

因此,寻找具有最小发散度和最小横向延伸的场可以直接导致基本高斯光束。这意味着高斯光束是具有最小不确定性的模式,即,它在实际空间和波向量空间中的大小的乘积是由海森堡(Heisenberg)的量子力学不确定性原理给出的理论最小值。因此,高斯模式具有比任何其它相同大小的光场更小的色散,并且其衍射设置了用于真实光束的衍射的较低阈值。Therefore, finding the field with minimum divergence and minimum lateral extension can lead directly to a fundamental Gaussian beam. This means that a Gaussian beam is the mode with minimal uncertainty, i.e. the product of its magnitude in real space and wave vector space is the theoretical minimum given by Heisenberg's uncertainty principle of quantum mechanics . Therefore, the Gaussian mode has less dispersion than any other light field of the same size, and its diffraction sets a lower threshold for diffraction of real light beams.

埃尔米特-高斯光束是沿传播轴具有矩形对称的结构稳定的激光模式。为了推导出这样的模式,最简单的方法是包括附加的调制形式:Hermitian-Gaussian beams are structurally stable laser modes with rectangular symmetry along the propagation axis. In order to derive such a pattern, the easiest way is to include an additional form of modulation:

Figure BDA0003553842120000205
Figure BDA0003553842120000205

Figure BDA0003553842120000206
Figure BDA0003553842120000206

新的场模式恰好是基本高斯模式E0的微分导数。The new field mode happens to be the differential derivative of the fundamental Gaussian mode E0 .

Figure BDA0003553842120000207
Figure BDA0003553842120000207

观察显式形式E0表明,最后一个等式中的微分导致以下形式的表达式:Observing the explicit form E 0 shows that the differentiation in the last equation leads to an expression of the form:

Figure BDA0003553842120000211
Figure BDA0003553842120000211

具有一些常数p和α。现在使用埃尔米特多项式的定义,with some constants p and α. Now using the definition of Hermitian polynomials,

Figure BDA0003553842120000212
Figure BDA0003553842120000212

然后场幅度变为Then the field amplitude becomes

Figure BDA0003553842120000213
Figure BDA0003553842120000213

其中in

ρ2=x2+y2 ρ 2 =x 2 +y 2

Figure BDA0003553842120000214
Figure BDA0003553842120000214

以及瑞利(Rayleigh)长度zR and the Rayleigh length z R

Figure BDA0003553842120000215
Figure BDA0003553842120000215

以及光束直径and beam diameter

Figure BDA0003553842120000216
Figure BDA0003553842120000216

在圆柱坐标中,场采用以下形式:In cylindrical coordinates, the field takes the form:

Figure BDA0003553842120000217
Figure BDA0003553842120000217

其中

Figure BDA0003553842120000218
是拉盖尔(Laguerre)函数。in
Figure BDA0003553842120000218
is the Laguerre function.

多个正交光束的模式划分复用(Mode Division Multiplexing,MDM)增加了光通信系统中的系统容量和光谱效率。对于自由空间系统,可以通过单个发射机和接收机光圈对传输每一个都处于不同正交模式的多个光束。此外,不同光束的模态正交性使得能够在发射机处进行有效的复用和在接收机处进行有效的解复用。Mode Division Multiplexing (MDM) of multiple orthogonal beams increases system capacity and spectral efficiency in optical communication systems. For free space systems, multiple beams, each in a different orthogonal mode, can be transmitted by a single transmitter and receiver aperture pair. Furthermore, the modal orthogonality of the different beams enables efficient multiplexing at the transmitter and efficient demultiplexing at the receiver.

存在表现出正交性的不同光学模态基组。例如,在自由空间光学系统和RF传输系统中,可以使用拉盖尔高斯(LG)模式或拉盖尔高斯光模式的轨道角动量(OAM)光束来复用多个正交光束。然而,存在也可用于不包含OAM的复用的其他模态组。埃尔米特高斯(HG)模式是这样的模态组之一。HGm,n光束的强度根据下式示出:There are different optical modal basis sets that exhibit orthogonality. For example, in free space optical systems and RF transmission systems, multiple orthogonal beams can be multiplexed using orbital angular momentum (OAM) beams of Laguerre Gaussian (LG) mode or Laguerre Gaussian light mode. However, there are other modality groups that can also be used for multiplexing without OAM. The Hermitian Gaussian (HG) mode is one such mode group. The intensity of the HG m,n beam is given by:

Figure BDA0003553842120000221
Figure BDA0003553842120000221

Figure BDA0003553842120000222
Figure BDA0003553842120000222

其中Hm(*)和Hn(*)是第m阶和第n阶的埃尔米特多项式。值w0是距离Z=0处的束腰。具有相同束腰w0的HG模式的空间正交性依赖于埃尔米特多项式在x或y方向上的正交性。where H m (*) and H n (*) are Hermitian polynomials of order m and order n. The value w 0 is the waist at distance Z=0. The spatial orthogonality of HG modes with the same beam waist w0 depends on the orthogonality of the Hermitian polynomials in the x or y direction.

现在参考图18,示出了用于使用HG模态组的正交性用于自由空间中的自由空间空间复用的系统。激光器1802被提供给分束器1804。分束器1804将光束分成多个光束,每个光束被提供给调制器1806,用于用数据流1808进行调制。经调制的光束被提供给准直器1810,准直器1810向空间光调制器1812提供经准直的光束。空间光调制器(SLM)1812可以用于将输入平面波变换成不同阶数的HG模式,每个模式携带独立的数据信道。这些HG模式使用多路复用器1814在空间上被多路复用,并且在自由空间链接1816上被同轴传输。在接收机1818处,有几个因素可能影响这些HG模式的解复用,例如接收机光圈尺寸、接收机横向位移和接收机角度误差。这些因素影响数据信道的性能,例如信噪比和串扰。Referring now to FIG. 18, a system for free space spatial multiplexing in free space using the orthogonality of the HG modality group is shown. Laser 1802 is provided to beam splitter 1804. Beam splitter 1804 splits the beam into a plurality of beams, each beam being provided to modulator 1806 for modulation with data stream 1808 . The modulated beam is provided to a collimator 1810, which provides the collimated beam to a spatial light modulator 1812. A spatial light modulator (SLM) 1812 may be used to transform the input plane wave into HG modes of different orders, each mode carrying a separate data channel. These HG patterns are spatially multiplexed using multiplexer 1814 and transmitted coaxially on free space link 1816 . At receiver 1818, several factors may affect the demultiplexing of these HG modes, such as receiver aperture size, receiver lateral displacement, and receiver angular error. These factors affect the performance of the data channel, such as signal-to-noise ratio and crosstalk.

关于发散的HGm,0光束(m=0-6)的特性,假定波长为1550nm,并且每个模式的发射功率为0dBm。高阶HG模式已经显示出具有较大的光束尺寸。对于较小的光圈尺寸,由于发散,对于较高阶的HG模式接收更少的功率。Regarding the properties of a diverging HG m,0 beam (m=0-6), a wavelength of 1550 nm is assumed, and the transmit power of each mode is 0 dBm. Higher-order HG modes have been shown to have larger beam sizes. For smaller aperture sizes, less power is received for higher order HG modes due to divergence.

由于HG模式的正交性依赖于在x和y方向上的光场分布,有限的接收机光圈可以截断光束。截断将破坏HG信道的正交性和成本串扰。当光圈较小时,对其他模式有较高的串扰。当使用有限接收机时,如果传输具有偶数(奇数)阶的HG模式,它仅引起与具有偶数(奇数)数的其他HG模式的串扰。这通过当光束被系统地截断时奇数和偶数HG模态群的正交性保留的事实来解释。Since the orthogonality of the HG modes depends on the light field distribution in the x and y directions, a finite receiver aperture can cut off the beam. Truncation will destroy the orthogonality and cost crosstalk of the HG channel. When the aperture is small, there is higher crosstalk to other modes. When a finite receiver is used, if an HG mode with an even (odd) order is transmitted, it only causes crosstalk with other HG modes with an even (odd) number. This is explained by the fact that the orthogonality of odd and even HG modal groups is preserved when the beam is systematically truncated.

此外,接收机的未对准可能导致串扰。在一个示例中,当接收机不与光束轴对准时,可以引起横向位移。在另一示例中,当接收机在轴上但在接收机取向和光束传播轴之间存在角度时,可能引起角度误差。随着横向位移的增加,从发射功率模式接收的功率越少,越多的功率泄漏到其他模式。对于与发射模式具有较大的模式指数间隔的模式,存在较少的串扰。In addition, misalignment of the receiver can lead to crosstalk. In one example, lateral displacement can be induced when the receiver is not aligned with the beam axis. In another example, angular errors may be introduced when the receiver is on-axis but there is an angle between the receiver orientation and the beam propagation axis. As the lateral displacement increases, the less power is received from the transmit power mode, the more power leaks into other modes. For modes with a larger mode index separation from the transmit mode, there is less crosstalk.

模式转换方法Mode conversion method

现在参考图19,在所有的外部腔方法中,也许最简单的是使高斯光束穿过同轴放置的螺旋相位板(SPP)1902。SPP 1902是具有螺旋表面的光学元件,如图17E中所示。为了产生状态为

Figure BDA0003553842120000223
的OAM光束,板的厚度轮廓应加工成
Figure BDA0003553842120000224
其中n是介质的折射率。使用SPP 1902的限制在于每个OAM态需要不同的特定板。作为替代,可重新配置的衍射光学元件,例如,像素化的空间光调制器(SLM)1904或数字式微反射镜器件,可被编程为在给定波长处用作任意选择的折射元件。如上所述,如在1904处所示,螺旋相位轮廓
Figure BDA0003553842120000232
将线性偏振高斯激光束转换为OAM模式,其波前类似于
Figure BDA0003553842120000231
折叠旋塞1906。重要的是,通过简单地更新加载在SLM 1904上的全息图,可以容易地改变所生成的OAM光束。为了在空间上将相位调制光束与来自SLM的零阶非相位调制反射分离,将线性相位斜坡加到螺旋相位码(即,“叉”形相位图案1908)上,以产生空间上不同的一阶衍射OAM光束,携带期望的电荷。还应当注意,上述方法仅通过方位指数控制产生OAM光束。为了产生纯LG_(l,p)模式,必须共同控制波前的相位和强度。这可以使用具有更复杂相位全息图的仅相位SLM来实现。Referring now to Figure 19, of all the external cavity approaches, perhaps the simplest is to pass a Gaussian beam through a coaxially placed Spiral Phase Plate (SPP) 1902. SPP 1902 is an optical element with a helical surface, as shown in Figure 17E. In order to generate the state as
Figure BDA0003553842120000223
The OAM beam, the thickness profile of the plate should be machined to
Figure BDA0003553842120000224
where n is the refractive index of the medium. The limitation of using SPP 1902 is that each OAM state requires a different specific board. Alternatively, a reconfigurable diffractive optical element, such as a pixelated spatial light modulator (SLM) 1904 or a digital micromirror device, can be programmed to act as an arbitrarily selected refractive element at a given wavelength. As described above, as shown at 1904, the helical phase profile
Figure BDA0003553842120000232
Convert a linearly polarized Gaussian laser beam to OAM mode with a wavefront similar to
Figure BDA0003553842120000231
Folding stopcock 1906. Importantly, the generated OAM beam can be easily changed by simply updating the hologram loaded on the SLM 1904. To spatially separate the phase-modulated beam from the zero-order non-phase-modulated reflections from the SLM, a linear phase ramp is applied to the helical phase code (ie, "fork"-shaped phase pattern 1908) to produce spatially distinct first-order Diffracted the OAM beam, carrying the desired charge. It should also be noted that the above method produces OAM beams only with azimuthal index control. To generate pure LG_(l,p) modes, the phase and intensity of the wavefront must be jointly controlled. This can be achieved using phase-only SLMs with more complex phase holograms.

用DLP生成OAMGenerate OAM with DLP

可以使用数字光处理器(Digital Light Processor,DLP)生成如上所述在量子计算机内使用的OAM信号。DLP包括数字光处理器,该数字光处理器是基于光学微机电技术的显示器件,该光学微机电技术使用数字式微反射镜器件,该数字式微反射镜器件使用例如在名称为“使用微机电系统将直方图限制应用于光束的系统和方法”的14/864511号美国专利申请中公开的技术,该专利申请全文通过引用并入本文。现在参考图20,其中示出了用于生成光束2002的另一种方式,该光束2002包括正交函数,例如OAM、埃尔米特高斯、拉盖尔高斯等,以对光束中的信息进行编码。激光束生成器2004产生光束2006,光束2006包括提供给微电机械系统(MicroElectroMechanical system,MEM)器件2008的平面波。MEM器件2008的示例包括能够产生具有各种特性的光束的数字光处理(Digital Light Processing,DLP)投影仪或数字式微反射镜器件(Digital Micro-mirror Device,DMD)。MEM器件2008可以生成响应于对MEM器件2008的输入而被编程的埃尔米特高斯模式、拉盖尔高斯(LG)模式和涡旋OAM模式。MEM器件2008具有模式选择逻辑2010,该模式选择逻辑2010使得能够选择拉盖尔高斯模式、埃尔米特高斯模式和涡旋OAM模式(或其他正交函数模式)来处理输入光束2006。MEM器件2008还使得能够以每秒几千次的非常高的速率在不同模式之间切换,这是使用空间光调制器(SLM)无法实现的。经由模式切换逻辑2012控制模式之间的切换。这种快速切换使得能够产生用于通信的OAM、HG或LG模式以及用于量子信息处理的量子密钥分配(QKD)和量子计算机的这些形式。拉盖尔-高斯(LG)与OAM和埃尔米特高斯(HG)光束的正交特性与MEM的高速切换相结合,使得器件有用于实现更高的数据容量。这可以使用全息图来实现,全息图被编程到DLP的内存中,DLP将微反射镜编程到选定的位置,并且可以使用这些反射镜利用所编程的信息来扭转光束。The OAM signal used within a quantum computer as described above can be generated using a Digital Light Processor (DLP). The DLP includes a digital light processor, which is a display device based on optical microelectromechanical technology using digital micromirror devices, which are "Systems and Methods for Applying Histogram Constraints to Light Beams," the technique disclosed in US Patent Application No. 14/864,511, which is incorporated herein by reference in its entirety. Referring now to FIG. 20, there is shown another way of generating a beam 2002 that includes orthogonal functions, such as OAM, Hermitian Gaussian, Laguerre Gaussian, etc., to interpret the information in the beam coding. The laser beam generator 2004 produces a light beam 2006 that includes a plane wave provided to a MicroElectroMechanical system (MEM) device 2008 . Examples of the MEM device 2008 include a Digital Light Processing (DLP) projector or a Digital Micro-mirror Device (DMD) capable of producing light beams with various characteristics. The MEM device 2008 can generate Hermitian Gaussian, Laguerre Gaussian (LG), and Vortex OAM modes that are programmed in response to inputs to the MEM device 2008 . MEM device 2008 has mode selection logic 2010 that enables selection of Laguerre Gaussian, Hermitian Gaussian, and Vortex OAM modes (or other orthogonal function modes) to process input beam 2006. The MEM device 2008 also enables switching between different modes at a very high rate of several thousand times per second, which is not possible using spatial light modulators (SLMs). Switching between modes is controlled via mode switching logic 2012 . This fast switching enables the generation of OAM, HG or LG modes for communication and these forms of quantum key distribution (QKD) and quantum computers for quantum information processing. The orthogonal nature of the Laguerre-Gaussian (LG) and OAM and Hermitian Gaussian (HG) beams combined with the high-speed switching of the MEM makes the device useful for achieving higher data capacities. This can be achieved using holograms, which are programmed into the memory of the DLP, which programs micromirrors to selected positions, and these mirrors can be used to twist the beam with the programmed information.

这使得能够使用外部数字信号以非常高的速度来按需实现能在其之间切换的二进制光栅(全息图)。使用例如DLP技术,不同模式(不同的二进制光栅)之间的切换可以以每秒几千次的非常高的速率来实现,这是使用空间光调制器(SLM)无法实现的。这允许对提供给用于新调制和/或多路存取技术的光束的螺旋度进行动态控制以编码信息。This enables binary gratings (holograms) that can be switched between on demand using external digital signals at very high speeds. Using eg DLP techniques, switching between different modes (different binary gratings) can be achieved at very high rates of several thousand times per second, which cannot be achieved using spatial light modulators (SLMs). This allows dynamic control of the helicity provided to the beam for the new modulation and/or multiple access technique to encode information.

DLP允许从微米至毫米的高分辨率和精度,从而能够利用从红外至紫外的各种频率。用于MDM(模式划分复用)的DLP的使用最小化了颜色、距离、移动和环境灵敏度,因此对于构建集成光学器件是理想的。大多数SLM受到大约60Hz的帧刷新速率的限制,这使得数字式微反射镜器件(DMD)的高速、宽范围的工作频谱带宽在各种应用中是有用的。DMD设计固有地使温度灵敏度最小化以实现可靠的3-D波构造。DLP allows high resolution and precision from microns to millimeters, enabling the utilization of frequencies from infrared to ultraviolet. The use of DLP for MDM (Mode Division Multiplexing) minimizes color, distance, movement and environmental sensitivity and is therefore ideal for building integrated optics. Most SLMs are limited by frame refresh rates of about 60 Hz, which makes the high-speed, wide operating spectral bandwidth of digital micromirror devices (DMDs) useful in a variety of applications. The DMD design inherently minimizes temperature sensitivity for reliable 3-D wave construction.

绝大多数市售的SLM器件被限制为大约60Hz的帧速率,这大大限制了基于该技术的任何系统的操作速度。DMD是仅幅度的空间光调制器。DMD的高速、宽范围的工作频谱带宽和高功率阈值使得该器件成为用于各种应用的有用工具。DMD的变体可以在商业上以仅相位的SLM的一小部分成本来获得。通过快速地打开和关闭微反射镜可以实现空间模式的强度成形。然而,在该过程中创建的模式可能在时间上不稳定,并且仅当由慢速检测器平均时才具有期望的强度分布。The vast majority of commercially available SLM devices are limited to frame rates around 60Hz, which greatly limits the speed of operation of any system based on this technology. DMDs are amplitude-only spatial light modulators. The DMD's high speed, wide operating spectral bandwidth and high power threshold make this device a useful tool for a variety of applications. Variants of DMD are commercially available at a fraction of the cost of phase-only SLMs. Intensity shaping of the spatial mode can be achieved by rapidly turning the micromirrors on and off. However, the patterns created in this process can be temporally unstable and have the desired intensity distribution only when averaged by a slow detector.

可以通过调制在全息图内实现的二进制幅度光栅的位置和宽度来编码相位和幅度信息,诸如在图21A至图21H中示出的那些。通过实现这样的全息图来控制DMD,可以通过用全息图适当地编程DMD来创建HG模式、LG模式、OAM涡旋模式或任何角度(any angular,ANG)模式。另外,可以以非常高的速度执行所生成的模式之间的切换。Phase and amplitude information can be encoded by modulating the position and width of binary amplitude gratings implemented within the hologram, such as those shown in Figures 21A-21H. By implementing such a hologram to control the DMD, HG mode, LG mode, OAM vortex mode or any angular (ANG) mode can be created by appropriately programming the DMD with the hologram. In addition, switching between the generated patterns can be performed at very high speed.

这种方法可以通过考虑一维二进制幅度光栅来实现。该光栅的传输函数可以写成:This approach can be implemented by considering a one-dimensional binary magnitude grating. The transfer function of this raster can be written as:

Figure BDA0003553842120000241
Figure BDA0003553842120000241

其中in

Figure BDA0003553842120000242
Figure BDA0003553842120000242

该函数可以被描绘为周期为x0的脉冲串。参数“k”和“w”是设置每个脉冲的位置和宽度的无单位量,并且等于均匀光栅的恒定值。可以局部改变这些参数的值以实现光场的相位调制和幅度调制。透射率函数τ(x)是周期函数,并且可以被扩展为傅里叶级数。This function can be depicted as a pulse train with period x 0 . Parameters "k" and "w" are unitless quantities that set the position and width of each pulse, and are equal to constant values for a uniform grating. The values of these parameters can be changed locally to achieve phase and amplitude modulation of the light field. The transmittance function τ(x) is a periodic function and can be extended to a Fourier series.

在其中k(x)和w(x)是x的函数并且二进制光栅由单色平面波照明的情况下。第一级衍射光可以写成:In the case where k(x) and w(x) are functions of x and the binary grating is illuminated by a monochromatic plane wave. The first order diffracted light can be written as:

Figure BDA0003553842120000243
Figure BDA0003553842120000243

因此,w(x)与衍射光的幅度相关,而k(x)设置其相位。因此,可以通过设置参数k(x)和w(x)来控制衍射光的相位和幅度。在通信理论中,这些方法有时被称为脉冲位置调制(Pulse Position Modulation,PPM)和脉冲宽度调制(Pulse Width Modulation,PWM)。上式是缓慢变化的k(x)和w(x)函数的良好近似。Thus, w(x) is related to the amplitude of the diffracted light, while k(x) sets its phase. Therefore, the phase and amplitude of the diffracted light can be controlled by setting the parameters k(x) and w(x). In communication theory, these methods are sometimes referred to as Pulse Position Modulation (PPM) and Pulse Width Modulation (PWM). The above equations are good approximations for the slowly varying k(x) and w(x) functions.

上述分析处理了一维情况。可以通过对快速变化的调制载波进行阈值化来生成二维光栅,如:The above analysis deals with the one-dimensional case. Two-dimensional gratings can be generated by thresholding a rapidly changing modulated carrier, such as:

Figure BDA0003553842120000251
Figure BDA0003553842120000251

这里,sgn(x,y)是符号函数。这可以在其中w(x,y)和k(x,y)的极限中检查。对于一般的复标量场,可以找到相应的w(x,y)和k(x,y)函数:Here, sgn(x,y) is the sign function. This can be checked in the limits where w(x,y) and k(x,y). For general complex scalar fields, the corresponding w(x,y) and k(x,y) functions can be found:

Figure BDA0003553842120000252
Figure BDA0003553842120000252

根据关系According to relationship

Figure BDA0003553842120000253
Figure BDA0003553842120000253

Figure BDA0003553842120000254
Figure BDA0003553842120000254

可以设计2-D二进制幅度全息图以生成LG模式。为涡旋模式设计的光栅全息图将具有跨光圈的相当均匀的宽度,而对于LG模式的情况,当幅度变得可忽略不计地小时,光栅逐渐消失。2-D binary amplitude holograms can be designed to generate LG modes. A grating hologram designed for the vortex mode will have a fairly uniform width across the aperture, while for the case of the LG mode, the grating gradually disappears when the amplitude becomes negligibly small.

数字式微反射镜器件(DMD)是仅幅度的空间光调制器。器件包括微反射镜阵列,通过将单个反射镜的偏转角设置为+12°或-12°,可以以二进制方式控制该阵列。现在参考图22A,示出了DMD 2202的一般框图。DMD 2202包括以X×Y阵列布置的多个微反射镜2208。该阵列可以包括铝微反射镜的1024×768阵列,例如在DLP 5500DMD阵列中实现的铝微反射镜的1024×768阵列。然而,可以理解的是,可以使用其他的阵列尺寸和DMD器件。每个微反射镜2208包括光机械元件和电机械元件的组合。每个微反射镜2208包括DMD 2202的像素。微反射镜2208是具有+12°和-12°两个稳定的微反射镜状态的机电元件。微反射镜具有10.8微米的节距,并且被设计用于波长为420nm至700nm的光。微反射镜2208的状态由操作期间像素的几何形状和静电特性确定。微反射镜2208的两个位置确定撞击反射镜的光束被偏转的方向。特别地,DMD 2202是空间光调制器。按照惯例,正(+)状态向照明倾斜并被称为“开启”状态。类似地,负(-)状态偏离照明倾斜并被称为“关闭”状态。Digital Micromirror Devices (DMDs) are amplitude-only spatial light modulators. The device includes an array of micromirrors that can be controlled in a binary fashion by setting the deflection angle of the individual mirrors to +12° or -12°. Referring now to FIG. 22A, a general block diagram of DMD 2202 is shown. DMD 2202 includes a plurality of micromirrors 2208 arranged in an XxY array. The array may comprise a 1024x768 array of aluminum micromirrors, such as the 1024x768 array of aluminum micromirrors implemented in a DLP 5500 DMD array. However, it will be appreciated that other array sizes and DMD devices may be used. Each micromirror 2208 includes a combination of optomechanical and electromechanical elements. Each micromirror 2208 includes a pixel of the DMD 2202 . Micromirror 2208 is an electromechanical element with two stable micromirror states of +12° and -12°. The micromirrors have a pitch of 10.8 microns and are designed for light with wavelengths from 420nm to 700nm. The state of the micromirror 2208 is determined by the geometry and electrostatic properties of the pixels during operation. The two positions of the micromirror 2208 determine the direction in which the light beam impinging on the mirror is deflected. In particular, DMD 2202 is a spatial light modulator. By convention, the positive (+) state is tilted toward the illumination and is referred to as the "on" state. Similarly, the negative (-) state deviates from the illumination slope and is referred to as the "off" state.

图22B示出了微反射镜2208将与诸如激光器的光源2230交互的方式。光源2230沿-24°的角度照射光束,该光束照射到微反射镜2208。当反射镜以-12°的角度处于“关闭”状态2232时,关闭状态能量2234以48°的角度被反射。当反射镜2208位于0°的平坦状态2236时,平坦状态能量2238以24°的角度被反射。最后,当反射镜处于+12°的“开启”状态2240时,开启状态能量2242通过DMD的投影透镜2234以0°被反射。Figure 22B shows how the micromirror 2208 would interact with a light source 2230, such as a laser. The light source 2230 illuminates a beam of light at an angle of -24°, which illuminates the micro-mirror 2208. When the mirror is in the "off" state 2232 at an angle of -12°, the off state energy 2234 is reflected at an angle of 48°. When mirror 2208 is in flat state 2236 of 0°, flat state energy 2238 is reflected at an angle of 24°. Finally, when the mirror is in the "on" state 2240 of +12°, the on state energy 2242 is reflected at 0° through the projection lens 2234 of the DMD.

现在参考图23,示出了微反射镜2208的机械结构的视图。微反射镜2208包括沿着反射镜的对角线2306附接到扭转铰链2304的反射镜2302。微反射镜2302的下侧通过弹簧尖端2308与电路的其余部分电接触。一对电极2310用于将微反射镜2302保持在两个操作位置(+12°和-12°)中的一者中。Referring now to FIG. 23, a view of the mechanical structure of the micromirror 2208 is shown. Micromirror 2208 includes mirror 2302 attached to torsional hinge 2304 along mirror diagonal 2306. The underside of micromirror 2302 is in electrical contact with the rest of the circuit through spring tip 2308. A pair of electrodes 2310 are used to hold the micromirror 2302 in one of two operating positions (+12° and -12°).

现在还参照图24,示出了微反射镜2208的功能部件的框图。在每个微反射镜2208的下面是由双CMOS存储元件2404组成的内存单元2402。两个内存元件2404的状态不是独立的,而是总是互补的。如果一个CMOS内存元件2404处于逻辑“1”电平,则另一个CMOS元件处于逻辑“0”电平,反之亦然。微反射镜2208的内存单元2402的状态在反射镜2208的机械位置中起作用。然而,内存单元2402内的加载信息不会自动改变微反射镜2208的机械状态。Referring now also to FIG. 24, a block diagram of the functional components of the micromirror 2208 is shown. Below each micromirror 2208 is a memory cell 2402 consisting of dual CMOS memory elements 2404. The states of the two memory elements 2404 are not independent, but are always complementary. If one CMOS memory element 2404 is at a logic "1" level, the other CMOS element is at a logic "0" level, and vice versa. The state of the memory cell 2402 of the micromirror 2208 plays a role in the mechanical position of the mirror 2208. However, the loading information within the memory unit 2402 does not automatically change the mechanical state of the micro-mirror 2208.

虽然双CMOS内存元件2404的状态在确定微反射镜2208的状态中起作用,但是内存元件2304的状态不是唯一的确定因素。一旦微反射镜2208已经着陆,改变内存单元2402的状态将不会导致微反射镜2208翻转到另一状态。因此,内存状态和微反射镜状态不直接链接在一起。为了使CMOS内存元件2404的状态转移到微反射镜2208的机械位置,微反射镜3108必须接收“反射镜时钟脉冲”信号。镜像时钟脉冲信号暂时释放微反射镜3108并基于反射镜内存元件2304的状态使反射镜重新定位。因此,可以将与反射镜位置相关的信息预先加载到内存元件2404中,并且MEM器件2202内的每个反射镜的反射镜2302的机械位置响应于镜像时钟脉冲信号而同时改变。可以编程内存单元2402内的信息的一种方式是通过使用全息图,诸如本文中描述的用于限定具有MEM器件2202的微反射镜2208中的每个微反射镜的位置的全息图。While the state of dual CMOS memory element 2404 plays a role in determining the state of micromirror 2208, the state of memory element 2304 is not the only determining factor. Once the micromirror 2208 has landed, changing the state of the memory cell 2402 will not cause the micromirror 2208 to flip to another state. Therefore, the memory state and the micromirror state are not directly linked together. In order for the state of CMOS memory element 2404 to be transferred to the mechanical position of micromirror 2208, micromirror 3108 must receive a "mirror clock pulse" signal. The mirror clock pulse signal temporarily releases the micromirror 3108 and repositions the mirror based on the state of the mirror memory element 2304. Thus, the information related to the mirror position can be pre-loaded into the memory element 2404, and the mechanical position of the mirror 2302 of each mirror within the MEM device 2202 changes simultaneously in response to the mirror clock pulse signal. One way in which information within memory cell 2402 can be programmed is through the use of holograms, such as those described herein for defining the position of each of micromirrors 2208 with MEM device 2202.

当DMD 2202被“上电”或“掉电”时,存在确保微反射镜2208的正确定向所必需的规定操作。这些操作在上电期间定位微反射镜2208,并在掉电期间释放它们。在图25的流程图中更具体地示出了用于改变微反射镜2208的位置的过程。最初,在步骤2502处,设置内存单元2402内的内存状态。一旦在内存单元2402内设置了内存状态,则可以在步骤2504处施加镜像时钟脉冲信号。微反射镜3108将具有可以将数据加载到内存单元2402中的镜像时钟脉冲之前和之后的时间的已建立规范。然后,在步骤2506处,镜像时钟脉冲信号的应用将反射镜设置为由内存建立的它们的新状态。在步骤2508处完成该过程,并且反射镜2302位置是固定的,并且可以将新数据加载到内存单元2402中。When the DMD 2202 is "powered up" or "powered down," there are prescribed actions necessary to ensure proper orientation of the micromirrors 2208. These operations position the micromirrors 2208 during power up and release them during power down. The process for changing the position of the micromirror 2208 is shown in more detail in the flowchart of FIG. 25 . Initially, at step 2502, the memory state within memory unit 2402 is set. Once the memory state is set within memory cell 2402, a mirrored clock pulse signal may be applied at step 2504. Micromirror 3108 will have an established specification of the time before and after the mirror clock pulse that can load data into memory cell 2402. Then, at step 2506, application of the mirror clock pulse signal sets the mirrors to their new state established by the memory. The process is completed at step 2508 and the mirror 2302 position is fixed and new data can be loaded into the memory unit 2402.

现在参考图26,示出了用于测量所生成的光束的强度和相位的强度和相位干涉仪。可以通过将计算机生成的Matlab全息图2602(例如上面描述的以及在图31A至图31H中示出的那些)加载到DMD内存上来生成空间模式。用于产生模式的全息图2602可以通过每一个周期用20个微反射镜调制光栅函数来创建。全息图2602被提供给DMD 2604。成像系统2606连同光圈2608将第一级衍射光分离成分离的模式。成像系统包括通过一对透镜2612、2614提供光的激光器2610。透镜2612将光束扩展到使光束准直的透镜2614。分束器2616将光束分裂向透镜2618和反射镜2621。透镜2618使光束通过透镜2620聚焦,透镜2620使光束通过滤光器2622准直。经滤光的光束被反射镜2624反射通过第二分束器2626。分束器2626将光束分裂向透镜2628和电荷耦合器件相机2630。电荷耦合器件(Charge CouplesDevice,CCD)相机2630测量所产生光束的强度分布。提供给透镜2628的平面波光束聚焦在光圈2608上以干涉来自DMD的扭转光束。来自DMD 2604的扭转光束也聚焦在光圈2608上。来自DMD 2604的光束提供为通过透镜2632,其也聚焦在光圈2608上。所生成的模式的相位由模式中的螺旋的数量确定,并且是通过用平面波光束干涉扭转光束而引起的。而且,相位是正还是负可以通过螺旋是顺时针(正)还是逆时针(负)来确定。马赫-曾德尔(Mach-Zehnder)干涉仪可用于验证所创建的光束的相位图案。从透镜2628提供的经准直的平面波与由来自DMD 2604的光束通过透镜2632产生的模式干涉。这在光圈2608处产生干涉图(螺旋图案)。然后可以使用DLP上基于内存的静态叉状将从DMD生成的模式复用在一起。Referring now to FIG. 26, an intensity and phase interferometer used to measure the intensity and phase of the generated beam is shown. Spatial patterns can be generated by loading computer-generated Matlab holograms 2602, such as those described above and shown in Figures 31A-31H, onto DMD memory. The hologram 2602 used to generate the pattern can be created by modulating the grating function with 20 micromirrors per cycle. Hologram 2602 is provided to DMD 2604. Imaging system 2606 in conjunction with aperture 2608 separates the first order diffracted light into separate modes. The imaging system includes a laser 2610 that provides light through a pair of lenses 2612, 2614. Lens 2612 expands the beam to lens 2614 which collimates the beam. Beam splitter 2616 splits the beam towards lens 2618 and mirror 2621. Lens 2618 focuses the beam through lens 2620, which collimates the beam through filter 2622. The filtered beam is reflected by mirror 2624 through second beam splitter 2626. Beam splitter 2626 splits the beam towards lens 2628 and charge coupled device camera 2630. A Charge Couples Device (CCD) camera 2630 measures the intensity distribution of the generated light beam. The plane wave beam provided to lens 2628 is focused on aperture 2608 to interfere with the twisted beam from the DMD. The twisted beam from DMD 2604 is also focused on aperture 2608. The beam from DMD 2604 is provided through lens 2632, which is also focused on aperture 2608. The phase of the generated mode is determined by the number of helices in the mode and is caused by interfering the twisted beam with the plane wave beam. Also, whether the phase is positive or negative can be determined by whether the spiral is clockwise (positive) or counterclockwise (negative). A Mach-Zehnder interferometer can be used to verify the phase pattern of the created beam. The collimated plane wave provided from lens 2628 interferes with the mode created by the beam from DMD 2604 passing through lens 2632. This produces an interference pattern (spiral pattern) at aperture 2608. The patterns generated from the DMD can then be multiplexed together using a memory-based static fork on the DLP.

因此,有可能使用二进制全息图来相干地控制光束的相位和幅度。二进制光栅的每个周期的像素数量少导致编码相位和强度的量化误差。在DMD 2604上的入射光束中的光栅周期的总数设置所生成模式的空间带宽的上限。因此,为了生成高质量模式,大量的微反射镜是优选的。这可以通过使用较新一代的DMD来实现。基于OAM的量子密钥分配所需的另一组模式是角度(Angular,ANG)模式组。Therefore, it is possible to use binary holograms to coherently control the phase and amplitude of the beam. The low number of pixels per period of the binary grating leads to quantization errors in encoding phase and intensity. The total number of grating periods in the incident beam on the DMD 2604 sets an upper limit on the spatial bandwidth of the generated patterns. Therefore, in order to generate high quality patterns, a large number of micromirrors are preferred. This can be achieved by using a newer generation of DMDs. Another set of patterns required for OAM-based quantum key distribution is the Angular (ANG) pattern group.

现在参考图27A,示出了在不同OAM模式之间的切换可以实时实现的方式。激光器2702通过透镜2704和2706生成到达DMD 2708的准直光束。DMD 2708提供由透镜2710聚焦到光圈2712上的光束。来自光圈2712的输出被提供给透镜2714,透镜2714将光束准直到反射镜2716上。经准直的光束被提供给OAM分选器2718,该分选器2718将信号分离成由计算机2722检测的各种OAM模式2720。Referring now to FIG. 27A, there is shown how switching between different OAM modes can be achieved in real time. Laser 2702 generates a collimated beam to DMD 2708 through lenses 2704 and 2706. DMD 2708 provides a light beam focused by lens 2710 onto aperture 2712. The output from aperture 2712 is provided to lens 2714, which collimates the beam onto mirror 2716. The collimated beam is provided to an OAM sorter 2718, which separates the signal into various OAM modes 2720 that are detected by a computer 2722.

现在参考图27B,更一般地示出了发射机2750处理多个数据信道2752的方式,所述多个数据信道2752穿过柱面透镜2754到达聚焦透镜2756。透镜2756将光束聚焦在OAM分选器2758上。经准直的光束穿过OAM分选器2758,用于将OAM光束复用在一起作为多路复用的OAM光束2764传输到接收机2764。多路复用的OAM光束2760在接收机2764处穿过第二OAM分选器2762以将光束解复用成分离的OAM信道。接收的OAM信道2768穿过透镜2766以聚焦这些分离的OAM光束信道2768。Referring now to FIG. 27B , the manner in which the transmitter 2750 processes a plurality of data channels 2752 that pass through the cylindrical lens 2754 to the focusing lens 2756 is shown more generally. Lens 2756 focuses the beam on OAM sorter 2758. The collimated beam passes through the OAM sorter 2758 for multiplexing the OAM beams together for transmission to the receiver 2764 as a multiplexed OAM beam 2764. The multiplexed OAM beam 2760 passes through a second OAM splitter 2762 at receiver 2764 to demultiplex the beam into separate OAM channels. The received OAM channels 2768 pass through a lens 2766 to focus these separate OAM beam channels 2768.

使用用于生成OAM模式的DMD提供了以非常高的速度在不同模式之间切换的能力。与传统技术相比,这涉及的光学元件数量要少得多,因为OAM模式是使用一系列分离的叉状全息图生成的,并使用分束器进行多路复用。因此,可以实现具有不同量子数的涡旋OAM模式之间的动态切换。用于这些模式的计算机生成的全息图必须被加载到DMD 2708的内存上,并且通过使用时钟信号来实现切换。可以使用模式分选器将输入模式映射到一系列分离的点。然后可以使用高带宽PIN检测器在对应于每个模式的位置处测量对应于每个模式的强度。DMD器件可以以仅相位空间光调制器的一小部分成本来获得。Using a DMD for generating OAM patterns provides the ability to switch between different patterns at very high speeds. This involves a much smaller number of optical elements than conventional techniques, as the OAM patterns are generated using a series of separate forked holograms, multiplexed using beam splitters. Therefore, dynamic switching between vortex OAM modes with different quantum numbers can be achieved. Computer-generated holograms for these modes must be loaded onto the memory of the DMD 2708, and switching is accomplished using a clock signal. An input pattern can be mapped to a series of discrete points using a pattern sorter. The intensity corresponding to each pattern can then be measured at the location corresponding to each pattern using a high bandwidth PIN detector. DMD devices can be obtained at a fraction of the cost of phase spatial light modulators.

在特定应用中观察到的DMD效率取决于应用特定的设计变量,诸如照明波长、照明角度、投影光圈尺寸、DMD微反射镜阵列的过填充等等。一般可以将每个DMD的总体光学效率估计为窗口透射、衍射效率、微反射镜表面反射率和阵列填充因子的乘积。前三个因素取决于照明源的波长。The DMD efficiency observed in a particular application depends on application-specific design variables such as illumination wavelength, illumination angle, projection aperture size, overfill of the DMD micromirror array, and the like. The overall optical efficiency of each DMD can generally be estimated as the product of window transmission, diffraction efficiency, micromirror surface reflectivity, and array fill factor. The first three factors depend on the wavelength of the illumination source.

DLP技术使用两种类型的用于DMD反射镜的材料。除A型外所有DMD的反射镜材料是康宁鹰XG,而A型DMD使用康宁7056。两种反射镜类型在窗玻璃材料的顶部和底部都具有抗反射(Anti-Reflectivity,AR)薄膜涂层。AR涂层减少反射并提高透射效率。DMD反射镜被设计用于三个传输区域。这些范围包括从300nm至400nm的紫外光区域、400nm至700nm的可见光区域和从700nm至2500nm的近红外光(Near Infrared Light,NIR)区域。所使用的涂层取决于应用。UV窗口具有特别的AR涂层,其设计成对于紫外波长更具有透射性,对于可见DMD具有可见涂层,而对于NIR DMD具有NIR涂层。DLP technology uses two types of materials for DMD mirrors. The mirror material for all DMDs except Type A is Corning Eagle XG, which uses Corning 7056 for Type A DMDs. Both mirror types have an Anti-Reflectivity (AR) thin film coating on the top and bottom of the glazing material. AR coating reduces reflection and improves transmission efficiency. DMD mirrors are designed for three transmission areas. These ranges include the ultraviolet light region from 300 nm to 400 nm, the visible light region from 400 nm to 700 nm, and the Near Infrared Light (NIR) region from 700 nm to 2500 nm. The coating used depends on the application. The UV window has a special AR coating designed to be more transmissive for UV wavelengths, a visible coating for visible DMDs, and a NIR coating for NIR DMDs.

在以下部分中提供的测量数据反映了通过具有随机偏振的顶部和底部AR涂覆的反射镜表面的典型单程透射率。除非另有说明,否则垂直于窗口表面测量到0°的入射角(Angle Of Incidence,AOI)。随着窗口通过次数的增加,效率将下降。The measurement data presented in the following sections reflect typical one-pass transmittance through top and bottom AR-coated mirror surfaces with random polarization. Unless otherwise stated, an angle of incidence (AOI) of 0° was measured normal to the window surface. As the number of window passes increases, the efficiency will decrease.

图28表示康宁7056的窗口投射曲线。该图中的窗口透射响应曲线在其指定的照明波长区域中适用于台北MDM。图28示出垂直于窗口表面测量的UV窗口透射率和在0°和30°的方位处的可见窗口透射率。图29至图33是在其最大透射区域中的典型可见光和UV AR涂层窗口透射率的放大视图。如图32中所示,可见的康宁鹰XG窗口透射数据适用于DLP 5500、DLP 1700、DLP 3000和DLP 3000的DMD。在宽带可见区域中在这些DMD中观察到的典型透射率约为97%。图33的NIR康宁鹰XG窗口透射数据适用于DLP 3000NIR DMD。在宽带NIR区域中在NIR DMD中观察到的典型透射率对于大部分区域而言约为96%,当其接近2500nm时下降到90%。Figure 28 shows the Corning 7056 window projection curve. The window transmission response curve in this figure is for the Taipei MDM in its specified illumination wavelength region. Figure 28 shows the UV window transmittance measured normal to the window surface and the visible window transmittance at orientations of 0° and 30°. Figures 29-33 are enlarged views of typical visible and UV AR coating window transmittances in their regions of maximum transmission. As shown in Figure 32, the visible Corning Eagle XG window transmission data is for the DMD of the DLP 5500, DLP 1700, DLP 3000, and DLP 3000. The typical transmittance observed in these DMDs is about 97% in the broadband visible region. The NIR Corning Eagle XG window transmission data of Figure 33 is for the DLP 3000NIR DMD. Typical transmittance observed in NIR DMDs in the broadband NIR region is around 96% for most regions, dropping to 90% as it approaches 2500 nm.

现在参考图34,示出了用于使用微电子机械器件内的全息图生成OAM扭转光束的生成电路的配置。激光器3402生成波长约为543nm的光束。该光束通过望远镜3404和透镜3406被聚焦到反射镜3408的反射镜/系统上。光束从反射镜3408反射到DMD 3410中。DMD3410将一个或多个叉状全息图3412编程到其内存中,该叉状全息图3412生成所需OAM扭转光束3413,该所需OAM扭转光束3413具有被编码成由CCD 3414检测到的光束的OAM模式的任何所需信息。全息图3412被加载到DMD 3410的内存中并显示为静态图像。在1024×768DMD阵列的情况下,图像必须包括1024×768图像。DMD 3410的控制软件将全息图转换成.bmp文件。全息图可以单独显示或作为多个全息图一起显示,以便将特定的OAM模式多路复用到单个光束上。在DMD 3410内生成全息图3412的方式可以以提供所生成的OAM光束3413之间的定性差异的多种方式来实现。可以通过调制用作全息图的二进制幅度光栅的位置和宽度来将相位和幅度信息编码成光束。通过在DMD上实现这种全息图,可以实现HG模式、LG模式、OAM涡旋模式或任何角度模式的创建。此外,通过以非常高的速度执行所生成的模式的切换,可以在动态变化的螺旋度内对信息进行编码,以提供新型的螺旋度调制。可以通过将计算机生成的全息图加载到DMD上来生成空间模式。这些全息图可以通过每一个周期用20微个反射镜调制光栅函数来创建。Referring now to FIG. 34, a configuration of a generation circuit for generating an OAM twisted beam using a hologram within a microelectromechanical device is shown. Laser 3402 generates a light beam with a wavelength of approximately 543 nm. The beam is focused by telescope 3404 and lens 3406 onto a mirror/system of mirrors 3408. The beam is reflected from mirror 3408 into DMD 3410. The DMD 3410 programs into its memory one or more forked holograms 3412 that generate a desired OAM twisted beam 3413 with a beam encoded into the beam detected by the CCD 3414 Any required information for OAM mode. The hologram 3412 is loaded into the memory of the DMD 3410 and displayed as a static image. In the case of a 1024x768 DMD array, the image must include a 1024x768 image. The control software of the DMD 3410 converts the holograms to .bmp files. Holograms can be displayed individually or together as multiple holograms to multiplex specific OAM modes onto a single beam. The manner in which the hologram 3412 is generated within the DMD 3410 can be implemented in a number of ways that provide qualitative differences between the generated OAM beams 3413. Phase and amplitude information can be encoded into the beam by modulating the position and width of a binary amplitude grating used as a hologram. By implementing this hologram on a DMD, the creation of HG modes, LG modes, OAM vortex modes, or any angular mode can be achieved. Furthermore, by performing the switching of the generated patterns at very high speeds, information can be encoded within dynamically changing helicity to provide novel helicity modulations. Spatial patterns can be generated by loading computer-generated holograms onto the DMD. These holograms can be created by modulating the grating function with 20 micromirrors per period.

不是仅仅生成仅具有包括在其中的单个OAM值的OAM光束3413,而是可以如下文所述的将多个OAM值以各种方式多路复用到OAM光束中。使用多个OAM值允许将不同的信息并入光束中。由DLP提供的可编程结构光允许投射定制的和可适应的图案。这些图案可以被编程到DLP的内存中并用于通过光束赋予不同的信息。此外,如果这些模式被动态定时,则可以创建调制方案,在该调制方案中以结构化光束的螺旋度对信息进行编码。Rather than just generating an OAM beam 3413 having only a single OAM value included therein, multiple OAM values may be multiplexed into the OAM beam in various ways as described below. Using multiple OAM values allows different information to be incorporated into the beam. Programmable structured light provided by DLP allows customized and adaptable patterns to be projected. These patterns can be programmed into the DLP's memory and used to impart different information through the beam. Furthermore, if the patterns are dynamically timed, a modulation scheme can be created in which information is encoded in the helicity of the structured beam.

现在参考图35,不是仅仅使激光束3502照射在单个全息图上,而是可以由DMD3410生成多个全息图3504。图35示出了一种实现方式,在该实现方式中,由DMD 3410生成全息图3504的4×3阵列。全息图3504是正方形的,并且全息图的每个边缘与相邻全息图的边缘对齐以创建4×3阵列。通过将光束3502照射到全息图3504的阵列上,由全息图3504中的每个全息图提供的OAM值被多路复用在一起。可以使用全息图3504的几种配置以提供OAM光束3413的不同质量以及通过使光束穿过全息图3504的阵列而生成的相关模式。Referring now to FIG. 35, instead of just having the laser beam 3502 impinge on a single hologram, multiple holograms 3504 can be generated by the DMD 3410. FIG. 35 shows an implementation in which a 4x3 array of holograms 3504 is generated by DMD 3410. Hologram 3504 is square, and each edge of the hologram is aligned with the edge of an adjacent hologram to create a 4x3 array. By shining a light beam 3502 onto an array of holograms 3504, the OAM values provided by each of the holograms 3504 are multiplexed together. Several configurations of holograms 3504 can be used to provide different qualities of the OAM beam 3413 and associated patterns generated by passing the beam through the array of holograms 3504.

图36示出了可用于对光施加不同的OAM水平的各种减小的二进制叉状全息图。图36示出了用于从l=1到l=10施加100周期的OAM光的全息图。Figure 36 shows various reduced binary fork holograms that can be used to apply different OAM levels to light. Figure 36 shows a hologram for applying 100 cycles of OAM light from 1=1 to 1=10.

现在参考图37,示出了OAM处理和偏振处理的组合使用可用于使用DLP系统使用任何特定的信号组合来增加数据的方式。各种数据(数据1、数据3、数据5、数据7)3702具有不同的OAM水平(OAM1、OAM2、OAM3、OAM4)3704和不同的X偏振和Y偏振3706。这使得能够将信号多路复用到一起成为偏振多路复用的OAM信号3708。偏振多路复用的OAM信号3708通过去除X偏振和Y偏振3706和OAM进行解多路复用以重建数据信号3702。Referring now to FIG. 37, there is shown how the combined use of OAM processing and polarization processing can be used to augment data using any particular signal combination using a DLP system. The various data (Data 1, Data 3, Data 5, Data 7) 3702 have different OAM levels (OAM1, OAM2, OAM3, OAM4) 3704 and different X and Y polarizations 3706. This enables the signals to be multiplexed together into a polarization multiplexed OAM signal 3708. The polarization multiplexed OAM signal 3708 is demultiplexed by removing the X and Y polarizations 3706 and the OAM to reconstruct the data signal 3702.

自旋角动量(SAM)与偏振有关,并且(对于圆偏振)由

Figure BDA0003553842120000301
给出。而轨道角动量(OAM)与复电场的方位角相位相关。具有方位角相位依赖性的每个光子是
Figure BDA0003553842120000302
Figure BDA0003553842120000303
的形式并且携带
Figure BDA0003553842120000304
的OAM。因此,对于每个光子,我们可以关联在计算基态|I,σ>上定义的光子角动量。因为OAM本征态是相互正交的,所以每个单光子可以传输任意数量的比特。通过使用全息方法生成/分析具有不同光子角动量的状态的可能性允许在多维希尔伯特空间中实现量子态。因为OAM态提供无限的基态,而SAM态仅是二维的,所以OAM还可用于同时增加QKD的安全性并提高量子计算应用的计算能力。我们介绍以下基于光子角动量的确定性量子量子迪特门和模块。Spin angular momentum (SAM) is polarization dependent and (for circular polarization) is given by
Figure BDA0003553842120000301
given. The orbital angular momentum (OAM) is related to the azimuthal phase of the complex electric field. Each photon with azimuthal phase dependence is
Figure BDA0003553842120000302
Figure BDA0003553842120000303
form and carry
Figure BDA0003553842120000304
OAM. Therefore, for each photon, we can associate the photon angular momentum defined on the computed ground state |I,σ>. Because the OAM eigenstates are mutually orthogonal, each single photon can transmit any number of bits. The possibility to generate/analyze states with different photon angular momentum by using holographic methods allows the realization of quantum states in multidimensional Hilbert space. Because OAM states provide infinite ground states, whereas SAM states are only two-dimensional, OAM can also be used to simultaneously increase the security of QKD and improve the computational power of quantum computing applications. We introduce the following deterministic quantum quantum Dieter gates and modules based on photon angular momentum.

量子迪特门Quantum Dieter

现在参考图37B,用于量子隐形传态应用的基本量子模块302包括广义贝尔态生成模块304和QFT模块306。纠缠辅助QKD的基本模块是广义贝尔态生成模块304或韦尔算符模块312。基于光子角动量的通用量子量子迪特门,即广义X量子迪特门、广义Z量子迪特门、广义CNOT量子迪特门。通用量子门集合是量子计算机上任何可能的操作可以减少到的任何门集合,即,任何其他单位操作可以表示为来自该集合的有限的门序列。技术上这是不可能的,因为可能的量子门的数量是不可数的,而来自有限集合的有限序列的数量是可数的。为了解决这个问题,我们只要求任何量子操作可以由来自这个有限集合的门序列近似。此外,对于恒定数量的量子比特上的单位,索洛维-基塔耶夫(Solovay-Kitaev)定理保证这可以有效地完成。Referring now to FIG. 37B , a basic quantum module 302 for quantum teleportation applications includes a generalized Bell state generation module 304 and a QFT module 306 . The basic module of entanglement-assisted QKD is the generalized Bell state generation module 304 or the Weil operator module 312 . Universal quantum quantum Dieter gate based on photon angular momentum, namely generalized X quantum Dieter door, generalized Z quantum Dieter door, generalized CNOT quantum Dieter door. A universal quantum gate set is any set of gates to which any possible operation on a quantum computer can be reduced, i.e., any other unit operation can be represented as a finite sequence of gates from this set. This is technically impossible because the number of possible quantum gates is uncountable, while the number of finite sequences from finite sets is countable. To solve this problem, we only require that any quantum operation can be approximated by a sequence of gates from this finite set. Furthermore, for units over a constant number of qubits, the Solovay-Kitaev theorem guarantees that this can be done efficiently.

对于不同的应用引入不同的重要量子模块302,包括(容错)量子计算、隐形传态、QKD和量子纠错。量子量子迪特模块包括广义贝尔态生成模块304、QFT模块306、非二进制校正子计算器模块308、广义通用量子迪特门310、韦尔算符模块312和使用光学器件的广义受控相位确定性量子迪特门314,这是与基于概率SAM的CNOT门相比的关键优势。此外,通过描述这种门和模块,我们引入它们在DLP上的对应集成光学实现方式。我们还通过使用广义贝尔态生成模块来引入几个纠缠辅助协议。该方法是使用DLP上的多维量子迪特来实现集成光学器件中的所有这些模块。Different important quantum modules 302 are introduced for different applications, including (fault-tolerant) quantum computing, teleportation, QKD, and quantum error correction. Quantum quantum Dieter modules include Generalized Bell State Generation Module 304, QFT Module 306, Non-Binary Syndrome Calculator Module 308, Generalized Universal Quantum Dieter Gate 310, Weil Operator Module 312, and Generalized Controlled Phase Determination Using Optical Devices Sexual quantum Dieter gate 314, which is a key advantage over probabilistic SAM-based CNOT gates. Furthermore, by describing such gates and modules, we introduce their corresponding integrated optical implementations on DLP. We also introduce several entanglement assistance protocols by using the generalized Bell state generation module. The approach is to implement all these modules in integrated optics using a multidimensional quantum ditter on DLP.

基于光子OAM的通用量子迪特门和量子模块Universal Quantum Dieter Gate and Quantum Module Based on Photonic OAM

任意的光子角动量状态|ψ>可以被表示为|I,σ>-基右矢的线性叠加,如下所示:An arbitrary photon angular momentum state |ψ> can be expressed as a linear superposition of |I,σ>-basic right vectors as follows:

Figure BDA0003553842120000311
Figure BDA0003553842120000311

其中所述|I,σ>-基右矢是相互正交的,即where the |I,σ>-basic right vectors are mutually orthogonal, that is

<m,σ|n,σ′>=δmnδσσ′;m,n,∈{-L-,…,-1,0,1,…,L±};σ,σ′∈{-1,1}<m,σ|n,σ′>=δ mn δ σσ ′; m,n,∈{-L-,…,-1,0,1,…,L ± };σ,σ′∈{-1 ,1}

因此,光子角动量右矢存在于D=2(L-+L++1)维希尔伯特空间

Figure BDA0003553842120000312
中。右矢被定义为希尔伯特空间中的向量,特别是表示量子机械系统的状态。注意,在最一般的情况下,具有负OAM索引的状态的数量,表示为L,不需要与具有正OAM索引的OAM态的数量相同。描述光子状态的光子角动量概念不同于定义为
Figure BDA0003553842120000313
的光子的总角动量。Therefore, the right vector of photon angular momentum exists in D=2(L - +L + +1) dimension Hilbert space
Figure BDA0003553842120000312
middle. A right vector is defined as a vector in Hilbert space, specifically representing the state of a quantum mechanical system. Note that in the most general case, the number of states with negative OAM indices, denoted L, need not be the same as the number of OAM states with positive OAM indices. The concept of photon angular momentum, which describes the photon state, is different from that defined as
Figure BDA0003553842120000313
The total angular momentum of the photon.

作为说明,在j=4的总角动量-符号中,我们无法区分|I=5,σ=-1>和|I=3,σ=1>光子角动量状态。因此,|I=σ>符号的使用更为普遍。SAM(圆偏振)态可以在计算基{{|H>,[V>|H>-水平光子,[V>-垂直光子)中表示如下:As an illustration, in the total angular momentum-sign of j=4, we cannot distinguish between |I=5,σ=−1> and |I=3,σ=1> photon angular momentum states. Therefore, the use of the |I=σ> notation is more common. The SAM (circularly polarized) state can be expressed in the computational basis {{|H>, [V>|H>-horizontal photon, [V>-vertical photon) as follows:

Figure BDA0003553842120000314
Figure BDA0003553842120000314

SAM算符表示为:The SAM operator is represented as:

Figure BDA0003553842120000315
Figure BDA0003553842120000315

显然,右圆(|+1>)状态和左圆(|-1>)状态是该算符的本征右矢,因为:Obviously, the right circle (|+1>) state and the left circle (|-1>) state are the eigenright vectors of this operator, because:

S|+1>=|+1>,S|-1>=-|-1>S|+1>=|+1>,S|-1>=-|-1>

使用例如先前描述的过程生成的OAM状态(|+1>)和(|-1>)可以分别在缩减的二维子空间中表示如下:The OAM states (|+1>) and (|-1>) generated using, for example, the procedure described previously can be represented in the reduced two-dimensional subspace as follows, respectively:

Figure BDA0003553842120000316
Figure BDA0003553842120000316

现在参考图38,示出了响应于施加到量子门3802a、3802b、3802c和3802d的输入的输入量子比特|x>以及施加到门3802e的输入的输入量子比特|x>和|y>而生成输出的量子门3802的若干示例。可以根据在量子门内实现的处理的类型来提供各种量子门3802的输出。虽然下面的示例对于具有基于自旋角动量的输入和输出的量子比特门是疯狂的,但是通过将本文描述的OAM处理应用于输入和输出,门可以作为可以在更大量的输入状态下操作的量子比特门来操作。Referring now to FIG. 38, there is shown generated in response to input qubits |x> applied to the inputs of quantum gates 3802a, 3802b, 3802c and 3802d and input qubits |x> and |y> applied to the inputs of gate 3802e Several examples of the output quantum gate 3802. The outputs of various quantum gates 3802 may be provided depending on the type of processing implemented within the quantum gate. While the examples below are insane for qubit gates with spin angular momentum based inputs and outputs, by applying the OAM processing described in this paper to the inputs and outputs, the gates can function as gates that can operate on a larger number of input states. qubit gates to operate.

在图38中所示的表示中,由于l=0的模式没有OAM值,因此其可以表示为:In the representation shown in Figure 38, since the mode of l=0 has no OAM value, it can be represented as:

|0>[0 0]T |0>[0 0] T

在该特定情况下,光子角动量状态仅降低到SAM状态。通过假定OAM-右矢与传播方向(z轴)对准,OAM算符可以被表示为:In this particular case, the photon angular momentum state is only reduced to the SAM state. By assuming that the OAM-right vector is aligned with the propagation direction (z-axis), the OAM operator can be expressed as:

Figure BDA0003553842120000321
Figure BDA0003553842120000321

直接验证状态|l>和|-l>是OAM算符Lz的本征右矢:It is directly verified that the states |l> and |-l> are eigenright vectors of the OAM operator L z :

Lz|±I>=(±I)|±I>L z |±I>=(±I)|±I>

自旋算符S和SAM算符Lz满足以下性质:The spin operator S and the SAM operator L z satisfy the following properties:

Figure BDA0003553842120000322
Figure BDA0003553842120000322

其中I2是身份算符。现在可以将光子角动量算符定义为where I 2 is the identity operator. The photon angular momentum operator can now be defined as

Figure BDA0003553842120000323
Figure BDA0003553842120000323

其中算符

Figure BDA0003553842120000324
表示张量积。对应的本征值方程由下式给出:where the operator
Figure BDA0003553842120000324
represents the tensor product. The corresponding eigenvalue equation is given by:

J|±l,±1>=(±l)(±1)|±l,|±1>J|±l,±1>=(±l)(±1)|±l,|±1>

为了方便起见,我们可以使用光子角动量的单一索引,并且与光子角动量状态相关的计算基被表示为{|0>,|1>,…,|D-1>},D=2(L-+L+)。For convenience, we can use a single index of photon angular momentum, and the computational basis associated with the photon angular momentum state is denoted as {|0>,|1>,...,|D-1>}, D=2(L - +L + ).

通过适当选择L-和L+以确保维数D等于二的某一幂,那么维数D可以表示为D=q=2p,其中p≥1是素数。如果加法运算是在伽罗瓦(Galois)域GF(2p)上而不是“per mod D”上执行,则可用于对量子迪特进行任意运算的门集合可以被定义为如图38中所示。F门对应于量子傅里叶变换(Quantum Fourier Transform,QFT)门。它对右矢|0>的作用是所有具有相同概率幅度

Figure BDA0003553842120000325
的基右矢的叠加。By appropriately choosing L- and L + to ensure that the dimension D is equal to some power of two, then the dimension D can be expressed as D=q= 2p , where p≥1 is a prime number. If the addition operation is performed over the Galois field GF(2 p ) instead of "per mod D", the set of gates that can be used to perform arbitrary operations on quantum Diets can be defined as shown in Figure 38 Show. The F gate corresponds to a Quantum Fourier Transform (QFT) gate. Its effect on the right vector |0> is that all have the same probability magnitude
Figure BDA0003553842120000325
The superposition of the base right vector of .

因此,量子迪特上的F门具有与量子比特上的Hadamard门相同的作用。广义X门和广义Z门的作用可描述如下:Therefore, the F-gate on the quantum ditter has the same effect as the Hadamard gate on the qubit. The functions of the generalized X gate and the generalized Z gate can be described as follows:

X(a)|x>=|x>=|x+a>,Z(b)|x>=ωtr(bx)|x>;x,a,b∈GF(q)X(a)|x>=|x>=|x+a>, Z(b)|x>=ω tr(bx) |x>; x,a,b∈GF(q)

其中x,a,b,∈GF(q),tr(.)表示从GF(q)到GF(p)的跟踪操作,ω是第p个单位根,即,ω=exp(j2π/p)。通过省略SAM作为自由度,由于它表示了脆弱的量子信息源,对应的空间变为(L-+L+)-维(D=L-+L+)。where x, a, b, ∈ GF(q), tr(.) represent the tracking operation from GF(q) to GF(p), and ω is the p-th unit root, that is, ω=exp(j2π/p) . By omitting SAM as a degree of freedom, since it represents a fragile source of quantum information, the corresponding space becomes (L +L + )-dimensional (D=L +L + ).

通过选择(L-+L+)作为素数P,对应的加法运算表示“mod P加法”,换句话说是右循环移位。左循环移位可以被定义为:By choosing (L-+L+) as the prime number P, the corresponding addition operation represents "mod P addition", in other words a right circular shift. A left circular shift can be defined as:

X(a)|x>=|x-a>X(a)|x>=|x-a>

同时,跟踪操作变得简单,并且广义Z门的动作变为

Figure BDA0003553842120000326
这种形式中对应的广义Hadamard门是F门,因为:At the same time, the tracking operation becomes simple, and the action of the generalized Z-gate becomes
Figure BDA0003553842120000326
The corresponding generalized Hadamard gate in this form is an F gate because:

Figure BDA0003553842120000331
Figure BDA0003553842120000331

因此,可以通过使用OAM作为自由度来实现所有这些单量子迪特门。一种特别合适的技术是基于少模光纤中的空间模式。如图39中所示,用于该目的的基本构造框是OAM多路复用器3902、OAM解多路复用器3904、少模光纤本身和一系列电光调制器3906。由于少模光纤与集成光学器件不兼容,因此可以如下所述修改基于单量子迪特OAM的门。Therefore, all these single-quantum Dieter gates can be realized by using the OAM as the degree of freedom. A particularly suitable technique is based on spatial modes in few-mode fibers. As shown in Figure 39, the basic building blocks for this purpose are an OAM multiplexer 3902, an OAM demultiplexer 3904, the few-mode fiber itself, and a series of electro-optic modulators 3906. Since few-mode fibers are not compatible with integrated optics, the gates based on single-quantum Dieter OAM can be modified as described below.

通过使用图38中所示的基本量子迪特门,可以实现如图40中所示的更复杂的量子模块。图40中示出了基于OAM的量子隐形传态模块4002。模块4002包括基于OAM的量子量子迪特隐形传态模块4004,其包括广义贝尔态生成器模块4006。广义贝尔态生成器模块4006包括广义F门4008和广义X门4010。输入4012被施加到广义F门4008,输入4014被提供到广义X门4010。广义F门4008的输出也被提供作为到广义X门4010的第二输入。除了包括广义贝尔态生成器模块4006之外,基于OAM的量子量子迪特隐形传态模块4004提供从每个F门4008到广义Xnot门4012的输出和从广义Xnot门4010到Xnot门4014的输出。从输入4016向广义Xnot门4012提供第二输入。输入4016也被提供给广义F门4018。Xnot门4012还向测量电路4024提供用于对栅极的输出执行测量的输入。广义F门4018的输出被提供作为对测量电路4020的输入并且作为对广义Z门4022的输入,广义Z门4022中还具有来自Xnot门4014的输入。广义Z门4022的输出提供了OAM废物量子量子迪特隐形传态模块4002的输出4026。|B00>可以用于表示如下最简单的广义贝尔基右矢:By using the basic quantum Dieter gate shown in Figure 38, a more complex quantum module as shown in Figure 40 can be realized. An OAM-based quantum teleportation module 4002 is shown in FIG. 40 . Module 4002 includes an OAM-based quantum quantum Dieter teleportation module 4004 , which includes a generalized Bell state generator module 4006 . The generalized Bell state generator module 4006 includes a generalized F gate 4008 and a generalized X gate 4010. Input 4012 is applied to generalized F gate 4008 and input 4014 is provided to generalized X gate 4010. The output of generalized F-gate 4008 is also provided as a second input to generalized X-gate 4010 . In addition to including the generalized Bell state generator module 4006, the OAM-based quantum quantum Dieter teleportation module 4004 provides outputs from each F-gate 4008 to the generalized Xnot gate 4012 and from the generalized Xnot gate 4010 to the Xnot gate 4014 . A second input is provided from input 4016 to generalized Xnot gate 4012 . Input 4016 is also provided to generalized F-gate 4018. Xnot gate 4012 also provides input to measurement circuit 4024 for performing measurements on the output of the gate. The output of generalized F-gate 4018 is provided as input to measurement circuit 4020 and as input to generalized Z-gate 4022, which also has an input from Xnot gate 4014 therein. The output of the generalized Z-gate 4022 provides the output 4026 of the OAM waste quantum quantum diet teleportation module 4002. |B 00 > can be used to represent the following simplest generalized Belki right vector:

Figure BDA0003553842120000332
Figure BDA0003553842120000332

如图41中所示的另一示例说明了校正子计算器模块4102。校正子计算器模块4102在容错计算和量子纠错中很重要。校正子计算器模块4102包括|x>输入4104和|y>输入4106。|y>输入4106被提供给广义F门4108。广义F门4108的输出被提供给逆G函数门4110,其输出被连接到加法器电路4112,加法器电路4112将|x>输入的输出与门4110的输出相加。加法器电路4112还接收来自|x>输入4104的输入,并且其输出连接到广义G门4114。广义G门的输出连接到广义F门4116的输入。广义F门4116的输出连接到逆G函数门4118的输入,逆G函数门4118的输出连接到加法器电路4120,加法器电路4120将|x>输入的输出与门4118的输出相加。加法器电路4120也连接到|x>输入4104。加法器电路4120的输出连接到广义G门4122的输入,广义G门4122的输出被提供作为输出节点4124。|x>输入4104的输出也被提供作为输出4126。Another example as shown in FIG. 41 illustrates the syndrome calculator module 4102. The syndrome calculator module 4102 is important in fault-tolerant computing and quantum error correction. The syndrome calculator module 4102 includes |x>input 4104 and |y>input 4106. |y> input 4106 is provided to generalized F-gate 4108. The output of the generalized F-gate 4108 is provided to an inverse G-function gate 4110, the output of which is connected to an adder circuit 4112, which adds the output of the |x> input AND the output of the gate 4110. Adder circuit 4112 also receives input from |x> input 4104 and its output is connected to generalized G-gate 4114. The output of the generalized G-gate is connected to the input of the generalized F-gate 4116. The output of generalized F-gate 4116 is connected to the input of inverse G-function gate 4118, whose output is connected to adder circuit 4120, which adds the output of the |x> input to the output of gate 4118. Adder circuit 4120 is also connected to |x> input 4104. The output of the adder circuit 4120 is connected to the input of a generalized G-gate 4122, the output of which is provided as an output node 4124. |x> The output of input 4104 is also provided as output 4126.

在这两种应用中,可以依据由图中42所示的模块4202所示的方案来确定校正子以基于校正子测量来识别量子错误。|0>输入4204被提供给广义F门4206的输入。广义F门4206的输出被提供给另一个广义F门4208的输入到校正子计算器模块4210的输入,函数模块4210向另一个函数模块4212提供一对输出。函数模块4212还接收|Xn>输入4214。广义F门4208的输出提供给测量电路4214。In both applications, syndromes may be determined according to the scheme shown by block 4202 shown in Figure 42 to identify quantum errors based on syndrome measurements. The |0> input 4204 is provided to the input of the generalized F-gate 4206. The output of generalized F-gate 4206 is provided to the input of another generalized F-gate 4208 to the input of syndrome calculator module 4210 , which provides a pair of outputs to another functional module 4212 . Function module 4212 also receives |Xn> input 4214. The output of generalized F-gate 4208 is provided to measurement circuit 4214.

在该校正子解码模块4202中,校正子计算器模块4210S(bi,ai)对应于第i个生成器gi=[ai|bi]的非二进制量子纠错码的量子校验矩阵:In the syndrome decoding module 4202, the syndrome calculator module 4210S(b i ,a i ) corresponds to the quantum check of the non-binary quantum error correction code of the ith generator g i =[a i |b i ] matrix:

Figure BDA0003553842120000341
Figure BDA0003553842120000341

在上式中,参数ai用于表示X(ai)量子迪特门对第i个量子迪特位置的作用,而使用bi表示Z(bi)量子迪特门对第i个量子迪特位置的作用。任意错误属于量子迪特GN={ωcX(a)Z(b)|a,b∈GF(q)N}上的乘法泡利(Pauli)群(错误群)。通过将错误算符表示为e=(c|d),对应于E=ωcX(c)Z(d),可以计算出校正子为S(E)=S(c,d)=eATIn the above formula, the parameter a i is used to represent the action of the X( ai ) quantum Dieter gate on the i -th quantum Dieter position, and the use of bi is used to represent the Z(bi ) quantum Dieter gate on the ith quantum The role of the Dieter position. Any error belongs to the multiplicative Pauli group (error group) on the quantum Dieter G N = {ω c X(a)Z(b)|a,b∈GF(q) N }. By denoting the error operator as e=(c|d), corresponding to E= ωc X(c)Z(d), the syndrome can be calculated as S(E)=S(c,d)=eA T .

如果可检测的错误不与gi的倍数对等,图42的量子电路将提供非零测量。可纠正的量子迪特错误是将代码空间映射到qN维希尔伯特空间的qK维子空间。由于有N-K个生成器,或等效的校正子位置,因此有qN-K个不同的陪集。属于同一陪集的所有量子迪特错误具有相同的伴随式。通过为陪集代表选择最可能的量子迪特错误,通常是最低的权重错误,可以唯一地识别量子迪特错误并因此执行纠错动作。可替代地,可以使用最大似然解码。然而,解码复杂度会明显更高。The quantum circuit of Figure 42 will provide non-zero measurements if the detectable errors are not equivalent to multiples of gi . A correctable quantum Dieter error is a qK-dimensional subspace that maps the code space to a qN-dimensional Hilbert space. Since there are NK generators, or equivalent syndrome positions, there are q NK distinct cosets. All quantum Dieter errors belonging to the same coset have the same syndrome. By choosing the most probable quantum Dieter error, usually the lowest weight error, for the coset representative, quantum Dieter errors can be uniquely identified and error correcting actions performed accordingly. Alternatively, maximum likelihood decoding can be used. However, the decoding complexity will be significantly higher.

现在将更全面地描述基于OAM的单量子迪特门和广义CNOT门的实现方式。基于OAM的单量子迪特门可以在集成光学器件中实现,借助于使用如上所述的DLP实现的计算机生成的全息图。由

Figure BDA0003553842120000342
表示的量子态到达单量子迪特门的输入。现在参考图43,示出了根据本公开实现的量子计算机的框图。量子计算机4300接收输入数据4302并响应于此提供输出数据4304。量子计算机利用多个部件来提供该处理功能。量子计算机4300包括量子门4306与量子模块4308的组合,用于执行处理功能。量子门4306和量子模块4308的结构性质如本文所述。在量子计算机4300内传输的信号可以使用轨道角动量处理130和自旋角动量处理4302的组合。轨道角动量处理4310和自旋角动量处理4312的特定性质如本文所述。利用DLP或其它光处理系统4314辅助信号的OAM处理,如下文所述。The implementation of OAM-based single-quantum Ditt gates and generalized CNOT gates will now be described more fully. OAM-based single-quantum Dieter gates can be implemented in integrated optics with the aid of computer-generated holograms implemented using DLP as described above. Depend on
Figure BDA0003553842120000342
The represented quantum state arrives at the input of the single-quantum Dieter gate. Referring now to FIG. 43, shown is a block diagram of a quantum computer implemented in accordance with the present disclosure. Quantum computer 4300 receives input data 4302 and provides output data 4304 in response thereto. Quantum computers utilize multiple components to provide this processing capability. Quantum computer 4300 includes a combination of quantum gates 4306 and quantum modules 4308 for performing processing functions. The structural properties of quantum gate 4306 and quantum module 4308 are as described herein. Signals transmitted within quantum computer 4300 may use a combination of orbital angular momentum processing 130 and spin angular momentum processing 4302. Specific properties of orbital angular momentum processing 4310 and spin angular momentum processing 4312 are described herein. OAM processing of the signal is facilitated using a DLP or other optical processing system 4314, as described below.

如先前在图39中所示,在OAM解多路复用器3904中,基右矢在处理之前被一组电光调制器3606(E/O MOD)分开。所需的相移和/或幅度变化由电光调制器3606引入以执行所需的单量子迪特操作。在OAM多路复用器3902中将基右矢复合成单量子迪特以获得输出量子态

Figure BDA0003553842120000351
作为图示,通过将E/O调制器3606实现为引入衰减D-1/2的衰减器与在第m分支中引入相移-(2π/p)nm的相位调制器3906的级联来获得F门。通过对应的相位调制器在第m分支中引入相移(2π/p)bm来获得广义Z(b)门。通过在第m个分支中使用CGH(计算机生成的全息图)以引入exp(jaφ)形式的方位角相移来获得广义X(a)门。As previously shown in Figure 39, in the OAM demultiplexer 3904, the basis right vector is split by a set of electro-optic modulators 3606 (E/O MOD) prior to processing. The desired phase shift and/or amplitude change is introduced by the electro-optic modulator 3606 to perform the desired single quantum Ditt operation. The basis right vector is compounded into a single quantum ditter in the OAM multiplexer 3902 to obtain the output quantum state
Figure BDA0003553842120000351
As an illustration, obtained by implementing the E/O modulator 3606 as a cascade of an attenuator introducing an attenuation D -1/2 and a phase modulator 3906 introducing a phase shift -(2π/p)nm in the mth branch F gate. A generalized Z(b) gate is obtained by introducing a phase shift (2π/p)bm in the mth branch by a corresponding phase modulator. A generalized X(a) gate is obtained by using a CGH (computer-generated hologram) in the mth branch to introduce an azimuthal phase shift of the form exp(jaφ).

现在参考图44,通过将E/O调制器3906实现为幅值调制器4402与相位调制器4404或单个I/Q调制器的级联,通过适当地调节每个分支中的幅值和相位变化来简单地初始化到任意状态。例如,通过简单地在每个分支中引入幅度变化D-1/2,同时将相移设置为零,来获得具有相同概率幅度的所有基右矢的叠加。Referring now to FIG. 44, by implementing E/O modulator 3906 as a cascade of amplitude modulator 4402 and phase modulator 4404 or a single I/Q modulator, by appropriately adjusting the amplitude and phase changes in each branch to simply initialize to an arbitrary state. For example, a superposition of all basis right vectors with the same probability magnitude is obtained by simply introducing an amplitude change D- 1/2 in each branch, while setting the phase shift to zero.

现在参考图45,广义CNOT门4502(其中偏振量子比特4404用作控制量子比特而OAM量子迪特4406用作目标量子迪特)是量子门,量子门是量子计算机结构中的基本部件。广义的CNOT门可用于纠缠或解纠缠EPR状态。可以使用CNOT和单量子迪特旋转的组合来将任何量子电路模拟到任意精度。这里,我们关注的是其中控制4404量子迪特和目标4406量子迪特都是OAM态的实现方式。OAM态|IC与OAM态|IT之间的全息相互作用可由以下哈密顿量(Hamiltonian)描述:Referring now to FIG. 45, a generalized CNOT gate 4502 (in which polarization qubits 4404 are used as control qubits and OAM quantum ditters 4406 are used as target qubits) is a quantum gate that is an essential component in quantum computer architecture. Generalized CNOT gates can be used to entangle or disentangle EPR states. Any quantum circuit can be simulated to arbitrary precision using a combination of CNOT and single quantum Dieter rotations. Here, we focus on implementations in which both the control 4404 quantum ditter and the target 4406 quantum ditter are OAM states. The holographic interaction between the OAM state | IC and the OAM state | IT can be described by the following Hamiltonian:

H=gJCJT H=gJ C J T

现在参照图46,示出了CNOT门在由两个量子比特组成的量子寄存器上的操作。当且仅当第一量子比特(控制量子比特)4404是|1>时CNOT门翻转第二量子比特(目标量子比特)4406。Referring now to Figure 46, the operation of a CNOT gate on a quantum register consisting of two qubits is shown. The CNOT gate flips the second qubit (target qubit) 4406 if and only if the first qubit (control qubit) 4404 is |1>.

对应的时间演变算符由下式给出:The corresponding time evolution operator is given by:

U(t)=exp[-jtgJCJT]=exp[-jtgICITI4]U(t)=exp[-jtgJ C J T ]=exp[-jtgI C I T I 4 ]

通过选择gt=2π/(L-+L+),得到以下一元算符:By choosing gt=2π/(L - +L + ), the following unary operator is obtained:

Figure BDA0003553842120000352
Figure BDA0003553842120000352

这显然是广义受控Z算符。可以通过将广义受控Z算符进行如下变换来获得广义CNOT算符:This is clearly the generalized controlled Z operator. The generalized CNOT operator can be obtained by transforming the generalized controlled Z operator as follows:

Figure BDA0003553842120000353
Figure BDA0003553842120000353

因为这种OAM相互作用不需要使用非线性晶体或高非线性光纤,所以OAM态表示用于量子计算、量子隐形传态和QKD应用的有趣的量子迪特表示。假定广义X门、广义Z门和广义CNOT门表示通用量子门的集合,通过使用所描述的OAM门,任意量子计算是可能的。已经证明,包括广义X、广义Z和广义CNOT或广义受控相位的下列门的量子迪特集合是通用的。Because such OAM interactions do not require the use of nonlinear crystals or highly nonlinear fibers, OAM states represent interesting quantum Dieter representations for quantum computing, quantum teleportation, and QKD applications. Arbitrary quantum computations are possible by using the described OAM gates, assuming that generalized X gates, generalized Z gates, and generalized CNOT gates represent a set of universal quantum gates. It has been shown that the quantum Dieter set of the following gates including generalized X, generalized Z, and generalized CNOT or generalized controlled phase is universal.

贝尔态Bell state

也可以生成广义的贝尔态|B00>。以下列方式生成任意的广义贝尔态。通过应用与图中相同的门,但现在是在右矢|n>和|m>上,来获得:Generalized Bell states |B 00 > can also be generated. Generate arbitrary generalized Bell states in the following way. By applying the same gates as in the figure, but now on the right vectors |n> and |m>, we obtain:

Figure BDA0003553842120000361
Figure BDA0003553842120000361

通过现在应用广义CNOT门,获得期望的广义贝尔态|Bmn>:By now applying the generalized CNOT gate, the desired generalized Bell state |B mn > is obtained:

Figure BDA0003553842120000362
Figure BDA0003553842120000362

生成|Bmn>的另一方法是从|B00>开始并在纠缠对中的第二量子迪特上应用韦尔门,该韦尔门被定义为

Figure BDA0003553842120000363
Another way to generate |B mn > is to start with |B 00 > and apply a Wilman on the second quantum Dieter in the entangled pair, which is defined as
Figure BDA0003553842120000363

Figure BDA0003553842120000364
Figure BDA0003553842120000364

通过从第d分支移动到(d+m)mod D分支并且在该分支中引入相移-2πdk/D,可以容易地实现韦尔门。Welmen can be easily implemented by moving from the dth branch to the (d+m)mod D branch and introducing a phase shift -2πdk/D in this branch.

现在,基于OAM制定纠缠辅助协议所需的所有元素都可用。下面更全面地描述多维QKD。所提出的量子迪特门和模块可用于更有效地实现重要的量子算法。例如,执行对非结构化数据库中的条目的搜索的格罗佛(Grover)搜索算法的基本模块是格罗佛量子迪特算符,其可以表示为:All elements required to formulate entanglement assistance protocols based on OAM are now available. Multidimensional QKD is described more fully below. The proposed quantum Dieter gates and modules can be used to implement important quantum algorithms more efficiently. For example, the basic building block of the Grover's search algorithm that performs searches of entries in an unstructured database is the Grover Quantum Dieter operator, which can be expressed as:

Figure BDA0003553842120000365
Figure BDA0003553842120000365

其中F是QFT量子迪特门,O是Oracle算符,定义为:where F is the QFT quantum Dieter gate and O is the Oracle operator, defined as:

O|x>=(-1)f(x)|x>;x=(x1x2…xN),xi∈GF(q)O|x>=(-1) f(x) |x>; x=(x 1 x 2 …x N ), x i ∈ GF(q)

其中f(x)为搜索函数,当找到搜索项时生成1,否则生成0。秀尔(Shor)分解和西蒙(Simon)的算法也很容易推广。where f(x) is the search function, which generates 1 when the search item is found, and 0 otherwise. Shor's decomposition and Simon's algorithms are also easy to generalize.

与基于OAM的门相关的主要问题是OAM模式的不完美生成(特别是使用DLP)。当前存在的CGH仍然表现出可测量的OAM串扰。另一方面,OAM是非常稳定的自由度,其变化不大,除非OAM模式在大气湍流信道上传播。此外,在适当设计的光纤中经千米级传播之后保持OAM态。噪声以与影响光子的偏振态相同的方式影响携带OAM的光子。噪声在基于光子数的光量子计算中比在基于OAM的量子计算中更相关。The main problem associated with OAM-based gates is the imperfect generation of OAM patterns (especially using DLP). Currently existing CGHs still exhibit measurable OAM crosstalk. On the other hand, OAM is a very stable degree of freedom that does not change much unless the OAM mode propagates over the atmospheric turbulent channel. Furthermore, the OAM state is maintained after kilometer-scale propagation in a properly designed fiber. Noise affects OAM-carrying photons in the same way that it affects the polarization state of photons. Noise is more relevant in photon number-based optical quantum computing than in OAM-based quantum computing.

量子密钥分配Quantum Key Distribution

如上所述,使用基于OAM的量子计算的一种方式涉及在诸如量子密钥分配(QKD)的过程中的使用。在当前的QKD系统中,系统非常慢。通过使用OAM实现上述量子门计算系统,系统可以增加安全性和吞吐量通信,同时增加系统的计算和处理能力。QKD操作将在实现如上所述的过程的量子模块中实现。现在参考图47,示出了利用轨道角动量处理、拉盖尔高斯处理、埃尔米特高斯处理或使用任何正交函数的处理的系统的进一步改进。在图47的图示中,发射机4702和接收机4704通过光链路4706互连。光链路4706可以包括光纤链路或自由空间光链路。发射机接收经由轨道角动量处理电路4710处理的数据流4708。如上所述,轨道角动量处理电路4710在分离的信道上向各种信号提供轨道角动量扭转。在一些实施例中,轨道角动量处理电路可以进一步向信号信道提供多层叠加调制,以进一步增加系统带宽。As mentioned above, one way of using OAM-based quantum computing involves the use in processes such as quantum key distribution (QKD). In the current QKD system, the system is very slow. By implementing the above quantum gate computing system using OAM, the system can increase the security and throughput communication while increasing the computing and processing power of the system. The QKD operation will be implemented in a quantum module implementing the process described above. Referring now to FIG. 47, a further improvement of the system utilizing orbital angular momentum processing, Laguerre Gaussian processing, Hermitian Gaussian processing, or processing using any orthogonal function is shown. In the illustration of FIG. 47 , transmitter 4702 and receiver 4704 are interconnected by optical link 4706. Optical links 4706 may include fiber optic links or free space optical links. The transmitter receives data stream 4708 processed via orbital angular momentum processing circuit 4710. As described above, the orbital angular momentum processing circuit 4710 provides orbital angular momentum twist on separate channels to the various signals. In some embodiments, the orbital angular momentum processing circuit may further provide multi-layer superposition modulation to the signal channel to further increase the system bandwidth.

OAM处理的信号被提供给量子密钥分配处理电路4712。量子密钥分配处理电路4712利用量子密钥分配的原理,这将在下面更充分地描述,以使得能够加密通过光学链路4706传输到接收机4704的信号。使用量子密钥分配处理电路4714在接收机4704内处理接收的信号。量子密钥分配处理电路4714使用量子密钥分配处理对接收的信号进行解密,这将在下文进行更全面地描述。解密的信号被提供给轨道角动量处理电路4716,轨道角动量处理电路4716从信号中移除任何轨道角动量扭转,以产生多个输出信号4718。如前所述,轨道角动量处理电路4716还可以使用包括在接收的信号内的多层叠加调制来解调信号。The OAM processed signal is provided to quantum key distribution processing circuit 4712. Quantum key distribution processing circuit 4712 utilizes the principles of quantum key distribution, described more fully below, to enable encryption of signals transmitted over optical link 4706 to receiver 4704. The received signal is processed within receiver 4704 using quantum key distribution processing circuit 4714. The quantum key distribution processing circuit 4714 decrypts the received signal using quantum key distribution processing, which is described more fully below. The decrypted signal is provided to orbital angular momentum processing circuit 4716, which removes any orbital angular momentum twist from the signal to generate a plurality of output signals 4718. As previously mentioned, the orbital angular momentum processing circuit 4716 may also demodulate the signal using the multi-layer superposition modulation included within the received signal.

在图47的电路中利用与光偏振相结合的轨道角动量,以便在旋转不变光子状态中对信息进行编码,以保证与来自发射单元4702和接收单元4704的本地参考帧的通信完全无关,有许多方法来实现量子密钥分配(QKD),该协议利用量子力学的特征来保证与具有真实世界应用环境完全兼容的错误率性能的密码通信中的无条件安全性。Orbital angular momentum combined with optical polarization is utilized in the circuit of Figure 47 to encode information in a rotationally invariant photon state to ensure complete independence of communications from local reference frames from transmit unit 4702 and receive unit 4704, There are many ways to implement quantum key distribution (QKD), a protocol that exploits the properties of quantum mechanics to guarantee unconditional security in cryptographic communications with error rate performance that is fully compatible with real-world application environments.

加密通信需要以受保护的方式交换密钥。这种密钥交换通常通过可信机构进行。量子密钥分配是密钥建立问题的可替代解决方案。与例如公钥密码学相比,无论计算能力或任何其他可能使用的资源,密钥分配都被证明是无条件安全的,即,即使在未来的任何攻击也是安全的。量子密钥分配安全性依赖于量子力学定律,并且更具体地是关于不可能在不干扰这些状态的情况下获得关于非正交量子态的信息的事实。该特性可以用于在发射机和接收机之间建立随机密钥,并且保证密钥对于任何线上第三方窃听是完全秘密的。Encrypted communication requires the exchange of keys in a protected manner. This key exchange is usually done through a trusted authority. Quantum key distribution is an alternative solution to the key establishment problem. In contrast to e.g. public key cryptography, key distribution is proven to be unconditionally secure, i.e. secure even against any future attack, regardless of computing power or any other resources that may be used. Quantum key distribution security relies on the laws of quantum mechanics, and more specifically on the fact that it is impossible to obtain information about non-orthogonal quantum states without disturbing these states. This feature can be used to establish a random key between the transmitter and receiver and guarantee that the key is completely secret from any online third party eavesdropping.

与上述“全量子证明”并行,QKD系统的安全性已经被置于稳定的信息理论基础上,这要归功于在信息理论密码学框架内完成的关于保密密钥协议的工作及其扩展。现在参考图48,在基本QKD系统内,QKD链路4802是希望共享保密密钥的发射机4804和接收机4806之间的点到点连接。QKD链路4802由量子信道4808和经典信道4810的组合构成。发射机4804产生经典比特的随机流,并将其编码成在量子信道4808上传输的光的非正交状态序列。在接收到这些量子态时,接收机4806执行一些适当的测量,导致接收机在与发射机比特流相关的经典链路4810上共享一些经典数据。经典信道4810用于测试这些相关。In parallel with the "full quantum proof" described above, the security of QKD systems has been placed on a stable information-theoretic basis, thanks to the work done within the framework of information-theoretic cryptography on secret key agreements and its extensions. Referring now to FIG. 48, within a basic QKD system, a QKD link 4802 is a point-to-point connection between a transmitter 4804 and a receiver 4806 that wish to share a secret key. QKD link 4802 consists of a combination of quantum channel 4808 and classical channel 4810. Transmitter 4804 generates a random stream of classical bits and encodes it into a non-orthogonal sequence of states for light transmitted over quantum channel 4808. Upon receiving these quantum states, the receiver 4806 performs some appropriate measurements, causing the receiver to share some classical data on the classical link 4810 associated with the transmitter bit stream. Classical channel 4810 is used to test these correlations.

如果相关性足够高,则这一统计意味着在量子信道4808上没有发生值得注意的窃听,并且因此具有非常高的概率,优选安全的对称密钥可以从由发射机4804和接收机4806共享的相关数据中提炼出来。在相反的情况下,密钥生成过程必须被中止并再次开始。量子密钥分配是对称密钥分配技术。为了认证目的,量子密钥分配需要发射机4804和接收机4806预先共享短密钥,所述短密钥的长度仅在由OKD会话生成的保密密钥的长度上对数地缩放。If the correlation is high enough, this statistic means that no significant eavesdropping has occurred on the quantum channel 4808, and therefore with a very high probability, a preferably secure symmetric key can be obtained from the one shared by the transmitter 4804 and receiver 4806 extracted from the relevant data. In the opposite case, the key generation process must be aborted and started again. Quantum key distribution is a symmetric key distribution technique. For authentication purposes, quantum key distribution requires the transmitter 4804 and receiver 4806 to pre-share a short key whose length is only logarithmically scaled on the length of the secret key generated by the OKD session.

在许多国家已经证明了区域尺度上的量子密钥分配。然而,在不适合于光纤安装或移动终端的区域之间的长距离通信(包括基于卫星的链路的重要情况)需要自由空间光链路。本方法利用光束的空间横向模式,特别是OAM自由度的空间横向模式,以便获得显著的技术优点,即通信对用户参考帧的相关对准的不敏感性。这个优点可能与从区域尺度升级到国家或大陆的量子密钥分配实现、或者跨越敌对地面的链路、甚至通过在卫星网络上利用轨道终端在全球尺度上设想量子密钥分配非常相关。Regional-scale quantum key distribution has been demonstrated in many countries. However, free-space optical links are required for long-distance communication (including the important case of satellite-based links) between areas not suitable for fiber optic installations or mobile terminals. The present method exploits the spatial lateral modes of the beam, in particular the spatial lateral modes of the OAM degrees of freedom, in order to obtain a significant technical advantage, namely the insensitivity of the communication to the relative alignment of the user's reference frame. This advantage may be very relevant to upgrading quantum key distribution implementations from regional scales to countries or continents, or links across hostile ground, or even envisioning quantum key distribution on a global scale by utilizing orbital terminals on satellite networks.

OAM本征模由扭转的波阵面表征,扭转的波阵面表征由“l”缠绕的螺旋构成,其中“l”是整数,并且,由携带除了与偏振相关联的更常见的自旋角动量(SAM)之外还有(轨道)角动量的

Figure BDA0003553842120000381
的光子表征。“l”的潜在无限值开放了利用OAM来增加通信系统的容量的可能性(尽管以也增加了信道横截面尺寸为代价),以及基于OAM复用的太比特经典数据传输可以在自由空间和光纤中展示。这种特征也可以在量子域中利用,例如扩展每个光子的量子比特数量,或者实现新的功能,例如量子比特的旋转不变性。OAM eigenmodes are characterized by twisted wavefronts consisting of helices wound with "l", where "l" is an integer, and, by carrying spin angles other than those associated with polarization, which are more common In addition to momentum (SAM) there is (orbital) angular momentum
Figure BDA0003553842120000381
photon characterization. The potentially infinite value of "l" opens up the possibility of utilizing OAM to increase the capacity of communication systems (albeit at the expense of also increasing the channel cross-sectional size), and that OAM multiplexing-based terabit classical data transmission can be performed in free space and Displayed in fiber optics. This feature can also be exploited in the quantum domain, for example to expand the number of qubits per photon, or to enable new functions such as the rotational invariance of qubits.

在自由空间QKD中,两个用户(Alice和Bob)必须建立共享参考帧(SRF),以便以良好的保真度进行通信。确实缺乏SRF等效于未知的相对旋转,其将噪声引入量子信道,中断通信。当信息在光子偏振中编码时,这样的参考帧可以由Alice和Bob的“水平”线性偏振方向的定向来定义。这些方向的对准需要额外的资源,并且可以在长距离自由空间QKD中/或当未对准在时间上变化时施加严重的障碍。如所指出的,我们可以通过使用旋转不变状态来解决这一问题,其完全去除了建立SRF的需要。这种状态作为OAM和偏振模式(混合状态)的特定组合来获得,对于这些状态,由偏振上的未对准引起的变换由空间模式上的相同未对准的效应来精确平衡。这些状态在光束围绕其轴的旋转下呈现全局对称性,并且可以被可视化为空间变化的偏振状态,概括公知的方位角和径向向量光束,并且形成二维希尔伯特空间。此外,该旋转不变混合空间也可以被认为是四维OAM偏振产物希尔伯特空间的无消相干子空间,对与随机旋转相关联的噪声不敏感。In free-space QKD, two users (Alice and Bob) must establish a shared reference frame (SRF) in order to communicate with good fidelity. Indeed lack of SRF is equivalent to an unknown relative rotation, which introduces noise into the quantum channel, disrupting communication. When the information is encoded in the photon polarization, such a frame of reference can be defined by the orientation of Alice and Bob's "horizontal" linear polarization direction. Alignment of these directions requires additional resources and can impose severe obstacles in long-range free-space QKD/or when misalignment varies over time. As pointed out, we can solve this problem by using rotation-invariant states, which completely remove the need to build an SRF. This state is obtained as a specific combination of OAM and polarization modes (hybrid states) for which the transformation caused by misalignment in polarization is precisely balanced by the effect of the same misalignment in spatial mode. These states exhibit global symmetry under the rotation of the beam around its axis, and can be visualized as spatially varying polarization states, generalizing the well-known azimuthal and radial vector beams, and forming a two-dimensional Hilbert space. Furthermore, this rotation-invariant mixing space can also be considered as a decoherence-free subspace of the Hilbert space of the four-dimensional OAM polarization product, which is insensitive to the noise associated with random rotations.

混合态可以通过在其中心具有拓扑电荷“q”(称为“q-板”)的特定空间变化的双折射板产生。特别是,通过q=1/2的q板的偏振高斯光束(具有零OAM)将经历以下变换:Mixed states can be created by a specific spatially varying birefringent plate with a topological charge "q" (called a "q-plate") at its center. In particular, a polarized Gaussian beam (with zero OAM) passing through a q-plate with q=1/2 will undergo the following transformation:

Figure BDA0003553842120000391
Figure BDA0003553842120000391

|L>π_和|R>π表示左圆偏振状态和右圆偏振状态(具有本征值

Figure BDA0003553842120000392
的SAM的本征态),|0>O表示具有零OAM的横向高斯模式,OAM的|L>O_和|R>O本征状态的|l|=1且具有本征值
Figure BDA0003553842120000393
)。出现在方程右手侧的状态是旋转不变状态。与此相反的操作可以通过具有相同q的第二q板来实现。在实践中,q板作为偏振空间和混合电路之间的接口进行操作,以通用(量子比特不变)方式将量子比特从一个空间转换到另一个空间,反之亦然。这又意味着我们的QKD实现协议中的信息的初始编码和最终解码可以方便地在偏振空间中执行,而传输在旋转不变混合空间中完成。|L> π_ and |R> π denote the left and right circular polarization states (with eigenvalues
Figure BDA0003553842120000392
SAM of eigenstates), |0> O denotes a transverse Gaussian mode with zero OAM, |L> O_ and |R>O eigenstates of OAM |l|=1 and have eigenvalues
Figure BDA0003553842120000393
). The states that appear on the right-hand side of the equation are rotationally invariant states. The opposite operation can be achieved by a second q-plate with the same q. In practice, q-plates operate as an interface between polarization space and hybrid circuits, converting qubits from one space to another and vice versa in a universal (qubit-invariant) manner. This in turn means that the initial encoding and final decoding of information in our QKD implementation protocol can be conveniently performed in polarization space, while transmission is done in rotation-invariant mixing space.

OAM是用于真空中光传播的守恒量,其对于通信应用显然是重要的。然而,OAM还对大气湍流高度敏感,该特征在许多实际情况下限制了其潜在用途,除非开发新技术来解决这样的问题。OAM is a conserved quantity for light propagation in vacuum, which is obviously important for communication applications. However, OAM is also highly sensitive to atmospheric turbulence, a feature that limits its potential use in many practical situations unless new techniques are developed to address such issues.

量子密码学描述了使用量子力学效应(特别是量子通信和量子计算)来执行密码学任务或破坏密码系统。量子密码学的已知示例是使用量子通信来安全地交换密钥(量子密钥分配)以及允许破坏各种流行的公钥加密和签名方案(例如,RSA)的量子计算机的假设使用。Quantum cryptography describes the use of quantum mechanical effects, particularly quantum communication and quantum computing, to perform cryptographic tasks or to break cryptographic systems. Known examples of quantum cryptography are the use of quantum communication to securely exchange keys (quantum key distribution) and the hypothetical use of quantum computers that allow breaking various popular public key encryption and signature schemes (eg, RSA).

量子密码术的优点在于它允许完成各种被证明为仅使用经典(即非量子)通信不可能完成的密码任务。例如,量子力学保证测量量子数据干扰该数据;这可以用于在量子密钥分配中检测窃听。The beauty of quantum cryptography is that it allows for a variety of cryptographic tasks that have proven impossible to accomplish using only classical (ie, non-quantum) communication. For example, quantum mechanics guarantees that measuring quantum data interferes with that data; this can be used to detect eavesdropping in quantum key distribution.

量子密钥分配(QKD)使用量子力学来保证安全通信。它使双方能够产生仅为他们所知的共享随机加密密钥,然后其可以用来加密和解密消息。Quantum Key Distribution (QKD) uses quantum mechanics to guarantee secure communications. It enables both parties to generate a shared random encryption key known only to them, which can then be used to encrypt and decrypt messages.

量子分布的一个重要和独特的特性是两个通信用户检测任何第三方试图获得密钥的知识的存在的能力。这来自于量子力学的一个基本方面:测量量子系统的过程通常干扰系统。试图窃听密钥的第三方必须以某种方式测量密钥,从而引入可检测的异常。通过使用量子重叠或量子纠缠,并在量子态中发送信息,可以实现检测窃听的通信系统。如果窃听级别低于某个阈值,则可以产生确保安全的密钥(即,窃听者没有关于它的信息),否则不可能有安全密钥,并且通信被中止。An important and unique property of quantum distributions is the ability of two communicating users to detect the presence of knowledge of any third party trying to obtain a key. This comes from a fundamental aspect of quantum mechanics: The process of measuring a quantum system usually disturbs the system. A third party trying to eavesdrop on the key would have to measure the key in some way, introducing a detectable anomaly. By using quantum overlap, or quantum entanglement, and sending information in a quantum state, a communication system that detects eavesdropping can be achieved. If the eavesdropping level is below a certain threshold, a secure key can be generated (ie, the eavesdropper has no information about it), otherwise no secure key is possible and the communication is aborted.

量子密钥分配的安全性依赖于量子力学的基础,与依赖于某些数学函数的计算难度的传统密钥分配协议相反,并且不能提供窃听的任何指示或密钥安全性的保证。The security of quantum key distribution relies on the foundations of quantum mechanics, as opposed to traditional key distribution protocols that rely on the computational difficulty of certain mathematical functions, and cannot provide any indication of eavesdropping or guarantees of key security.

量子密钥分配仅用于减少和分配密钥,而不是传送任何消息数据。然后,该密钥可以与任何选择的加密算法一起使用,以加密(和解密)通过标准通信信道传送的消息。与QKD最常关联的算法是一次性密码本,因为当与加密的随机密钥一起使用时证明是安全的。Quantum key distribution is only used to reduce and distribute keys, not to transmit any message data. This key can then be used with any encryption algorithm of choice to encrypt (and decrypt) messages transmitted over standard communication channels. The algorithm most often associated with QKD is the one-time pad, as it is proven secure when used with an encrypted random key.

量子通信涉及以量子态或量子比特编码信息,这与传统通信使用比特相反。通常,光子用于这些量子态,因此可应用于量子计算系统中。量子密钥分配利用这些量子态的某些特性来确保其安全性。对于量子密钥分配有几种方法,但是它们可以分为两个主要类别,取决于它们利用的特性。其中第一个特性是准备和测量协议。与经典物理学相反,测量的行为是量子力学的组成部分。一般来说,测量未知的量子态以某种方式改变状态。这被称为量子不确定性,基础结果如海森堡不确定性原理,信息分布定理,和非克隆定理。这可以被利用,以便检测对通信(其必然涉及测量)的任何窃听,并且更重要地,计算已经被拦截的信息量。因此,通过检测信号内的变化,可以由接收方确定被窃听的量或已经被拦截的信息。Quantum communication involves encoding information in quantum states, or qubits, as opposed to traditional communication, which uses bits. Typically, photons are used for these quantum states and thus can be applied in quantum computing systems. Quantum key distribution exploits certain properties of these quantum states to ensure their security. There are several methods for quantum key distribution, but they can be divided into two main categories, depending on the properties they exploit. The first of these features is the preparation and measurement protocol. Contrary to classical physics, the act of measuring is an integral part of quantum mechanics. Generally speaking, measuring an unknown quantum state changes the state in some way. This is called quantum uncertainty, and fundamental results such as Heisenberg's uncertainty principle, the information distribution theorem, and the non-cloning theorem. This can be exploited in order to detect any eavesdropping on communications (which necessarily involve measurements) and, more importantly, to calculate the amount of information that has been intercepted. Thus, by detecting changes in the signal, the amount of wiretapping or information that has been intercepted can be determined by the recipient.

第二类涉及使用基于纠缠的协议。两个或更多个单独物体的量子态可以以这样的方式链接在一起,使得它们必须由组合的量子态描述,而不是作为单独的物体描述。这被称为纠缠,并且意味着,例如,对一个物体执行测量影响另一个物体。如果物体的纠缠对在两方之间共享,则拦截任一物体的任何拦截改变整个系统,揭示第三方的存在(以及它们已经获得的信息量)。因此,不期望的信息接收可以通过在被未授权的第三方截取时在各方之间共享的物体的纠缠对中的改变来确定。The second category involves the use of entanglement-based protocols. The quantum states of two or more separate objects can be linked together in such a way that they must be described by the combined quantum state, rather than as separate objects. This is called entanglement, and means that, for example, performing a measurement on one object affects another. If an entangled pair of objects is shared between two parties, any interception of either object alters the entire system, revealing the existence of third parties (and the amount of information they have acquired). Thus, undesired receipt of information can be determined by changes in the entangled pair of objects shared between parties when intercepted by an unauthorized third party.

量子密钥分配(QKD)协议的一个示例是BB84协议。最初使用光子偏振状态来描述BB84协议以传输信息。然而,任何两对共轭状态可以用于该协议,并且被描述为BB84的基于光纤的实现可以使用相位编码状态。发射机(传统上称为Alice)和接收机(传统上称为Bob)通过允许发射量子态的量子通信信道连接。在光子的情况下,该信道通常是光纤,或简单的自由空间,如先前关于图47所描述的。此外,发射机和接收机经由公共经典信道进行通信,例如使用广播无线电或因特网。这些信道中的任一个都不需要是安全的。协议被设计为假设窃听者(称为Eve)可以以任何方式干扰发射机和接收机。An example of a quantum key distribution (QKD) protocol is the BB84 protocol. The BB84 protocol was originally described using the photon polarization state to transmit information. However, any two pairs of conjugated states can be used for this protocol, and a fiber-based implementation described as BB84 can use phase-encoded states. A transmitter (traditionally called Alice) and a receiver (traditionally called Bob) are connected by a quantum communication channel that allows the emission of quantum states. In the case of photons, this channel is usually an optical fiber, or simply free space, as previously described with respect to FIG. 47 . Furthermore, the transmitter and receiver communicate via a common classical channel, eg using broadcast radio or the Internet. None of these channels need to be secure. The protocol is designed to assume that an eavesdropper (called Eve) can interfere with the transmitter and receiver in any way.

现在参考图49,协议的安全性来自于在非正交状态中编码信息。量子不确定性意味着这些状态通常不能在不干扰原始状态的情况下被测量。BB84使用两对状态4902,每对与另一对共轭以形成共轭对4904。对4904内的两个状态4902彼此正交。正交状态对被称为基。所使用的通常的偏振状态对是垂直的(0度)和水平(90度)的直线基,对角线基为45度和135度,或左手性和/或右手性的圆形基。这些基中的任意两个彼此共轭,因此可以在协议中使用任何两个。在图50的示例中,分别在5002和5004使用直线基,在5006和5008使用对角基。Referring now to Figure 49, the security of the protocol comes from encoding information in a non-orthogonal state. Quantum uncertainty means that these states generally cannot be measured without disturbing the original state. BB84 uses two pairs of states 4902, each conjugated to the other to form a conjugated pair 4904. The two states 4902 within the pair 4904 are orthogonal to each other. Orthogonal state pairs are called bases. Typical polarization state pairs used are vertical (0 degrees) and horizontal (90 degrees) straight-line bases, diagonal bases of 45 and 135 degrees, or left-handed and/or right-handed circular bases. Any two of these groups are conjugated to each other, so any two can be used in the protocol. In the example of Figure 50, a linear basis is used at 5002 and 5004, and a diagonal basis is used at 5006 and 5008, respectively.

BB84协议中的第一步是量子传输。现在参考图51,其中示出了描述该过程的流程图,其中发射机在步骤5102创建随机位(0或1),并且在5104随机选择直线的或对角线的两个基之一,以发送随机位。发射机在步骤5106处根据比特值和所选择的基来准备光子偏振状态。例如,将0以直线基(+)编码为垂直偏振状态,a1在对角基(X)中被编码为135度状态。发射机在步骤5108处使用量子信道在指定的状态下将单个质子传输到接收机。该过程从步骤5102的随机位阶段重复,发射机记录通过光链路发送的每个光子的状态,基础和时间。The first step in the BB84 protocol is quantum transmission. Referring now to FIG. 51, there is shown a flow chart describing the process in which the transmitter creates random bits (0 or 1) at step 5102, and at 5104 randomly selects one of the two bases, rectilinear or diagonal, to Send random bits. The transmitter prepares the photon polarization state at step 5106 according to the bit value and the selected basis. For example, 0 is encoded as the vertical polarization state in the linear basis (+) and a1 is encoded as the 135 degree state in the diagonal basis (X). The transmitter at step 5108 transmits a single proton to the receiver in the specified state using the quantum channel. The process repeats from the random bit stage of step 5102, with the transmitter recording the state, basis and time of each photon sent over the optical link.

根据量子力学,没有可能的测量在图50的四个不同偏振状态5002至5008之间进行区分,因为它们不是全部正交的。仅有的可能测量是在任何两个正交状态(和正交基)之间。因此,例如,在直线基上测量给出水平或垂直的结果。如果照片被创建为水平或垂直(作为直线本征态),则这测量正确的状态,但是如果它被创建为45度或135度(对角本征态),则直线测量反而随机返回水平或垂直。此外,在该测量之后,质子在测量的状态(水平或垂直)下被偏振,其中关于其初始偏振的所有信息丢失。According to quantum mechanics, there is no possible measurement to distinguish between the four different polarization states 5002 to 5008 of Figure 50, since they are not all orthogonal. The only possible measurements are between any two orthogonal states (and orthogonal bases). Thus, for example, measuring on a straight line base gives horizontal or vertical results. If the photo is created horizontal or vertical (as a line eigenstate), this measures the correct state, but if it is created as 45 degrees or 135 degrees (diagonal eigenstates), the line measurement instead randomly returns horizontal or vertical. Furthermore, after this measurement, the protons are polarized in the measured state (horizontal or vertical), where all information about their original polarization is lost.

现在参考图52,由于接收机不知道光子被编码的基,因此接收机只能选择随机的基,以直线或对角线测量。在步骤5202,发射机对每个接收的光子进行这一操作,在步骤5204,记录使用的时间测量基和测量结果。在步骤5206,确定是否存在另外的质子,并且如果存在,则控制返回到步骤5202。一旦查询步骤5206确定接收机已经测量了所有质子,则收发机在步骤5208通过公共通信信道与发射机进行通信。发射机在步骤5210广播发射的每个光子的基,并且接收机在步骤5212广播每个光子被测量的基。在步骤5216,发射机和接收机中的每一个放弃光子测量,其中接收机在步骤5214使用不同的基,其平均为一半,在步骤5216将一半比特留作共享密钥。该过程在图53中被更充分地示出。Referring now to Figure 52, since the receiver does not know the basis in which the photons are encoded, the receiver can only choose a random basis, measured in a straight line or diagonally. In step 5202, the transmitter does this for each received photon, and in step 5204, the time measurement base used and the measurement results are recorded. At step 5206, it is determined whether additional protons are present, and if so, control returns to step 5202. Once inquiry step 5206 determines that the receiver has measured all protons, the transceiver communicates with the transmitter at step 5208 over a common communication channel. The transmitter broadcasts the basis of each photon transmitted at step 5210 and the receiver broadcasts the basis of each photon measured at step 5212. At step 5216, each of the transmitter and receiver discards the photon measurement, where the receiver uses a different basis at step 5214, which averages half, at step 5216 leaving half of the bits as the shared key. This process is shown more fully in FIG. 53 .

发射机发射随机位01101001。对于这些位中的每一个,发射机选择直线,直线,对角线,直线,对角线,对角线,对角线和直线的发送基。因此,基于所选择的相关联的随机位和与信号相关联的随机发送基,提供线5202中指示的偏振。在接收到光子时,接收机选择如线5304所示的随机测量基。然后,来自这些基的光子偏振测量将如线5306所示。在5308讨论对所传输的基和测量基的公开讨论,并且基于用于所发射的光子1、3、6和8的匹配基础,在5310将加密密钥确定为0101。The transmitter transmits random bits 01101001. For each of these bits, the transmitter selects a transmit base of straight, straight, diagonal, straight, diagonal, diagonal, diagonal, and straight. Thus, the polarization indicated in line 5202 is provided based on the selected associated random bits and random transmit bases associated with the signal. Upon receiving a photon, the receiver selects a random measurement basis as shown by line 5304. The photon polarization measurements from these bases will then be shown as line 5306. A public discussion of the transmitted basis and the measurement basis is discussed at 5308, and the encryption key is determined to be 0101 at 5310 based on the matching basis for the emitted photons 1, 3, 6, and 8.

现在参考图54,示出了用于基于在所确定的比特串内检测到的错误来确定是否保持或放弃所确认的密钥的过程。为了检查窃听的存在,发射机和接收机在步骤5402比较其剩余比特串的某个子集。如果第三方获得了关于光子偏振的任何信息,这会在接收机的测量中引入错误。如果在询问步骤5404中有多于P个比特不同,则在步骤5406放弃该密钥,并且发射机和接收机可能使用不同的量子信道再次尝试,因为不能保证密钥的安全性。P被选择,使得如果窃听者已知的比特数小于该值,则隐私放大可以用于通过减小密钥的长度将窃听者对密钥的知识减少到任意小的量。如果查询步骤5404确定比特数不大于P,则在步骤5408可以使用密钥。Referring now to FIG. 54, shown is a process for determining whether to keep or relinquish a confirmed key based on errors detected within the determined bit string. To check for the presence of eavesdropping, the transmitter and receiver compare at step 5402 some subset of their remaining bit strings. If a third party obtains any information about the polarization of the photon, this can introduce errors in the receiver's measurements. If there are more than P bits different in challenge step 5404, the key is discarded in step 5406, and the transmitter and receiver may try again using different quantum channels, since the security of the key cannot be guaranteed. P is chosen such that if the number of bits known to the eavesdropper is less than this value, privacy amplification can be used to reduce the eavesdropper's knowledge of the key to an arbitrarily small amount by reducing the length of the key. If query step 5404 determines that the number of bits is not greater than P, then at step 5408 the key may be used.

E91协议包括使用纠缠的质子对的另一个量子密钥分公式案。该协议也可用于使用轨道角动量处理、拉盖尔高斯处理、埃米尔特高斯处理或使用Q比特的任何正交函数处理的纠缠质子对。纠缠对可以由发射机,接收机或者与包括窃听者的发射机和接收机两者分离的一些其他源创建。光子被分配,使得发射机和接收机各自以每对中的一个光子结束。该方案依赖于纠缠的两个特性。首先,纠缠状态是完全相关的,在这个意义上讲,如果发射机和接收机都测量是否它们的粒子都具有垂直或水平偏振,它们总是以100%的概率得到相同的答案。如果它们都测量任何其他对的互补(正交)偏振,则同样如此。然而,特定的结果不是完全随机的。发射机不可能预测是否发射机以及因此接收机将获得垂直偏振或水平偏振。第二,任何第三方窃听的尝试都以发射机和接收机可以检测的方式破坏这些相关性。原始Ekert协议(E91)包括三个可能的状态和测试贝尔不等式违例,用于检测窃听。The E91 protocol includes another quantum key-partitioning scheme using entangled proton pairs. This protocol can also be used for entangled proton pairs processed using orbital angular momentum processing, Laguerre-Gaussian processing, Emmelt-Gaussian processing, or any orthogonal function using Q bits. An entangled pair may be created by a transmitter, receiver, or some other source separate from both the transmitter and receiver including the eavesdropper. The photons are distributed so that the transmitter and receiver each end up with one photon in each pair. The scheme relies on two properties of entanglement. First, the entangled states are perfectly correlated, in the sense that if both the transmitter and receiver measure whether their particles both have vertical or horizontal polarization, they always get the same answer with 100% probability. The same is true if they both measure the complementary (orthogonal) polarization of any other pair. However, specific outcomes are not completely random. It is impossible for the transmitter to predict whether the transmitter and therefore the receiver will obtain vertical or horizontal polarization. Second, any attempt to eavesdrop on a third party destroys these correlations in a way that the transmitter and receiver can detect. The original Ekert protocol (E91) includes three possible states and tests for Bell's inequality violations to detect eavesdropping.

目前,当前使用量子密钥分配的最高比特率系统展示在20千米光纤上每秒1兆比特的安全密钥交换和在100公里光纤上每秒10千比特的安全密钥交换。Currently, the highest current bit rate systems using quantum key distribution demonstrate secure key exchange of 1 megabit per second over 20 kilometers of fiber and 10 kilobits per second over 100 kilometers of fiber.

使用光纤证明量子密钥分配的最长距离为148公里。该距离对于现今的光纤网络中发现的几乎所有跨度都足够长。使用诱饵状态增强的BB84的自由空间量子密钥分配的距离记录为134公里。The longest distance to prove quantum key distribution using fiber optics is 148 kilometers. This distance is long enough for almost all spans found in today's fiber optic networks. The distance recorded for free-space quantum key distribution with BB84 enhanced by the decoy state is 134 km.

现在参考图55,示出了可以实现自由空间量子密钥分配的对准的发射机5502和接收机5504的功能框图。系统可以执行具有诱饵状态的BB84协议。控制器5506使得比特能够在两个相互不偏的基Z={|0>,|1>}和X={|+>,|->}中编码,其中|0>和|1>是跨越量子比特空间的两个正交状态,|±>=1/√2(|0>±|1>)。发射机控制器5506在Z和X基之间随机选择,以发送经典位0和1。在混合编码中,Z基对应于

Figure BDA0003553842120000421
而X基状态对应于
Figure BDA0003553842120000422
Figure BDA0003553842120000423
发射机5502使用四个不同的偏振衰减激光器5508通过量子比特生成器5510产生量子比特。来自量子比特生成器4550的光子通过单模光纤5512被传送到望远镜5514。通过q=1/2的q板5516将偏振状态|H>、|V>、|R>、|L>变换为旋转不变混合状态。然后可以将光子传输到接收站5504,其中第二q板变换5518将信号变换回由接收机参考框架5504限定的原始偏振状态|H>、|V>、|R>、|L>。然后可以通过偏光器5520和单光子检测器5522分析量子点。来自偏光器5520和光电检测器5522的信息然后可以被提供给接收机控制器5524,使得可以通过仅仅保留与由通信确定的发射机和接收机侧的相同基对应的比特来获得移位的密钥,其中所述通信在发射机5502和接收机5504中的收发器5526、5528之间的经典信道上进行。Referring now to FIG. 55, there is shown a functional block diagram of a transmitter 5502 and a receiver 5504 that can implement the alignment of free-space quantum key distribution. The system can execute the BB84 protocol with decoy state. Controller 5506 enables bits to be encoded in two mutually unbiased basis Z={|0>,|1>} and X={|+>,|->}, where |0> and |1> are spanning quantum Two orthogonal states of the bit space, |±>=1/√2 (|0>±|1>). Transmitter controller 5506 randomly selects between Z and X bases to transmit classical bits 0 and 1. In hybrid coding, the Z basis corresponds to
Figure BDA0003553842120000421
while the X-based state corresponds to
Figure BDA0003553842120000422
Figure BDA0003553842120000423
Transmitter 5502 generates qubits through qubit generator 5510 using four different polarization attenuated lasers 5508. Photons from qubit generator 4550 are transmitted to telescope 5514 through single mode fiber 5512. The polarization states |H>, |V>, |R>, |L> are transformed into rotation-invariant hybrid states by the q-plate 5516 with q=½. The photons may then be transmitted to the receiving station 5504, where a second q-plate transform 5518 transforms the signal back to the original polarization states |H>, |V>, |R>, |L> defined by the receiver reference frame 5504. The quantum dots can then be analyzed by polarizer 5520 and single photon detector 5522. The information from the polarizer 5520 and photodetector 5522 can then be provided to the receiver controller 5524 so that the shifted encryption can be obtained by retaining only the bits corresponding to the same base on the transmitter and receiver sides as determined by the communication. key, where the communication takes place on a classical channel between transceivers 5526, 5528 in transmitter 5502 and receiver 5504.

现在参考图56,示出了基于网络云的量子密钥分配系统,其包括中心服务器6202和在集线器和辐射配置中的各个附接节点5604。由于受限的计算资源或提供合适的密钥管理的困难,网络中的趋势呈现出对于满足常规密码学有挑战性的新的安全问题。原则上,量子密码学具有前向安全性和轻量级计算能力,可以满足这些挑战,只要它可以从当前的点到点架构演变为与多模网络架构兼容的形式。基于点对点链路的网络的可信量子密钥分配网络缺乏可扩展性,需要专用光纤,是昂贵的,并且不适于大规模生产,因为它们仅提供密码功能之一,即安全通信所需的密钥分配。因此,它们具有有限的实用兴趣。Referring now to FIG. 56, a network cloud based quantum key distribution system is shown that includes a central server 6202 and various attached nodes 5604 in hub and spoke configurations. The trend in networks presents new security issues that are challenging to meet conventional cryptography due to limited computational resources or the difficulty of providing proper key management. In principle, quantum cryptography, with its forward security and lightweight computing power, can meet these challenges, as long as it can evolve from current point-to-point architectures to forms compatible with multimodal network architectures. Trusted quantum key distribution networks for peer-to-peer link-based networks lack scalability, require dedicated optical fibers, are expensive, and are not suitable for mass production because they provide only one of the cryptographic functions, the encryption required for secure communication key assignment. Therefore, they have limited practical interest.

诸如图56所示的新的可扩展方法提供了量子信息保证,其是基于网络的量子通信,可以解决新的网络安全挑战。在该方法中,N个客户端节点5604中的每一个与物理层处的中央服务器5602之间的BB84类型量子通信支持量子密钥管理层,其又实现在大约N2个客户端对之间的应用处层的安全通信功能(机密性,认证和不可否认性)。这种基于网络的通信“中心辐射(hub and spoke)”拓扑可以在网络设置中实现,并且允许分层信任体系结构,所述分层信任体系结构允许服务器5602作为用于量子认证密钥建立的密码协议中的可信机构。这避免了需要在每对节点之间具有预先存在的信任关系的先前方法中的扩展性不佳的问题。通过制作服务器5602,单个多路复用QC(量子通信)接收机和客户端节点5604QC发射机,该网络可以简化多个网络节点的复杂性。以这样的方式,基于网络的量子密钥分配体系结构在量子物理资源和信任方面都是可扩展的。人们可以在单模光纤上在时间上多路复用服务器5602与三个发射机5604,可以使用时间和波长多路复用以及与波分复用多路复用的轨道角动量的组合来容纳更大数量的客户端,以支持更高客户端。A new scalable approach such as that shown in Figure 56 provides quantum information assurance, which is a network-based quantum communication that can address new cybersecurity challenges. In this approach, BB84-type quantum communication between each of the N client nodes 5604 and the central server 5602 at the physical layer supports a quantum key management layer, which in turn enables the communication between approximately N2 client pairs. Secure communication functions at the application layer (confidentiality, authentication and non-repudiation). This network-based communication "hub and spoke" topology can be implemented in a network setting and allows for a layered trust architecture that allows the server 5602 to act as a server for quantum authentication key establishment Trusted Authority in Cryptographic Protocols. This avoids the problem of poor scalability in previous approaches that required a pre-existing trust relationship between each pair of nodes. By making a server 5602, a single multiplexed QC (quantum communication) receiver and client node 5604 QC transmitter, the network can simplify the complexity of multiple network nodes. In this way, the network-based quantum key distribution architecture is scalable both in terms of quantum physical resources and trust. One can time multiplex server 5602 with three transmitters 5604 on single mode fiber, which can be accommodated using a combination of time and wavelength multiplexing and orbital angular momentum multiplexed with wavelength division multiplexing Larger number of clients to support higher clients.

现在参考图57和58,示出了基于多用户轨道角动量的量子密钥分配多址接入网络的各种部件。图57示出了位于网络节点处的高速单光子检测器5702,其可以使用常规网络架构在多个用户5704之间共享,从而显著减少添加到网络的每个用户的硬件要求。在一个实施例中,单光子检测器5702可以共享多达64个用户。这种共享接收机架构消除了限制量子密钥分配的广泛应用的主要障碍之一。本实施例提出了一种用于实现具有资源效率的多用户量子密钥分配网络的可行方法。Referring now to Figures 57 and 58, various components of a multi-user orbital angular momentum based quantum key distribution multiple access network are shown. Figure 57 shows a high-speed single-photon detector 5702 located at a network node, which can be shared among multiple users 5704 using conventional network architectures, thereby significantly reducing the hardware requirements for each user added to the network. In one embodiment, the single photon detector 5702 can be shared by up to 64 users. This shared-receiver architecture removes one of the main barriers limiting the widespread application of quantum key distribution. This embodiment presents a feasible method for implementing a resource-efficient multi-user quantum key distribution network.

现在还参考图58,在节点量子密钥分配网络中,多个可信中继器5802经由节点5806之间的点对点链路5804连接。中继器通过量子发射机和量子接收机之间的点对点链路5804连接。这些点对点链路5804可以使用长距离光纤长度来实现,并且甚至可以利用地对卫星量子密钥分配通信。虽然点对点连接5804适合于形成骨干量子核心网络,但是它们不太适合于提供给多个用户访问量子密钥分配基础设施所需的最后一英里服务。基于光开关或波分复用的可重构光网络可以实现更灵活的网络结构,然而,它们还需要为每个用户安装全量子密钥分配系统,这对于许多应用来说是非常昂贵的。Referring now also to FIG. 58, in a node quantum key distribution network, multiple trusted repeaters 5802 are connected via point-to-point links 5804 between nodes 5806. The repeaters are connected by a point-to-point link 5804 between the quantum transmitter and the quantum receiver. These point-to-point links 5804 can be implemented using long fiber lengths and can even utilize ground-to-satellite quantum key distribution communications. While point-to-point connections 5804 are suitable for forming backbone quantum core networks, they are less suitable for providing the last mile services required to provide multiple users with access to quantum key distribution infrastructure. Reconfigurable optical networks based on optical switches or wavelength division multiplexing can enable more flexible network structures, however, they also require the installation of a full quantum key distribution system for each user, which is very expensive for many applications.

在量子密钥分配中使用的量子密钥信号仅需要沿着光纤在一个方向上传播,以在发射机和接收机之间建立安全密钥。发送器位于网络节点5806处的单光子量子密钥分配和用户驻地处的接收机因此适合于无源多用户网络方法。然而,这种下游实施具有两个主要缺点。首先,网络中的每个用户需要单个光子检测器,其通常昂贵并且难以操作。另外,不可能确定性地对用户寻址。因此,所有检测器必须以与发射机相同的速度操作,以便不会错过光子,这意味着大多数检测器带宽未被使用。The quantum key signal used in quantum key distribution only needs to travel in one direction along the fiber to establish a secure key between the transmitter and receiver. The transmitter is located at the network node 5806 for single-photon quantum key distribution and the receiver at the customer premises is therefore suitable for passive multi-user network approaches. However, this downstream implementation has two major drawbacks. First, each user in the network requires a single photon detector, which is often expensive and difficult to operate. Additionally, it is not possible to address the user deterministically. Therefore, all detectors must operate at the same speed as the transmitter in order not to miss photons, which means that most of the detector bandwidth is unused.

可以克服与下游实施相关联的大多数系统。最宝贵的资源应由所有用户共享,并应以全部能力操作。可以构建上游量子接入网络,其中发射机被放置在终端用户位置处,并且公共接收机被放置在网络节点处。这样,具有多达64个用户的操作是可行的,这可以通过1x64无源光分路器进行多用户量子密钥分配来完成。Most systems associated with downstream implementations can be overcome. The most valuable resource should be shared by all users and should be operated at full capacity. An upstream quantum access network can be constructed where transmitters are placed at end user locations and common receivers are placed at network nodes. In this way, operation with up to 64 users is feasible, which can be done with a 1x64 passive optical splitter for multi-user quantum key distribution.

上述QKD方案可应用于双绞线、同轴电缆、光纤、RF卫星、RF广播、RF点对点、RF点对多点、RF点对点(回传)、RF点对点(前传以提供用于RAN和云化HetNet的云化和虚拟化的更高吞吐量CPRI接口)、自由空间光学器件、物联网(IOT)、WiFi、蓝牙、作为个人设备电缆替代品、RF和FSO器件混合系统、雷达、电磁标签和所有类型的无线接入。该方法和系统与许多当前和未来的多路存取系统兼容,包括EV-DO、UMB、WIMAX、WCDMA(有或没有)、多媒体广播多播服务(MBMS)/多输入多输出(MIMO)、HSPA演进和LTE。这些技术对于通过在中断的情况下经由替代链路路由通信来打击拒绝服务攻击将是有用的,作为一种对抗特洛伊木马攻击的技术(它不需要对端点进行物理访问),并且作为一种对抗伪状态攻击、相位重映射攻击和时移攻击的技术。The above QKD solution can be applied to twisted pair, coaxial cable, optical fiber, RF satellite, RF broadcast, RF point-to-point, RF point-to-multipoint, RF point-to-point (backhaul), RF point-to-point (fronthaul to provide for RAN and cloudification) HetNet's cloudified and virtualized higher throughput CPRI interface), free space optics, Internet of Things (IOT), WiFi, Bluetooth, as a cable replacement for personal devices, hybrid systems of RF and FSO devices, radar, electromagnetic tags and All types of wireless access. The method and system are compatible with many current and future multiple access systems, including EV-DO, UMB, WIMAX, WCDMA (with or without), Multimedia Broadcast Multicast Service (MBMS)/Multiple Input Multiple Output (MIMO), HSPA Evolution and LTE. These techniques would be useful for combating denial of service attacks by routing communications over alternate links in the event of an outage, as a technique against Trojan horse attacks (which do not require physical access to endpoints), and as a countermeasure Techniques for pseudo-state attacks, phase remapping attacks, and time-shift attacks.

因此,在各种类型的通信网络(更具体地,光纤网络和自由空间光通信网络)内使用上述轨道角动量处理、多层叠加调制和量子密钥分配的各种配置,可以实现系统带宽和容量的多种益处和改进。Therefore, using various configurations of the above-described orbital angular momentum processing, multilayer superposition modulation, and quantum key distribution within various types of communication networks (more specifically, fiber optic networks and free-space optical communication networks), system bandwidth and Multiple benefits and improvements in capacity.

现在参考附图,更具体地参考图59,示出了与系统一起使用的光束的一个实施例。光束5904由光束5904内的光子流5902组成。每一个光子具有能量

Figure BDA0003553842120000441
和沿垂直于波前的光束轴5906指向的
Figure BDA0003553842120000442
的线性动量。独立于频率,光束5904内的每一个光子5902具有
Figure BDA0003553842120000443
的与光束传播方向平行或反平行的自旋角动量5908。所有光子5902自旋的对准产生圆偏振光束。除了圆偏振外,还可以处理光束以携带不依赖于圆偏振并且因此与光子自旋无关的轨道角动量5910。Referring now to the drawings, and more particularly to FIG. 59, one embodiment of a light beam for use with the system is shown. Beam 5904 consists of photon stream 5902 within beam 5904. Each photon has energy
Figure BDA0003553842120000441
and pointing along the beam axis 5906 perpendicular to the wavefront
Figure BDA0003553842120000442
linear momentum. Independent of frequency, each photon 5902 within beam 5904 has
Figure BDA0003553842120000443
of spin angular momentum 5908 parallel or antiparallel to the beam propagation direction. The alignment of all photon 5902 spins produces a circularly polarized beam. In addition to circular polarization, the beam can also be processed to carry orbital angular momentum 5910 that is independent of circular polarization and therefore independent of the photon spin.

现在参考图60和图61,示出了平面波前和螺旋波前。通常,具有平面波前6002的激光束以埃尔米特-高斯模式为特征。这些模式具有矩形对称性,并且由两个模式指数m 6004和n 6006描述。x方向上有m个节点,y方向上有n个节点。x和y方向的组合模式一起被标记为HGmn 6008。相反,如图61中所示,具有螺旋波前6102的光束的最佳特征在于由指数I6103描述的拉盖尔-高斯模式、交错螺旋6104的数量和p、径向节点6106的数量。拉盖尔-高斯模式被标记为LGmn 610。对于l≠0,光束6004上的相位奇异性导致轴强度为0。当具有螺旋波前的光束6004也被圆偏振时,角动量具有轨道分量和自旋分量,并且光束的总角动量为每光子

Figure BDA0003553842120000451
Referring now to Figures 60 and 61, a planar wavefront and a helical wavefront are shown. Typically, a laser beam with a plane wavefront 6002 is characterized by Hermitian-Gaussian modes. These modes have rectangular symmetry and are described by two mode indices m 6004 and n 6006 . There are m nodes in the x direction and n nodes in the y direction. The combined mode in the x and y directions together is labeled HG mn 6008. In contrast, as shown in FIG. 61 , the beam with a helical wavefront 6102 is best characterized by the Laguerre-Gaussian mode described by the index I 6103 , the number of staggered spirals 6104 and p, the number of radial nodes 6106 . The Laguerre-Gaussian mode is labeled LG mn 610. For l≠0, the phase singularity on beam 6004 results in an on-axis intensity of 0. When a beam 6004 with a helical wavefront is also circularly polarized, the angular momentum has an orbital component and a spin component, and the total angular momentum of the beam is per photon
Figure BDA0003553842120000451

用于改进电子空穴复合的现有技术根据所使用的器件的特定类型而变化。例如,如图62中所示,在生物光收集复合物(Light Harvesting Complex,LHC)内,向LHC施加光束6202,使得光子吸收6204产生分子激发态。这些分子激发态包含被汇集到反应中心6208的激子6206,在反应中心6208它们被分解成电子6210和空穴6212。电子6210和空穴6212通过一系列级联的电荷转移步骤而进一步被分离。Existing techniques for improving electron hole recombination vary according to the particular type of device used. For example, as shown in Figure 62, within a biological Light Harvesting Complex (LHC), a light beam 6202 is applied to the LHC such that photon absorption 6204 produces molecular excited states. These molecular excited states contain excitons 6206 that are collected into reaction centers 6208 where they are dissociated into electrons 6210 and holes 6212. Electrons 6210 and holes 6212 are further separated by a series of cascaded charge transfer steps.

如图63中所示,有机光伏电池(OPV)接收光束6302并使用光吸收6304来产生激子6306,激子6306被施加到在施主和受主半导体的解混合混合物中形成的单个施主-受主异质结6308,以生成电子6310和空穴6312。最有效的OPV系统包括纯富勒烯受体的纳米级(小于符号5nm)结构域和与聚合物供体紧密混合的富勒烯结构域。这些长度尺度小于有机半导体(kT=e24πε0εr)中的库仑俘获半径(Coulomb Capture Radius,CCR),该库仑俘获半径由于材料的低介电常数(大约3-4)而在室温下被估计为高达16nm。因此,与LHC相反,通过OPV扩散的电子和空穴可能在它们到达电极之前彼此相遇。这类似于标准无机太阳能电池,其中双分子电子-空穴复合(Bimolecular Electron-Hole Recombination,BR)决定太阳能电池性能。除了将这些技术应用于OPV系统之外,所描述的技术可用于控制固态半导体材料中的电子、量子计算系统和生物系统,如下所述。As shown in Figure 63, an organic photovoltaic cell (OPV) receives beam 6302 and uses light absorption 6304 to generate excitons 6306, which are applied to a single donor-acceptor formed in a demixed mixture of donor and acceptor semiconductors Primary heterojunction 6308 to generate electrons 6310 and holes 6312. The most efficient OPV systems include nanoscale (less than 5 nm in symbol) domains of pure fullerene acceptors and fullerene domains intimately mixed with polymer donors. These length scales are smaller than the Coulomb Capture Radius (CCR) in organic semiconductors (kT=e 2 4πε 0 εr), which is restricted at room temperature due to the low dielectric constant of the material (approximately 3-4). Estimated to be up to 16nm. Therefore, in contrast to LHC, electrons and holes diffused through OPVs may meet each other before they reach the electrodes. This is similar to standard inorganic solar cells, where Bimolecular Electron-Hole Recombination (BR) determines solar cell performance. In addition to applying these techniques to OPV systems, the described techniques can be used to control electronics in solid-state semiconductor materials, quantum computing systems, and biological systems, as described below.

产生库仑束缚态的电子空穴相遇速率由R=γn(p)给出,其中n(p)是电子(空穴)布居密度,并且γ是由γ=q<μ>/ε给出的朗之万(Langevin)复合常数,其中q等于电荷,<μ>等于有效电子/空穴迁移率,并且ε等于介电常数。该模型成功地描述了OLED的主要操作机制,其中通过电极注入的电荷彼此捕获以形成强束缚激子。The electron-hole encounter rate that produces a Coulomb bound state is given by R=γn(p), where n(p) is the electron (hole) population density, and γ is given by γ=q<μ>/ε The Langevin recombination constant, where q equals the charge, <μ> equals the effective electron/hole mobility, and ε equals the permittivity. This model successfully describes the main operating mechanism of OLEDs, in which charges injected through the electrodes trap each other to form strongly bound excitons.

在经验优化的OPV中,与朗之万速率相比,复合速率被抑制多达三个数量级,允许高达80%的外部量子效率。通过电子/空穴碰撞形成的束缚态的复合不仅由能量学介导,而且由自旋和离域介导,以允许自由电荷从这些束缚态重整,从而抑制复合。在图64中更详细地说明了这一点,图64示出了,当光束6402具有施加到其上的自旋和离域特性6404时,包括自旋特性6406的光束可施加到光子器件6408(或其他器件/系统)。结果表明,由于自旋和离域特性,光子器件6408(或其它器件/系统)将具有改进的复合速率抑制。In empirically optimized OPVs, the recombination rate is suppressed by up to three orders of magnitude compared to the Langevin rate, allowing up to 80% external quantum efficiency. The recombination of bound states formed by electron/hole collisions is mediated not only by energetics, but also by spin and delocalization to allow free charge reformation from these bound states, thereby inhibiting recombination. This is illustrated in more detail in Figure 64, which shows that a beam including spin properties 6406 can be applied to a photonic device 6408 ( or other device/system). The results show that the photonic device 6408 (or other device/system) will have improved recombination rate suppression due to spin and delocalization properties.

现在还参照图65,可以使用携带轨道角动量的扭转光子来实现电子与空穴之间的复合的类似抑制。光束6502具有通过例如无源全息图、SLM(空间光调制器)、相位板等施加到其上的轨道角动量。然后,所生成的扭转光束6506可以产生新的量子态,当施加到提供进一步改进的复合速率的光子器件6508(或其他器件/系统)时,该新的量子态减慢复合速率。Referring now also to FIG. 65, similar suppression of recombination between electrons and holes can be achieved using twisted photons carrying orbital angular momentum. The beam 6502 has orbital angular momentum imparted to it by, for example, a passive hologram, SLM (spatial light modulator), phase plate, or the like. The resulting twisted beam 6506 can then generate new quantum states that, when applied to the photonic device 6508 (or other device/system) providing a further improved recombination rate, slow the recombination rate.

一种用于人工光转换系统的新设计使用诸如相位掩模全息图的电路,以将轨道角动量(OAM)施加到光信号,并通过避免在提高荧光效率时形成三重态来实现电子空穴复合的抑制。通过在光子的路径内设置OAM电路,可以将由光子生成的轨道角动量转移到电子和产生的新量子态,在该新量子态中支持对电子-空穴复合的抑制。这种抑制是由于使用器件的电子(自旋和轨道)的总角动量的变化,该器件使用多种方法(被动地使用全息图或主动地使用其他方法)来扭转具有规定拓扑电荷的质子。施加的轨道角动量的量导致可控制复合速率的特定拓扑电荷。因此,通过控制施加的OAM的量,可以控制复合的抑制速率。A new design for an artificial light-conversion system uses circuits such as phase-mask holograms to apply orbital angular momentum (OAM) to optical signals and enables electron holes by avoiding triplet formation while improving fluorescence efficiency Compound inhibition. By placing the OAM circuit within the path of the photon, the orbital angular momentum generated by the photon can be transferred to the electron and the resulting new quantum state in which the suppression of electron-hole recombination is supported. This suppression is due to changes in the total angular momentum of electrons (spin and orbital) using a device that uses a variety of methods (either passively using holograms or actively using other methods) to twist protons with defined topological charges. The amount of applied orbital angular momentum results in a specific topological charge that can control the rate of recombination. Thus, by controlling the amount of OAM applied, the rate of inhibition of recombination can be controlled.

因此,现在参考图66,示出了用于改进光子电路中电子空穴复合的抑制的一种方式的功能框图。光束6602穿过OAM器件6604以产生OAM扭转的光束6606。OAM器件6604可以包括无源全息图、空间光模块(SLM)、空间板、幅度掩模、相位掩模或能够将轨道角动量应用到光束的任何其他器件。施加到光束的OAM扭转量可经由OAM控制电路6605来控制。OAM控制电路6605可以基于光子器件内的电子-空穴复合的期望水平来控制OAM扭转的水平。OAM扭转的光束6606被施加到某种类型的光子电路6608,该光子电路6608响应于OAM光束6606将电子激发到将分解成基态的更高态。光子电路可以包括光学LED、有机光伏电池、生物光收集复合物、有机半导体、PN结、半导体、固态器件、太阳能电池或任何其他受光影响的器件。诸如半导体、量子电路和生物材料等的附加部件也可以从OAM光束将OAM施加到它们的电子。Thus, referring now to FIG. 66, a functional block diagram of one approach for improving the suppression of electron-hole recombination in photonic circuits is shown. Light beam 6602 passes through OAM device 6604 to produce OAM twisted light beam 6606. OAM device 6604 may include passive holograms, spatial light modules (SLMs), spatial plates, amplitude masks, phase masks, or any other device capable of applying orbital angular momentum to a beam of light. The amount of OAM twist applied to the beam can be controlled via the OAM control circuit 6605. The OAM control circuit 6605 can control the level of OAM twist based on the desired level of electron-hole recombination within the photonic device. The OAM twisted beam 6606 is applied to some type of photonic circuit 6608 that, in response to the OAM beam 6606, excites electrons to higher states that will resolve to the ground state. Photonic circuits may include optical LEDs, organic photovoltaic cells, biological light harvesting complexes, organic semiconductors, PN junctions, semiconductors, solid state devices, solar cells, or any other device affected by light. Additional components such as semiconductors, quantum circuits and biological materials can also apply OAM to their electrons from the OAM beam.

现在参考图67,其示出了电子在有机光伏电池或其他半导体、量子电路或生物材料内的各种量子态之间从不同态移动的方式。激发态物种之间的转换示出于6702处,而复合信道示出于6704处。状态S1 6706和状态T1 6708分别是最低的单重态激子6706和三重态激子6708。CT是电荷转移状态。在6712处,光激发从基态S0 6710到单峰激发S1 6706。单重态激子S1 6706在异质结处电离,导致形成1CT态,1CT态在6714处以高效率分离成自由电荷(Free Charge,FC)6702、6704。,电子和空穴的生物分子复合导致以如自旋统计所规定的1:3的比率在6716处形成1CT态和在6718处形成3CT态。1CT可以缓慢地复合到基态,如在6720处所示。3CT态复合到基态S0 6710是自旋禁止的,但是在6722处的T1态6708的弛豫是能量有利的。一旦形成的三重态激子3CT可以经由6724处的有效三重电荷湮没沟道返回基态。在有利的条件下,CT态在6718处重新组织为自由电荷所需的时间小于在6722处弛豫为T1所需的时间。因此,CT态被循环回自由电荷,导致复合的抑制。Reference is now made to Figure 67, which illustrates the manner in which electrons move from different states between various quantum states within an organic photovoltaic cell or other semiconductor, quantum circuit, or biological material. Transitions between excited state species are shown at 6702, while the recombination channel is shown at 6704. State S 1 6706 and state T 1 6708 are the lowest singlet excitons 6706 and triplet excitons 6708 , respectively. CT is the charge transfer state. At 6712, the photoexcitation goes from the ground state S 0 6710 to the singlet excitation S 1 6706. The singlet exciton S 1 6706 ionizes at the heterojunction, resulting in the formation of a 1 CT state, which at 6714 separates into free charges (FC) 6702, 6704 with high efficiency. , biomolecular recombination of electrons and holes results in the formation of a 1 CT state at 6716 and a 3 CT state at 6718 in a 1:3 ratio as dictated by spin statistics. 1 CT can slowly recombine to the ground state as shown at 6720. The recombination of the 3 CT state to the ground state S 0 6710 is spin forbidden, but the relaxation of the T 1 state 6708 at 6722 is energetically favorable. The triplet excitons 3 CT once formed can return to the ground state via the effective triplet charge annihilation channel at 6724. Under favorable conditions, the time required for the CT state to reorganize to a free charge at 6718 is less than the time required to relax to T1 at 6722. Therefore, the CT state is recycled back to free charge, leading to the inhibition of recombination.

为了探测这些束缚态的动力学,我们可以首先考虑在D-A界面处光生单重态激子S1 6706的初始离解。该过程的第一步是通过D-A界面的电荷转移,这可能导致远程电荷分离或形成束缚界面电荷转移(Charge Transfer,CT)态。这种束缚电荷对然后经由双金属化合物复合(Geminate Recombination,GR)衰变到基态S0 6710。重要的是要注意,在考虑CT态时必须考虑自旋,因为它们可以具有单重态(1CT)或三重态(3CT)自旋特征,这些自旋特征在能量上几乎退化。由于自旋守恒,光产生的单重态激子的分离导致仅形成1CT态6704。相反,自旋不相关电荷的复合导致基于自旋统计以1∶3的比率形成1CT态和3CT态。1CT态可以通过对于该分子间D-A过程是缓慢的发光或非放射性衰变而解离或复合到基态。对于3CT态,衰变到基态是自旋禁止的,因此辐射过程和非辐射过程都非常缓慢。然而,如果最低的分子三重态激子(T1)的能量低于3CT能量,那么3CT可以松弛到T1To probe the dynamics of these bound states, we can first consider the initial dissociation of the photogenerated singlet excitons S 1 6706 at the DA interface. The first step in this process is charge transfer through the DA interface, which may lead to long-range charge separation or the formation of bound interface charge transfer (CT) states. This bound charge pair then decays to the ground state S 0 6710 via Geminate Recombination (GR). It is important to note that spins must be taken into account when considering CT states, as they can have singlet ( 1CT ) or triplet ( 3CT ) spin features that are nearly energetically degenerate. Separation of light-generated singlet excitons results in the formation of only 1 CT state 6704 due to spin conservation. In contrast, the recombination of spin-independent charges leads to the formation of 1 CT and 3 CT states at a ratio of 1:3 based on spin statistics. The 1 CT state can dissociate or recombine to the ground state by luminescent or non-radioactive decay that is slow for this intermolecular DA process. For the 3 CT state, the decay to the ground state is spin forbidden, so both the radiative and nonradiative processes are very slow. However, if the energy of the lowest molecular triplet exciton (T 1 ) is lower than the 3 CT energy, then the 3 CT can relax to T 1 .

在非发光三重态激子的形成是主要损耗机制的OLED中,自旋统计的重要性中的复合模型是很好建立的。克服这个问题的努力集中在使用金属有机络合物来诱导自旋轨道耦合上,并且最近集中在使用低交换能量材料上,该材料可以促进内部系统从T1交叉到S1The recombination model in the importance of spin statistics is well established in OLEDs where the formation of non-luminescent triplet excitons is the dominant loss mechanism. Efforts to overcome this problem have focused on the use of metal-organic complexes to induce spin-orbit coupling and, more recently, on the use of low exchange energy materials that can facilitate the crossover of internal systems from T1 to S1.

过去已经使用使用瞬态吸收(Transient Absorption,TA)光谱的薄膜。在该技术中,泵浦脉冲在膜内产生光激发。稍后,使用宽带探测脉冲来询问系统。尽管TA已被广泛用于研究OPV共混物的光物理,但先前的测量已经分别受到三个因素的限制。第一限制具有不充分的时间范围,通常在泵与探头之间的最大2ns延迟。第二限制具有有限的光谱范围和缺乏宽带探针,这阻碍了对激发之间的动态相互作用的观察。最后,灵敏度不足,这要求使用高通量泵浦脉冲来产生大信号。Thin films using Transient Absorption (TA) spectroscopy have been used in the past. In this technique, a pump pulse produces photoexcitation within the membrane. Later, broadband probe pulses are used to interrogate the system. Although TA has been widely used to study the photophysics of OPV blends, previous measurements have been individually limited by three factors. The first limitation has insufficient time range, typically a maximum 2ns delay between pump and probe. The second limitation has a limited spectral range and lack of broadband probes, which hinder the observation of dynamic interactions between excitations. Finally, the sensitivity is insufficient, which requires the use of high-throughput pump pulses to generate large signals.

这些问题最近使用宽时间(高达1ms)和光谱窗口(达1500nm)和高灵敏度(优于5×10-6)来解决。该时间窗口通过使用电延迟的泵浦脉冲来创建,并且允许研究长寿命电荷和三重态激子。在共轭聚合物中,围绕电荷的局部几何弛豫(偏振子形成)引起能级的重排,使态进入半导体间隙并产生强光学跃迁700nm–1500nm。还发现单重态激子和三重态激子的吸收带位于近IR中,从而形成跟踪激发态物种演化所必需的宽带光谱窗口。实验的高灵敏度是必要的,因为当激发密度类似于太阳照射条件(1016-1017激发/cm3)时,它允许探测系统的动力学。在较高的激发密度下,双分子激子-激子和激子-电荷湮灭过程可以占主导地位,产生伪影,使得这种测量不可靠地指示器件操作。人们可以进一步将这些测量与允许解决重叠激发态特征的光谱特征并跟踪它们的动力学的先进的数值技术相结合。These problems have recently been addressed using wide time (up to 1 ms) and spectral windows (up to 1500 nm) and high sensitivity (better than 5×10 −6 ). This time window is created by using an electrically delayed pump pulse and allows the study of long-lived charges and triplet excitons. In conjugated polymers, local geometric relaxation (polaron formation) around the charge induces a rearrangement of energy levels, bringing states into the semiconductor gap and producing strong optical transitions 700nm–1500nm. The absorption bands of singlet and triplet excitons are also found to lie in the near IR, thus forming the broadband spectral window necessary to track the evolution of excited state species. The high sensitivity of the experiment is necessary because it allows probing the dynamics of the system when the excitation density is similar to solar illumination conditions (10 16 -10 17 excitations/cm 3 ). At higher excitation densities, bimolecular exciton-exciton and exciton-charge annihilation processes can dominate, creating artifacts that make this measurement an unreliable indicator of device operation. One can further combine these measurements with advanced numerical techniques that allow resolving spectral signatures of overlapping excited state signatures and tracking their dynamics.

激发态光谱的重叠使得难以分析它们的动力学。为了克服这个问题,可以使用遗传算法(Genetic Algorithm,GA),其使我们能够从数据集中提取单个光谱和动力学。在这种方法中,可以采用两个或多个光谱和相关的动力学的线性组合,并“演化”直到它们最适合实验数据。The overlapping of excited state spectra makes it difficult to analyze their dynamics. To overcome this problem, Genetic Algorithm (GA) can be used, which allows us to extract individual spectra and dynamics from the dataset. In this approach, linear combinations of two or more spectra and associated dynamics can be taken and "evolved" until they best fit the experimental data.

提取的动力学可以证明三重态可以随着电荷衰减而增长。可以认为,由于存在高电荷密度,三重态的主要衰变信道是三重态电荷湮灭,并且利用下面给出的朗之万方程对系统的时间演化进行建模:The extracted kinetics can demonstrate that the triplet state can grow as the charge decays. It can be considered that the dominant decay channel for triplet states is triplet charge annihilation due to the presence of high charge density, and the time evolution of the system is modeled using the Langevin equation given below:

Figure BDA0003553842120000481
Figure BDA0003553842120000481

其中:in:

p:电荷浓度;p: charge concentration;

NT:三重态浓度; NT : triplet concentration;

a:是形成三重态的衰变电荷的分数;a: is the fraction of decay charges that form triplet states;

β:是三重态电荷湮灭的速率常数。β: is the rate constant for triplet charge annihilation.

我们现在转向从3CT到T1的弛豫所花费的时间的问题,在图67中示出的具有相关联的时间刻度τ4的过程6722是否快,如果不快,是否存在用于3CT衰减的竞争过程。如前所述,CT能量高于T1,使得从3CT到T1的弛豫在能量上是有利的。然而,对于更有效的1∶3共混物,在室温下不可能形成三重态。但是在低温(<240K)下,在该共混物中可以观察到双分子三重态的形成。这表明存在与到T1的弛豫竞争的热活化过程。我们认为该过程是3CT返回到自由电荷的解离。因此,在高温(>240K)下,3CT的解离回到自由电荷,在图67中所示的过程6718具有相关联的时间刻度τ3,胜过了3CT到T1的弛豫,即τ4大于τ3。因此,抑制用于复合的两个信道中的一个信道(另一个信号通过1CT复合),从而允许高EQE。在较低的温度下,该离解过程被抑制,使得τ43,导致三重态激子的积累。We now turn to the question of the time it takes to relax from 3 CT to T 1 , is the process 6722 shown in Figure 67 with an associated timescale τ 4 fast, and if not, is there a decay for 3 CT competitive process. As before, the CT energy is higher than T1, making the relaxation from 3CT to T1 energetically favorable. However, for the more efficient 1:3 blend, triplet formation at room temperature is not possible. But at low temperature (<240K), the formation of bimolecular triplet states can be observed in this blend. This suggests that there is a thermal activation process that competes with relaxation to T1. We consider the process to be the dissociation of 3 CT back to free charge. Thus, at high temperature (>240K), the dissociation of 3 CT back to free charge, process 6718 shown in Figure 67 with an associated timescale τ 3 , outperforms the relaxation of 3 CT to T 1 , That is, τ 4 is greater than τ 3 . Therefore, one of the two channels used for compounding is suppressed (the other signal is compounded by 1 CT), allowing high EQE. At lower temperatures, this dissociation process is suppressed such that τ 43 , resulting in the accumulation of triplet excitons.

现在参考图68,示出了一个流程图,该流程图描述了利用对光束施加轨道角动量来抑制光子器件内的电子空穴转换的一种方式。首先在步骤6810处,选择用于施加到光束的期望的OAM水平。所选择的OAM水平将提供对电子-空穴复合速率的期望抑制。在步骤6812处,在光束与光子器件之间的路径中放置OAM生成器件。在步骤6814处允许光束穿过OAM生成器件,并且将OAM扭转施加到光束。然后,在步骤6816处,经扭转的光束与光子器件相互作用以生成能量,使得光子器件内的电子-空穴复合受到OAM扭转光束的影响。Referring now to Figure 68, there is shown a flow chart describing one way of suppressing electron-hole conversion within a photonic device by applying orbital angular momentum to the beam. First at step 6810, a desired OAM level for application to the beam is selected. The selected OAM level will provide the desired inhibition of the electron-hole recombination rate. At step 6812, an OAM generating device is placed in the path between the light beam and the photonic device. At step 6814 the beam is allowed to pass through the OAM generating device and an OAM twist is applied to the beam. Then, at step 6816, the twisted beam interacts with the photonic device to generate energy such that electron-hole recombination within the photonic device is affected by the OAM twisted beam.

OAM光束与其他物质的相互作用Interaction of OAM beams with other matter

如上所述,注入了OAM的光束还可以与其他类型的物质例如半导体、量子电路和生物材料相互作用。光可以携带自旋角动量和轨道角动量。描述OAM在包括通信、光谱、雷达和量子信息学在内的几个领域中的应用的多个专利,例如于2015年10月13日递交(代理人案号为NXGN60-32777)的标题为“轨道角动量在光纤、FSO和RF上的应用”的14/882085号美国专利;于2018年12月20日递交(代理人案号为NXGN60-34393)的标题为“用于多参数光谱的系统和方法”的16/226799号美国专利申请;于2019年7月11日递交(代理人案号为NXGN60-34555)的标题为“通用量子计算机、通信、QKD安全和使用具有DLP的OAM量子迪特的量子网络”的16/509301号美国专利申请,它们的全部内容通过引用并入本文。然而,这些技术可用于将OAM的应用扩展到固态系统,包括提高太阳能电池、显示单元和其他应用的效率的潜在技术。As mentioned above, OAM-infused light beams can also interact with other types of matter such as semiconductors, quantum circuits, and biological materials. Light can carry spin angular momentum and orbital angular momentum. Multiple patents describing applications of OAM in several fields including communications, spectroscopy, radar, and quantum informatics, such as filed on October 13, 2015 (Attorney Case No. NXGN60-32777) entitled " U.S. Patent No. 14/882085 for Applications of Orbital Angular Momentum to Optical Fibers, FSOs, and RF; and methods"; filed July 11, 2019 (Attorney docket NXGN60-34555) entitled "Universal Quantum Computers, Communications, QKD Security and Using OAM Quantum Die with DLP" "Special Quantum Networks", US Patent Application No. 16/509,301, the entire contents of which are incorporated herein by reference. However, these techniques can be used to extend the application of OAM to solid-state systems, including potential techniques to improve the efficiency of solar cells, display units, and other applications.

如上所述,量子技术使用单个原子、分子和光子来构建新种类的器件。量子物体不限于传统计算的二进制规则,而是可以同时处于两个或更多个逻辑状态。因此,有可能构建更高基数的量子系统。当一组物体一次共同占据两个或多个状态时,它们被称为是纠缠的。光子与它们的环境交互作用非常弱,因此光子的纠缠态对于从成像和精确测量到通信和计算的应用具有相当大的前景。As mentioned above, quantum technologies use individual atoms, molecules and photons to build new kinds of devices. Quantum objects are not restricted to the binary rules of traditional computing, but can be in two or more logical states at the same time. Therefore, it is possible to construct higher-radix quantum systems. When a group of objects collectively occupy two or more states at a time, they are said to be entangled. Photons interact very weakly with their environment, so entangled states of photons hold considerable promise for applications ranging from imaging and precise measurements to communications and computing.

量子纠缠是这样一种物理现象,即当产生成对或成组的粒子、相互作用或共享空间接近时发生,使得即使当粒子被隔开大的距离时,也不能独立于其他粒子的状态来描述每个粒子的量子态。Quantum entanglement is the physical phenomenon that occurs when pairs or groups of particles are created, interact, or share spatial proximity such that, even when the particles are separated by large distances, they cannot be determined independently of the states of other particles. Describe the quantum state of each particle.

纠缠系统被定义为其量子态不能被考虑为其局部成分的态的乘积的系统;也就是说,它们不是单独的粒子,而是不可分离的整体。在纠缠中,无法在不考虑其他成分的情况下完整地描述一种成分。组合系统的状态总是可以表示为局部成分的状态的乘积的和或叠加;如果该和必然具有多于一个项,则该组合系统是纠缠的。量子系统可以通过各种类型的相互作用而变为是纠缠的。对于出于实验目的可以实现纠缠的一些方式。当纠缠的粒子通过与环境的相互作用(例如,当进行测量时)而解开时,纠缠被破坏。Entangled systems are defined as systems whose quantum states cannot be considered as the product of the states of their local components; that is, they are not individual particles, but inseparable wholes. In entanglement, one component cannot be fully described without considering the other components. The state of a combined system can always be represented as a sum or superposition of the products of the states of the local components; if the sum necessarily has more than one term, the combined system is entangled. Quantum systems can become entangled through various types of interactions. For some of the ways in which entanglement can be achieved for experimental purposes. Entanglement is broken when entangled particles are unraveled through interaction with the environment (eg, when measurements are taken).

作为纠缠的示例,亚原子粒子衰变成一对纠缠的其他粒子。衰变事件遵循各种守恒定律,结果,一个子粒子的测量结果必须与另一个子粒子的测量结果高度相关(使得总动量、角动量、能量等在该过程之前和之后保持大致相同)。例如,自旋零粒子可以衰变成一对自旋-1/2粒子。由于在这种衰变之前和之后的总自旋必须为零(角动量守恒),每当测量第一粒子在某轴上自旋向上时,当测量同一轴上的另一粒子总是被发现为自旋向下。(这称为自旋反相关情况;如果用于测量每个自旋的先验概率相等,则该对被称为处于单重态。)As an example of entanglement, a subatomic particle decays into an entangled pair of other particles. Decay events obey various conservation laws, and as a result, measurements from one daughter particle must be highly correlated with measurements from another daughter particle (so that total momentum, angular momentum, energy, etc. remain roughly the same before and after the process). For example, a spin-zero particle can decay into a pair of spin-1/2 particles. Since the total spin before and after this decay must be zero (conservation of angular momentum), whenever a first particle is measured to spin up on some axis, when another particle on the same axis is measured, it is always found to be Spin down. (This is called the spin anticorrelation case; if the prior probabilities used to measure each spin are equal, the pair is said to be in a singlet state.)

在每个量子信息处理方案中,信息比特必须存储在一组物理物体的状态中,并且必须有影响这些量子比特之间的相互作用的物理手段(如上文所述的用于较高基系统的量子比特或量子迪特)。但是,当使用单独的光子来存储和处理信息时,问题表现为光子相互作用极弱或根本不相互作用,因此它们似乎不太可能直接用于量子信息处理。In every quantum information processing scheme, information bits must be stored in the states of a set of physical objects, and there must be physical means to influence the interactions between these qubits (as described above for higher basis systems). qubit or quantum ditter). However, when individual photons are used to store and process information, the problem manifests as photons interacting very weakly or not at all, so it seems unlikely that they will be used directly for quantum information processing.

已经构造了用于光子之间的有效量子相互作用的方案,该方案不需要光子物理地相互作用。当一组光子处于纠缠态时,对这些光子的一个或多个态的测量导致剩余光子的态坍缩。这种态坍缩可以被视为剩余光子之间的有效相互作用。这种坍缩可用于让光子相互作用和纠缠。相互作用的性质取决于对每个观察到的光子的测量结果。测量的某些预定结果的出现表明剩余光子的有效相互作用。A scheme has been constructed for efficient quantum interactions between photons that does not require the photons to physically interact. When a set of photons is in an entangled state, measurements of one or more states of these photons cause the states of the remaining photons to collapse. This state collapse can be viewed as an efficient interaction between the remaining photons. This collapse can be used to allow photons to interact and entangle. The nature of the interaction depends on the measurement of each observed photon. The appearance of some predetermined result of the measurement indicates an efficient interaction of the remaining photons.

这种方法可用于在被称为线性光学量子计算的方案中实现量子逻辑门。已经在线性光量子计算方面取得了实质性进展,例如设计和演示了隐形传态门和受控NOT(C-NOT)逻辑门,以及制备了两个光子的纠缠态。但是仍然存在严重的挑战。This approach can be used to implement quantum logic gates in a scheme known as linear optical quantum computing. Substantial progress has been made in linear optical quantum computing, such as the design and demonstration of teleportation gates and controlled NOT (C-NOT) logic gates, and the preparation of entangled states of two photons. But serious challenges remain.

当使用光子作为量子比特来编码信息时,每个光子必须创建为处于两个不同的量子态中的一个量子态或这两个态的叠加。如果光子以不受控制的方式占据更多的态,则用于实现光子之间的相互作用的方案将失败。光子的量子态以它们的光谱、脉冲形状、到达时间、横波矢和位置为特征。必须精确地控制所有这些变量以确保仅存在两个不同的量子态并执行。When using photons as qubits to encode information, each photon must be created to be in one of two different quantum states or a superposition of these two states. If photons occupy more states in an uncontrolled manner, the scheme used to achieve interactions between photons will fail. The quantum states of photons are characterized by their spectrum, pulse shape, arrival time, shear wave vector, and position. All these variables must be precisely controlled to ensure that only two distinct quantum states exist and perform.

由于光子不能很好地相互作用,因此描述了一种技术,该技术提供了一种使光子与各种类型的量子物质相互作用并控制半导体材料中的量子跃迁以构建用于量子计算的量子门的方法。为了将能力扩展到超过2状态量子比特,可以使用注入了OAM的扭转光束,以便使用上述技术创建可以表示量子迪特(而不是量子比特)的更高基数的系统。Since photons do not interact well, a technique is described that provides a way to interact photons with various types of quantum matter and control quantum transitions in semiconductor materials to build quantum gates for quantum computing Methods. To extend the capability beyond 2-state qubits, OAM-infused twisted beams can be used to create higher-radix systems that can represent quantum ditter (rather than qubits) using the techniques described above.

首先,用于材料的量子态之间的跃迁(即具有高于带隙的光频率的光学跃迁)的理论框架,使得产生自由载流子而不是激子被构造成由使用相关联的控制电路的所施加的光束内的OAM水平控制。在光与光激发电子之间存在角动量的传递,从而产生净电流。也可以通过这些光电流来感应磁场。这在图69和图70中更具体地示出。图69示出了该过程,在该过程中,在6902处执行光束生成以向光束生成过程6904提供光束6903。OAM生成过程6904以上述方式对平面波光施加轨道角动量,以便提供经OAM处理的光束6905。对物理物质施加经OAM处理的光束6905以在6906处引起物质内的电子的OAM激发。在透射光组的光子内具有OAM的经OAM处理的光束6905在产生电流和磁场的过程6906处将OAM传送到物质的电子。First, a theoretical framework for transitions between quantum states of a material (i.e. optical transitions with optical frequencies above the band gap) such that generation of free carriers rather than excitons is constructed by using an associated control circuit Control of the OAM level within the applied beam. There is a transfer of angular momentum between the light and the photoexcited electrons, resulting in a net current. Magnetic fields can also be induced by these photocurrents. This is shown in more detail in FIGS. 69 and 70 . Figure 69 shows the process in which beam generation is performed at 6902 to provide beam 6903 to beam generation process 6904. The OAM generation process 6904 applies orbital angular momentum to the plane wave light in the manner described above to provide an OAM processed beam 6905. An OAM-treated beam 6905 is applied to the physical substance to cause at 6906 OAM excitation of electrons within the substance. The OAM-treated beam 6905 with OAM within the photons of the transmitted light group delivers the OAM to the electrons of the matter at a process 6906 that generates an electric current and a magnetic field.

用于实行该过程的结构在图70中更具体地示出。光束生成器1002生成光束6903。光束6903包括如上所述的平面波光束,并被施加到OAM生成器7004,使得轨道角动量可以被施加到平面波光束,该平面波光束将OAM值赋予光束6903的光子。OAM生成的光束6905被提供给某些类型的光束发射机7006,该光束发射机7006向特定物理器件/系统7008或在特定物理器件/系统7008处发射光束6905。物理器件/系统7008可包括各种类型的半导体材料、量子计算机部件、生物材料和固态材料。The structure for carrying out this process is shown in more detail in FIG. 70 . Beam generator 1002 generates beam 6903. Beam 6903 comprises a plane wave beam as described above and is applied to OAM generator 7004 such that orbital angular momentum can be applied to the plane wave beam which imparts OAM values to the photons of beam 6903. The beam 6905 generated by the OAM is provided to some type of beam transmitter 7006 which emits the beam 6905 to or at a particular physical device/system 7008. Physical devices/systems 7008 may include various types of semiconductor materials, quantum computer components, biological materials, and solid state materials.

现在参考图71,半导体7102是在零温度下具有最高占据(价)能带7104和最低空(导)能带7106的固体,空(导)能带7106由带隙Eg 7108分隔开。在这方面,它们比金属更接近绝缘体。然而,在典型的半导体

Figure BDA0003553842120000501
中,通过光激发7110使得价带7104与导带7106之间的跃迁成为可能。在晶体半导体中,价带7104和导带7106中的电子占据布洛赫态。这种简化的两带模型可以具有半导体的主要特征,并且是真实体系统的良好模型。框架描述了由扭转光诱导的体半导体的两带模型中的带间跃迁,并且在下文中进一步描述。必须评估对导带状态(具有光子能量>带隙能量的情况)的相干光激发。在这种情况下,激子的产生可以忽略,并且可以考虑通过光激发从价带7104转移到导带7106的自由载流子。该过程通过首先构造完整的半经典哈密顿算符来执行,在该半经典哈密顿算符中,量子力学算符用于电子,而经典变量用于由两个项(裸电子能和相互作用哈密顿量)组成的光场。Referring now to FIG. 71 , a semiconductor 7102 is a solid at zero temperature having a highest occupied (valence) energy band 7104 and a lowest empty (conduction) energy band 7106 separated by a band gap E g 7108 . In this regard, they are closer to insulators than metals. However, in a typical semiconductor
Figure BDA0003553842120000501
, the transition between the valence band 7104 and the conduction band 7106 is made possible by photoexcitation 7110. In crystalline semiconductors, electrons in the valence band 7104 and conduction band 7106 occupy Bloch states. This simplified two-band model can have the main characteristics of semiconductors and is a good model for real bulk systems. The framework describes the interband transitions in the two-band model of bulk semiconductors induced by twisted light and is described further below. Coherent optical excitation of conduction band states (those with photon energy > bandgap energy) must be evaluated. In this case, the generation of excitons is negligible and free carriers transferred from the valence band 7104 to the conduction band 7106 by photoexcitation can be considered. The process is performed by first constructing a complete semi-classical Hamiltonian in which quantum mechanical operators are used for electrons and classical variables are used for two terms (bare electron energy and interaction The light field composed of the Hamiltonian).

为了理解扭转光束对半导体的基态的影响,我们观察相互作用哈密顿量的正部分。该相互作用哈密顿量对N电子半导体的全基态的作用提供了本征矢量,该本征矢量的轨道角动量的期望值等于

Figure BDA0003553842120000511
To understand the effect of twisted beams on the ground state of a semiconductor, we look at the positive part of the interacting Hamiltonian. The action of this interacting Hamiltonian on the full ground state of the N-electron semiconductor provides an eigenvector whose expected value of the orbital angular momentum is equal to
Figure BDA0003553842120000511

现在参考图72,轨道角动量从光子7202到光激发电子7204的净转移引起电流7206和相关联的磁场7208。它们两者都可以被检测,但当然是磁场7208被检测。这些可检测的光激发现象也可导致光电应用。Referring now to FIG. 72 , the net transfer of orbital angular momentum from photons 7202 to photo-excited electrons 7204 induces a current 7206 and associated magnetic field 7208 . Both of them can be detected, but of course the magnetic field 7208 is detected. These detectable photoexcitation phenomena can also lead to optoelectronic applications.

现在参考图73,示出了用于确定由一组电子提供的总电流/磁场的过程的流程图。通过在步骤7302处计算由场激发的电子总数,然后在步骤7304处确定单电子的电流/磁场,可以获得由所有电子产生的总电流/磁场的估计。最后,在步骤7306处将单电子电流/磁场乘以光激发电子的数量。从不考虑电子-电子库仑相互作用的单个粒子框架开始。这种假设是可接受的,因为库仑相互作用引入的主要校正将是单粒子能量的重整化。由于低激发(光生电子和空穴的密度小)的情况,这种平均场效应将是小的,并且它不影响框架的模型。除了平均场近似外,库仑相互作用引入复杂的和可能有趣的散射效应。Referring now to FIG. 73, a flowchart of a process for determining the total current/magnetic field provided by a set of electrons is shown. By calculating the total number of electrons excited by the field at step 7302 and then determining the current/magnetic field for a single electron at step 7304, an estimate of the total current/magnetic field produced by all electrons can be obtained. Finally, at step 7306 the single electron current/magnetic field is multiplied by the number of photoexcited electrons. Start with a single particle framework that does not account for electron-electron Coulomb interactions. This assumption is acceptable because the main correction introduced by the Coulomb interaction will be the renormalization of the single-particle energy. Due to the low excitation (small density of photogenerated electrons and holes), this mean field effect will be small and it does not affect the model of the framework. In addition to the mean-field approximation, Coulomb interactions introduce complex and potentially interesting scattering effects.

激发过程产生具有明确定义的角动量的导带态的叠加。该叠加态与作为磁场源的电流密度相关。注意,单粒子理论具有在多电子的光激发中不考虑泡利排斥的缺点,并且它省去了电子-电子相互作用效应。因此,需要对固体扭转光的带间激发进行更完整的理论处理。The excitation process produces a superposition of conduction band states with well-defined angular momentum. This superposition state is related to the current density as the source of the magnetic field. Note that the single-particle theory has the disadvantage of not taking into account the Pauli repulsion in the photoexcitation of many electrons, and it dispenses with electron-electron interaction effects. Therefore, a more complete theoretical treatment of the interband excitation of solid twisted light is required.

完整的框架应该包括来自光激发电子的总体和相干的海森伯格运动方程的扭转光OAM广义的半导体布洛赫方程。该框架对于脉冲或连续波扭转光束是有效的,并且考虑到光束的非均匀分布以及从光到垂直于光束传播方向的平面中的电子的动量传递。如果激子现象不是针对的,库仑相互作用在带间光学跃迁的基本物理中(除了激子的情况)不起主要作用,因此,理论的自由载流子形式的框架是有限的。现在参考图74,作为第一步,可以首先在步骤7402处导出和求解扭转光的平均场,然后在步骤7404处导出与碰撞项相同的方程。扭转光的平均场是关键的,其可以用碰撞项来修改。碰撞项描述由光激发电子的碰撞(电子-电子、电子-声子和电子-杂质散射)发生的散射过程。可以将松弛时间近似中的碰撞项添加到框架中以描述那些散射过程,并且所得运动方程的数值解将允许我们在步骤7406探索碰撞对效应的影响。此外,注意,虽然讨论集中于体系统,但是框架可以容易地应用于以正入射激励的二维系统。The complete framework should include the generalized semiconductor Bloch equations for twisted light OAM from the bulk and coherent Heisenberg equations of motion of photoexcited electrons. This framework is valid for pulsed or continuous wave twisted beams and takes into account the non-uniform distribution of the beam and the transfer of momentum from the light to electrons in a plane perpendicular to the beam propagation direction. If exciton phenomena are not targeted, Coulomb interactions do not play a major role in the fundamental physics of interband optical transitions (except in the case of excitons), and thus, the framework for the theoretical free-carrier form is limited. Referring now to FIG. 74, as a first step, the mean field of the twisted light can be derived and solved first at step 7402, and then at step 7404 the same equation as the collision term can be derived. The mean field of the twisted light is critical, which can be modified with the collision term. The collision term describes the scattering process that occurs by collisions of photoexcited electrons (electron-electron, electron-phonon, and electron-impurity scattering). The collision term in the relaxation time approximation can be added to the framework to describe those scattering processes, and the resulting numerical solution of the equations of motion will allow us to explore the impact of collision on the effect at step 7406. Furthermore, note that although the discussion focuses on bulk systems, the framework can be easily applied to two-dimensional systems excited at normal incidence.

通常,通过假定系统是立方体,使用笛卡尔坐标对电子进行量化,并在推导的正确时刻采用大系统尺寸的极限来理论上处理体系统中的光激发。由于对称性的原因,这种方法允许在用平面波光激发的情况下进行简单的计算。然而,在由施加有OAM的扭转光激发的情况下,它导致复杂的公式化。扭转光束具有固有的圆柱形性质,并且它是我们的公式中使用的坐标系。Typically, photoexcitation in bulk systems is handled theoretically by assuming that the system is cubic, using Cartesian coordinates to quantify the electrons, and applying the limits of the large system size at the right moment of derivation. Due to symmetry, this approach allows for simple calculations with excitation with plane-wave light. However, in the case of excitation by twisted light applied with OAM, it leads to a complicated formulation. The twisted beam has inherent cylindrical properties, and it is the coordinate system used in our formulation.

在体系统的框架中,这种简单但关键的思想被用于如图75中所示的计算。在步骤7502处,将光束与之相互作用的固体想象为圆柱体。在步骤7504处,在圆柱坐标中量化电子态。最后,在步骤7506处取得大系统的极限。体性质与固体的几何形状无关。保持所需的布洛赫波函数的微观结构以表征价带态和导带态,布洛赫态的周期部分由它们在零晶体动量下的值近似,这是一种常见的称为有效质量近似的实践。使用圆柱坐标而不是笛卡尔坐标允许根据电子角动量的值解耦海森伯(Heisenberg)运动方程,这大大降低了问题的复杂性。使用这些广义布洛赫态可以预测电子的动力学,寻找具有复杂分布的电流的出现,并证明OAM从光束向电子的转移。In the framework of the bulk system, this simple but critical idea is used for the calculations shown in Figure 75. At step 7502, the solid body with which the beam interacts is imagined as a cylinder. At step 7504, the electronic states are quantified in cylindrical coordinates. Finally, at step 7506 the limits of the large system are taken. Bulk properties are independent of the geometry of the solid. To maintain the desired microstructure of the Bloch wave function to characterize the valence and conduction band states, the periodic parts of the Bloch states are approximated by their value at zero crystal momentum, a common term called effective mass Approximate practice. Using cylindrical coordinates instead of Cartesian coordinates allows decoupling the Heisenberg equations of motion in terms of the value of electron angular momentum, which greatly reduces the complexity of the problem. Using these generalized Bloch states can predict the dynamics of electrons, look for the emergence of currents with complex distributions, and demonstrate the transfer of OAMs from beams to electrons.

在该框架中,可以考虑直接带隙半导体或绝缘体,并尝试形成由用扭转光束照射引起的带间跃迁。假设光的频率使得主要发生带间跃迁,使得激子产生不重要。在这种情况下,提出一种不包括载流子之间库仑相互作用的理论是令人满意的。因此,框架可以潜在地描述从辐照到皮秒的一小部分的电子动力学,以避免由于退相干而引起的强偏移。该框架适用于许多物理系统,从具有eV的一小部分的带隙的半导体到具有较大带隙的绝缘体,只要扭转场的频率在能带隙之上调谐即可。这需要在近红外至UV光谱中使用扭转场。该过程描述了一种系统和方法,用于描述扭转光和电子之间的轨道角动量转移,并描述作为光激发的结果的电子分布是什么样的。虽然在带间光学跃迁中可能涉及几个价带,但是为了简单起见,这里考虑两带模型。从这个2级框架可以很简单地将理论推广到涉及多于一个价带的情况。In this framework, direct bandgap semiconductors or insulators can be considered and an attempt is made to form interband transitions induced by irradiation with a twisted beam. It is assumed that the frequency of the light is such that interband transitions mainly occur, making exciton production unimportant. In this case, it is satisfactory to propose a theory that does not include Coulomb interactions between charge carriers. Therefore, the framework can potentially describe electron dynamics from irradiation to a fraction of picoseconds to avoid strong shifts due to decoherence. This framework is applicable to many physical systems, from semiconductors with band gaps of a fraction of the eV to insulators with larger band gaps, as long as the frequency of the torsional field is tuned above the band gap. This requires the use of torsional fields in the NIR to UV spectrum. This procedure describes a system and method for describing the transfer of orbital angular momentum between twisted light and electrons, and describes what the electron distribution looks like as a result of photoexcitation. Although several valence bands may be involved in interband optical transitions, for simplicity, the two-band model is considered here. From this 2-level framework it is straightforward to generalize the theory to cases involving more than one valence band.

所给出的方程的解是用于构造感兴趣的可观测值的平均值的构造块。在光学跃迁的标准理论中,其中光被假定为平面波并且进行偶极近似,一旦获得时间和动量相关的密度矩阵,就计算宏观光学偏振并且由此计算例如光学敏感性。在这些假设下,宏观偏振只是空间上均匀的、依赖于时间的函数。The solutions to the given equations are the building blocks used to construct the mean of the observables of interest. In the standard theory of optical transitions, where light is assumed to be a plane wave and a dipole approximation is made, once the time and momentum dependent density matrices are obtained, the macroscopic optical polarization and thus, for example, the optical sensitivity are calculated. Under these assumptions, macroscopic polarization is only a spatially uniform, time-dependent function.

相反,如果考虑场的不均匀性(例如,在传播方向上的有限束腰和振荡相关性),则电子变量获得感兴趣的空间相关性。由扭转光束对固体的激发还产生一种依赖于空间的载流子动力学,其需要局部变量进行描述。可以通过计算和使用空间不均匀电流密度来可视化光激发电子的运动模式。另一个有用的变量,即转移的角动量,是表征扭转的光物质相互作用的全局幅值。一方面,可以分别研究带间相干和带内相干对角动量和电流的贡献。这种分离在概念上是有用的,因为带间相干贡献具有围绕电流或角动量的零值的快速(可能是飞秒)振荡,类似于带间偏振所发生的振荡,而群体或带内相干贡献来自较慢(可能是皮秒)的过程,在该过程中发生动量从光到物质的净转移。然而,带间相干贡献是较慢的过程,其中我们将动量从光传递到物质。后者与光子拖曳效应有关,由于角动量的“缓慢”转移,光子拖曳效应现在被概括为在垂直于传播方向的平面中并入旋转拖曳。Conversely, if field inhomogeneities (eg, finite beam waists and oscillatory dependencies in the direction of propagation) are considered, the electronic variables obtain spatial dependencies of interest. Excitation of solids by twisted beams also produces a space-dependent carrier dynamics that requires local variables to describe. The motion patterns of photoexcited electrons can be visualized by calculating and using spatially inhomogeneous current densities. Another useful variable, the transferred angular momentum, is the global magnitude that characterizes the twisted light-matter interaction. On the one hand, the contributions of inter-band coherence and intra-band coherence to angular momentum and current can be investigated separately. This separation is conceptually useful because the interband coherence contribution has fast (possibly femtosecond) oscillations around the zero value of the current or angular momentum, similar to what happens with interband polarization, whereas population or intraband coherence The contribution comes from a slower (perhaps picosecond) process where a net transfer of momentum from light to matter occurs. However, interband coherence contributions are slower processes in which we transfer momentum from light to matter. The latter is related to the photon drag effect, which is now generalized to incorporate rotational drag in a plane perpendicular to the direction of propagation due to the "slow" transfer of angular momentum.

该数学模型以薛定谔

Figure BDA0003553842120000531
方程开始,该方程包括:The mathematical model is based on Schrödinger
Figure BDA0003553842120000531
The equation begins, which consists of:

Figure BDA0003553842120000532
Figure BDA0003553842120000532

其中

Figure BDA0003553842120000533
总能量的哈密顿量的算符,其定义如下:in
Figure BDA0003553842120000533
Operator for the Hamiltonian of total energy, defined as follows:

Figure BDA0003553842120000534
Figure BDA0003553842120000534

以及其中T包括动能并且V是势能。and where T includes kinetic energy and V is potential energy.

总能量的哈密顿量的经典表示为:The classic representation of the Hamiltonian of total energy is:

Figure BDA0003553842120000535
Figure BDA0003553842120000535

其中

Figure BDA0003553842120000536
是动能,V是势能。in
Figure BDA0003553842120000536
is kinetic energy and V is potential energy.

对于最简单的相互作用(氢):For the simplest interaction (hydrogen):

Figure BDA0003553842120000537
库伦
Figure BDA0003553842120000537
Cullen

Figure BDA0003553842120000538
Figure BDA0003553842120000538

Figure BDA0003553842120000539
Figure BDA0003553842120000539

Figure BDA00035538421200005310
Figure BDA00035538421200005310

使用减小的质量

Figure BDA00035538421200005311
两体问题可以作为具有减小的质量的一体问题来解决。因此:Use reduced mass
Figure BDA00035538421200005311
The two-body problem can be solved as a one-body problem with reduced mass. therefore:

Figure BDA00035538421200005312
Figure BDA00035538421200005312

拉普拉斯可以以球形坐标来提供如下:Laplace can be provided in spherical coordinates as follows:

Figure BDA00035538421200005313
Figure BDA00035538421200005313

假设:Suppose:

Ψnlm(r,θ,φ)=Rnl(r)Ylm(θ,φ)Ψ nlm (r, θ, φ) = R nl (r) Y lm (θ, φ)

其中Rnl(r)包括径向部分,Ylm(θ,φ)包括角度部分。where R nl (r) includes the radial part and Y lm (θ, φ) includes the angular part.

所述径向部分根据下式求解:The radial portion is solved according to:

Figure BDA0003553842120000541
Figure BDA0003553842120000541

所述角度部分根据下式求解:The angle portion is solved according to the following equation:

Figure BDA0003553842120000542
Figure BDA0003553842120000542

Figure BDA0003553842120000543
Figure BDA0003553842120000543

现在

Figure BDA00035538421200005410
在两个量化状态之间转换,转换率根据下式定义:Now
Figure BDA00035538421200005410
Transitions between two quantization states, the transition rate is defined according to:

Figure BDA0003553842120000544
Figure BDA0003553842120000544

两个状态之间的转换率与包括初始状态(i)和最终状态(f)在内的两个状态之间的耦合强度成正比。费米的黄金法则定义为:The transition rate between the two states is proportional to the coupling strength between the two states including the initial state (i) and the final state (f). Fermi's golden rule is defined as:

Figure BDA0003553842120000545
Figure BDA0003553842120000545

其中

Figure BDA0003553842120000546
in
Figure BDA0003553842120000546

使用光-物质相互作用的半经典方法,其中原子被量子机械处理而光子被经典处理,QED哈密顿量是Using a semiclassical approach to light-matter interactions, where atoms are handled by quantum mechanics and photons are handled classically, the QED Hamiltonian is

Figure BDA0003553842120000547
Figure BDA0003553842120000547

其中:in:

Figure BDA0003553842120000548
Figure BDA0003553842120000548

Hmatter=薛定谔哈密顿量H matter = Schrodinger Hamiltonian

Hint=-P·∈0 H int = -P ∈ 0

Hint包括偶极跃迁,其中-P等于原子电偶极并且∈0包括光电场。 Hint includes dipole transitions, where -P equals the atomic electric dipole and ∈ 0 includes the optical field.

对于原子电偶极子:For atomic electric dipoles:

Figure BDA0003553842120000549
Figure BDA0003553842120000549

对于单电子:For single electron:

P=-erP=-er

在半导体的背景中,玻尔半径a0是束缚激子的电子与空穴之间的距离。激子态的哈密顿量:In the context of semiconductors, the Bohr radius a0 is the distance between an electron and a hole that binds an exciton. The Hamiltonian of the excitonic state:

Figure BDA0003553842120000551
Figure BDA0003553842120000551

Figure BDA0003553842120000552
Figure BDA0003553842120000552

Figure BDA0003553842120000553
Figure BDA0003553842120000553

使用类似的解决方案Rnl(r)和Ylm(θ,φ),其中

Figure BDA0003553842120000554
(m0是自由电子质量)而不是a0。Use a similar solution for R nl (r) and Y lm (θ,φ), where
Figure BDA0003553842120000554
(m 0 is the free electron mass) instead of a 0 .

在长度为L的框中,将本征能量量化为:In a box of length L, quantify the eigenenergy as:

Figure BDA0003553842120000555
Figure BDA0003553842120000555

使用上述激子哈密顿量:Using the exciton Hamiltonian above:

Figure BDA0003553842120000556
Figure BDA0003553842120000556

现在从光的OAM知道:Now know from OAM of Light:

Figure BDA0003553842120000557
Figure BDA0003553842120000557

其中

Figure BDA0003553842120000558
包括偏振矢量,偏振矢量定义为:in
Figure BDA0003553842120000558
Including the polarization vector, the polarization vector is defined as:

Figure BDA0003553842120000559
Figure BDA0003553842120000559

A(r,t)=Aa(r,t)+Ae(r,t)A(r,t)=A a (r,t)+A e (r,t)

其中Aa(r,t)包括从价带到导带(v→c)的吸收,Ae(r,t)包括从导带到价带(c→v)的发射。where A a (r,t) includes the absorption from the valence band to the conduction band (v→c), and A e (r,t) includes the emission from the conduction band to the valence band (c→v).

接下来是近轴近似:Next is the paraxial approximation:

Figure BDA00035538421200005510
Figure BDA00035538421200005510

使用来自圆柱形拉普拉斯算符的LG光束解:Use the LG beam solution from the cylindrical Laplacian:

Figure BDA00035538421200005511
Figure BDA00035538421200005511

Figure BDA00035538421200005512
Figure BDA00035538421200005512

zR=瑞利长度,通常为几米z R = Rayleigh length, usually a few meters

Figure BDA00035538421200005513
Figure BDA00035538421200005513

其中zR>>zwhere z R >> z

Figure BDA0003553842120000561
Figure BDA0003553842120000561

对于zR>>z近似For z R >> z approximation

w(z)→w0 w(z)→w 0

Figure BDA0003553842120000562
Figure BDA0003553842120000562

Figure BDA0003553842120000563
Figure BDA0003553842120000563

然后Then

Figure BDA0003553842120000564
Figure BDA0003553842120000564

其中f(r)包括

Figure BDA0003553842120000565
where f(r) includes
Figure BDA0003553842120000565

假定半导体电子状态的波函数Assuming the wave function of the electronic state of the semiconductor

Ψ(r,θ,φ)=Φ(r,φ)Z(z)Ψ(r,θ,φ)=Φ(r,φ)Z(z)

具有由ub(r)和自旋ξ定义的晶格周期结构Has a lattice periodic structure defined by u b (r) and spin ξ

Ψc(r)=[Φ(r,φ)Z(z)]Uc(r)ξ 导带Ψ c (r)=[Φ(r,φ)Z(z)]U c (r)ξ conduction band

Ψv(r)=[Φ(r,φ)Z(z)]Uv(r)ξ 价带Ψ v (r)=[Φ(r,φ)Z(z)]U v (r)ξ Valence band

Φnm(r,φ)=Rnm(r,φ)eimφ Φ nm (r,φ)=R nm (r,φ)e imφ

其中in

Figure BDA0003553842120000566
Figure BDA0003553842120000566

L是电子的特征限制长度。L is the characteristic confinement length of the electron.

我们知道,进行相互作用We know that interact

机械动量→量子动量-qA;以及Mechanical Momentum → Quantum Momentum - qA; and

Figure BDA0003553842120000567
Figure BDA0003553842120000567

因此单电子相互作用哈密顿量将是:So the one-electron interaction Hamiltonian will be:

Figure BDA0003553842120000568
Figure BDA0003553842120000568

q=-eq=-e

Figure BDA0003553842120000569
算符
Figure BDA0003553842120000569
operator

对于最小相互作用:For minimal interaction:

Figure BDA0003553842120000571
Figure BDA0003553842120000571

因此,从初始状态到最终状态的跃迁矩阵是:Therefore, the transition matrix from the initial state to the final state is:

导带→价带conduction band → valence band

Mif=<i|H|f>=<cα′|H|vα>M if =<i|H|f>=<cα′|H|vα>

其中α=包括所有量子数的集体指数where α = collective exponent including all quantum numbers

Figure BDA0003553842120000572
Figure BDA0003553842120000572

Figure BDA0003553842120000573
Figure BDA0003553842120000573

使用

Figure BDA0003553842120000574
use
Figure BDA0003553842120000574

我们使得we make

Figure BDA0003553842120000575
Figure BDA0003553842120000575

Figure BDA0003553842120000576
Figure BDA0003553842120000576

其中Rnm(r,φ)eimφ包括Φ*(r,φ);Uc(r)包括单胞周期;并且ξ包括自旋。where R nm (r,φ)e imφ includes Φ * (r,φ); U c (r) includes the unit cell period; and ξ includes the spin.

由于正交性

Figure BDA0003553842120000577
due to orthogonality
Figure BDA0003553842120000577

Figure BDA0003553842120000578
Figure BDA0003553842120000578

Ψv=Φ(r,φ)Z(z)Uvξv Ψ v =Φ(r,φ)Z(z)U v ξ v

Figure BDA0003553842120000579
Figure BDA0003553842120000579

具有自旋正交性∫ξ′ξd3r=δξ′ξIt has spin orthogonality ∫ξ'ξd 3 r=δ ξ'ξ .

然后,用于从导带到价带跃迁的跃迁矩阵包括:Then, the transition matrix for transition from conduction to valence band consists of:

Mcv=<cα′|Ha|vα>M cv =<cα′|H a |vα>

其中Ha是吸收体。where Ha is the absorber.

价带到导带跃迁的矩阵包括:The matrix of valence band and conduction band transitions includes:

Mvc=<vα|He|cα′>M vc =<vα|He|cα′>

其中He是发射体。where He is the emitter .

Figure BDA00035538421200005710
Figure BDA00035538421200005710

其中Pij是矩阵元素。where P ij is the matrix element.

传输矩阵可以进一步定义为:The transfer matrix can be further defined as:

Figure BDA0003553842120000581
Figure BDA0003553842120000581

Figure BDA0003553842120000582
Figure BDA0003553842120000582

其中f(r)是用于∈lp的径向分量where f(r) is the radial component for ∈ lp

∫e-ilφe-i(m′-m)φdφ=2πδl,(m′-m) ∫e -ilφ e -i(m′-m)φ dφ=2πδ l,(m′-m)

∫ξ′ξd3r=dξ′ξ ∫ξ′ξd 3 r=d ξ′ξ

2个态之间的跃迁率:The transition rate between 2 states:

Figure BDA0003553842120000583
Figure BDA0003553842120000583

多体动力学的二次量化Quadratic Quantification of Multibody Dynamics

二次量化实现多体动力学。现在参考图76,由许多相同的粒子组成的系统形成了物理世界的大部分。典型的示例是固体中的离子晶格7604中的电子7602或重核中的核子。尽管对相同粒子的经典处理与对非相同粒子的经典处理没有区别,但是经典理论依赖于每一个粒子的运动总是可以被遵循的假设。不可区分性对相同粒子的量子理论提出了额外的要求:表示状态的矢量必须具有关于相同粒子的互换标记的确定的对称性。在基于多粒子波函数的普通方法中施加这种要求是复杂的。这里提出了一种称为“二次量化”的方便公式,它由许多相同的粒子组成,允许自动考虑这些对称性要求。其最典型的特征是使用产生算符和湮灭算符,根据这些算符可以表达任何算符,并且其对系统状态的作用特别简单。这个公式的真正实质是引入“大”希尔伯特空间,该空间的向量可以表示任意的、也是无限的、甚至是无限数量的粒子的状态。这是希尔伯特空间,其中自然地定义了产生算符和湮灭算符的作用。当限制在对应于固定数N的粒子的H的子空间时(如果系统的哈密顿量与粒子数算符交换,则这是可能的),使用这种形式制定的量子力学完全等同于基于补充有适当对称性要求的N-粒子薛定谔方程的量子力学。然而,二次量化也打开了基本新的可能性。因此,二次量化构成多粒子系统的普通量子力学与相对论量子场论之间的联系。Quadratic quantization enables multibody dynamics. Referring now to Figure 76, a system composed of many identical particles forms most of the physical world. Typical examples are electrons 7602 in ionic lattices 7604 in solids or nucleons in heavy nuclei. Although the classical treatment of identical particles is no different from the classical treatment of non-identical particles, classical theory relies on the assumption that the motion of each particle can always be followed. Indistinguishability imposes an additional requirement on the quantum theory of identical particles: the vectors representing states must have definite symmetries with respect to the interchanged labels of identical particles. It is complicated to impose this requirement in ordinary methods based on multi-particle wave functions. A convenient formulation called "quadratic quantization" is proposed here, consisting of many identical particles, allowing these symmetry requirements to be automatically taken into account. Its most typical feature is the use of generation operators and annihilation operators, according to which any operator can be expressed, and its effect on the state of the system is particularly simple. The real essence of this formulation is the introduction of a "large" Hilbert space, the vector of which can represent the states of an arbitrary, also infinite, even infinite number of particles. This is the Hilbert space, in which the roles of the generation and annihilation operators are naturally defined. When restricted to the subspace of H corresponding to the fixed number N of particles (which is possible if the Hamiltonian of the system is exchanged with the particle number operator), quantum mechanics formulated using this form is exactly equivalent to that based on the complement Quantum mechanics of the N-particle Schrodinger equation with proper symmetry requirements. However, quadratic quantization also opens up fundamentally new possibilities. Thus, quadratic quantification of the connection between ordinary quantum mechanics and relativistic quantum field theory that make up many-particle systems.

一次量化框架将可观测值视为算符并且将状态视为波函数。在二次量化中,状态也必须被认为是算符。对于一般的多频带情况,在二次量化中完整的电子哈密顿量是:The primary quantization framework treats observables as operators and states as wave functions. In quadratic quantization, states must also be considered operators. For the general multiband case, the complete electronic Hamiltonian in quadratic quantization is:

Figure BDA0003553842120000584
Figure BDA0003553842120000584

其中b,b′是能带。where b, b' are energy bands.

α,α′是量子数的集合索引。α,α′ are the set indices of quantum numbers.

Figure BDA0003553842120000585
产生算符
Figure BDA0003553842120000586
Figure BDA0003553842120000585
generate operator
Figure BDA0003553842120000586

Figure BDA0003553842120000591
湮没算符
Figure BDA0003553842120000592
Figure BDA0003553842120000591
annihilation operator
Figure BDA0003553842120000592

Figure BDA0003553842120000593
Figure BDA0003553842120000593

Figure BDA0003553842120000594
Figure BDA0003553842120000594

埃尔米特算符γ1和γ2也可以表示为: The Hermitian operators γ1 and γ2 can also be expressed as:

Figure BDA0003553842120000595
Figure BDA0003553842120000595

马约拉纳(Majorana)光子Majorana Photon

观察到结构光束中的光子(即具有OAM(轨道角动量)+SAM(自旋角动量)的光子)和具有有限横向尺寸的光子以明显比光的速度慢的速度行进,包括在真空中。然而,在真空中传播的光子仍然必须以光速传播。这种行为可以解释为光子在发散光束的传播轴上的有效运动的投影效应,并且取决于光束的几何性质。在这种情况下,携带OAM的结构化光束,更具体地,超几何光束,呈现出群速度(Vg),该群速度服从类似于马约拉纳提出的关于玻色子和费米子相对论粒子的自旋和质量之间的关系的关系,该关系相反涉及OAM、传播速度和表征光束的虚拟质量参数。Photons in structured beams (i.e. photons with OAM (orbital angular momentum) + SAM (spin angular momentum)) and photons with finite lateral dimensions were observed to travel at significantly slower speeds than light, including in a vacuum. However, photons traveling in a vacuum still have to travel at the speed of light. This behavior can be explained as a projection effect of the effective motion of the photons on the propagation axis of the diverging beam and depends on the geometrical properties of the beam. In this case, a structured beam carrying OAM, more specifically a hypergeometric beam, exhibits a group velocity (Vg) that obeys a relativistic particle similar to that proposed by Majorana for bosons and fermions The relationship between the spin and mass, which in turn involves the OAM, the propagation velocity, and the virtual mass parameter characterizing the beam.

马约拉纳提出了一种对具有零或正定静止质量的玻色子和费米子相对论粒子有效的替代解,以避免由狄拉克(Dirac)方程产生的负平方质量解的问题,该问题是由安德森(Anderson)实验发现的反电子引起的。在将狄拉克方程推广为不同于电子的自旋值的自旋值的过程中,马约拉纳找到了一个解,该解具有服从玻色-爱因斯坦或费米-狄拉克统计量的无穷大粒子谱,该无穷大粒子谱具有自旋和质量之间的精确关系。马约拉纳提出的狄拉克方程的无限自旋解给出了具有正定或零有限平方质量的粒子谱。马约拉纳解描述的粒子光谱与标准模型的粒子光谱没有任何对应关系。在这种情况下,粒子及其相应的反粒子不能相互区分。由于任何粒子和反粒子必须具有相反的电荷,这种类型的解仅对已知的中性粒子有效。这种关系仅适用于诸如引力和光子之类的玻色子,它们是真空中的零静止质量粒子,并且适用于一类费米子(即所谓的马约拉纳中微子)的少数可能的例外。显然,诸如电子和正电子的基本粒子不能是马约拉纳粒子。Majorana proposed an efficient alternative solution for boson and fermion relativistic particles with zero or positive definite rest mass to avoid the problem of negative square mass solutions resulting from the Dirac equation, which is Caused by the antielectron discovered experimentally by Anderson. In the process of generalizing the Dirac equation to a spin value other than that of an electron, Majorana found a solution with a Bose-Einstein or Fermi-Dirac statistic A spectrum of infinite particles with a precise relationship between spin and mass. The infinite spin solution of the Dirac equation proposed by Majorana gives the spectrum of particles with positive definite or zero finite square mass. The particle spectrum described by the Majorana solution does not have any correspondence with the particle spectrum of the Standard Model. In this case, the particle and its corresponding antiparticle cannot be distinguished from each other. Since any particle and antiparticle must have opposite charges, this type of solution is only valid for known neutral particles. This relationship holds only for bosons such as gravity and photons, which are zero rest-mass particles in a vacuum, and for a small number of possible classes of fermions, the so-called Majorana neutrinos exception. Obviously, elementary particles such as electrons and positrons cannot be Majorana particles.

从马约拉纳的著作中可知,他逐渐想到了具有任意角动量的粒子的相对论性理论。他首先研究了复合系统的有限情况,特别是光子的类狄拉克方程,其中他直接从麦斯威尔经典场开始,使用三维复矢量F=E+iH,其中E和H分别是电场和磁场。该表达式为电磁张量设置了两个不变量,一个为F的实部,另一个为F的虚部,并引入了光子的波函数Ψ=E+iH,其概率解释非常简单和直接,并且直接依赖于爱因斯坦-玻恩的初始直觉:电磁能量密度与光子的概率密度成比例。麦克斯韦方程可以用该波函数写成;第一种是自旋1粒子在量子力学中的典型横向状态,而第二马约拉纳能够将光子波方程写成狄拉克方程的特例,其被显示为等效于量子电动力学(Quantum Electrodynamics,QED)。马约拉纳的理论对于研究结构化光束(即具有OAM+SAM的光子称为矢量光束)中的束缚系统或光子系统是理想的。From Majorana's writings, he gradually thought of a relativistic theory of particles with arbitrary angular momentum. He first studied the finite case of complex systems, in particular the Dirac-like equations of photons, in which he started directly from Maxwell's classical fields, using the three-dimensional complex vector F=E+iH, where E and H are the electric and magnetic fields, respectively . This expression sets two invariants for the electromagnetic tensor, one is the real part of F and the other is the imaginary part of F, and introduces the photon wave function Ψ=E+iH, the probability interpretation of which is very simple and straightforward, And directly relies on Einstein-Born's initial intuition: the electromagnetic energy density is proportional to the probability density of photons. Maxwell's equations can be written with this wave function; the first is the typical transverse state in quantum mechanics for spin-1 particles, while the second Majorana is able to write the photon wave equation as a special case of Dirac's equation, which is shown to be equal to Effective in quantum electrodynamics (Quantum Electrodynamics, QED). Majorana's theory is ideal for studying bound or photonic systems in structured beams (ie, photons with OAM+SAM are called vector beams).

类似马约拉纳的“粒子”的示例可以在不同的情形中找到,例如在凝聚态物质物理中,其中粒子的复合状态表现为类似马约拉纳费米子,对于马约拉纳费米子,粒子及其反粒子必须重合并从自相互作用机制获得质量。这与遵循希格斯(Higgs)机制的标准模型不同。这些准粒子是存在于凝聚态物质情形中的电子与原子结构之间的电磁相互作用的产物。Examples of Majorana-like "particles" can be found in different situations, such as in condensed matter physics, where the composite state of particles behaves like a Majorana fermion, and for Majorana fermions, The particle and its antiparticle must coincide and gain mass from the self-interacting mechanism. This is different from the Standard Model which follows the Higgs mechanism. These quasiparticles are the product of electromagnetic interactions between electrons and atomic structure that exist in the case of condensed matter.

在以携带零电荷和能量为特征的拓扑超导体中,已经观察到类似于马约拉纳粒子的准粒子激发。在约瑟夫逊(Josephson)结和固态系统中观察到称为马约拉纳零模的其他类型的准粒子。它们在信息处理和光子系统中具有潜在的未来应用。Quasiparticle excitations similar to Majorana particles have been observed in topological superconductors characterized by carrying zero charge and energy. Other types of quasiparticles called Majorana zero modes are observed in Josephson junctions and solid-state systems. They have potential future applications in information processing and photonic systems.

此外,结构化光束和其他光子系统可以像马约拉纳粒子一样工作。它们不仅涉及自旋角动量而且涉及总角动量。光子实际上携带能量、动量和角动量J。光子携带的守恒角动量量由自旋角动量(SAM)和轨道角动量(OAM)的(矢量)和给出。Furthermore, structured light beams and other photonic systems can work like Majorana particles. They involve not only spin angular momentum but also total angular momentum. Photons actually carry energy, momentum, and angular momentum J. The amount of conserved angular momentum carried by the photon is given by the (vector) sum of spin angular momentum (SAM) and orbital angular momentum (OAM).

一个示例是携带在结构化等离子体中传播的OAM的光子。它们通过安德森-希格斯机制获得有效的普罗卡(Proca)质量并服从类似于马约拉纳的数学结构的质量/OAM关系。马约拉纳根据真空中应用于狄拉克方程的洛伦兹(Lorentz)群的时空对称性和结构化等离子体中光子的时空对称性得出的原始解之间的差异是安德森-希格斯机制和OAM对于结构化电磁束的质量/总角动量关系所起的作用。An example is photons carrying OAMs propagating in structured plasmons. They acquire effective Proca mass through the Anderson-Higgs mechanism and obey a mass/OAM relationship similar to Majorana's mathematical structure. The difference between Majorana's original solution based on the space-time symmetry of the Lorentz group applied to the Dirac equations in vacuum and the space-time symmetry of photons in structured plasmas is the Anderson-Higgs Mechanism and the role of OAM on the mass/total angular momentum relationship of structured electromagnetic beams.

与在马约拉纳的原始自旋/质量关系中发生的情况一样,OAM用作减少等离子体中的总普罗卡光子质量的术语。引起等离子体中光子中的普罗卡质量的是等离子体结构在等离子体共振的频率处引入的空间均匀性和特征尺度长度的破坏。等离子体中特征尺度长度和结构的存在与以洛伦兹群的修正作用为特征的时空模型呈现出很强的类比,当存在特征尺度长度时,展示了与由狄拉克方程描述的动力学的深度类比。通过OAM态的相干叠加获得具有非阿贝尔规范结构的费米子和类阴离子行为。存在具有非阿贝尔规范理论的可能公式。OAM is used as a term for reducing the mass of total proca photons in a plasma, as happens in the original spin/mass relationship of Majorana. What causes the Proca mass in the photons in the plasma is the disruption of the spatial uniformity and characteristic scale lengths introduced by the plasmonic structure at the frequencies of the plasmonic resonance. The presence of characteristic-scale lengths and structures in plasmas presents a strong analogy to spatiotemporal models characterized by the correction of the Lorentzian group, and the presence of characteristic-scale lengths, when present, exhibits inconsistencies with the dynamics described by the Dirac equations. Deep analogy. Fermions and anion-like behaviors with non-Abelian gauge structures are obtained by coherent superposition of OAM states. There are possible formulations with non-Abelian gauge theories.

OAM和马约拉纳光子OAM and Majorana Photons

在真空中结构化光束的减慢与光束的几何发散有关。这是一种不同的机制,在该机制中,光由于物质的存在而减慢。在真空中传播的结构化光束光子可表现出不同于平面波的行为,这是因为有限范围引起的场约束和改变波矢的光束的结构,其结果是改变沿着传播轴测量的群速度VgThe slowdown of structured beams in vacuum is related to the geometric divergence of the beam. This is a different mechanism in which light is slowed down by the presence of matter. Structured beam photons propagating in a vacuum can behave differently than plane waves due to field confinement induced by the finite range and the structure of the beam that changes the wave vector, which results in changing the group velocity V g measured along the axis of propagation .

对于不同的OAM模式,相位速度Vp也不同。关于OAM本征模式的传播速度的核心思想是,Kz不是为了完整描述系统而必须考虑的波向量的唯一分量。For different OAM modes, the phase velocity Vp is also different. The core idea about the propagation velocity of OAM eigenmodes is that Kz is not the only component of the wave vector that must be considered in order to fully describe the system.

在OAME(ρ,φ,z)的圆柱坐标中,其中ρ=径向,φ=方位角,z=垂直的In cylindrical coordinates of OAME(ρ,φ,z), where ρ=radial, φ=azimuth, z=vertical

Figure BDA0003553842120000611
Figure BDA0003553842120000611

Figure BDA0003553842120000612
Figure BDA0003553842120000612

一般而言,E(ρ,φ,z,t)=R(ρ)Φ(φ)Z(z)T(t)E0 In general, E(ρ,φ,z,t)=R(ρ)Φ(φ)Z(z)T(t)E 0

Figure BDA0003553842120000613
Figure BDA0003553842120000613

在任何特定的径向模式下:In any particular radial mode:

Figure BDA0003553842120000614
Figure BDA0003553842120000614

和相速度:and phase velocity:

Figure BDA0003553842120000615
Figure BDA0003553842120000615

但我们也知道vgvp=c2,其中vp=相速度并且vg=群速度。But we also know v g v p =c 2 , where v p =phase velocity and v g =group velocity.

对于OAM光束:For OAM beams:

Figure BDA0003553842120000616
Figure BDA0003553842120000616

Figure BDA0003553842120000617
Figure BDA0003553842120000617

可以使用波图描述来计算在空间中的任何点处的近轴光束的精确群速度。在波描述中,群速度由

Figure BDA0003553842120000618
给出,其中Φ(r)表示波相位波前。对于拉盖尔-高斯模式,沿z的群速度(其具有对传播距离z的显式依赖性)由下式给出:The precise group velocity of a paraxial beam at any point in space can be calculated using the wave diagram description. In the wave description, the group velocity is given by
Figure BDA0003553842120000618
is given, where Φ(r) represents the wave phase wavefront. For the Laguerre-Gaussian mode, the group velocity along z (which has an explicit dependence on the propagation distance z) is given by:

Figure BDA0003553842120000619
Figure BDA0003553842120000619

Figure BDA00035538421200006110
Figure BDA00035538421200006110

其中

Figure BDA00035538421200006111
(瑞利距离)。in
Figure BDA00035538421200006111
(Rayleigh distance).

这种关系反映了这些光束的奇怪几何形状。时间延迟或更好的是不同的群速度可以被解释为准粒子状态的虚拟质量mv的效应,其表征光束的动力学,并由以群速度Vg传播的低速下的类薛定谔方程描述:This relationship reflects the strange geometry of these beams. The time delay or better the different group velocities can be explained by the effect of the virtual mass m v of the quasi-particle state, which characterizes the dynamics of the beam and is described by the Schrödinger-like equation at low velocities propagating with the group velocity V g :

Figure BDA0003553842120000621
Figure BDA0003553842120000621

因此:therefore:

Figure BDA0003553842120000622
Figure BDA0003553842120000622

该虚拟质量项导致马约拉纳质量M。这些准粒子态中的任何一个准粒子态在真空中具有它们的角动量值与它们的虚拟质量之间的精确关系,其类似于在等离子体中具有OAM的普罗卡光子的行为。This virtual mass term results in the Majorana mass M. Any of these quasiparticle states have a precise relationship between their angular momentum value and their virtual mass in a vacuum, similar to the behavior of a Proka photon with OAM in a plasma.

这意味着光束约束和结构化的过程起到类似于在马约拉纳模型中引起光子上的普罗卡质量及其角动量/质量关系的安德森-希格斯机制的作用,类似于即使光束在空间中自由传播也发生在波导中的作用。This means that the process of beam confinement and structuring acts like the Anderson-Higgs mechanism that induces the Proca mass on the photon and its angular momentum/mass relationship in the Majorana model, similar to that even if the beam is in space The role of free propagation in the waveguide also occurs.

因此,属于此类结构化光束的在真空中传播的光子遵循准粒子态的马约拉纳模型的数学规则。实际上,通过比较两个群速度获得涉及波向量K和虚拟质量项mv的关系Therefore, photons propagating in vacuum belonging to such structured beams follow the mathematical rules of the Majorana model of quasiparticle states. In fact, the relationship involving the wave vector K and the virtual mass term m v is obtained by comparing the two group velocities

Figure BDA0003553842120000623
Figure BDA0003553842120000623

对应的能量为:The corresponding energy is:

Figure BDA0003553842120000626
Figure BDA0003553842120000626

这些光束中的每一个光束在低能量极限中表现为粒子,其服从具有虚拟的马约拉纳质量M和马约拉纳-模型OAM/虚拟质量关系的薛定谔/狄拉克方程,如马约拉纳在1932的论文中所述。马约拉纳的原始工作中的M是

Figure BDA0003553842120000624
其中
Figure BDA0003553842120000625
是虚拟质量的角动量部分。Each of these beams behaves as a particle in the low energy limit obeying the Schrödinger/Dirac equations with a virtual Majorana mass M and Majorana-model OAM/virtual mass relation, like Majorana Nathan in his 1932 paper. The M in Majorana's original work is
Figure BDA0003553842120000624
in
Figure BDA0003553842120000625
is the angular momentum part of the virtual mass.

因此,通过建立马约拉纳模型的庞加莱(Poincare)群的规则,光束的动力学和结构在空间和时间上具有唯一的特征。即使具有相反的OAM值的粒子以相同的群速度传播,它们的手性(chirality)也不同。通过沿着传播轴的投影效应,可以任意地调整光束的大小和形状,以获得不同的OAM值的不同的表观亚光速,并及时获得空间缓冲信息。Thus, the dynamics and structure of the beam are uniquely characterized in space and time by the rules of the Poincare group that establish the Majorana model. Even though particles with opposite OAM values propagate with the same group velocity, their chirality is different. Through the projection effect along the propagation axis, the size and shape of the beam can be adjusted arbitrarily to obtain different apparent sublight speeds for different OAM values, and to obtain spatial buffering information in time.

马约拉纳费米子与马约拉纳光子(带OAM的矢量涡旋光束)的编织Weaving of Majorana fermions with Majorana photons (vector vortex beams with OAM)

编织非阿贝尔任意子是拓扑量子信息学和量子计算中需要的,以改善量子计算组件的纠缠特性。一类有希望的非阿贝尔任意子是在拓扑超导体中作为零能准粒子出现的马约拉纳束缚态(Majorana bound state,MBS)。近年来,在凝聚态物质平台中检测和操纵MBS的演示很多。基于一维(1D)半导电线(SW)的实现方式是最明显的演示。一些实验报告了与零能量MBS的存在相容的零偏置电导峰值形式的特征传输特征。Braided non-Abelian anyons are needed in topological quantum informatics and quantum computing to improve the entanglement properties of quantum computing components. A promising class of non-Abelian anyons are the Majorana bound states (MBS) that appear as zero-energy quasiparticles in topological superconductors. In recent years, there have been many demonstrations of detecting and manipulating MBS in condensed matter platforms. Implementations based on one-dimensional (1D) semiconducting wires (SWs) are the most obvious demonstrations. Some experiments report characteristic transport signatures in the form of zero-bias conductance peaks that are compatible with the presence of zero-energy MBSs.

MBS最重要的特征是它们的交换或编织统计:将这些马约拉纳准粒子彼此围绕移动并交换它们的位置将实现仅取决于轨迹拓扑的非阿贝尔酉变换。这样,可以在状态函数(波函数)的扭转中编码信息。这在图77中大体上示出。光束7702被提供给OAM生成器以具有施加于光束的OAM值。然后将注入了OAM的光束施加到编织过程7706,以编织固态材料7708的任意子,从而对状态函数的扭转中的信息进行编码。与使用传统量子比特的量子计算相比,由于局部环境,这种酉变换对于解相干和移相具有更强的鲁棒性,这将使这种方法对于拓扑量子计算具有兴趣。为了检测马约拉纳签名以及操纵MBS的编织,必须寻找干扰方案(提升基态退化),使得MBS相互作用。The most important feature of MBS is their exchange or weaving statistics: moving these Majorana quasiparticles around each other and swapping their positions will achieve a non-Abelian unitary transformation that depends only on the trajectory topology. In this way, information can be encoded in the twist of the state function (wave function). This is shown generally in FIG. 77 . Beam 7702 is provided to the OAM generator to have OAM values applied to the beam. The OAM-infused beam is then applied to the weaving process 7706 to weave anyons of the solid state material 7708, thereby encoding information in the twist of the state function. Compared to quantum computing using conventional qubits, this unitary transformation is more robust to decoherence and phase shifting due to the local environment, which will make this method of interest for topological quantum computing. In order to detect Majorana signatures and manipulate the weaving of MBSs, it is necessary to find interference schemes (boosting ground-state degradation) so that the MBSs interact.

假设存在四元数的克利福德(Clifford)代数泛化及其与和马约拉纳费米子相关的编织群表示的关系。即,拓扑量子计算是基于马约拉纳费米子的融合规则。在这种构造中,马约拉纳费米子不仅可以在电子的协同结构(即量子霍尔效应)中看到,而且可以通过将费米子的算符代数分解成由两个马杰拉纳算符生成的Clifford代数而在单电子的结构中看到。这些编织表示在量子信息学和拓扑中具有重要的应用。马约拉纳算符引起编织群的特别稳健的表示,然后进一步表示该编织群以在平面空间中求出费米子在其交换下的相位。编织群(由马约拉纳算符表示)表示马约拉纳s在空间中的交换。Suppose there is a Clifford algebraic generalization of quaternions and their relation to the braided group representation associated with Majorana fermions. That is, topological quantum computing is based on the fusion rule of Majorana fermions. In this configuration, Majorana fermions can be seen not only in the cooperative structure of electrons (i.e., the quantum Hall effect), but also by algebraically decomposing the fermion's operator into two Majorana operators The Clifford algebra of symbol generation is seen in the one-electron structure. These braided representations have important applications in quantum informatics and topology. The Majorana operator leads to a particularly robust representation of the braided group, which is then further represented to find the phase of the fermions under their exchange in plane space. The braided group (represented by the Majorana operator) represents the exchange of Majoranas in space.

任意子7802的编织的实例在图78中示出。这里,数学将在任意子的理论模型和它们对量子计算组件的应用之间形成桥梁。马约拉纳费米子的编织是克利福德代数的自然表示,并且也将四元数表示为到编织群的SU(2)。这也可以解释量子霍尔效应的涡旋。它可能不适用于一维纳米线中的电子。然而,有三个马约拉纳算符,生成四元数的副本。An example of weaving of anyons 7802 is shown in FIG. 78 . Here, mathematics will form a bridge between theoretical models of anyons and their application to quantum computing components. The braiding of Majorana fermions is a natural representation of the Clifford algebra, and also represents the quaternion as SU(2) to the braiding group. This could also explain the vortex of the quantum Hall effect. It may not work for electrons in one-dimensional nanowires. However, there are three Majorana operators that generate copies of quaternions.

现在参照图79,编织物7902是线束7904的集合的嵌入,它们的末端7906在两行点中,所述两行点相对于垂直方向的选择设置为一个在另一个之上。线束7904不是单独打纽结(knotted)的,并且它们彼此不相交。可以通过将一个编织物的底行7906B附接到另一个编织物的顶行7904A来倍增编织物7902。编织物7902的这种乘法在这种乘法概念下形成一个群。因此,编织理论对于电磁纽结以及量子波函数或状态纽结的纽结(knot)和链接理论都是至关重要的。Referring now to FIG. 79, a braid 7902 is an inset of a collection of strands 7904 with their ends 7906 in two rows of points arranged one above the other with respect to the choice of vertical. The wire harnesses 7904 are not individually knotted, and they do not intersect each other. The braid 7902 can be multiplied by attaching the bottom row 7906B of one braid to the top row 7904A of the other braid. This multiplication of braid 7902 forms a group under this concept of multiplication. Therefore, weaving theory is crucial for both the electromagnetic knot and the knot and link theory of quantum wave functions or state knots.

使用带有轨道角动量的矢量光束的Y结(junction)进行编织Braiding using a Y junction of a vector beam with orbital angular momentum

可以将马约拉纳费米子与马约拉纳光子进行编织,马约拉纳光子是携带轨道角动量的涡旋矢量光束。在这种情况下,将有四个马约拉纳子(M0、M1、M2、M3),其中M1、M2、M3被认为是在Y结的端部,M0是在Y结(Y结波导)的中心。可以通过将超导Y结与作用在Y结上的OAM光束置于腔中来执行复杂的编织。在该设置中将存在对该动态的贝里(Berry)相位贡献。然后可以用旋转波近似构造哈密顿量。对于这种情况,哈密顿量以腔的频率在腔中将态与光子耦合。Majorana fermions can be woven with Majorana photons, which are beams of vortex vectors carrying orbital angular momentum. In this case, there will be four Majoranas (M 0 , M 1 , M 2 , M 3 ), where M 1 , M 2 , M 3 are considered to be at the end of the Y junction, M 0 is at the center of the Y-junction (Y-junction waveguide). Complex weaving can be performed by placing a superconducting Y-junction in a cavity with an OAM beam acting on the Y-junction. In this setup there will be a Berry phase contribution to the dynamics. The Hamiltonian can then be constructed using the rotating wave approximation. For this case, the Hamiltonian couples states to photons in the cavity at the frequency of the cavity.

波函数纽结和电磁纽结的四元数实现方式Quaternion implementation of wave function knots and electromagnetic knots

费米子Fermions

对于费米子:For fermions:

Figure BDA0003553842120000641
并且
Figure BDA0003553842120000642
Figure BDA0003553842120000641
and
Figure BDA0003553842120000642

如果存在两个马约拉纳费米子,则:If there are two Majorana fermions, then:

xy=-yxxy=-yx

马约拉纳子是它们自己的反粒子,因此Majoranas are their own antiparticles, so

Figure BDA0003553842120000643
x2=1
Figure BDA0003553842120000643
x 2 = 1

xy+yx=0y2=1xy+yx=0y 2 =1

因此如果:So if:

Figure BDA0003553842120000644
Figure BDA0003553842120000644

Figure BDA0003553842120000645
Figure BDA0003553842120000645

则可以用两个马约拉纳子制造一个费米子,然后:Then you can make a fermion with two Majoranas, and then:

Figure BDA0003553842120000646
Figure BDA0003553842120000646

此外,根据下式,可以从一个费米子制造两个马约拉纳子:Furthermore, two Majoranas can be made from one fermion according to the following formula:

Figure BDA0003553842120000647
Figure BDA0003553842120000647

Figure BDA0003553842120000648
Figure BDA0003553842120000648

现在关于三个马约拉纳,三个马约拉纳可以代表一个四元数群。如果有马约拉纳子x、y、z:Now about three majoranas, three majoranas can represent a quaternion group. If there are Majorana subs x, y, z:

则x2=1,y2=1,z2=1Then x 2 =1, y 2 =1, z 2 =1

使I=yxJ=zy K=xzLet I=yxJ=zy K=xz

则:but:

I2=-1 J2=-1K2=-1 IJK=-1I 2 =-1 J 2 =-1K 2 =-1 IJK=-1

然后算符可以被定义为:Then the operator can be defined as:

Figure BDA0003553842120000651
Figure BDA0003553842120000651

Figure BDA0003553842120000652
Figure BDA0003553842120000652

Figure BDA0003553842120000653
Figure BDA0003553842120000653

可以相互编织成woven into each other

ABA=BAB BCB=CBC ACA=CACABA=BAB BCB=CBC ACA=CAC

这些编织算符是纠缠的,可以用于通用量子计算。These weaving operators are entangled and can be used for general-purpose quantum computing.

Figure BDA0003553842120000654
Figure BDA0003553842120000654

马约拉纳子的克利福德代数修正了编织的表示。马约拉纳子的编织不限于纳米线,原则上可以应用于2股、3股、4股或n股。3股将代表四元数情况。The Clifford algebra of Majoranas corrects the representation of braiding. The weaving of Majorana seeds is not limited to nanowires and can in principle be applied to 2, 3, 4 or n-strands. 3 shares will represent the quaternion case.

在两量子比特状态下:In the two-qubit state:

当ad-bc≠0,When ad-bc≠0,

|φ>=a|00>+b|01>+c|10>+d|11>|φ>=a|00>+b|01>+c|10>+d|11>

被纠缠。entangled.

SU(2)编织框架SU(2) braided frame

矩阵SU(2)具有以下形式:The matrix SU(2) has the following form:

Figure BDA0003553842120000655
Figure BDA0003553842120000655

在SU(2)中Det(M)=1并且

Figure BDA0003553842120000656
Det(M)=1 in SU(2) and
Figure BDA0003553842120000656

如果z=a+ib并且

Figure BDA0003553842120000657
if z=a+ib and
Figure BDA0003553842120000657

Figure BDA0003553842120000658
but
Figure BDA0003553842120000658

其中a2+b2+c2+d2=1where a 2 +b 2 +c 2 +d 2 =1

则:but:

Figure BDA0003553842120000659
Figure BDA0003553842120000659

其中

Figure BDA00035538421200006510
并且
Figure BDA00035538421200006511
in
Figure BDA00035538421200006510
and
Figure BDA00035538421200006511

并且I2=-1J2=-1K2=-1 IJK=-1and I 2 =-1J 2 =-1K 2 =-1 IJK=-1

IJ=K JK=I KI=JIJ=K JK=I KI=J

JI=-K KJ=-I IK=-JJI=-K KJ=-I IK=-J

1、I、J、K的代数是四元数。一般来说:1. The algebras of I, J, and K are quaternions. Generally speaking:

q=a+bI+cJ+dKq=a+bI+cJ+dK

Figure BDA0003553842120000661
Figure BDA0003553842120000661

Figure BDA0003553842120000662
Figure BDA0003553842120000662

Figure BDA0003553842120000663
Figure BDA0003553842120000663

如果U&V是纯四元数,(a=0),则:If U&V are pure quaternions, (a=0), then:

uv=-u·v+u×vuv=-u·v+u×v

四元数与拓扑紧密连接,编织是马约拉纳子及其在量子计算中的应用的基础。同样的四元数代数也可用于产生电磁纽结。Quaternions are closely linked to topology, and weaving is the basis of Majoranas and their applications in quantum computing. The same quaternion algebra can also be used to generate electromagnetic knots.

现在参考下面的表1和表2,在传统的U(1)对称和SU(2)对称中存在电磁方程。通过温度控制,可以从一个对称空间到另一个对称空间,并且也可以使用用于编织波函数的四元数代数来描述这些态。Referring now to Tables 1 and 2 below, there are electromagnetic equations in traditional U(1) symmetry and SU(2) symmetry. With temperature control, it is possible to go from one symmetric space to another, and these states can also be described using quaternion algebra for weaving wave functions.

Figure BDA0003553842120000664
Figure BDA0003553842120000664

Figure BDA0003553842120000665
Figure BDA0003553842120000665

新的OAM与具有石墨烯蜂窝晶格的物质的相互作用Interaction of new OAMs with substances with graphene honeycomb lattices

由于晶体结构,石墨烯表现为半金属材料,其低能激发表现为无质量的狄拉克费米子。因此,石墨烯表现出异常的传输性质,如同异常的量子霍尔效应和克莱恩(Klein)隧穿。其光学性质奇异:尽管石墨烯是单原子厚的,但它吸收大量的白光,并且它的透明度由精细的结构常数控制,该结构常数通常与量子电动力学而不是凝聚态物质物理有关。Due to its crystal structure, graphene behaves as a semi-metallic material whose low-energy excitations behave as massless Dirac fermions. Therefore, graphene exhibits unusual transport properties, like the unusual quantum Hall effect and Klein tunneling. Its optical properties are bizarre: Although graphene is a single atom thick, it absorbs a lot of white light, and its transparency is governed by a fine structural constant, which is usually associated with quantum electrodynamics rather than condensed matter physics.

目前研究结构光的努力一方面用于理解和产生扭转光束,另一方面用于研究与粒子、原子和分子以及玻色-爱因斯坦凝聚体的相互作用。Current efforts to study structured light serve to understand and generate twisted beams on the one hand, and to study interactions with particles, atoms and molecules, and Bose-Einstein condensates on the other.

因此,如图81中所示,可以使OAM光束8102与石墨烯8104相互作用,以使经OAM处理的光子能够改变石墨烯8104中粒子的状态。石墨烯8104与光8102的相互作用已用不同的方法进行了理论上的研究,例如通过计算光导电率或控制光电流。对石墨烯8104与携带光的OAM 8102的相互作用的研究是有趣的,因为世界正在朝着使用石墨烯的特性用于许多不同应用的方向发展。因为扭转光8102具有轨道角动量,所以可以期望OAM从光子转移到石墨烯8104中的电子。然而,由于石墨烯8104的低位激发是狄拉克费米子的事实而使分析复杂化,狄拉克费米子的OAM未被明确定义。然而,存在与石墨烯8104的蜂窝晶格相关的另一个角动量,称为伪自旋,并且总角动量(轨道加伪自旋)是守恒的。Thus, as shown in FIG. 81 , the OAM beam 8102 can be made to interact with the graphene 8104 to enable the OAM-processed photons to change the state of the particles in the graphene 8104 . The interaction of graphene 8104 with light 8102 has been theoretically studied in different ways, such as by calculating photoconductivity or controlling photocurrent. The study of the interaction of graphene 8104 with light-carrying OAM 8102 is interesting as the world is moving towards using the properties of graphene for many different applications. Because twisted light 8102 has orbital angular momentum, OAM transfer from photons to electrons in graphene 8104 can be expected. However, the analysis is complicated by the fact that the lower excitations of graphene 8104 are Dirac fermions, the OAM of Dirac fermions is not well defined. However, there is another angular momentum associated with the honeycomb lattice of graphene 8104, called pseudo-spin, and the total angular momentum (orbital plus pseudo-spin) is conserved.

在本文中描述的相互作用哈密顿量可以用于研究石墨烯与扭转光的相互作用,并计算相关的物理可观测值,例如光感应电流和角动量从光到材料的电子粒子的转移。The interaction Hamiltonian described in this paper can be used to study the interaction of graphene with twisted light and to calculate related physical observables, such as the photo-induced current and the transfer of angular momentum from light to electron particles in the material.

石墨烯的低能态是双组分旋光体。这些自旋体不是电子的自旋态,而是与物理晶格相关的。每个分量与蜂窝晶格的每个子晶格中的布洛赫函数的相对幅度相关。它们具有SU(2)代数。该自由度是伪自旋。它在哈密顿量中起作用,就像在狄拉克哈密顿量中由正则自旋起作用一样。它具有相同的SU(2)代数,但是与连接质子和中子的同位旋对称性不同,伪自旋是角动量。在所有电子都位于A位点的状态下,这种伪自旋将在z方向(包含石墨烯盘的平面之外)指向上方,而如果电子位于B子晶格中,它将在z方向向下。The low energy state of graphene is a two-component optically active body. These spin bodies are not spin states of electrons, but are related to the physical lattice. Each component is related to the relative magnitude of the Bloch function in each sublattice of the honeycomb lattice. They have SU(2) algebras. This degree of freedom is a pseudo-spin. It works in the Hamiltonian as it does in the Dirac Hamiltonian by the canonical spin. It has the same SU(2) algebra, but instead of the isospin symmetry connecting protons and neutrons, the pseudospin is angular momentum. In a state where all electrons are in the A-site, this pseudo-spin will point upward in the z-direction (out of the plane containing the graphene disk), whereas if the electrons are in the B sublattice, it will be in the z-direction Down.

具有石墨烯晶格的相互作用哈密顿量OAM(蜂窝)Interacting Hamiltonian OAM (Honeycomb) with Graphene Lattice

现在参考图82,示出了蜂窝结构中的石墨烯晶格。如果T1和T2是布拉维(Bravais)晶格的基向量,并且k和k′是第一布里渊(Brillouin)区的角,则哈密顿量是:Referring now to Figure 82, a graphene lattice in a honeycomb structure is shown. If T1 and T2 are the basis vectors of the Bravais lattice, and k and k' are the corners of the first Brillouin zone, then the Hamiltonian is:

Figure BDA0003553842120000671
Figure BDA0003553842120000671

晶格上的碳原子分离度为

Figure BDA0003553842120000672
如果将该矩阵对角化,则得到代表石墨烯能带的能量本征值。The degree of separation of carbon atoms on the lattice is
Figure BDA0003553842120000672
If this matrix is diagonalized, the energy eigenvalues representing the graphene energy bands are obtained.

Figure BDA0003553842120000681
Figure BDA0003553842120000681

如果k=K+(qx,qy)If k=K+(qx, q y )

Figure BDA0003553842120000682
对于qxa《1but
Figure BDA0003553842120000682
For q x a < 1

qy0《1q y 0 < 1

因此对于2D哈密顿量:So for a 2D Hamiltonian:

Figure BDA0003553842120000683
泡利矩阵
Figure BDA0003553842120000683
Pauli matrix

m=±1m=±1

其中费米速度等于:where the Fermi velocity is equal to:

Figure BDA0003553842120000684
比c慢约300倍
Figure BDA0003553842120000684
~300 times slower than c

这些哈密顿量的本征态是具有2分量的旋量,该2分量是晶格基的2个元素。The eigenstates of these Hamiltonians are spinors with 2 components, which are the 2 elements of the lattice basis.

对于半径为r0的圆形石墨烯,低能态可以在圆柱坐标中找到,其中For circular graphene with radius r0 , the low energy state can be found in cylindrical coordinates, where

Figure BDA0003553842120000685
Figure BDA0003553842120000685

其中xmv的Jm(x)为零。where J m (x) of x mv is zero.

为了研究石墨烯与OAM束的相互作用,检验了OAM算符

Figure BDA0003553842120000686
的z分量,则哈密顿量与OAM之间的交换关系为:To study the interaction of graphene with OAM beams, the OAM operator was examined
Figure BDA0003553842120000686
The z component of , then the exchange relationship between the Hamiltonian and OAM is:

Figure BDA0003553842120000687
Figure BDA0003553842120000687

为了构造守恒的角动量,将伪自旋加到Lz上,并且总角动量是:To construct conserved angular momentum, pseudo-spin is added to L z , and the total angular momentum is:

Figure BDA0003553842120000688
Figure BDA0003553842120000688

该算符确实可与哈密顿量交换,并且The operator is indeed commutative with the Hamiltonian, and

Figure BDA0003553842120000689
接近k或k′
Figure BDA0003553842120000689
close to k or k′

相互作用哈密顿量Interacting Hamiltonian

我们知道库仑规范中OAM光束的矢量电势是:We know that the vector potential of an OAM beam in Coulomb gauge is:

Figure BDA00035538421200006810
Figure BDA00035538421200006810

其中

Figure BDA00035538421200006811
偏振矢量σ=±1in
Figure BDA00035538421200006811
Polarization vector σ=±1

光束的径向部分是贝塞尔函数Jl(qr)和Jl+r(qr)。也可以使用拉盖尔-高斯函数代替贝塞尔函数。这里qz和q用于结构化光,qx,qy,qmv用于电子。The radial parts of the beam are the Bessel functions J l (qr) and J l+r (qr). It is also possible to use the Laguerre-Gaussian function instead of the Bessel function. Here q z and q are for structured light, q x , q y , q mv for electrons.

为了构造相互作用哈密顿量:To construct the interacting Hamiltonian:

Figure BDA0003553842120000691
Figure BDA0003553842120000691

but

Figure BDA0003553842120000692
Figure BDA0003553842120000692

由于石墨烯是2D的,因此EM场只有x、y值。Since graphene is 2D, the EM field has only x, y values.

在z=0(石墨烯圆盘)处,矢量电势是:At z=0 (graphene disk), the vector potential is:

Figure BDA0003553842120000693
Figure BDA0003553842120000693

让我们使A+=A0e-iωtJl(qr)eilθ 1光子的吸收Let us make A + =A 0 e -iωt J l (qr)e ilθ 1 photon absorption

A-=A0e-iωtJl(qr)e-ilθ 1光子的发射A-=A 0 e -iωt J l (qr)e -ilθ 1 photon emission

那么接近狄拉克点α的相互作用哈密顿量为:Then the interaction Hamiltonian close to the Dirac point α is:

Figure BDA0003553842120000694
Figure BDA0003553842120000694

对于α=1(接近K)和σ=+1For α=1 (closer to K) and σ=+1

Figure BDA0003553842120000695
Figure BDA0003553842120000695

对于α=-1(接近K’)和σ=+1For α=-1 (closer to K') and σ=+1

Figure BDA0003553842120000696
Figure BDA0003553842120000696

然后跃迁矩阵变为:Then the transition matrix becomes:

Figure BDA0003553842120000697
Figure BDA0003553842120000697

其中接近K:where close to K:

Figure BDA0003553842120000698
Figure BDA0003553842120000698

其中

Figure BDA0003553842120000699
如前所述in
Figure BDA0003553842120000699
as mentioned

Figure BDA00035538421200006910
跃迁率
Figure BDA00035538421200006910
transition rate

用于基因编辑和分子操作的OAM辅助脆化(一种新的OAM和物质相互作用)OAM-assisted embrittlement for gene editing and molecular manipulation (a novel OAM and matter interaction)

目前最先进的CRISPR技术是CRISPR-Cas9。CRISPR-Cas9是一种使用酶的技术,该酶使用CRISPR序列作为指导来识别和切割与CRISPR序列互补的特定DNA链。它是由细菌中自然产生的基因组编辑系统产生的。细菌捕获来自攻击病毒的DNA片段,并使用它们产生DNA片段(CRISPR阵列)。细菌从CRISPR阵列产生RNA片段以靶向病毒的DNA。然后,细菌使用Cas9将脱氧核糖核酸切开,使病毒失效。Cas9也在实验室中工作。科学家产生一小段RNA,其具有短的“引导序列”,该“引导序列”附着(结合)到基因组中特定的DNA靶序列。该工程化的引导序列的实验室创建是OAM可以发挥作用的地方。与细菌一样,修饰的RNA用于识别DNA序列,并且工程化序列在目标位置切割DNA。一旦DNA被切割,细胞自身的DNA修复机械可用于添加或删除遗传物质片段,或通过用定制的DNA序列替换现有片段来改变DNA。因此,OAM辅助CRISPR可用于修饰RNA或在目标位置切割DNA。The current state-of-the-art CRISPR technology is CRISPR-Cas9. CRISPR-Cas9 is a technology that uses an enzyme that uses the CRISPR sequence as a guide to recognize and cut a specific strand of DNA that is complementary to the CRISPR sequence. It is produced by a genome editing system that occurs naturally in bacteria. Bacteria capture DNA fragments from the attacking virus and use them to generate DNA fragments (CRISPR arrays). Bacteria produce RNA fragments from CRISPR arrays to target viral DNA. The bacteria then use Cas9 to cut open the DNA, rendering the virus ineffective. Cas9 is also working in the lab. Scientists generate short pieces of RNA with short "guide sequences" that attach (bind) to specific DNA target sequences in the genome. The laboratory creation of this engineered guide sequence is where OAM can come into play. Like bacteria, modified RNAs are used to recognize DNA sequences, and the engineered sequences cut the DNA at target locations. Once the DNA is cut, the cell's own DNA repair machinery can be used to add or remove fragments of genetic material, or to alter the DNA by replacing existing fragments with custom-made DNA sequences. Therefore, OAM-assisted CRISPR can be used to modify RNA or cut DNA at a target location.

目前,对基因组编辑的大多数研究是为了使用细胞和动物模型来理解疾病。目前正在研究各种疾病,包括单基因疾病如囊性纤维化、血友病和镰状细胞疾病。它还可用于治疗和预防更复杂的疾病,例如癌症、心脏病、精神疾病和HIV感染。Currently, most research into genome editing is done to understand disease using cells and animal models. A variety of diseases are currently being studied, including monogenic diseases such as cystic fibrosis, hemophilia, and sickle cell disease. It can also be used to treat and prevent more complex diseases such as cancer, heart disease, mental illness and HIV infection.

通过基因编辑引入的大多数改变局限于体细胞,体细胞是除卵细胞和精子细胞之外的细胞。这些变化仅影响某些组织,而不是从一代传到下一代。然而,对卵细胞或精子细胞(生殖系细胞)中的基因或胚胎基因的改变可传递给后代。Most of the changes introduced through gene editing are limited to somatic cells, which are cells other than egg and sperm cells. These changes only affect certain organizations and are not passed from one generation to the next. However, changes to genes in egg cells or sperm cells (germline cells) or embryonic genes can be passed on to offspring.

OAM可以在实验室中用于产生称为OAM辅助CRISPR的用于基因编辑的“引导序列”。在实验室中使用OAM来产生“引导序列”的非细菌方法与OAM辅助CRISPR很好地接近。OAM辅助CRISPR可以影响精确遗传学和精确制药工业。OAM can be used in the laboratory to generate "guide sequences" called OAM-assisted CRISPR for gene editing. The non-bacterial method of using OAM to generate "guide sequences" in the laboratory is a good approximation to OAM-assisted CRISPR. OAM-assisted CRISPR could impact precision genetics and the precision pharmaceutical industry.

因此,如图83中所示,CRISPR-Cas9系统8302和注入了OAM的光束8304的组合可应用于基因序列8306。OAM辅助的CRISPR-Cas9系统将导致移除期望的基因序列8308,并提供具有移除的序列8308的修订的基因序列8310,其可以以期望的方式被另一序列替换。Thus, as shown in FIG. 83, the combination of CRISPR-Cas9 system 8302 and OAM-infused beam 8304 can be applied to gene sequence 8306. The OAM-assisted CRISPR-Cas9 system will result in the removal of the desired gene sequence 8308 and provide a revised gene sequence 8310 with the removed sequence 8308, which can be replaced by another sequence in the desired manner.

本领域的技术人员将理解,这种用于固体状态、生物科学和量子计算中的OAM与应用的相互作用的量子机械框架提供了一种改进的方式,用于允许使用OAM处理的光束来赋予各种类型的材料的电子OAM。应当理解,这里的附图和详细描述将以说明性而不是限制性的方式来看待,并且不旨在限制所公开的特定形式和示例。相反,所包括的是对本领域普通技术人员显而易见的任何进一步的修改、改变、重新布置、替换、替代、设计选择和实施例,而不背离如以下权利要求所限定的本发明的精神和范围。因此,以下权利要求被解释为包括所有这些进一步的修改、改变、重新布置、替换、替代、设计选择和实施例。Those skilled in the art will appreciate that this quantum-mechanical framework for the interaction of OAM with applications in solid state, biological science and quantum computing provides an improved way to allow the use of OAM-processed beams to impart Electronic OAM for various types of materials. It is to be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive sense, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, substitutions, design choices and embodiments apparent to those of ordinary skill in the art without departing from the spirit and scope of the invention as defined by the following claims. Accordingly, the following claims are to be construed to include all such further modifications, changes, rearrangements, substitutions, substitutions, design choices and embodiments.

Claims (30)

1.一种用于对半导体材料的电子施加轨道角动量(OAM)的方法,包括:1. A method for imparting orbital angular momentum (OAM) to electrons of a semiconductor material, comprising: 生成平面波光束;Generate a plane wave beam; 将至少一个轨道角动量施加到所述平面波光束以生成OAM光束;applying at least one orbital angular momentum to the plane wave beam to generate an OAM beam; 响应于施加到所述平面波光束的所述至少一个轨道角动量来控制在所述半导体材料内电子在量子化状态之间的跃迁;以及controlling transitions of electrons between quantized states within the semiconductor material in response to the at least one orbital angular momentum applied to the plane wave beam; and 在所述半导体材料处发射所述OAM光束以诱导在所述半导体材料内所述电子在所述量子化状态之间的所述跃迁。The OAM beam is emitted at the semiconductor material to induce the transitions of the electrons between the quantized states within the semiconductor material. 2.根据权利要求1所述的方法,其中,所述控制的步骤进一步包括:响应于所述OAM光束与半导体材料的相互作用而控制所述半导体材料内的自由载流子的产生水平而不是控制激子的产生水平。2. The method of claim 1, wherein the step of controlling further comprises controlling the level of free carrier generation within the semiconductor material in response to the interaction of the OAM beam with the semiconductor material rather than Control the level of exciton production. 3.根据权利要求1所述的方法,其中,控制所述跃迁的步骤进一步包括:将所述量子化状态定义为两带模型并且控制电子在第一带与第二带之间的跃迁。3. The method of claim 1, wherein the step of controlling the transition further comprises defining the quantized state as a two-band model and controlling the transition of electrons between a first band and a second band. 4.根据权利要求1所述的方法,其中,所述控制的步骤进一步包括:构建半经典哈密顿量,其中,量子力学算符定义所述半导体材料内的电子的行为,并且裸电子能和相互作用哈密顿量定义所述OAM光束内的光子的行为。4. The method of claim 1, wherein the step of controlling further comprises: constructing a semiclassical Hamiltonian, wherein a quantum mechanical operator defines the behavior of electrons within the semiconductor material, and the bare electron energy and The interaction Hamiltonian defines the behavior of photons within the OAM beam. 5.根据权利要求4所述的方法,其中,具有电子的光子的相互作用哈密顿量提供具有所述OAM光束的所述OAM的期望值的本征向量。5. The method of claim 4, wherein the interacting Hamiltonian of photons with electrons provides eigenvectors with expected values of the OAM of the OAM beam. 6.根据权利要求1所述的方法,其中,所述传输的步骤进一步将所述光束的所述OAM从所述OAM光束的所述光子转移到所述半导体材料的所述电子。6. The method of claim 1, wherein the step of transferring further transfers the OAM of the beam from the photons of the OAM beam to the electrons of the semiconductor material. 7.根据权利要求6所述的方法,还包括:将响应于所述光束的所述OAM从所述光束的所述光子转移到所述半导体材料的所述电子而产生电流和磁场。7. The method of claim 6, further comprising generating an electric current and a magnetic field by transferring the OAM of the light beam from the photons of the light beam to the electrons of the semiconductor material. 8.根据权利要求7所述的方法,还包括:确定所产生的所述电流和所产生的所述磁场的总电流和总磁场。8. The method of claim 7, further comprising determining a total current and total magnetic field of the current generated and the magnetic field generated. 9.根据权利要求8所述的方法,其中,所述确定的步骤包括以下步骤:9. The method of claim 8, wherein the step of determining comprises the steps of: 确定所述半导体材料内的光激发电子的总数;determining the total number of photoexcited electrons within the semiconductor material; 确定由单电子产生的第一电流和第一磁场;以及determining a first current and a first magnetic field produced by the single electron; and 将所述光激发电子的总数乘以所述第一电流和所述第一磁场中的每一者以确定所述总电流和所述总磁场。The total number of photoexcited electrons is multiplied by each of the first current and the first magnetic field to determine the total current and the total magnetic field. 10.根据权利要求1所述的方法,其中,所述控制的步骤进一步包括:确定由所述OAM光束施加到所述半导体材料的电子上的所述OAM,所述确定的步骤进一步包括:10. The method of claim 1, wherein the step of controlling further comprises: determining the OAM applied by the OAM beam to electrons of the semiconductor material, the step of determining further comprising: 确定所述OAM光束的平均场;以及determining the mean field of the OAM beam; and 确定由碰撞项修改的所述OAM光束的所述平均场,其中所述碰撞项描述响应于光激发电子的碰撞而发生的散射过程。The mean field of the OAM beam modified by a collision term is determined, wherein the collision term describes a scattering process that occurs in response to collisions of photoexcited electrons. 11.根据权利要求1所述的方法,其中,所述控制的步骤进一步包括:通过将所述半导体视为体系统来确定将OAM从所述OAM光束的所述光子向所述半导体材料的所述电子的施加,所述确定的步骤进一步包括:11. The method of claim 1 , wherein the step of controlling further comprises determining where the OAM is directed from the photons of the OAM beam to the semiconductor material by treating the semiconductor as a bulk system. The application of the electrons, the step of determining further comprises: 将所述半导体材料想象成圆柱体;imagine the semiconductor material as a cylinder; 以圆柱坐标量化所述半导体材料中的所述电子的电子态;quantifying the electronic state of the electrons in the semiconductor material in cylindrical coordinates; 响应于经量化的所述电子态来确定包括所述半导体材料的大系统的极限。A limit of a large system including the semiconductor material is determined in response to the quantified electronic state. 12.根据权利要求1所述的方法,其中,所述控制步骤进一步包括:通过将所述半导体视为体系统来确定将OAM从所述OAM光束的所述光子向所述半导体材料的所述电子的施加,所述确定的步骤进一步包括:12. The method of claim 1, wherein the controlling step further comprises determining the OAM from the photons of the OAM beam to the semiconductor material by treating the semiconductor as a bulk system the application of electrons, the step of determining further comprising: 确定所述半导体材料的电子的广义块态;以及determining the generalized bulk state of the electrons of the semiconductor material; and 响应于所述广义布洛赫态来预测所述半导体材料中的电子的动力学;以及predicting the dynamics of electrons in the semiconductor material in response to the generalized Bloch state; and 确定所述半导体材料中的所述电子的电流。A current of the electrons in the semiconductor material is determined. 13.根据权利要求1所述的方法,其中,所述控制的步骤还包括:使用二次量化来控制在所述半导体材料内所述电子在量子化状态之间的跃迁。13. The method of claim 1, wherein the step of controlling further comprises using quadratic quantization to control transitions of the electrons between quantized states within the semiconductor material. 14.根据权利要求1所述的方法,其中,所述控制的步骤进一步包括:使用基于马约拉纳粒子建模的光子行为来控制在所述半导体材料内所述电子在量子化状态之间的跃迁。14. The method of claim 1, wherein the step of controlling further comprises: controlling the electrons between quantized states within the semiconductor material using photon behavior based on Majorana particle modeling 's transition. 15.根据权利要求14所述的方法,其中,所述控制步骤进一步包括:使用基于马约拉纳粒子建模的所述OAM光束内的光子对所述半导体材料内的电子进行编织的步骤,其中,信息被存储在经编织的电子内。15. The method of claim 14, wherein the controlling step further comprises the step of weaving electrons within the semiconductor material using photons within the OAM beam modeled based on Majorana particles, Therein, information is stored within the woven electronics. 16.根据权利要求15所述的方法,其中,所述编织的步骤进一步包括:将第一编织物的底行附接到第二编织物的顶行以形成群的步骤。16. The method of claim 15, wherein the step of braiding further comprises the step of attaching a bottom row of a first braid to a top row of a second braid to form a cluster. 17.根据权利要求15所述的方法,其中,所述编织的步骤在腔中使用Y结来执行,其中由旋转波近似构造的哈密顿量以所述腔的频率在所述腔中将电子态与光子耦合。17. The method of claim 15, wherein the step of weaving is performed using a Y-knot in a cavity in which a Hamiltonian constructed by a rotational wave approximation converts electrons at the cavity's frequency. state and photon coupling. 18.根据权利要求14所述的方法,其中,所述编织的步骤进一步响应于温度控制并且四元数代数描述所述电子的编织态。18. The method of claim 14, wherein the step of weaving is further responsive to temperature control and quaternion algebra describing the electronic state of weaving. 19.一种用于向半导体材料的电子施加轨道角动量(OAM)的系统,包括:19. A system for imparting orbital angular momentum (OAM) to electrons of a semiconductor material, comprising: 光源生成器,用于生成平面波光束;a light source generator for generating a plane wave beam; 轨道角动量(OAM)处理电路,用于将至少一个轨道角动量施加到平面波光束以生成OAM光束,其中,所述OAM处理电路响应于施加到所述平面波光束的所述至少一个轨道角动量而控制在所述半导体材料内电子在量子化状态之间的跃迁;以及an orbital angular momentum (OAM) processing circuit for applying at least one orbital angular momentum to a plane wave beam to generate an OAM beam, wherein the OAM processing circuit is responsive to the at least one orbital angular momentum applied to the plane wave beam controlling the transition of electrons between quantized states within the semiconductor material; and 发射机,用于在所述半导体材料处发射所述OAM光束以诱导在所述半导体材料内所述电子在所述量子化状态之间的跃迁。a transmitter for emitting the OAM beam at the semiconductor material to induce transitions of the electrons between the quantized states within the semiconductor material. 20.根据权利要求19所述的系统,其中,所述OAM处理电路响应于所述OAM光束与半导体材料的相互作用而控制所述半导体材料内的自由载流子的产生水平,而不是控制激子的产生水平。20. The system of claim 19, wherein the OAM processing circuit controls the generation level of free carriers within the semiconductor material in response to the interaction of the OAM beam with the semiconductor material rather than controlling the laser sub-production level. 21.根据权利要求19所述的系统,其中,所述OAM处理电路控制电子在两带模型内的第一带与第二带之间的跃迁。21. The system of claim 19, wherein the OAM processing circuit controls the transition of electrons between a first band and a second band within a two band model. 22.根据权利要求19所述的系统,其中,将所述光束的所述OAM从所述OAM光束的所述光子转移到所述半导体材料的所述电子。22. The system of claim 19, wherein the OAM of the beam is transferred from the photons of the OAM beam to the electrons of the semiconductor material. 23.根据权利要求22所述的系统,其中,将响应于所述光束的所述OAM从所述OAM光束的所述光子转移到所述半导体材料的所述电子而产生电流和磁场。23. The system of claim 22, wherein transferring the OAM of the beam from the photons of the OAM beam to the electrons of the semiconductor material generates an electric current and a magnetic field. 24.根据权利要求19所述的系统,其中,所述OAM处理电路通过以下方式来确定将OAM从所述OAM光束的光子向所述半导体材料的所述电子的施加:通过确定所述半导体材料的电子的广义块态将所述半导体视为体系统;响应于所述广义布洛赫状态来预测所述半导体材料中的电子的动力学;以及确定所述半导体材料中的所述电子的电流。24. The system of claim 19, wherein the OAM processing circuit determines the application of OAM from photons of the OAM beam to the electrons of the semiconductor material by determining the semiconductor material generalized bulk states of electrons treating the semiconductor as a bulk system; predicting the dynamics of electrons in the semiconductor material in response to the generalized Bloch state; and determining the current flow of the electrons in the semiconductor material . 25.根据权利要求19所述的系统,其中,所述OAM处理电路使用二次量化来控制在所述半导体材料内所述电子在量子化状态之间的跃迁。25. The system of claim 19, wherein the OAM processing circuit uses quadratic quantization to control transitions of the electrons between quantized states within the semiconductor material. 26.根据权利要求19所述的系统,其中,所述OAM处理电路使用基于马约拉纳粒子建模的光子行为来控制在所述半导体材料内所述电子在量子化状态之间的跃迁。26. The system of claim 19, wherein the OAM processing circuit controls transitions of the electrons between quantized states within the semiconductor material using photon behavior based on Majorana particle modeling. 27.根据权利要求26所述的系统,其中,所述OAM处理电路使用基于马约拉纳粒子建模的所述OAM光束内的光子来对所述半导体材料内的电子进行编织,其中信息被存储在经编织的电子内。27. The system of claim 26, wherein the OAM processing circuit uses photons within the OAM beam modeled based on Majorana particles to weave electrons within the semiconductor material, wherein information is Stored within the woven electronics. 28.根据权利要求27所述的系统,其中,所述OAM处理电路将第一编织物的底行附接到第二编织物的顶行以形成群。28. The system of claim 27, wherein the OAM processing circuit attaches a bottom row of a first braid to a top row of a second braid to form a cluster. 29.根据权利要求27所述的系统,还包括腔中的Y结,用于将所发射的OAM光束施加到所述半导体材料,其中由旋转波近似构造的哈密顿量以所述腔的频率在所述腔中将电子态与光子耦合。29. The system of claim 27, further comprising a Y-junction in a cavity for applying the emitted OAM beam to the semiconductor material, wherein the Hamiltonian constructed by the rotating wave approximation is at the frequency of the cavity Electronic states are coupled to photons in the cavity. 30.根据权利要求27所述的系统,其中,所述OAM处理电路响应于温度控制来控制编织并且四元数代数描述所述电子的编织态。30. The system of claim 27, wherein the OAM processing circuit controls the weave in response to temperature control and quaternion algebra describes the state of the electron's weave.
CN202080065884.2A 2019-09-18 2020-01-23 Quantum mechanics framework for OAM interaction with matter and applications in solid state, bioscience and quantum computing Pending CN114503019A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962902146P 2019-09-18 2019-09-18
US62/902,146 2019-09-18
US16/660,246 2019-10-22
US16/660,246 US10726353B2 (en) 2015-08-03 2019-10-22 Quantum mechanical framework for interaction of OAM with matter and applications in solid states, biosciences and quantum computing
PCT/US2020/014733 WO2021055000A1 (en) 2019-09-18 2020-01-23 Quantum mechanical framework for interaction of oam with matter and applications in solid states, biosciences and quantum computing

Publications (1)

Publication Number Publication Date
CN114503019A true CN114503019A (en) 2022-05-13

Family

ID=74884157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080065884.2A Pending CN114503019A (en) 2019-09-18 2020-01-23 Quantum mechanics framework for OAM interaction with matter and applications in solid state, bioscience and quantum computing

Country Status (3)

Country Link
KR (1) KR20220063173A (en)
CN (1) CN114503019A (en)
WO (1) WO2021055000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115718394A (en) * 2022-09-08 2023-02-28 暨南大学 Chaos light source system based on non-Hermite enhanced topology protection
CN118890099A (en) * 2024-08-16 2024-11-01 长江大学 A coded optical communication method and system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2881033C (en) 2015-02-03 2016-03-15 1Qb Information Technologies Inc. Method and system for solving lagrangian dual of a constrained binary quadratic programming problem
US11797641B2 (en) 2015-02-03 2023-10-24 1Qb Information Technologies Inc. Method and system for solving the lagrangian dual of a constrained binary quadratic programming problem using a quantum annealer
JP7288905B2 (en) 2017-12-01 2023-06-08 1キュービー インフォメーション テクノロジーズ インコーポレイテッド Systems and methods for stochastic optimization of robust estimation problems
CA3121561A1 (en) 2018-12-06 2020-06-11 1Qb Information Technologies Inc. Artificial intelligence-driven quantum computing
CA3126553A1 (en) 2019-06-19 2020-12-24 1Qb Information Technologies Inc. Method and system for mapping a dataset from a hilbert space of a given dimension to a hilbert space of a different dimension
US12051005B2 (en) 2019-12-03 2024-07-30 1Qb Information Technologies Inc. System and method for enabling an access to a physics-inspired computer and to a physics-inspired computer simulator
CA3199544A1 (en) * 2020-11-19 2022-06-30 Psiquantum, Corp. Method and system for multiplexing signals
CN113446984B (en) * 2021-05-22 2022-04-19 西安电子科技大学 Orbital angular momentum detection probability optimization selection method, system, medium and terminal
CN113489549B (en) * 2021-06-21 2022-05-13 清华大学 A method, device, computer storage medium and terminal for dissociating molecular ions
JP2024528499A (en) * 2021-07-01 2024-07-30 ワンキュービー インフォメーション テクノロジーズ インク. Method and system for solving integer or mixed integer programming problems using circuit-based continuously variable quantum optical devices - Patents.com
CN113488114B (en) * 2021-07-13 2024-03-01 南京邮电大学 Prediction method for intermolecular non-covalent bond weak interaction energy in fluorenyl molecular crystal containing spiro and prediction model training method thereof
US12200114B1 (en) * 2021-10-21 2025-01-14 Wells Fargo Bank, N.A. Systems and methods for mobile quantum key distribution
US20230237359A1 (en) * 2022-01-25 2023-07-27 SavantX, Inc. Active quantum memory systems and techniques for mitigating decoherence in a quantum computing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664194A (en) * 2014-04-04 2017-05-10 尼克根合伙Ip有限责任公司 System and method for communication using orbital angular momentum with multiple layer overlay modulation
US20170141287A1 (en) * 2015-09-20 2017-05-18 Microsoft Technology Licensing, Llc Universal topological quantum computers based on majorana nanowire networks
US20180165601A1 (en) * 2016-12-08 2018-06-14 Microsoft Technology Licensing, Llc Tomography and generative data modeling via quantum boltzmann training

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451902B2 (en) * 2014-08-08 2019-10-22 Nxgen Partners Ip, Llc Suppression of electron-hole recombination using orbital angular momentum semiconductor devices
US20160222039A1 (en) * 2015-01-29 2016-08-04 Nanyang Technological University Spintronic materials and spintronic devices including the spintronic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664194A (en) * 2014-04-04 2017-05-10 尼克根合伙Ip有限责任公司 System and method for communication using orbital angular momentum with multiple layer overlay modulation
US20170141287A1 (en) * 2015-09-20 2017-05-18 Microsoft Technology Licensing, Llc Universal topological quantum computers based on majorana nanowire networks
US20180165601A1 (en) * 2016-12-08 2018-06-14 Microsoft Technology Licensing, Llc Tomography and generative data modeling via quantum boltzmann training

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G F QUINTEIRO, P I TAMBORENEA: "Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics", PHYSICAL REVIEW, no. 82, 14 September 2010 (2010-09-14), pages 1 - 10 *
G. F. QUINTEIRO, P. I. TAMBORENEA: "Theory of the optical absorption of light carrying orbital angular momentum by semiconductors", EPL JOURNAL, vol. 85, 16 February 2009 (2009-02-16), pages 47001, XP020151047 *
MIRCEA TRIF AND PASCAL SIMON: "Braiding of Majorana Fermions in a Cavity", PHYSICAL REVIEW LETTERS, vol. 122, 14 June 2019 (2019-06-14), pages 1 - 5 *
MIRCEA TRIF AND PASCAL SIMON: "Photon assisted braiding of Majorana fermions in a cavity", PHYS. REV. LETT., vol. 122, no. 23, 14 June 2019 (2019-06-14), pages 236803 - 1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115718394A (en) * 2022-09-08 2023-02-28 暨南大学 Chaos light source system based on non-Hermite enhanced topology protection
CN115718394B (en) * 2022-09-08 2023-08-18 暨南大学 A Chaotic Light Source System Based on Non-Helmite Enhanced Topological Protection
CN118890099A (en) * 2024-08-16 2024-11-01 长江大学 A coded optical communication method and system

Also Published As

Publication number Publication date
KR20220063173A (en) 2022-05-17
WO2021055000A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US11164104B2 (en) Quantum mechanical framework for interaction of OAM with matter and applications in solid states, biosciences and quantum computing
CN114503019A (en) Quantum mechanics framework for OAM interaction with matter and applications in solid state, bioscience and quantum computing
US11514352B2 (en) Universal quantum computer, communication, QKD security and quantum networks using OAM Qu-dits with digital light processing
Horodecki Quantum information
Couteau et al. Applications of single photons to quantum communication and computing
US11170318B2 (en) Multi-photon, multi-dimensional hyper-entanglement using higher-order radix qudits with applications to quantum computing, QKD and quantum teleportation
Djordjevic Quantum Communication, Quantum Networks, and Quantum Sensing
Wagenknecht et al. Experimental demonstration of a heralded entanglement source
Kok et al. Introduction to optical quantum information processing
US7875876B1 (en) Scalable quantum computer
US20240275495A1 (en) Integrated Photonic Chip System for Distributed Secure Quantum Information Processing
Wang et al. Experimental demonstration of a quantum controlled-SWAP gate with multiple degrees of freedom of a single photon
Zeydan et al. Quantum Technologies for Beyond 5G and 6G Networks: Applications, Opportunities, and Challenges
Dey et al. Quantum teleportation in higher dimension and entanglement distribution via quantum switches
Jenkins et al. Quantum telecommunication with atomic ensembles
McMahon et al. Towards quantum repeaters with solid-state qubits: spin-photon entanglement generation using self-assembled quantum dots
Chaurasiya et al. Photonic quantum computing
Du et al. Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities
Gyongyosi et al. Distributed quantum computation for near-term quantum environments
Krishnamurthi et al. A Comprehensive Overview of Quantum Internet: Architecture, Protocol and Challenges
Ren et al. Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements
Brennen et al. Non-locality of non-Abelian anyons
D'Errico et al. Quantum applications of structured photons
Ding et al. Electronic entanglement concentration for the concatenated Greenberger-Horne-Zeilinger state
Pont Multi-photon quantum interference and entanglement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination