CN114510040A - Time-sharing coordination control method for wheeled mobile robot group terminal - Google Patents
Time-sharing coordination control method for wheeled mobile robot group terminal Download PDFInfo
- Publication number
- CN114510040A CN114510040A CN202210056864.XA CN202210056864A CN114510040A CN 114510040 A CN114510040 A CN 114510040A CN 202210056864 A CN202210056864 A CN 202210056864A CN 114510040 A CN114510040 A CN 114510040A
- Authority
- CN
- China
- Prior art keywords
- mobile robot
- time
- wheeled mobile
- robot
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域:Technical field:
本发明涉及多智能体控制技术领域,具体而言,尤其涉及一种轮式移动机器人群组终端时间分时协调控制方法。The invention relates to the technical field of multi-agent control, in particular, to a time-sharing coordinated control method for a wheeled mobile robot group terminal.
背景技术:Background technique:
利用多智能体协同控制手段实现无人车队列、无人机群等机器人群组实现趋同或编队,现阶段已经有相关的算法和理论研究。但受限于实际环境影响,在某些情形下机器人群组需要按照规定的时间间隔通过目标位置或其他终端时间约束,比如流水线型资源分配问题,各机器人需要在规定的资源分配站点装载货物、获取订单或更新路线,由于站点处理能力有限等因素,机器人群组需分批通过站点,尽可能减少等待和整体分配时间。Using multi-agent collaborative control methods to achieve convergence or formation of robot groups such as unmanned vehicle queues and drone swarms, there have been related algorithms and theoretical research at this stage. However, due to the influence of the actual environment, in some cases, the robot group needs to pass the target position or other terminal time constraints at the specified time interval, such as the pipeline resource allocation problem, each robot needs to load goods at the specified resource allocation site, To get an order or update a route, due to factors such as the limited processing capacity of the site, the robot group needs to pass through the site in batches to minimize waiting and overall distribution time.
现阶段有关终端时间分时协调控制的文献较少,主要集中于军事领域中的饱和攻击问题。通常利用比例导引法估计导弹命中目标的剩余时间,并作为协调变量实现一致,如现有技术[1](参见Jialing Zhou and Jianying Yang.Distributed Guidance LawDesign for Cooperative Simultaneous Attacks with Multiple Missiles[J].Journalof Guidance,Control,and Dynamics,2016,39(10):2439-2447.);或者指定具体时间,使得导弹在指定时刻到达规定地点,如现有技术[2](参见Jun Zhou,Yang Wang,and BinZhao.Impact-Time-Control Guidance Law for Missile with Time-Varying Velocity[J].Mathematical Problems in Engineering,2016,4:1-14)。现有相关终端时间协调控制技术多为针对终端时间一致性开展研究,暂未发现针对多运动体分时通过目标位置的终端时间分时协调控制研究。尽管导弹指定时刻命中目标的技术可以应用于终端时间分时任务,然而,需事先指定各个运动体的终端时间,导致缺乏实时协调性和鲁棒性,难以抵抗环境干扰。At present, there are few literatures about time-sharing coordinated control of terminal time, mainly focusing on the saturation attack problem in the military field. Usually, the proportional guidance method is used to estimate the remaining time for the missile to hit the target, and it is used as a coordination variable to achieve consistency, such as the prior art [1] (see Jialing Zhou and Jianying Yang. Distributed Guidance LawDesign for Cooperative Simultaneous Attacks with Multiple Missiles [J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2439-2447.); or specify a specific time so that the missile arrives at a specified location at a specified time, as in the prior art [2] (see Jun Zhou, Yang Wang, and BinZhao. Impact-Time-Control Guidance Law for Missile with Time-Varying Velocity [J]. Mathematical Problems in Engineering, 2016, 4: 1-14). The existing related terminal time coordination control technologies are mostly researches on terminal time consistency, and no research on terminal time time sharing coordination control for multi-moving body time-sharing passing through the target position has been found. Although the technology that the missile hits the target at the specified time can be applied to the terminal time-sharing task, however, the terminal time of each moving body needs to be specified in advance, resulting in the lack of real-time coordination and robustness, and it is difficult to resist environmental interference.
本专利提出一种欠驱动轮式移动机器人分时通过目标位置的终端时间协调控制方法,无需事先指定各个轮式移动机器人通过目标位置的终端时间,控制算法具有实时协调性和鲁棒性。此外,本专利的研究对象为欠驱动轮式移动机器人,在运动过程中不可后退,不能全向控制,速度大小及方向不可突变;以轮式移动机器人群组为对象终端时间分时协调控制算法可应用于货运机器人群组分批通过站点、无人车协调分时通过匝道等任务,具有较好的实际应用价值。This patent proposes a terminal time coordination control method for an underdriven wheeled mobile robot to pass the target position in a time-sharing manner, without specifying the terminal time of each wheeled mobile robot to pass the target position in advance, and the control algorithm has real-time coordination and robustness. In addition, the research object of this patent is the under-driven wheeled mobile robot, which cannot retreat during the movement process, cannot be controlled in all directions, and the speed and direction cannot be changed abruptly; the wheeled mobile robot group is the target terminal time-sharing coordinated control algorithm It can be applied to tasks such as groups of freight robots passing through stations in batches, and unmanned vehicles coordinating time-sharing through ramps, etc., and has good practical application value.
