CN114563896A - A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof - Google Patents
A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof Download PDFInfo
- Publication number
- CN114563896A CN114563896A CN202210103819.5A CN202210103819A CN114563896A CN 114563896 A CN114563896 A CN 114563896A CN 202210103819 A CN202210103819 A CN 202210103819A CN 114563896 A CN114563896 A CN 114563896A
- Authority
- CN
- China
- Prior art keywords
- layer
- color
- solid
- transparent
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 63
- 238000003860 storage Methods 0.000 claims abstract description 50
- 230000000903 blocking effect Effects 0.000 claims abstract description 47
- 239000003792 electrolyte Substances 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000004040 coloring Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 56
- 239000011787 zinc oxide Substances 0.000 claims description 28
- 238000002834 transmittance Methods 0.000 claims description 12
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical group O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 4
- 229910010093 LiAlO Inorganic materials 0.000 claims description 3
- 229910012305 LiPON Inorganic materials 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 229910003327 LiNbO3 Inorganic materials 0.000 claims description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 claims 1
- 229910012463 LiTaO3 Inorganic materials 0.000 claims 1
- 229910019603 Rh2O3 Inorganic materials 0.000 claims 1
- 229910052581 Si3N4 Inorganic materials 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 51
- 230000008859 change Effects 0.000 abstract description 20
- 230000003287 optical effect Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000007704 transition Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 193
- 239000010408 film Substances 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000007123 defense Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- XBBXDTCPEWHXKL-UHFFFAOYSA-N rhodium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Rh+3].[Rh+3] XBBXDTCPEWHXKL-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1524—Transition metal compounds
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1525—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/155—Electrodes
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
本发明公开一种多色彩无机全固态电致变色器件及其制备方法。该器件包括依次层叠设置的基底、透明底电极层、多色彩离子储存层、第一电子阻挡层、电解质层、第二电子阻挡层、电致变色层、透明顶电极层;多色彩离子储存层的材料为AxOy,AxOy为两极着色材料,其中A为具有多种价态的金属元素。本发明利用多色彩离子储存层在离子和电子共注入/抽出时呈现多色的特性,该多色彩离子储存层与具有电化学活性而颜色变化单一的透明电致变色层相匹配,实现器件的可黄‑绿‑蓝色转变的多色彩变化性能。本发明制备的器件拥有超大的光学调制幅度,易于大面积均匀制备,稳定性好,且制备工艺简单,有效克服了传统无机全固态电致变色器件色彩单一的问题。
The invention discloses a multi-color inorganic all-solid electrochromic device and a preparation method thereof. The device comprises a substrate, a transparent bottom electrode layer, a multi-color ion storage layer, a first electron blocking layer, an electrolyte layer, a second electron blocking layer, an electrochromic layer, and a transparent top electrode layer, which are sequentially stacked; the multi-color ion storage layer The material is A x O y , A x O y is a bipolar coloring material, wherein A is a metal element with multiple valence states. The invention utilizes the multi-color ion storage layer to exhibit multi-color characteristics when ions and electrons are co-injected/extracted. The multi-color ion storage layer is matched with a transparent electrochromic layer with electrochemical activity and a single color change, so as to realize the device's performance. Multi-color change capability with yellow-green-blue transition. The device prepared by the invention has a large optical modulation amplitude, is easy to be uniformly prepared in a large area, has good stability, and has a simple preparation process, and effectively overcomes the problem of single color of the traditional inorganic all-solid-state electrochromic device.
Description
技术领域technical field
本发明涉及电致变色器件技术领域,尤其涉及一种多色彩无机全固态电致变色器件及其制备方法。The invention relates to the technical field of electrochromic devices, in particular to a multi-color inorganic all-solid-state electrochromic device and a preparation method thereof.
背景技术Background technique
电致变色技术为材料光学性质的可控调节提供了一种有效途径。在电场作用下,电致变色材料内部的氧化还原反应使其价态或组分发生改变导致材料光学属性(吸收率、透过率和反射率等)在可见、红外甚至微波区发生稳定可逆的变化。电致变色器件即利用材料的电致变色效应,以电致变色层为基础,辅以其它相关层和结构而构成的器件。Electrochromic technology provides an effective way to controllably adjust the optical properties of materials. Under the action of an electric field, the redox reaction inside the electrochromic material changes its valence or composition, resulting in a stable and reversible optical property (absorptivity, transmittance and reflectance, etc.) of the material in the visible, infrared and even microwave regions. Variety. Electrochromic devices are devices that utilize the electrochromic effect of materials, based on the electrochromic layer, supplemented by other related layers and structures.
基于“视角宽、驱动电压低、微能耗、具有记忆功能”等独特优点,高性能电致变色器件的研发对能源、建筑、信息和国防等领域意义重大。尤其是在军事国防科技领域,由于传统伪装材料的颜色固定,不能随环境和季节变化,无法适应智能化国防军事伪装的要求,而具有光学色彩可调的电致变色技术可解决这一问题,实现军事隐身和伪装的目的。Based on the unique advantages of "wide viewing angle, low driving voltage, micro energy consumption, and memory function", the research and development of high-performance electrochromic devices is of great significance to the fields of energy, construction, information and national defense. Especially in the field of military defense technology, because the color of traditional camouflage materials is fixed, it cannot change with the environment and season, and cannot meet the requirements of intelligent defense military camouflage, and electrochromic technology with adjustable optical color can solve this problem. Achieve the purpose of military stealth and camouflage.
目前,基于有机分子、聚合物和金属有机框架的电致变色器件显示出多色的特性,但在实际应用中,有机材料与无机电致变色材料相比,它的热稳定性、光稳定性、化学稳定性和抗辐射性较差。因此,实现基于无机材料的电致变色器件的多色特性是电致变色国防领域的一个范式转变。同时,基于无机电解质的全固态电致变色薄膜器件具有稳定性高、耐久性好且易大面积制备等优点,是目前研究的热点。同时,全固态的结构也使得器件的设计更加灵活和小型化,更容易在轻量化、便携式智能电子产品中一体化集成。At present, electrochromic devices based on organic molecules, polymers and metal-organic frameworks show multicolor properties, but in practical applications, organic materials have poor thermal stability and photostability compared with inorganic electrochromic materials. , poor chemical stability and radiation resistance. Therefore, realizing multicolor properties of inorganic material-based electrochromic devices is a paradigm shift in the field of electrochromic defense. At the same time, all-solid-state electrochromic thin-film devices based on inorganic electrolytes have the advantages of high stability, good durability, and easy large-area fabrication, and are currently a research hotspot. At the same time, the all-solid-state structure also makes the device design more flexible and miniaturized, making it easier to integrate into lightweight, portable smart electronic products.
目前,无机全固态电致变色器件主要基于阴极氧化钨和阳极氧化镍功能层的匹配耦合,而这两种典型电致变色材料只能在透明态和材料的固有价态颜色之间切换。因此,最终的薄膜器件只能实现不同透明度之间的调节,颜色变化单一。At present, inorganic all-solid-state electrochromic devices are mainly based on the matched coupling of cathodic tungsten oxide and anodized nickel oxide functional layers, and these two typical electrochromic materials can only be switched between the transparent state and the intrinsic valence state color of the material. Therefore, the final thin-film device can only achieve adjustment between different transparency and single color change.
因此,现有技术还有待于改进和发展。Therefore, the existing technology still needs to be improved and developed.
发明内容SUMMARY OF THE INVENTION
鉴于上述现有技术的不足,本发明的目的在于提供一种多色彩无机全固态电致变色器件及其制备方法,旨在解决现有无机全固态电致变色器件颜色变化单一的问题。In view of the above-mentioned deficiencies of the prior art, the purpose of the present invention is to provide a multi-color inorganic all-solid-state electrochromic device and a preparation method thereof, aiming to solve the problem of single color change of the existing inorganic all-solid-state electrochromic device.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
本发明的第一方面,提供一种多色彩无机全固态电致变色器件,其中,包括依次层叠设置的基底、透明底电极层、多色彩离子储存层、第一电子阻挡层、电解质层、第二电子阻挡层、电致变色层、透明顶电极层;A first aspect of the present invention provides a multi-color inorganic all-solid-state electrochromic device, which includes a substrate, a transparent bottom electrode layer, a multi-color ion storage layer, a first electron blocking layer, an electrolyte layer, a Two electron blocking layer, electrochromic layer, transparent top electrode layer;
其中,所述多色彩离子储存层的材料为AxOy,所述AxOy为两极着色材料,其中A为具有多种价态的金属元素。Wherein, the material of the multi-color ion storage layer is A x O y , the A x O y is a bipolar coloring material, wherein A is a metal element with multiple valence states.
可选地,所述多色彩离子储存层的材料选自V2O5、Co3O4、Rh2O3中的任意一种或多种;Optionally, the material of the multi-color ion storage layer is selected from any one or more of V 2 O 5 , Co 3 O 4 , and Rh 2 O 3 ;
所述多色彩离子储存层的厚度为100-400nm。The thickness of the multi-color ion storage layer is 100-400 nm.
可选地,所述透明底电极层的材料选自氧化铟锡、掺铝的氧化锌、掺氟的氧化锡、掺镓的氧化锌、掺铟的氧化锌中的任意一种或多种;或者,所述透明底电极层选自金属透明薄膜或金属网格材料薄膜;Optionally, the material of the transparent bottom electrode layer is selected from any one or more of indium tin oxide, aluminum-doped zinc oxide, fluorine-doped tin oxide, gallium-doped zinc oxide, and indium-doped zinc oxide; Alternatively, the transparent bottom electrode layer is selected from metal transparent films or metal mesh material films;
所述透明顶电极层的材料选自氧化铟锡、掺铝的氧化锌、掺氟的氧化锡、掺镓的氧化锌、掺铟的氧化锌中的任意一种或多种;或者,所述透明顶电极层选自金属透明薄膜或金属网格材料薄膜。The material of the transparent top electrode layer is selected from any one or more of indium tin oxide, aluminum-doped zinc oxide, fluorine-doped tin oxide, gallium-doped zinc oxide, and indium-doped zinc oxide; or, the The transparent top electrode layer is selected from metal transparent films or metal mesh material films.
可选地,所述透明底电极层的方块电阻值为10~20Ω/sq,所述透明底电极层的透过率在波长550nm处高于80%;Optionally, the sheet resistance value of the transparent bottom electrode layer is 10-20Ω/sq, and the transmittance of the transparent bottom electrode layer is higher than 80% at a wavelength of 550 nm;
所述透明顶电极层的方块电阻值为20~100Ω/sq,所述透明顶电极层的透过率在波长550nm处高于80%。The sheet resistance value of the transparent top electrode layer is 20-100Ω/sq, and the transmittance of the transparent top electrode layer is higher than 80% at a wavelength of 550 nm.
可选地,所述第一电子阻挡层的厚度为20-50nm,所述第二电子阻挡层的厚度为20-50nm。Optionally, the thickness of the first electron blocking layer is 20-50 nm, and the thickness of the second electron blocking layer is 20-50 nm.
可选地,所述第一电子阻挡层的材料和所述第二电子阻挡层的材料独立地选自SiO2、Si3N4、Ta2O5、ZrO2、Nb2O5中的任意一种或多种。Optionally, the material of the first electron blocking layer and the material of the second electron blocking layer are independently selected from any of SiO 2 , Si 3 N 4 , Ta 2 O 5 , ZrO 2 , and Nb 2 O 5 one or more.
可选地,所述电解质层的材料选自LiF、LiAlOx、LiPON、LiNbO3、LiTaO3中的任意一种或多种,所述电解质层的厚度为50-500nm。Optionally, the material of the electrolyte layer is selected from any one or more of LiF, LiAlO x , LiPON, LiNbO 3 , and LiTaO 3 , and the thickness of the electrolyte layer is 50-500 nm.
可选地,所述电致变色层的材料选自WO3、TiO2、Li4Ti5O12、MoO3中的任意一种或多种。Optionally, the material of the electrochromic layer is selected from any one or more of WO 3 , TiO 2 , Li 4 Ti 5 O 12 , and MoO 3 .
可选地,所述电致变色层的厚度为100-300nm。Optionally, the thickness of the electrochromic layer is 100-300 nm.
本发明的第二方面,提供一种本发明所述的多色彩无机全固态电致变色器件的制备方法,其中,包括步骤:The second aspect of the present invention provides a method for preparing a multi-color inorganic all-solid-state electrochromic device according to the present invention, comprising the steps of:
提供表面具有透明底电极层的基底;providing a substrate with a transparent bottom electrode layer on the surface;
在所述透明底电极层上形成多色彩离子储存层;forming a multi-color ion storage layer on the transparent bottom electrode layer;
在所述多色彩离子储存层上形成第一电子阻挡层;forming a first electron blocking layer on the multicolor ion storage layer;
在所述第一电子阻挡层上形成电解质层;forming an electrolyte layer on the first electron blocking layer;
在所述电解质层上形成第二电子阻挡层;forming a second electron blocking layer on the electrolyte layer;
在所述第二电子阻挡层上形成电致变色层;forming an electrochromic layer on the second electron blocking layer;
在所述电致变色层上形成透明顶电极层,得到所述多色彩无机全固态电致变色器件;forming a transparent top electrode layer on the electrochromic layer to obtain the multi-color inorganic all-solid-state electrochromic device;
其中,所述多色彩离子储存层的材料为AxOy,所述AxOy为两极着色材料,其中A为具有多种价态的金属元素。Wherein, the material of the multi-color ion storage layer is A x O y , the A x O y is a bipolar coloring material, wherein A is a metal element with multiple valence states.
有益效果:本发明多色彩无机全固态电致变色器件主要包括透明电极层、多色彩离子储存层、电解质层(也称离子传导层)、电子阻挡层以及电致变色层。利用其中多色彩离子储存层在离子和电子共注入/抽出时呈现多色的特性,该多色彩离子储存层与具有电化学活性而颜色变化单一的透明电致变色层相匹配,最终实现无机全固态电致变色器件的可黄-绿-蓝色转变的多色彩变化性能。本发明制备的多色彩无机全固态电致变色器件,拥有超大的光学调制幅度,易于大面积均匀制备,稳定性好,且制备工艺简单。本发明有效地克服了传统无机全固态电致变色器件色彩单一的技术问题。Beneficial effects: The multi-color inorganic all-solid-state electrochromic device of the present invention mainly includes a transparent electrode layer, a multi-color ion storage layer, an electrolyte layer (also called an ion conduction layer), an electron blocking layer and an electrochromic layer. Utilizing the characteristic that the multi-color ion storage layer exhibits multi-color when ions and electrons are co-injected/extracted, the multi-color ion storage layer is matched with the transparent electrochromic layer which has electrochemical activity and a single color change, and finally realizes the inorganic full-color ion storage layer. Yellow-green-blue transitionable multi-color change performance of solid-state electrochromic devices. The multi-color inorganic all-solid-state electrochromic device prepared by the invention has a large optical modulation amplitude, is easy to be uniformly prepared in a large area, has good stability, and has a simple preparation process. The invention effectively overcomes the technical problem of single color of the traditional inorganic all-solid-state electrochromic device.
附图说明Description of drawings
图1为实施例1中的多色彩无机全固态电致变色器件的结构示意图。FIG. 1 is a schematic structural diagram of the multi-color inorganic all-solid-state electrochromic device in Example 1. FIG.
图2为实施例1中的多色彩无机全固态电致变色器件着/褪色状态下的透射率全谱图。FIG. 2 is a full spectrum diagram of the transmittance of the multi-color inorganic all-solid-state electrochromic device in the colored/discolored state in Example 1. FIG.
图3为实施例1中的多色彩无机全固态电致变色器件在不同电压作用下的色度变化。FIG. 3 is the chromaticity change of the multi-color inorganic all-solid-state electrochromic device in Example 1 under the action of different voltages.
具体实施方式Detailed ways
本发明提供一种多色彩无机全固态电致变色器件及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention provides a multi-color inorganic all-solid-state electrochromic device and a preparation method thereof. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention is further described below in detail. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
传统的无机固态电致变色器件通常由五个连续层组成,分别为两层透明的集流体层,一层电致变色活性层,一个离子导体层和一个离子储存层。该无机固态电致变色器件主要基于阴极氧化钨和阳极氧化镍功能层的匹配耦合,而这两种典型电致变色材料只能在透明态和材料的固有价态颜色之间切换。因此,最终的器件只能实现不同透明度之间的调节,颜色变化单一。Conventional inorganic solid-state electrochromic devices usually consist of five consecutive layers, which are two transparent current collector layers, an electrochromic active layer, an ion conductor layer, and an ion storage layer. The inorganic solid-state electrochromic device is mainly based on the matching coupling of cathodic tungsten oxide and anodic nickel oxide functional layers, and these two typical electrochromic materials can only be switched between the transparent state and the intrinsic valence state color of the material. Therefore, the final device can only achieve adjustment between different transparency and single color change.
基于此,本发明实施例选用色彩变化丰富的电致变色材料作为离子储存层与具有电化学活性而颜色变化单一的透明电致变色层相匹配,从而实现了无机全固态电致变色器件的多色彩特性。Based on this, the embodiment of the present invention selects an electrochromic material with rich color changes as the ion storage layer to match the transparent electrochromic layer with electrochemical activity and a single color change, thereby realizing the multi-functionality of inorganic all-solid-state electrochromic devices. color characteristics.
具体地,本发明实施例提供一种多色彩无机全固态电致变色器件,其中,包括依次层叠设置的基底、透明底电极层、多色彩离子储存层、第一电子阻挡层、电解质层、第二电子阻挡层、电致变色层、透明顶电极层;Specifically, an embodiment of the present invention provides a multi-color inorganic all-solid-state electrochromic device, which includes a substrate, a transparent bottom electrode layer, a multi-color ion storage layer, a first electron blocking layer, an electrolyte layer, a Two electron blocking layer, electrochromic layer, transparent top electrode layer;
其中,所述多色彩离子储存层的材料为AxOy,所述AxOy为两极着色材料,其中A为具有多种价态的金属元素。Wherein, the material of the multi-color ion storage layer is A x O y , the A x O y is a bipolar coloring material, wherein A is a metal element with multiple valence states.
需说明的是,所述两极着色材料是指材料在离子注入和抽出的状态下,均呈现颜色的变化。而如WO3材料为单极着色材料,锂离子注入时呈现蓝色,锂离子抽出时为透明态。It should be noted that the bipolar coloring material refers to that the material exhibits color changes in the state of ion implantation and extraction. For example, WO 3 material is a monopolar coloring material, which appears blue when lithium ions are implanted, and is transparent when lithium ions are extracted.
本实施例多色彩无机全固态电致变色器件主要包括透明电极层、多色彩离子储存层、电解质层、电子阻挡层以及电致变色层。其中的多色彩离子储存层,由于电场驱动阳离子的注入/抽出引起金属离子的价态变化,从而调整材料的光学折射率和消光系数,使材料呈现颜色变化。由于AxOy中的A金属离子具有多种价态,使材料呈现多种颜色变化。因此,该多色彩离子储存层在不同电压调控下呈现不同色彩变化的特性。The multi-color inorganic all-solid-state electrochromic device in this embodiment mainly includes a transparent electrode layer, a multi-color ion storage layer, an electrolyte layer, an electron blocking layer, and an electrochromic layer. In the multi-color ion storage layer, the valence state of metal ions is changed due to the injection/extraction of cations driven by the electric field, thereby adjusting the optical refractive index and extinction coefficient of the material, so that the material exhibits color changes. Since the A metal ion in AxOy has multiple valence states, the material exhibits multiple color changes. Therefore, the multi-color ion storage layer exhibits the characteristics of different color changes under different voltage regulation.
本实施例利用多色彩离子储存层在离子和电子共注入/抽出时呈现多色的特性,该多色彩离子储存层与具有电化学活性而颜色变化单一的透明电致变色层相匹配,最终实现无机全固态电致变色器件可黄-绿-蓝色转变的多色彩变化性能。本实施例制备的多色彩无机全固态电致变色器件,拥有超大的光学调制幅度,易于大面积均匀制备,稳定性好,且制备工艺简单。本实施例有效地克服了传统无机全固态电致变色器件色彩单一的技术问题。This embodiment utilizes the multi-color ion storage layer to exhibit multi-color characteristics when ions and electrons are co-injected/extracted. The multi-color ion storage layer is matched with a transparent electrochromic layer that has electrochemical activity and a single color change, and finally realizes the Inorganic all-solid-state electrochromic devices capable of yellow-green-blue transition with multi-color change performance. The multi-color inorganic all-solid-state electrochromic device prepared in this example has a large optical modulation amplitude, is easy to prepare uniformly in a large area, has good stability, and has a simple preparation process. This embodiment effectively overcomes the technical problem of single color of the traditional inorganic all-solid-state electrochromic device.
具体的,本实施例无机全固态电致变色器件可实现多色彩的原理在于,多色彩离子储存层在锂离子注入/抽出或不同注入/抽出量时呈现不同的颜色,电致变色层在锂离子注入/抽出的过程中只有一种颜色变化,只会随着锂离子注入量的变化,其颜色由透明态向单一颜色变化且颜色不断加深。在对无机全固态电致变色器件施加电场时,对于阴阳电极而言,施加的电场相反。另外随着施加电压大小的变化,各变色功能层的锂离子注入量/抽出量会有相应的增加或减少,从而使其中的多色彩离子储存层呈现不同的颜色,而电致变色层因锂离子含量的变化而颜色由透明态向着色态颜色不断加深,多色彩离子储存层和电致变色层在对应状态下的色彩叠加呈现的颜色即为器件的最终呈现的颜色。因此,器件的色彩变化可以通过施加电压的大小来相应调节。Specifically, the principle that the inorganic all-solid-state electrochromic device in this embodiment can realize multi-color is that the multi-color ion storage layer presents different colors when lithium ions are implanted/extracted or with different amounts of implantation/extraction, and the electrochromic layer is in the lithium ion. There is only one color change in the process of ion implantation/extraction, and only with the change of the amount of lithium ion implantation, its color changes from a transparent state to a single color and the color continues to deepen. When an electric field is applied to the inorganic all-solid-state electrochromic device, the applied electric field is opposite for the cathode and anode electrodes. In addition, with the change of the applied voltage, the amount of lithium ion implantation/extraction in each color-changing functional layer will increase or decrease correspondingly, so that the multi-color ion storage layer in it will show different colors, while the electrochromic layer is due to the lithium ion storage layer. The color of the ion content changes from the transparent state to the colored state, and the color of the multi-color ion storage layer and the electrochromic layer in the corresponding state is superimposed and the color is the final color of the device. Therefore, the color change of the device can be adjusted accordingly by the magnitude of the applied voltage.
在一种实施方式中,所述AxOy中的A为V、Co和Rh中的任意一种。即所述多色彩离子储存层的材料选自五氧化二钒(V2O5)、氧化钴(Co3O4)和氧化铑(Rh2O3)等中的任意一种或多种。In one embodiment, A in the AxOy is any one of V, Co and Rh . That is, the material of the multi-color ion storage layer is selected from any one or more of vanadium pentoxide (V 2 O 5 ), cobalt oxide (Co 3 O 4 ), and rhodium oxide (Rh 2 O 3 ).
在一种实施方式中,所述多色彩离子储存层的厚度为100-400nm。In one embodiment, the thickness of the multi-color ion storage layer is 100-400 nm.
本实施例中的透明底电极层的功能:为器件工作导通电子。The function of the transparent bottom electrode layer in this embodiment is to conduct electrons for device operation.
在一种实施方式中,所述透明底电极层的材料选自氧化铟锡(In2O3:Sn,简写为ITO)、掺铝的氧化锌(ZnO:Al,简写为AZO)、掺氟的氧化锡、掺镓的氧化锌(ZnO:Ga,简写为GZO)、掺铟的氧化锌(ZnO:In,简写为IZO)等中的任意一种或多种;或者,所述透明底电极层选自极薄的金属透明薄膜或金属网格材料薄膜。也就是说,除了掺杂的透明导电氧化物之外,极薄的金属透明薄膜或金属网格材料薄膜也可以作为透明底电极。In one embodiment, the material of the transparent bottom electrode layer is selected from indium tin oxide (In 2 O 3 :Sn, abbreviated as ITO), aluminum-doped zinc oxide (ZnO:Al, abbreviated as AZO), fluorine-doped zinc oxide (ZnO:Al, abbreviated as AZO), Any one or more of tin oxide, gallium-doped zinc oxide (ZnO:Ga, abbreviated as GZO), indium-doped zinc oxide (ZnO:In, abbreviated as IZO), etc.; or, the transparent bottom electrode The layers are selected from extremely thin metallic transparent films or metallic mesh material films. That is, in addition to doped transparent conductive oxides, extremely thin metal transparent films or metal mesh material films can also be used as transparent bottom electrodes.
由于透明底电极层电阻过大会造成器件工作时所需电压过大,以及透明底电极层透光率会影响器件整体透过率,所述透明底电极层的方块电阻值为10~20Ω/sq,所述透明底电极层的透过率在波长550nm处高于80%。Since the resistance of the transparent bottom electrode layer is too large, the voltage required for the device to work is too large, and the light transmittance of the transparent bottom electrode layer will affect the overall transmittance of the device. The sheet resistance value of the transparent bottom electrode layer is 10-20Ω/sq , the transmittance of the transparent bottom electrode layer is higher than 80% at a wavelength of 550 nm.
在一种实施方式中,所述透明底电极层的厚度为100-200nm。当所述透明底电极层为极薄的金属透明薄膜时,所述透明底电极层的厚度为10-20nm。In one embodiment, the thickness of the transparent bottom electrode layer is 100-200 nm. When the transparent bottom electrode layer is an extremely thin metal transparent film, the thickness of the transparent bottom electrode layer is 10-20 nm.
本实施例中的透明顶电极层的功能:为器件导通电子的透明薄膜层,与透明底电极层一起,为器件中多色彩离子储存层和电致变色层的氧化还原反应构筑均匀电场。The function of the transparent top electrode layer in this embodiment is that it is a transparent thin film layer that conducts electrons in the device, and together with the transparent bottom electrode layer, builds a uniform electric field for the redox reaction of the multicolor ion storage layer and the electrochromic layer in the device.
在一种实施方式中,所述透明顶电极层的材料选自氧化铟锡(In2O3:Sn,简写为ITO)、掺铝的氧化锌(ZnO:Al,简写为AZO)、掺氟的氧化锡、掺镓的氧化锌(ZnO:Ga,简写为GZO)、掺铟的氧化锌(ZnO:In,简写为IZO)等中的任意一种或多种;或者,所述透明顶电极层选自极薄的金属透明薄膜或金属网格材料薄膜。也就是说,除了掺杂的透明导电氧化物之外,极薄的金属透明薄膜或金属网格材料薄膜也可以作为透明顶电极。In one embodiment, the material of the transparent top electrode layer is selected from indium tin oxide (In 2 O 3 :Sn, abbreviated as ITO), aluminum-doped zinc oxide (ZnO:Al, abbreviated as AZO), fluorine-doped zinc oxide (ZnO:Al, abbreviated as AZO), Any one or more of tin oxide, gallium-doped zinc oxide (ZnO:Ga, abbreviated as GZO), indium-doped zinc oxide (ZnO:In, abbreviated as IZO), etc.; or, the transparent top electrode The layers are selected from extremely thin metallic transparent films or metallic mesh material films. That is, in addition to doped transparent conductive oxides, extremely thin metal transparent films or metal mesh material films can also be used as transparent top electrodes.
在一种实施方式中,所述透明顶电极层的方块电阻值为20~100Ω/sq,所述透明顶电极层的透过率在波长550nm处高于80%。In one embodiment, the sheet resistance of the transparent top electrode layer is 20-100Ω/sq, and the transmittance of the transparent top electrode layer is higher than 80% at a wavelength of 550 nm.
在一种实施方式中,所述透明顶电极层的厚度为100-200nm。当所述透明顶电极层为极薄的金属透明薄膜时,所述透明顶电极层的厚度为10-20nm。In one embodiment, the thickness of the transparent top electrode layer is 100-200 nm. When the transparent top electrode layer is an extremely thin metal transparent film, the thickness of the transparent top electrode layer is 10-20 nm.
为了实现多色彩无机全固态电致变色器件优异的保色性能,确保其不需要持续的加载电压来维持色彩,因此,本实施例中在电解质层的两侧添加了电子阻挡层,且该电子阻挡层不影响离子有效传输。即本实施例中在电解质层的两侧添加了第一电子阻挡层和第二电子阻挡层,如此可以抑制器件内部电子逆传递,提高器件着色效率的同时确保其保色性能。In order to realize the excellent color retention performance of the multi-color inorganic all-solid-state electrochromic device and ensure that it does not require a continuous loading voltage to maintain the color, therefore, in this embodiment, electron blocking layers are added on both sides of the electrolyte layer, and the electron The barrier layer does not affect the efficient transport of ions. That is, in this embodiment, the first electron blocking layer and the second electron blocking layer are added on both sides of the electrolyte layer, so that the reverse electron transfer in the device can be suppressed, the coloring efficiency of the device can be improved, and the color retention performance of the device can be ensured.
由于第一电子阻挡层的厚度对电解质层的介电性能有影响,同时锂离子从电解质层进入多色彩离子储存层需克服一定的势垒,所述第一电子阻挡层的厚度为20-50nm。Since the thickness of the first electron blocking layer has an influence on the dielectric properties of the electrolyte layer, and at the same time, a certain potential barrier needs to be overcome for lithium ions to enter the multi-color ion storage layer from the electrolyte layer, the thickness of the first electron blocking layer is 20-50 nm .
在一种实施方式中,所述第一电子阻挡层的材料选自SiO2、Si3N4、Ta2O5、ZrO2、Nb2O5中的任意一种或多种。In one embodiment, the material of the first electron blocking layer is selected from any one or more of SiO 2 , Si 3 N 4 , Ta 2 O 5 , ZrO 2 , and Nb 2 O 5 .
在一种实施方式中,与第一层电子阻挡层的厚度确定原则一致,所述第二电子阻挡层的厚度为20-50nm。In one embodiment, consistent with the principle of determining the thickness of the first electron blocking layer, the thickness of the second electron blocking layer is 20-50 nm.
在一种实施方式中,所述第二电子阻挡层的材料选自SiO2、Si3N4、Ta2O5、ZrO2、Nb2O5中的任意一种或多种。In one embodiment, the material of the second electron blocking layer is selected from any one or more of SiO 2 , Si 3 N 4 , Ta 2 O 5 , ZrO 2 , and Nb 2 O 5 .
本实施例中位于两层电子阻挡层之间的电解质层的功能:为器件的工作提供致色的阳离子,并为离子的传输提供所需的通道,同时隔绝器件内部的电子传输。电致变色器件中的电解质层具有高的离子电导率和较低的电子电导率,且始终呈现透明状态。根据电解质的存在形式不同,电解质的类型包括液体电解质、凝胶电解质和固态陶瓷电解质。虽然相较于前两种,固态陶瓷电解质的离子电导率相对较低,但其具有较宽的电化学稳定工作窗口和优异的耐候性等优势。因此,本实施例优选固态陶瓷电解质作为电解质层。The function of the electrolyte layer between the two electron blocking layers in this embodiment is to provide chromogenic cations for the operation of the device, and to provide the required channels for the transport of ions, while isolating the electron transport inside the device. The electrolyte layer in electrochromic devices has high ionic conductivity and low electronic conductivity, and is always transparent. The types of electrolytes include liquid electrolytes, gel electrolytes, and solid ceramic electrolytes, depending on the form in which the electrolyte exists. Although the ionic conductivity of solid-state ceramic electrolytes is relatively low compared to the first two, they have the advantages of a wide electrochemically stable working window and excellent weatherability. Therefore, in this embodiment, a solid ceramic electrolyte is preferred as the electrolyte layer.
在一种实施方式中,所述电解质层的材料选自LiF、LiAlOx、LiPON、LiNbO3、LiTaO3中的任意一种或多种。In one embodiment, the material of the electrolyte layer is selected from any one or more of LiF, LiAlO x , LiPON, LiNbO 3 , and LiTaO 3 .
由于电解质层厚度过厚会影响整体器件透过率以及界面性能,同时电解质层厚度过薄影响其介电性能,确定所述电解质层的厚度为50-500nm。Since the thickness of the electrolyte layer is too thick will affect the overall device transmittance and interface performance, while the thickness of the electrolyte layer is too thin to affect its dielectric properties, the thickness of the electrolyte layer is determined to be 50-500nm.
影响多色彩无机全固态电致变色器件工作的因素有很多,其中多色彩无机全固态电致变色器件工作时注入电荷量的多少往往由两层电致变色材料中电荷注入量较少的一层决定,而器件注入电荷量的多少会限制器件的着色深度。同时,相较于单电极的电致变色器件,互补型电致变色器件的优势为两极材料变色过程中的电荷平衡使得器件着色更深,可实现更高的颜色对比度。因此,本实施例中的电致变色层作为对电极层,不仅可以实现电荷平衡,在多色彩电致变色层颜色变化的过程中还能与其进行颜色互补实现多色态。There are many factors that affect the operation of multi-color inorganic all-solid-state electrochromic devices. The amount of charge injected into multi-color inorganic all-solid-state electrochromic devices is often determined by the layer with less charge injection in the two layers of electrochromic materials. decision, and the amount of charge injected into the device will limit the shading depth of the device. At the same time, compared with single-electrode electrochromic devices, the advantage of complementary electrochromic devices is that the charge balance during the discoloration process of bipolar materials makes the device color deeper and can achieve higher color contrast. Therefore, as the counter electrode layer, the electrochromic layer in this embodiment can not only achieve charge balance, but also perform color complementation with the multi-color electrochromic layer to achieve a multi-color state during the color change process of the multi-color electrochromic layer.
在一种实施方式中,所述电致变色层的材料选自WO3、TiO2、Li4Ti5O12、MoO3中的任意一种或多种。In one embodiment, the material of the electrochromic layer is selected from any one or more of WO 3 , TiO 2 , Li 4 Ti 5 O 12 , and MoO 3 .
由于多色彩离子储存层与电致变色层的电荷平衡以及两极功能层色彩耦合匹配,所述电致变色层的厚度为100-300nm。Due to the charge balance of the multi-color ion storage layer and the electrochromic layer and the color coupling matching of the bipolar functional layer, the thickness of the electrochromic layer is 100-300 nm.
本发明实施例还提供一种本发明所述的多色彩无机全固态电致变色器件的制备方法,其中,包括步骤:The embodiment of the present invention also provides a method for preparing a multi-color inorganic all-solid-state electrochromic device according to the present invention, wherein the method includes the steps:
S1、提供表面具有透明底电极层的基底;S1. Provide a substrate with a transparent bottom electrode layer on the surface;
S2、在所述透明底电极层上形成多色彩离子储存层;S2, forming a multi-color ion storage layer on the transparent bottom electrode layer;
S3、在所述多色彩离子储存层上形成第一电子阻挡层;S3, forming a first electron blocking layer on the multi-color ion storage layer;
S4、在所述第一电子阻挡层上形成电解质层;S4, forming an electrolyte layer on the first electron blocking layer;
S5、在所述电解质层上形成第二电子阻挡层;S5, forming a second electron blocking layer on the electrolyte layer;
S6、在所述第二电子阻挡层上形成电致变色层;S6, forming an electrochromic layer on the second electron blocking layer;
S7、在所述电致变色层上形成透明顶电极层,得到所述多色彩无机全固态电致变色器件;S7, forming a transparent top electrode layer on the electrochromic layer to obtain the multi-color inorganic all-solid-state electrochromic device;
其中,所述多色彩离子储存层的材料为AxOy,所述AxOy为两极着色材料,其中A为具有多种价态的金属元素。Wherein, the material of the multi-color ion storage layer is A x O y , the A x O y is a bipolar coloring material, wherein A is a metal element with multiple valence states.
本实施例利用多靶磁控溅射技术在刚性或柔性基底上进行多层膜的连续、一体化沉积,在真空环境中获得多色彩无机全固态电致变色器件,器件的结构为透明底电极层、多色彩离子储存层、第一层电子阻挡层、电解质层、第二层电子阻挡层、电致变色层以及透明顶电极层。In this example, multi-target magnetron sputtering technology is used to carry out continuous and integrated deposition of multilayer films on rigid or flexible substrates, and a multi-color inorganic all-solid-state electrochromic device is obtained in a vacuum environment. The structure of the device is a transparent bottom electrode layer, a multicolor ion storage layer, a first electron blocking layer, an electrolyte layer, a second electron blocking layer, an electrochromic layer, and a transparent top electrode layer.
本发明主要采用操作易控的磁控溅射技术,制备出大面积,色彩多变,光调制幅度高,均匀性好的多色彩无机全固态电致变色器件。The invention mainly adopts the easy-to-control magnetron sputtering technology to prepare multi-color inorganic all-solid electrochromic devices with large area, variable colors, high light modulation amplitude and good uniformity.
步骤S2中,可以利用磁控溅射技术,在真空体系中,设定气压和氧氩比例,通过控制沉积的时间来控制薄膜的厚度,获得所述多色彩电致变色层。In step S2, the multi-color electrochromic layer can be obtained by using the magnetron sputtering technology to set the gas pressure and the ratio of oxygen and argon in a vacuum system, and control the thickness of the film by controlling the deposition time.
步骤S4中,可以利用射频反应溅射技术,获得所述电解质层。In step S4, the electrolyte layer may be obtained by using a radio frequency reactive sputtering technology.
下面通过具体的实施例对本发明作进一步地说明。The present invention will be further described below through specific embodiments.
实施例Example
制备面积为10×10cm2的多色彩无机全固态电致变色器件,器件的结构如图1所示,其中,TC 1表示透明底电极层,EC 1表示多色彩离子储存层,EB1表示第一电子阻挡层,EL表示电解质层,EB2表示第二电子阻挡层,EC 2表示电致变色层,TC 2表示透明顶电极层。A multi-color inorganic all-solid-state electrochromic device with an area of 10 × 10 cm 2 was prepared. The structure of the device is shown in Figure 1, where
将ITO导电玻璃置于真空腔室内,利用磁控溅射沉积技术进行多层膜的连续沉积。The ITO conductive glass is placed in a vacuum chamber, and the multi-layer film is continuously deposited by magnetron sputtering deposition technology.
首先,进行多色彩离子储存层的制备,以3英寸的金属钒为靶材,控制氧气氩气比例为5sccm:45sccm,气压为0.3pa,功率为150W,沉积的过程中基底始终处于匀速旋转状态,获得均匀的多色彩离子储存层。在多色彩离子储存层上制备第一层电子阻挡层,以金属钽为靶材,在溅射的过程中,设定气压为0.3Pa,功率为150W,在O2:Ar=5:45(流量比)的混合气氛下获得均匀致密的氧化钽薄膜。电解质层的制备是以LiNbO3陶瓷材料为靶材,沉积气压为0.5pa,氧气氩气比例为5sccm:95sccm,射频功率为130W,从而获得高离子电导率的电解质层。在电解质层的基础上沉积第二层电子阻挡层,第二层电子阻挡层的制备参数与第一层电子阻挡层的一致。电致变色层依然是通过磁控反应溅射的方式获得,在薄膜的制备过程中,气压控制为2.0pa,氧气与氩气的流量比为1:3,溅射功率为200W,靶材的中心位置到达基底的距离为13cm,获得透明的WO3薄膜。透明顶电极层的电阻大小对器件工作的电压施加大小影响巨大,较低和均匀的面电阻对器件的均匀着褪色至关重要,调节沉积过程中的气压为0.3Pa,氧气氩气的比例为0.6sccm:78.4sccm,溅射功率为80W,获得透明且表面方阻低于100Ω/sq的ITO薄膜。First, a multi-color ion storage layer was prepared, using a 3-inch metal vanadium as the target, controlling the ratio of oxygen and argon to 5sccm:45sccm, the air pressure to 0.3pa, and the power to 150W. During the deposition process, the substrate was always in a state of uniform rotation. , to obtain a uniform multi-color ion storage layer. The first electron blocking layer was prepared on the multi-color ion storage layer, and the metal tantalum was used as the target. During the sputtering process, the gas pressure was set to 0.3Pa, the power was 150W, and the temperature was O 2 : Ar=5:45 ( A uniform and dense tantalum oxide film was obtained in a mixed atmosphere with a flow ratio). The preparation of the electrolyte layer is based on LiNbO3 ceramic material as the target material, the deposition pressure is 0.5pa, the ratio of oxygen and argon is 5sccm:95sccm, and the radio frequency power is 130W, so as to obtain the electrolyte layer with high ionic conductivity. A second electron blocking layer is deposited on the basis of the electrolyte layer, and the preparation parameters of the second electron blocking layer are consistent with those of the first electron blocking layer. The electrochromic layer is still obtained by magnetron reactive sputtering. During the preparation of the film, the air pressure is controlled to 2.0pa, the flow ratio of oxygen to argon is 1:3, the sputtering power is 200W, and the target The distance from the center position to the substrate was 13 cm, and a transparent WO 3 film was obtained. The resistance of the transparent top electrode layer has a huge influence on the voltage applied to the device. A low and uniform sheet resistance is very important for the uniform color and fading of the device. The air pressure during the deposition process is adjusted to 0.3Pa, and the ratio of oxygen and argon is 0.6sccm:78.4sccm, the sputtering power is 80W, and a transparent ITO film with surface resistance lower than 100Ω/sq is obtained.
将所获得多色彩无机全固态电致变色器件置于两电极体系中,通过正负电压的施加,进行器件的着色和褪色。利用电化学工作站和光谱仪的联立结合,在器件的褪色态和着色态下分别记录其可见光和近红外波段的透射率图谱。如图2所示,多色彩无机全固态电致变色器件在整个波段均具有优异的调制能力,其在550nm处的光调制幅度达到了58%,且其褪色态的透明度高达72%。The obtained multi-color inorganic all-solid-state electrochromic device is placed in a two-electrode system, and the device is colored and faded by applying positive and negative voltages. Using the simultaneous combination of an electrochemical workstation and a spectrometer, the transmittance spectra in the visible and near-infrared bands were recorded in the faded and colored states of the device, respectively. As shown in Fig. 2, the multi-color inorganic all-solid-state electrochromic device has excellent modulation capability in the entire wavelength band, its light modulation amplitude at 550 nm reaches 58%, and its transparency in the faded state is as high as 72%.
将制备好的多色彩无机全固态电致变色器件置于色度仪中,利用上海辰华电化学工作站操纵器件的颜色变化。在不同电压作用下,器件的颜色被色度仪记录下来,器件可实现黄色-绿色-蓝色这三个色系的来回切换,如图3所示。The prepared multi-color inorganic all-solid-state electrochromic device was placed in a colorimeter, and the color change of the device was manipulated by Shanghai Chenhua electrochemical workstation. Under the action of different voltages, the color of the device is recorded by the colorimeter, and the device can switch back and forth between the three color systems of yellow-green-blue, as shown in Figure 3.
综上所述,本发明提供的一种多色彩无机全固态电致变色器件及其制备方法。本发明多色彩无机全固态电致变色器件主要包括透明电极层、多色彩电致变色层、电解质层(也称离子传导层)、电子阻挡层以及离子储存层。利用其中多色彩电致变色层在离子和电子共注入/抽出时呈现多色的特性,该多色彩离子储存层与具有电化学活性而颜色变化单一的透明电致变色层相匹配,最终实现无机全固态电致变色器件的可黄色-绿色-蓝色转变的多色彩变化性能。本发明制备的多色彩无机全固态电致变色器件,拥有超大的光学调制幅度,易于大面积均匀制备,稳定性好,且制备工艺简单。本发明有效地克服了传统无机全固态电致变色器件色彩单一的技术问题。In summary, the present invention provides a multi-color inorganic all-solid-state electrochromic device and a preparation method thereof. The multi-color inorganic all-solid-state electrochromic device of the present invention mainly includes a transparent electrode layer, a multi-color electrochromic layer, an electrolyte layer (also called an ion conduction layer), an electron blocking layer and an ion storage layer. The multi-color ion storage layer is matched with a transparent electrochromic layer with electrochemical activity and a single color change by utilizing the multi-color electrochromic layer when ions and electrons are co-injected/extracted. Yellow-green-blue switchable multi-color change performance of all-solid-state electrochromic devices. The multi-color inorganic all-solid-state electrochromic device prepared by the invention has a large optical modulation amplitude, is easy to be uniformly prepared in a large area, has good stability, and has a simple preparation process. The invention effectively overcomes the technical problem of single color of the traditional inorganic all-solid-state electrochromic device.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples. For those of ordinary skill in the art, improvements or transformations can be made according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210103819.5A CN114563896A (en) | 2022-01-27 | 2022-01-27 | A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210103819.5A CN114563896A (en) | 2022-01-27 | 2022-01-27 | A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114563896A true CN114563896A (en) | 2022-05-31 |
Family
ID=81713662
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210103819.5A Pending CN114563896A (en) | 2022-01-27 | 2022-01-27 | A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114563896A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115047684A (en) * | 2022-06-08 | 2022-09-13 | 吉林大学 | Electrochromic electrode and preparation method thereof, device and preparation method thereof |
| CN115657389A (en) * | 2022-11-14 | 2023-01-31 | 中北大学 | Reverse self-discharge electrochromic energy storage device |
| CN116300233A (en) * | 2022-12-15 | 2023-06-23 | 安徽立光电子材料股份有限公司 | Electrochromic element with high conversion rate and preparation method thereof |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1253461A2 (en) * | 2001-04-24 | 2002-10-30 | Schott-Donnelly LLC | Electrochromic safety glazing |
| CN101833211A (en) * | 2010-04-01 | 2010-09-15 | 中国科学院宁波材料技术与工程研究所 | Intelligent dimming glass |
| CN103353700A (en) * | 2013-06-25 | 2013-10-16 | 中国南玻集团股份有限公司 | Electrochromic glass, hollow glass and preparation methods thereof |
| KR20140086327A (en) * | 2012-12-28 | 2014-07-08 | 전자부품연구원 | Electrochromic device with graphene transparent electrode |
| CN104570534A (en) * | 2013-10-09 | 2015-04-29 | 中国科学院宁波材料技术与工程研究所 | All-solid-state inorganic electrochromic device and fabrication method thereof |
| TW201616206A (en) * | 2014-10-24 | 2016-05-01 | 行政院原子能委員會核能研究所 | Method for fabricating an all-solid-state electrochromic device |
| CN206892521U (en) * | 2017-06-22 | 2018-01-16 | 上海洞舟实业有限公司 | A kind of flexible solid electrochromic device of sandwich construction |
| CN108086872A (en) * | 2016-11-23 | 2018-05-29 | 合肥威迪变色玻璃有限公司 | Electrochromic laminated glass, window and curtain wall display system |
| CN108254989A (en) * | 2016-12-29 | 2018-07-06 | 宁波祢若电子科技有限公司 | Full-solid electrochromic window and solid-state electrochromic mirror and preparation method thereof |
| CN108803183A (en) * | 2018-04-18 | 2018-11-13 | 南通繁华新材料科技有限公司 | A kind of bilayer full-inorganic electrochromic device and preparation method thereof |
| CN111596496A (en) * | 2020-05-28 | 2020-08-28 | 中国科学院上海硅酸盐研究所 | Visible-infrared independently-controlled electrochromic device |
| CN113296328A (en) * | 2021-06-10 | 2021-08-24 | 浙江大学 | Full-inorganic colorful transmission type electrochromic film, coated glass and design method |
-
2022
- 2022-01-27 CN CN202210103819.5A patent/CN114563896A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1253461A2 (en) * | 2001-04-24 | 2002-10-30 | Schott-Donnelly LLC | Electrochromic safety glazing |
| CN101833211A (en) * | 2010-04-01 | 2010-09-15 | 中国科学院宁波材料技术与工程研究所 | Intelligent dimming glass |
| KR20140086327A (en) * | 2012-12-28 | 2014-07-08 | 전자부품연구원 | Electrochromic device with graphene transparent electrode |
| CN103353700A (en) * | 2013-06-25 | 2013-10-16 | 中国南玻集团股份有限公司 | Electrochromic glass, hollow glass and preparation methods thereof |
| CN104570534A (en) * | 2013-10-09 | 2015-04-29 | 中国科学院宁波材料技术与工程研究所 | All-solid-state inorganic electrochromic device and fabrication method thereof |
| TW201616206A (en) * | 2014-10-24 | 2016-05-01 | 行政院原子能委員會核能研究所 | Method for fabricating an all-solid-state electrochromic device |
| CN108086872A (en) * | 2016-11-23 | 2018-05-29 | 合肥威迪变色玻璃有限公司 | Electrochromic laminated glass, window and curtain wall display system |
| CN108254989A (en) * | 2016-12-29 | 2018-07-06 | 宁波祢若电子科技有限公司 | Full-solid electrochromic window and solid-state electrochromic mirror and preparation method thereof |
| CN206892521U (en) * | 2017-06-22 | 2018-01-16 | 上海洞舟实业有限公司 | A kind of flexible solid electrochromic device of sandwich construction |
| CN108803183A (en) * | 2018-04-18 | 2018-11-13 | 南通繁华新材料科技有限公司 | A kind of bilayer full-inorganic electrochromic device and preparation method thereof |
| CN111596496A (en) * | 2020-05-28 | 2020-08-28 | 中国科学院上海硅酸盐研究所 | Visible-infrared independently-controlled electrochromic device |
| CN113296328A (en) * | 2021-06-10 | 2021-08-24 | 浙江大学 | Full-inorganic colorful transmission type electrochromic film, coated glass and design method |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115047684A (en) * | 2022-06-08 | 2022-09-13 | 吉林大学 | Electrochromic electrode and preparation method thereof, device and preparation method thereof |
| CN115047684B (en) * | 2022-06-08 | 2023-12-15 | 吉林大学 | Electrochromic electrode, preparation method, device and preparation method |
| CN115657389A (en) * | 2022-11-14 | 2023-01-31 | 中北大学 | Reverse self-discharge electrochromic energy storage device |
| CN115657389B (en) * | 2022-11-14 | 2025-09-02 | 中北大学 | An electrochromic energy storage device with anti-self-discharge |
| CN116300233A (en) * | 2022-12-15 | 2023-06-23 | 安徽立光电子材料股份有限公司 | Electrochromic element with high conversion rate and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114563896A (en) | A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof | |
| CN103771724B (en) | Full solid thin film electrochomeric glass and preparation method thereof | |
| CN107085339B (en) | Preparation method of all-solid-state electrochromic device | |
| CN104834145B (en) | A kind of lamination electrochomeric glass and its application | |
| CN111142304B (en) | An all-solid-state electrochromic device and method for making the same | |
| KR102038184B1 (en) | An Electrochromic Device | |
| CN110764331B (en) | An ultra-fast response, anti-overcharge-induced color device and preparation method thereof | |
| CN111624829A (en) | Colorful electrochromic structure, preparation method and application thereof | |
| CN107765490A (en) | A kind of heat-insulated intelligent fenestrated membrane of flexible electrochromism and its preparation technology | |
| TWI679483B (en) | Improved electronically controlled all-solid-state intelligent dimming product and its glass window | |
| CN204595399U (en) | A kind of electrochomeric glass | |
| CN109298579A (en) | A kind of all-solid-state electrochromic device and preparation method thereof | |
| CN104614914A (en) | Electrochromic glass with solar cell | |
| CN112731691A (en) | Dual-response composite film based on dual-ion cooperative regulation and control and preparation method thereof | |
| WO2019228303A1 (en) | Solid-state ionic conduction layer and solid-state electrochromic device having solid-state ionic conduction layer | |
| CN110045558A (en) | Lithium aluminate solid ionic conducting shell and preparation method thereof and the full-solid electrochromic device containing the solid ionic conducting shell | |
| CN205643982U (en) | Electrochromic device including metal lines | |
| CN108227328A (en) | A kind of automatically controlled all solid state intelligent dimming device of modified form | |
| CN107315299A (en) | A kind of inorganic electrochromic charge storage electrode and preparation method thereof | |
| KR102079142B1 (en) | An Electrochromic Device | |
| KR102010734B1 (en) | An Electrochromic Device | |
| CN113189822A (en) | Electrochromic device and preparation method thereof | |
| CN107315298A (en) | A kind of brown electrochromism charge storage electrode and preparation method | |
| KR102010754B1 (en) | An Electrochromic Device | |
| KR102056599B1 (en) | An Electrochromic Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220531 |