发明内容:Invention content:
针对现有技术的不足,本发明提供一种轮式移动机器人群组终端时间分时协调控制方法,给定目标位置和通过间隔,可实现机器人群组自动确定通过次序,并协调分时通过目标位置。In view of the deficiencies of the prior art, the present invention provides a time-sharing coordination control method for a group terminal of a wheeled mobile robot. Given a target position and a passing interval, the robot group can automatically determine the passing order and coordinate the time-sharing passing target. Location.
本发明的具体技术方案如下:The concrete technical scheme of the present invention is as follows:
(1)构建轮式移动机器人与目标位置的相对运动学模型。(1) Build the relative kinematics model of the wheeled mobile robot and the target position.
(2)根据步骤(1)中的运动学模型,建立初始时刻对各轮式移动机器人终端时间的估计,基于此,确定群组中各轮式移动机器人通过目标位置的次序。(2) According to the kinematic model in step (1), establish the estimation of the terminal time of each wheeled mobile robot at the initial moment, and based on this, determine the order in which each wheeled mobile robot in the group passes through the target position.
(3)根据步骤(1)中的运动学模型,利用非光滑控制构建垂直于视线的加速度控制,使得群组中各轮式移动机器人前置角或垂直于视线的速度分量可在固定时间内收敛到零。(3) According to the kinematics model in step (1), the non-smooth control is used to construct the acceleration control perpendicular to the line of sight, so that the lead angle of each wheeled mobile robot in the group or the velocity component perpendicular to the line of sight can be achieved within a fixed time. converges to zero.
(4)根据步骤(1)中的运动学模型,设计各轮式移动机器人的剩余时间估计式,结合分配次序,构建基于信息交互的标准通过误差。利用非光滑控制构建沿视线方向的加速度控制,可使得标准通过误差在固定时间内收敛到零。(4) According to the kinematic model in step (1), the remaining time estimation formula of each wheeled mobile robot is designed, and the standard passing error based on information interaction is constructed in combination with the allocation order. Constructing the acceleration control along the line of sight with non-smooth control can make the standard passing error converge to zero in a fixed time.
(5)根据通信网络结构和轮式移动机器人群组通过情况及步骤(3)(4)所设计的沿着视线方向和垂直于视线方向的加速度控制方案,构建轮式移动机器人切向加速度与法向加速度控制。(5) According to the communication network structure and the passing situation of the wheeled mobile robot group and the acceleration control scheme along the line of sight and perpendicular to the line of sight designed in steps (3) and (4), construct the tangential acceleration of the wheeled mobile robot and the Normal acceleration control.
进一步地,步骤(1)中的轮式移动机器人与通过目标位置相对位置关系的运动学模型具体构建方法为:假设群组由N辆机器人构成,在惯性坐标系下轮式移动机器人i,(i=1,...,N)的运动学模型具体为:Further, the wheeled mobile robot in step (1) and the specific construction method of the kinematics model by the relative positional relationship of the target position are: assuming that the group is composed of N robots, the wheeled mobile robot i under the inertial coordinate system, ( The kinematic model of i=1,...,N) is specifically:
其中(xi,yi)表示机器人质心的位置坐标,θi机器人i的航向角(即速度方向与x轴的夹角,以逆时针方向为正方向),vi表示机器人i的速度大小,ωi机器人i的航向角速率。Where (x i , y i ) represents the position coordinates of the robot's center of mass, θ i is the heading angle of the robot i (that is, the angle between the speed direction and the x-axis, and the counterclockwise direction is the positive direction), and vi represents the speed of the robot i . , ω i the heading angular rate of robot i.
设目标位置坐标为(x*,y*),则轮式移动机器人i与通过目标位置相对位置关系的运动学模型为:Assuming that the coordinates of the target position are (x * , y * ), the kinematic model of the relative positional relationship between the wheeled mobile robot i and the passing target position is:
其中表示机器人与通过目标间的距离,λi=atan2(x*-x,y*-y)表示视线角,φi表示前置角,at,i与an,i分别表示机器人i的切向加速度与法向加速度(即机器人加速度沿着速度方向、垂直于速度方向的加速度分量)。in represents the distance between the robot and the passing target, λ i = atan2(x * -x, y * -y) represents the line of sight angle, φ i represents the lead angle, at , i and an , i represent the cutting angle of the robot i respectively Toward acceleration and normal acceleration (that is, the acceleration component of the robot acceleration along the velocity direction and perpendicular to the velocity direction).
根据相对位置关系的运动学模型,可进一步建立相对位置与控制输入的关系模型:According to the kinematic model of the relative position relationship, the relationship model between the relative position and the control input can be further established:
其中ur,i=at,i cos φi-an,i sin φi,uλ,i=at,i sin φi+an,i cos φi分别表示机器人沿视线方向和垂直于视线方向的加速度。where ur , i = at, i cos φ i -a n, i sin φ i , u λ, i = at t, i sin φ i +a n, i cos φ i represent the robot along the line of sight direction and vertical acceleration in the direction of sight.
步骤(2)中估计到达通过地点的时间确定机器人群组通过目标的顺序具体:In step (2), it is estimated that the time to arrive at the passing location determines the order in which the robot group passes through the target. Specifically:
(2-1)按照任意顺序给群组中N个机器人编号l1,l2,...,lN。(2-1) Number the N robots in the group l 1 , l 2 , . . . , l N in any order.
(2-2)估计群组中每个移动机器人的按照初始运动状态估计的到达时间(2-2) Estimating the arrival time of each mobile robot in the group according to the initial motion state
其中下标l∈{l1,...,lN}表示编号为l的移动机器人,t0表示初始时刻。where the subscript l∈{l 1 ,...,l N } denotes the mobile robot numbered l, and t 0 denotes the initial moment.
(2-3)将预计到达时间按升序排列并对机器人重新编号1,2,...,N以满足设定机器人群组通过目标的顺序记为重新编号后的次序。(2-3) Arrange the estimated arrival times in ascending order and renumber the
步骤(3)中利用非光滑控制建立轮式移动机器人i垂直于视线的加速度控制方案具体为:In step (3), the non-smooth control is used to establish the acceleration control scheme of the wheeled mobile robot i perpendicular to the line of sight. Specifically:
其中αλ,i,βλ,i,pλ,i,qλ,i>0为常参数且满足0<pλ,i<1<qλ,i,此外函数sgnα(·)具体为where α λ, i , β λ, i , p λ, i , q λ, i >0 are constant parameters and satisfy 0<p λ, i <1<q λ,i , and the function sgn α (·) is specifically
sgnα(x)=|x|αsign(x),其中sign(·)为符号函数。sgn α (x)=|x| α sign(x), where sign(·) is a sign function.
步骤(4)中利用非光滑控制建立轮式移动机器人i沿视线方向的加速度控制,可使得标准通过误差在固定时间内收敛到零,其控制具体为:In step (4), the non-smooth control is used to establish the acceleration control of the wheeled mobile robot i along the line of sight, so that the standard passing error can converge to zero within a fixed time, and the control is specifically:
(4-1)在机器人群组中构建网络通信连接,使得通信连接的拓扑结构含有有向生成树。(4-1) Build network communication connections in the robot group, so that the topology structure of the communication connections contains a directed spanning tree.
(4-2)利用通信网络计算标准通过误差ξi (4-2) Calculate the standard passing error ξ i using the communication network
其中δ表示相邻编号机器人的通过目标位置的时间间隔,aij表示通信拓扑结构诱导邻接矩阵的元素,即若机器人i可以接受机器人j所发出的信息,则aij>0,否则aij=0。特别地,aii=0。Among them, δ represents the time interval for passing the target position of the adjacent robots, a ij represents the elements of the adjacency matrix induced by the communication topology, that is, if the robot i can accept the information sent by the robot j, then a ij > 0, otherwise a ij = 0. In particular, a ii =0.
(4-3)设定容许误差如果轮式移动机器人i未通过目标位置,则轮式移动机器人i的预计剩余时间具体可表示为:(4-3) Setting tolerance If the wheeled mobile robot i fails to pass the target position, the estimated remaining time of the wheeled mobile robot i can be specifically expressed as:
如果轮式移动机器人i到达过目标位置或距离目标位置已经小于ε,并记通过时刻为Ti,即存在Ti使得r(Ti)≤ε,且对于r(t)>ε.此时令为机器人通过目标位置后的时间计数:If the wheeled mobile robot i has reached the target position or the distance from the target position is less than ε, and the passing time is T i , that is, there is T i such that r(T i )≤ε, and for r(t)>ε. This time Count the time after the robot has passed the target position:
tgo,i=Ti-t。t go,i =T i -t.
(4-4)确定机器人i沿视线方向的加速度控制(4-4) Determine the acceleration control of robot i along the line of sight
其中为轮式移动机器人i的预计剩余时间,αr,i,βr,i,pr,i,qr,i>0为常参数并满足0<pr,i<1<qr,i。in is the estimated remaining time of the wheeled mobile robot i, α r, i , β r, i , pr, i , q r, i >0 are constant parameters and satisfy 0< pr, i <1<q r,i .
步骤(5)中轮式移动机器人i加速度与角加速度控制方法具体为:In step (5), the acceleration and angular acceleration control method of the wheeled mobile robot i is specifically:
(5-1)轮式移动机器人i加速度与角加速度控制如下表示:(5-1) The acceleration and angular acceleration control of the wheeled mobile robot i are expressed as follows:
at,i=ur,i cos φi+uλ,i sin φi a t, i = ur , i cos φ i +u λ, i sin φ i
an,i=-ur,i sin φi+uλ,i cos φi。a n,i =-ur ,i sin φ i +u λ,i cos φ i .
(5-2)若轮式移动机器人存在速度上限、加速度上限等饱和约束条件,当(5)中所设计的加速度控制超过约束条件时,则选择相应的饱和值作为控制输入。(5-2) If the wheeled mobile robot has saturation constraints such as the upper limit of speed and the upper limit of acceleration, when the acceleration control designed in (5) exceeds the constraints, the corresponding saturation value is selected as the control input.
(5-3)群组中存在机器人的初始速度方向与视线的夹角成钝角或直角,即则需事先让所有机器人调整运动方向至 (5-3) The initial speed direction of the robot in the group forms an obtuse or right angle with the angle of sight, that is, You need to make all robots adjust the movement direction to
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供一种轮式移动机器人群组终端时间分时协调控制方法,给定目标位置和通过间隔,可实现机器人群组自动确定通过次序,并协调分时通过目标位置。The invention provides a time-sharing coordination control method for a group terminal of a wheeled mobile robot. Given a target position and a passing interval, the robot group can automatically determine the passing order and coordinate the time-sharing passing through the target position.
本发明的控制方法可满足对欠驱动轮式移动机器人分时协调的要求。该方法利用通信网络,无需提前指定通过目标位置的时间和通过次序,增加了环境适应性,并保证两机器人的通过时刻间隔满足要求,此外本方法利用了固定时间稳定控制方法,可以满足机器人群组较广范围的初值情形。The control method of the present invention can meet the requirement of time-sharing coordination for the under-driven wheeled mobile robot. This method utilizes the communication network and does not need to specify the time and order of passing through the target position in advance, which increases the environmental adaptability and ensures that the passing time interval of the two robots meets the requirements. set a wider range of initial values.
附图说明Description of drawings
图1是本发明的轮式移动机器人群组分时协调控制方法流程图;Fig. 1 is the flow chart of the wheeled mobile robot group time-sharing coordination control method of the present invention;
图2是本发明的轮式移动机器人与通过目标位置的角度关系示意图;2 is a schematic diagram of the angular relationship between the wheeled mobile robot of the present invention and the passing target position;
图3是本发明的轮式移动机器人群组通信网络拓扑结构;Fig. 3 is the wheeled mobile robot group communication network topology structure of the present invention;
图4是本发明仿真模拟的轮式移动机器人群组的运动轨迹结果示意图;4 is a schematic diagram of the motion trajectory result of the wheeled mobile robot group simulated by the present invention;
图5是本发明仿真模拟的各轮式移动机器人与目标位置点距离随时间变化示意图;5 is a schematic diagram of the variation of the distance between each wheeled mobile robot and the target position point simulated by the present invention with time;
图6是本发明仿真模拟的各轮式移动机器人的前置角随时间变化示意图;6 is a schematic diagram of the lead angle variation with time of each wheeled mobile robot simulated by the present invention;
图7是本发明仿真模拟的各轮式移动机器人的速度大小随时间变化示意图;Fig. 7 is a schematic diagram showing the variation of the speed of each wheeled mobile robot simulated by the present invention with time;
图8是本发明仿真模拟的各轮式移动机器人的速度方向随时间变化示意图;FIG. 8 is a schematic diagram of the variation of the speed direction with time of each wheeled mobile robot simulated by the present invention;
图9是本发明仿真模拟的各轮式移动机器人的切向加速度随时间变化示意图;9 is a schematic diagram of the tangential acceleration of each wheeled mobile robot simulated by the present invention over time;
图10是本发明仿真模拟的各轮式移动机器人的法向加速度随时间变化示意图。FIG. 10 is a schematic diagram showing the variation of the normal acceleration with time of each wheeled mobile robot simulated by the present invention.
具体实施方式Detailed ways
下面将结合附图就本发明的发明目的、技术方案、发明优点作进一步详细说明。The object, technical solution, and advantages of the present invention will be described in further detail below with reference to the accompanying drawings.
现阶段有关终端时间分时协调控制的研究,尤其是以欠驱动轮式移动机器人为研究对象的控制方法较少,而该类任务在生产生活中的有广泛应用,因此构建轮式移动机器人群组分时协调控制方法具有现实意义。At present, there are few researches on time-sharing coordinated control of terminal time, especially the control methods of underactuated wheeled mobile robots as the research object, and such tasks are widely used in production and life. Therefore, a wheeled mobile robot group is constructed. The coordinated control method of component time has practical significance.
基于以上考虑,本发明首先建立了构建轮式移动机器人与通过目标位置相对位置关系的运动学模型,然后利用非光滑控制手段构建轮式移动机器人垂直于视线的加速度控制,使得前置角或垂直于视线的速度在固定时间内缩减至零,接着根据机器人群组通过目标位置的情况以及群组中通信网络的拓扑图,各机器人再利用非光滑控制实现轮式移动机器人沿视线方向的加速度控制,可使得标准通过误差在固定时间内收敛到零,最后将沿视线和垂直于视线方向的加速度控制转化为轮式移动机器人的切向加速度与法向加速度控制。Based on the above considerations, the present invention first establishes a kinematic model for constructing the relative positional relationship between the wheeled mobile robot and the passing target position, and then uses a non-smooth control method to construct the acceleration control of the wheeled mobile robot perpendicular to the line of sight, so that the lead angle or vertical Since the speed of the line of sight is reduced to zero within a fixed time, then according to the situation of the robot group passing through the target position and the topology of the communication network in the group, each robot uses non-smooth control to realize the acceleration control of the wheeled mobile robot along the line of sight. , which can make the standard passing error converge to zero in a fixed time, and finally convert the acceleration control along the line of sight and perpendicular to the line of sight into the tangential acceleration and normal acceleration control of the wheeled mobile robot.
图1表示了本发明实现轮式移动机器人群组分时协调控制方法,其方法具体如下执行:Fig. 1 shows that the present invention realizes the time-sharing coordinated control method of wheeled mobile robot group, and the method is specifically executed as follows:
步骤1.初始化问题场景。调整群组中各机器人的运动方向,使得机器人的前置角均为呈锐角。
步骤2.假设问题为N个轮式移动机器人的分时协调任务,相邻两个机器人的通过目标位置的间隔为δ。将机器人按照按照任意顺序编号l1,l2,...,lN,并在机器人群组间构建网络通信连接,要求通信连接的拓扑结构至少含有有向生成树。
步骤3.构建轮式移动机器人与所需通过的目标位置相对位置关系的运动学模型。
步骤3-1.如图2所示选取平面中任意一点构建惯性坐标系,则轮式移动机器人i的运动学模型为:Step 3-1. As shown in Figure 2, select any point in the plane to construct the inertial coordinate system, then the kinematic model of the wheeled mobile robot i is:
其中(xi,yi)表示机器人质心的位置坐标,θi机器人i的航向角(即速度方向与x轴的夹角,以逆时针方向为正方向),vi表示机器人i的速度大小,ωi机器人i的航向角速率。Where (x i , y i ) represents the position coordinates of the robot's center of mass, θ i is the heading angle of the robot i (that is, the angle between the speed direction and the x-axis, and the counterclockwise direction is the positive direction), and vi represents the speed of the robot i . , ω i the heading angular rate of robot i.
步骤3-2.根据所构建的惯性坐标系,确定机器人群组需通过的目标位置坐标(x*,y*),建立轮式移动机器人i与通过目标位置相对位置关系的运动学模型:Step 3-2. According to the constructed inertial coordinate system, determine the target position coordinates (x * , y * ) that the robot group needs to pass through, and establish a kinematic model of the relative position relationship between the wheeled mobile robot i and the passing target position:
其中表示机器人与通过目标间的距离,λi=atan2(x*-x,y*-y)表示视线角,φi表示前置角,at,i与an,i分别表示机器人i的切向加速度与法向加速度(即机器人加速度沿着速度方向、垂直于速度方向的加速度分量)。in represents the distance between the robot and the passing target, λ i = atan2(x * -x, y * -y) represents the line of sight angle, φ i represents the lead angle, at , i and an , i represent the cutting angle of the robot i respectively Toward acceleration and normal acceleration (that is, the acceleration component of the robot acceleration along the velocity direction and perpendicular to the velocity direction).
步骤3-3.根据相对位置关系的运动学模型,建立相对位置与控制输入的关系模型:Step 3-3. According to the kinematic model of the relative position relationship, establish a relationship model between the relative position and the control input:
其中ur,i=at,i cos φi-an,i sin φi,uλ,i=at,i sin φi+an,i cos φi分别表示机器人沿视线方向和垂直于视线方向的加速度。where ur , i = at, i cos φ i -a n, i sin φ i , u λ, i = at t, i sin φ i +a n, i cos φ i represent the robot along the line of sight direction and vertical acceleration in the direction of sight.
步骤4估计各机器人通过目标位置所需时间,以确定机器人群组通过目标的次序:选优地,估计群组中每个移动机器人的按照初始运动状态估计的到达时间可设计为:Step 4: Estimating the time required for each robot to pass the target position to determine the order in which the robot group passes the target: Preferably, the estimated arrival time of each mobile robot in the estimated group according to the initial motion state can be designed as:
其中下标l∈{l1,...,lN}表示编号为l的移动机器人,t0表示初始时刻。where the subscript l∈{l 1 ,...,l N } denotes the mobile robot numbered l, and t 0 denotes the initial moment.
将预计到达时间按升序排列并对机器人重新编号1,2,...,N以满足设定为机器人群组通过目标的顺序记为重新编号后的次序。Arrange the ETAs in ascending order and renumber the
步骤5利用非光滑控制构建垂直于视线的加速度控制。为实现视线角速率或垂直于视线的速度在有限时间趋于零,选优地,非光滑控制构建轮式移动机器人i垂直于视线的加速度控制可设计为:
其中αλ,i,βλ,i,pλ,i,qλ,i>0为常参数且满足0<pλ,i<1<qλ,i,此外函数sgnα(·)具体为where α λ, i , β λ, i , p λ, i , q λ, i >0 are constant parameters and satisfy 0<p λ, i <1<q λ,i , and the function sgn α (·) is specifically
sgnα(x)=|x|αsign(x), (6)sgn α (x)=|x| α sign(x), (6)
其中sign(·)为符号函数。where sign(·) is the sign function.
步骤6.构建沿视线方向的加速度控制。
步骤6-1.为使得机器人群组可按照指定次序和时间间隔通过目标,因此需利用通信网络设计标准通过误差:Step 6-1. In order to allow the robot group to pass the target in the specified order and time interval, it is necessary to use the communication network design standard to pass the error:
其中δ表示相邻编号机器人的通过目标位置的时间间隔,aij表示通信拓扑结构诱导邻接矩阵的元素,即若机器人i可以接受机器人j所发出的信息,则aij>0,否则aij=0。特别地,aii=0。Among them, δ represents the time interval for passing the target position of the adjacent robots, a ij represents the elements of the adjacency matrix induced by the communication topology, that is, if the robot i can accept the information sent by the robot j, then a ij > 0, otherwise a ij = 0. In particular, a ii =0.
步骤6-2.如果轮式移动机器人i未通过目标位置,则的预计剩余时间具体可表示为:Step 6-2. If the wheeled mobile robot i fails to pass the target position, the estimated remaining time can be expressed as:
步骤6-3.为增加群组分时协调的环境适应性。选优地,利用通信网络控制建立轮式移动机器人i沿视线方向的加速度控制可设计为:Step 6-3. To increase the environmental adaptability of group time-sharing coordination. Preferably, the acceleration control of the wheeled mobile robot i along the line-of-sight direction is established by using the communication network control and can be designed as:
其中为轮式移动机器人i的预计剩余时间,ar,i,βr,i,pr,i,qr,i>0为常参数并满足0<pr,i<1<qr,i。in is the estimated remaining time of the wheeled mobile robot i, ar,i ,βr ,i , pr,i ,qr ,i >0 are constant parameters and satisfy 0< pr, i <1<qr ,i .
步骤5.将视线坐标系下的加速度转化为轮式移动机器人的加速度与角加速度控制。具体地,轮式移动机器人i加速度与角加速度控制如下表示:
步骤6.更新轮式移动机器人的位置和速度。并设定容许误差如果轮式移动机器人i到达过目标位置或距离目标位置已经小于ε,并记通过时刻为Ti,即存在Ti使得r(Ti)≤ε,且对于r(t)>ε.此时令为机器人通过目标位置后的时间计数:
tgo,i=Ti-t。 (11)t go,i =T i -t. (11)
将(11)所做调整应用于其他轮式移动机器人沿视线方向的加速度控制(7)-(9)中。Apply the adjustment made in (11) to the acceleration control (7)-(9) of other wheeled mobile robots along the line of sight.
以下是本发明所设计的一种轮式移动机器人群组分时协调控制方法模拟仿真验证。The following is a simulation verification of a wheeled mobile robot group time-sharing coordinated control method designed by the present invention.
仿真模拟7台轮式移动机器人的分时协调任务,假设目的地坐标为(0,0)m,通过目的地的时间间隔δ=3s。轮式移动机器人群组的初值参数如表1所示。The time-sharing coordination task of 7 wheeled mobile robots is simulated, assuming that the destination coordinate is (0, 0) m, and the time interval δ=3s for passing the destination. The initial parameters of the wheeled mobile robot group are shown in Table 1.
表1Table 1
经过计算各机器人根据初值计算的预计通过时间如表2所示After calculation, the estimated passing time of each robot according to the initial value is shown in Table 2.
表2Table 2
仿真实验中,其他参数选取如下:αr,i=βr,i=0.5,αλ,i=βλ,i=0.5,pr,i=0.5,qr,i=2,pλ,i=0.5,qλ,i=2,i=1,...,7;ε=0.1.In the simulation experiment, other parameters are selected as follows: α r, i = β r, i = 0.5, α λ, i = β λ, i = 0.5, pr, i = 0.5, q r, i = 2, p λ, i = 0.5, q λ, i = 2, i = 1, ..., 7; ε = 0.1.
机器人群组通信网络拓扑结构如图3所示,并假设通信连边对应邻接矩阵的元素均为1,满足从机器人1到其余机器人间存在有向路径,因此拓扑结构中含有有向生成树。The topology of the robot group communication network is shown in Figure 3, and it is assumed that the elements of the adjacency matrix corresponding to the communication edge are all 1, which satisfies the existence of directed paths from
轮式移动机器人群组分时协调控制仿真结果如表3、图4至图10所示。The simulation results of the time-sharing coordinated control of the wheeled mobile robot group are shown in Table 3 and Figure 4 to Figure 10.
从图4可以看出,轮式移动机器人群组可以顺利通过目标位置。进一步,表3和图5可知,轮式移动机器人群组按照表2所示的通过次序、通过间隔到达指定目标位置点,且均方误差不超过0.1s,表明专利所设计的分时协调控制方法的效果十分优秀。It can be seen from Figure 4 that the wheeled mobile robot group can pass the target position smoothly. Further, it can be seen from Table 3 and Figure 5 that the wheeled mobile robot group reaches the specified target position according to the passing order and passing interval shown in Table 2, and the mean square error does not exceed 0.1s, indicating that the time-sharing coordinated control designed by the patent is used. The effect of the method is excellent.
表3table 3
由图6可以看出,各轮式移动机器人的前置角迅速下降至0,根据图7,轮式移动机器人在运动过程中始终保持速度大于零,满足要求,且轮式其机器人在接近目的地时速度迅速下降至零,最终可停止在目标位置点。图8说明速度方向最终趋于常值,可保证加速度控制不发生奇异,图9和图10则是直接表明加速度和角加速度大小有界,因此该控制方法可以较好地在实际中应用。It can be seen from Figure 6 that the lead angle of each wheeled mobile robot rapidly drops to 0. According to Figure 7, the wheeled mobile robot always maintains a speed greater than zero during the movement process, which meets the requirements, and the wheeled mobile robot is approaching the goal. The ground time speed drops rapidly to zero, and can finally stop at the target position. Figure 8 shows that the velocity direction eventually tends to a constant value, which can ensure that the acceleration control is not singular. Figures 9 and 10 directly show that the acceleration and angular acceleration are bounded, so this control method can be better applied in practice.
综合仿真实验,本发明所设计的轮式移动机器人群组分时协调控制方法具有较好的控制效果。Comprehensive simulation experiments show that the wheeled mobile robot group time-sharing coordinated control method designed by the present invention has a good control effect.
以上仅是本发明的优选实施方式,应当指出,以上实施列对本发明不构成限定,相关工作人员在不偏离本发明技术思想的范围内,所进行的多样变化和修改,均落在本发明的保护范围内。The above are only the preferred embodiments of the present invention. It should be pointed out that the above embodiments do not limit the present invention. Various changes and modifications made by the relevant staff within the scope of not departing from the technical idea of the present invention are all within the scope of the present invention. within the scope of protection.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210056864.XA CN114510040A (en) | 2022-01-18 | 2022-01-18 | Time-sharing coordination control method for wheeled mobile robot group terminal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210056864.XA CN114510040A (en) | 2022-01-18 | 2022-01-18 | Time-sharing coordination control method for wheeled mobile robot group terminal |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114510040A true CN114510040A (en) | 2022-05-17 |
Family
ID=81549680
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210056864.XA Pending CN114510040A (en) | 2022-01-18 | 2022-01-18 | Time-sharing coordination control method for wheeled mobile robot group terminal |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114510040A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118072562A (en) * | 2024-03-29 | 2024-05-24 | 北京理工大学 | Coordinated control method of multi-agent batch and time-sharing traffic under sampling information interaction |
| CN118192578A (en) * | 2024-03-29 | 2024-06-14 | 北京理工大学 | Autonomous clustering and time-sharing coordination control method for unmanned vehicle groups under speed constraints |
| CN118226857A (en) * | 2024-03-29 | 2024-06-21 | 北京理工大学 | Terminal time cooperative control method for adaptive grouping of multiple unmanned vehicles |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100315290A1 (en) * | 2009-06-16 | 2010-12-16 | L3 Communications Integrated Systems, L.P. | Globally-convergent geo-location algorithm |
| CN105488892A (en) * | 2016-01-04 | 2016-04-13 | 杭州亚美利嘉科技有限公司 | Method and server for robot queuing management |
| CN112129292A (en) * | 2020-09-02 | 2020-12-25 | 北京航空航天大学 | Heterogeneous aircraft cooperative guidance method considering attack time and attack angle constraints |
| CN113359813A (en) * | 2021-05-11 | 2021-09-07 | 西北工业大学 | Multi-collar projectile and multi-slave projectile group cooperative guidance method |
-
2022
- 2022-01-18 CN CN202210056864.XA patent/CN114510040A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100315290A1 (en) * | 2009-06-16 | 2010-12-16 | L3 Communications Integrated Systems, L.P. | Globally-convergent geo-location algorithm |
| CN105488892A (en) * | 2016-01-04 | 2016-04-13 | 杭州亚美利嘉科技有限公司 | Method and server for robot queuing management |
| CN112129292A (en) * | 2020-09-02 | 2020-12-25 | 北京航空航天大学 | Heterogeneous aircraft cooperative guidance method considering attack time and attack angle constraints |
| CN113359813A (en) * | 2021-05-11 | 2021-09-07 | 西北工业大学 | Multi-collar projectile and multi-slave projectile group cooperative guidance method |
Non-Patent Citations (4)
| Title |
|---|
| JIALING ZHOU: "Distributed Guidance Law Design for Cooperative Simultaneous Attacks with Multiple Missiles", MATHEMATICAL PROBLEMS IN ENGINEERING, vol. 39, no. 10, 31 October 2016 (2016-10-31), pages 2439 * |
| 范云生: "无人水面艇运动建模与自主控制", 31 December 2020, 大连海事大学出版社, pages: 14 - 15 * |
| 薛颂东: "群机器人协调控制", 30 November 2016, 北京理工大学出版社, pages: 81 * |
| 陈少春: "海鹰智库丛书 导航制导与控制技术篇", 30 November 2021, 北京理工大学出版社, pages: 21 - 22 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118072562A (en) * | 2024-03-29 | 2024-05-24 | 北京理工大学 | Coordinated control method of multi-agent batch and time-sharing traffic under sampling information interaction |
| CN118192578A (en) * | 2024-03-29 | 2024-06-14 | 北京理工大学 | Autonomous clustering and time-sharing coordination control method for unmanned vehicle groups under speed constraints |
| CN118226857A (en) * | 2024-03-29 | 2024-06-21 | 北京理工大学 | Terminal time cooperative control method for adaptive grouping of multiple unmanned vehicles |
| CN118072562B (en) * | 2024-03-29 | 2024-08-23 | 北京理工大学 | Multi-agent batch time-sharing traffic coordination control method under sampling information interaction |
| CN118226857B (en) * | 2024-03-29 | 2024-11-15 | 北京理工大学 | Terminal time cooperative control method for adaptive grouping of multiple unmanned vehicles |
| CN118192578B (en) * | 2024-03-29 | 2024-12-27 | 北京理工大学 | Unmanned vehicle group autonomous clustering time-sharing coordination control method under speed constraint |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114510040A (en) | Time-sharing coordination control method for wheeled mobile robot group terminal | |
| CN108388270B (en) | Coordinated control method of swarm UAV trajectory and attitude for safety domain | |
| CN108983816A (en) | Multi-rotor unmanned aerial vehicle mutative scale collaboration monitoring formation flight control method | |
| CN114610066A (en) | Formation flight trajectory generation method of distributed swarm UAV in complex and unknown environment | |
| CN113758485B (en) | Unmanned aerial vehicle cluster collaborative dynamic track planning method based on preset track points | |
| CN112327926B (en) | An Adaptive Sliding Mode Control Method for UAV Formation | |
| CN114911255B (en) | Heterogeneous multi-unmanned aerial vehicle collaborative track planning method for communication relay guarantee | |
| CN113900449A (en) | Multi-unmanned aerial vehicle trajectory planning method and device, unmanned aerial vehicle and storage medium | |
| CN114933026B (en) | An autonomous obstacle avoidance control and topology optimization method for large-scale constellation transition | |
| CN115857538A (en) | Multi-aircraft cooperative guidance method meeting falling angle constraint in three-dimensional space | |
| CN114510039A (en) | Coordinated control method for time-sharing arrival of forward wheeled robot group | |
| CN116300466A (en) | Robust control method for mass load of rotor unmanned aerial vehicle cluster cooperative lifting point | |
| CN115616922B (en) | A time coverage control method for heterogeneous mobile robot swarms | |
| CN114111448B (en) | Air multi-agent elliptical track collaborative surrounding tracking method suitable for moving target multi-view detection | |
| CN118226857B (en) | Terminal time cooperative control method for adaptive grouping of multiple unmanned vehicles | |
| Yang et al. | Cooperative deconflicting heading maneuvers applied to unmanned aerial vehicles in non-segregated airspace | |
| CN116859736A (en) | Formation reconstruction control method for unmanned ship formation navigational aids | |
| CN114727217B (en) | A low-cost dual-leader heterogeneous UAV formation collaborative positioning method based on data link communication | |
| CN112678208B (en) | Satellite swarm control method based on artificial potential field method with dynamic avoidance and damping characteristics | |
| CN114217627A (en) | Network algorithm-based control method for cooperative lifting of multiple unmanned aerial vehicles | |
| CN119024881A (en) | A path tracking control method for a motor-vessel formation based on model predictive control | |
| CN114879741B (en) | Distributed fixed wing unmanned aerial vehicle coverage control method | |
| Xu et al. | Optimal control of UAV elastic formation based on legendre pseudospectral method | |
| CN116540780A (en) | A Decision-making Control Method for Unmanned Aerial Vehicle Based on Game Guidance | |
| CN113050679B (en) | Fully-distributed robust missile formation cooperative controller |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |