CN114637914A - List processing method, computing device and storage medium - Google Patents
List processing method, computing device and storage medium Download PDFInfo
- Publication number
- CN114637914A CN114637914A CN202210283796.0A CN202210283796A CN114637914A CN 114637914 A CN114637914 A CN 114637914A CN 202210283796 A CN202210283796 A CN 202210283796A CN 114637914 A CN114637914 A CN 114637914A
- Authority
- CN
- China
- Prior art keywords
- book
- books
- list
- user
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9538—Presentation of query results
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据处理技术领域,具体涉及一种榜单处理方法、计算设备及存储介质。The invention relates to the technical field of data processing, in particular to a method for processing a list, a computing device and a storage medium.
背景技术Background technique
电子书形式的书籍由于具有获取方便等优势,受到了大量用户的喜爱。电子书平台中通常包含有书籍榜单页面,通过书籍榜单页面向用户推荐书籍。用户针对书籍的点击、阅读等行为可以从一定程度上反映其对书籍的偏好。然而,在现有的榜单处理方式中通常是按照书籍人气值、书籍收藏人数等策略对书籍进行排列以得到榜单的,并未基于用户行为将其对书籍的偏好结果反馈到榜单中,导致用户每次浏览书籍榜单页面时所看到的书籍大致相同,例如,用户上一次浏览榜单过程中所确定的不感兴趣的书籍在其下一次浏览榜单时依然存在。这种榜单处理方式无法很好地融合用户的偏好进行书籍推荐,导致书籍推荐效果不佳。Books in the form of e-books are favored by a large number of users due to their advantages such as easy access. The e-book platform usually includes a book list page, and recommends books to users through the book list page. The user's behaviors such as clicking and reading on books can reflect their preferences for books to a certain extent. However, in the existing list processing methods, books are usually ranked according to the book popularity value, the number of book collectors and other strategies to obtain the list, and the results of their preference for books are not fed back to the list based on user behavior. , so that the books that the user sees each time he browses the book list page are roughly the same. For example, the books that the user is not interested in browsing the list last time still exist when he browses the list next time. This list processing method cannot well integrate users' preferences for book recommendation, resulting in poor book recommendation effect.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的榜单处理方法、计算设备及存储介质。In view of the above problems, the present invention is proposed to provide a list processing method, a computing device and a storage medium that overcome the above problems or at least partially solve the above problems.
根据本发明的一个方面,提供了一种榜单处理方法,包括:According to one aspect of the present invention, a method for processing a list is provided, comprising:
采集用户针对待处理榜单中的书籍的历史行为数据;Collect historical behavior data of users for the books in the list to be processed;
对历史行为数据的行为路径深度进行分析,得到用户针对书籍的负向反馈级别数据;Depth analysis of the behavior path of the historical behavior data to obtain the user's negative feedback level data for books;
依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。According to the negative feedback level data, adjust the order of books in the list to be processed to obtain the processed list.
根据本发明的另一方面,提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,处理器、存储器和通信接口通过通信总线完成相互间的通信;According to another aspect of the present invention, a computing device is provided, comprising: a processor, a memory, a communication interface, and a communication bus, and the processor, the memory, and the communication interface communicate with each other through the communication bus;
存储器用于存放至少一可执行指令,可执行指令使处理器执行以下操作:The memory is used to store at least one executable instruction, and the executable instruction causes the processor to perform the following operations:
采集用户针对待处理榜单中的书籍的历史行为数据;Collect historical behavior data of users for the books in the list to be processed;
对历史行为数据的行为路径深度进行分析,得到用户针对书籍的负向反馈级别数据;Depth analysis of the behavior path of the historical behavior data to obtain the user's negative feedback level data for books;
依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。According to the negative feedback level data, adjust the order of books in the list to be processed to obtain the processed list.
根据本发明实施例的又一方面,提供了一种计算机存储介质,存储介质中存储有至少一可执行指令,可执行指令使处理器执行如上述榜单处理方法对应的操作。According to another aspect of the embodiments of the present invention, a computer storage medium is provided, where at least one executable instruction is stored in the storage medium, and the executable instruction causes a processor to perform operations corresponding to the above method for processing a list.
根据本发明提供的技术方案,将用户针对书籍的历史行为数据引入至榜单排序机制中,通过分析历史行为数据的行为路径深度来确定用户针对书籍的负向反馈级别数据,负向反馈级别数据能够用于反映用户对书籍的不感兴趣的程度,依据负向反馈级别数据来调整书籍在榜单中的排列顺序,从而基于用户的行为将其对书籍的偏好结果反馈到榜单中,实现了对用户不感兴趣的书籍的排列顺序的有效调整,使得能够融合用户的偏好来确定书籍在榜单中的排列顺序,优化了书籍榜单处理方式,有助于获得更好的书籍推荐效果。According to the technical solution provided by the present invention, the user's historical behavior data for books is introduced into the ranking mechanism, and the user's negative feedback level data for books is determined by analyzing the behavior path depth of the historical behavior data, and the negative feedback level data It can be used to reflect the user's disinterest in books, adjust the order of books in the list according to the negative feedback level data, so as to feed back the preference results of books to the list based on the user's behavior. The effective adjustment of the arrangement order of books that the user is not interested in makes it possible to integrate the user's preferences to determine the arrangement order of the books in the list, optimize the processing method of the book list, and help obtain better book recommendation effects.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand , the following specific embodiments of the present invention are given.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:
图1示出了根据本发明实施例一的一种榜单处理方法的流程示意图;1 shows a schematic flowchart of a method for processing a list according to Embodiment 1 of the present invention;
图2a示出了根据本发明实施例二的一种榜单处理方法的流程示意图;2a shows a schematic flowchart of a method for processing a list according to Embodiment 2 of the present invention;
图2b示出了用户针对书籍的行为路径的示意图;Figure 2b shows a schematic diagram of a user's behavioral path for books;
图2c示出了具有相同书籍人气值的多本书籍从前到后的排列顺序的示意图;Figure 2c shows a schematic diagram of the arrangement order of multiple books with the same book popularity value from front to back;
图2d示出了书籍榜单页面的显示示意图一;Figure 2d shows a schematic diagram 1 of the display of the book list page;
图2e示出了书籍榜单页面的显示示意图二;Fig. 2e shows the second display schematic diagram of the book list page;
图3示出了根据本发明实施例四的一种计算设备的结构示意图。FIG. 3 shows a schematic structural diagram of a computing device according to Embodiment 4 of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure will be more thoroughly understood, and will fully convey the scope of the present disclosure to those skilled in the art.
实施例一Example 1
图1示出了根据本发明实施例一的一种榜单处理方法的流程示意图,如图1所示,该方法包括如下步骤:FIG. 1 shows a schematic flowchart of a method for processing a list according to Embodiment 1 of the present invention. As shown in FIG. 1 , the method includes the following steps:
步骤S101,采集用户针对待处理榜单中的书籍的历史行为数据。Step S101 , collecting historical behavior data of the user with respect to the books in the list to be processed.
其中,待处理榜单是指预先按照榜单初始排序指标对电子书平台中的书籍进行排列所形成的排行榜,待处理榜单中记录有多本书籍的排列顺序。考虑到用户针对书籍的点击、阅读等行为可以从一定程度上反映其对书籍的偏好,在本实施例中,将用户针对书籍的历史行为数据引入至榜单排序机制中,通过用户的历史行为数据来影响书籍在待处理榜单中的排列顺序,那么在步骤S101中需要采集用户针对待处理榜单中的书籍的历史行为数据。用户针对待处理榜单中的书籍的历史行为数据为用于描述用户与书籍之间发生交互的数据,具体可包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据等。通过历史行为数据可反映出用户对于书籍的偏好程度。The list to be processed refers to a ranking list formed by arranging books in the e-book platform in advance according to the initial ranking index of the list, and the list to be processed records the order of the multiple books. Considering that the user's click, reading and other behaviors on books can reflect his preference for books to a certain extent, in this embodiment, the user's historical behavior data on books is introduced into the ranking mechanism, and the user's historical behavior data is introduced into the ranking mechanism. If the data affects the arrangement order of the books in the list to be processed, then in step S101 , historical behavior data of the user for the books in the list to be processed needs to be collected. The user's historical behavior data for the books in the pending list is the data used to describe the interaction between the user and the book, which may specifically include: exposing book behavior data, clicking book behavior data, reading book behavior data, and adding bookshelf behavior data Wait. The user's preference for books can be reflected through historical behavior data.
步骤S102,对历史行为数据的行为路径深度进行分析,得到用户针对书籍的负向反馈级别数据。In step S102, the depth of the behavior path of the historical behavior data is analyzed to obtain the negative feedback level data of the user for the book.
在书籍榜单页面中会按照书籍的排列顺序进行书籍展示,具体可展示多本书籍的书籍封面、书名、书籍描述文本等书籍信息。用户对书籍榜单页面中所展示的书籍的行为路径主要包括:曝光书籍、点击书籍、进入书籍详情页面、阅读书籍、加入书架等多个节点。具体地,用户可在书籍榜单页面中浏览书籍的书籍封面、书名、书籍描述文本等书籍信息,在书籍榜单页面中通过点击书籍封面、书名、书籍描述文本等而进入至书籍详情页面来浏览书籍详情,用户在书籍详情页面中通过触发阅读按钮等方式可进入书籍阅读页面进行阅读书籍,用户还可通过触发加入书架按钮等方式来将书籍加入自己的书架中。那么为了便于确定用户针对书籍的负向反馈级别数据,可在用户的行为路径上,按照行为路径深度设置多级反馈节点。在采集到历史行为数据之后,可通过对历史行为数据进行分析而得到其行为路径深度,进而将行为路径深度对应的反馈节点的节点数据作为书籍的负向反馈级别数据。On the book list page, books will be displayed according to the order of the books. Specifically, book information such as book covers, book titles, and book description texts of multiple books can be displayed. The user's behavior path for books displayed on the book list page mainly includes multiple nodes such as exposing books, clicking books, entering book details pages, reading books, and adding bookshelves. Specifically, the user can browse book information such as the book cover, book title, book description text, etc. of the book on the book list page, and enter the book details by clicking on the book cover, book title, book description text, etc. on the book list page. Page to browse book details, users can enter the book reading page to read books by triggering the read button on the book details page, and users can also add books to their own bookshelf by triggering the add bookshelf button. Then, in order to facilitate the determination of the negative feedback level data of the user for the book, a multi-level feedback node may be set on the user's behavior path according to the depth of the behavior path. After collecting the historical behavior data, the behavior path depth can be obtained by analyzing the historical behavior data, and then the node data of the feedback node corresponding to the behavior path depth can be used as the negative feedback level data of the book.
步骤S103,依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。Step S103, according to the negative feedback level data, adjust the arrangement order of the books in the list to be processed, and obtain the processed list.
其中,负向反馈级别数据为用于表示用户对书籍的不感兴趣的程度的数据。若某本书籍具有负向反馈级别数据,说明用户对该书籍不太感兴趣,则可依据负向反馈级别数据,对应降低其推荐权重,以将该书籍在待处理榜单中的排列顺序往后排,从而得到处理后的榜单。具体地,负向反馈级别数据的级别越高,说明用户对该书籍的不感兴趣的程度越高,则推荐权重降低的越多,其在待处理榜单中的排列顺序越靠后,从而使得用户不感兴趣的书籍往后排。Among them, the negative feedback level data is data used to indicate the degree of the user's disinterest in the book. If a book has negative feedback level data, indicating that the user is not very interested in the book, the recommendation weight can be correspondingly reduced according to the negative feedback level data, so that the book is ranked in the pending list. back row, so as to get the processed list. Specifically, the higher the level of negative feedback level data, the higher the degree of user disinterest in the book, the more the recommendation weight is reduced, and the later in the list to be processed, so that Books that are not of interest to the user are placed in the back row.
利用本实施例提供的榜单处理方法,将用户针对书籍的历史行为数据引入至榜单排序机制中,通过分析历史行为数据的行为路径深度来确定用户针对书籍的负向反馈级别数据,负向反馈级别数据能够用于反映用户对书籍的不感兴趣的程度,依据负向反馈级别数据来调整书籍在榜单中的排列顺序,从而基于用户的行为将其对书籍的偏好结果反馈到榜单中,实现了对用户不感兴趣的书籍的排列顺序的有效调整,使得能够融合用户的偏好来确定书籍在榜单中的排列顺序,优化了书籍榜单处理方式,有助于获得更好的书籍推荐效果。Using the list processing method provided by this embodiment, the user's historical behavior data for books is introduced into the ranking mechanism, and the user's negative feedback level data for books is determined by analyzing the behavior path depth of the historical behavior data. The feedback level data can be used to reflect the user's disinterest in books, and adjust the order of books in the list according to the negative feedback level data, so as to feed back the results of the user's preference for books into the list based on the user's behavior. , realizes the effective adjustment of the arrangement order of the books that the user is not interested in, makes it possible to integrate the user's preference to determine the arrangement order of the books in the list, optimizes the processing method of the book list, and helps to obtain better book recommendations Effect.
实施例二Embodiment 2
图2a示出了根据本发明实施例二的一种榜单处理方法的流程示意图,如图2a所示,该方法包括如下步骤:Fig. 2a shows a schematic flowchart of a method for processing a list according to Embodiment 2 of the present invention. As shown in Fig. 2a, the method includes the following steps:
步骤S201,采集用户针对待处理榜单中的书籍的历史行为数据。Step S201, collecting historical behavior data of the user with respect to the books in the list to be processed.
在本实施例中,考虑到用户针对待处理榜单中的书籍的历史行为数据能够反映出用户对于书籍的偏好程度,将用户针对书籍的历史行为数据引入至榜单排序机制中,通过用户的历史行为数据来影响书籍在待处理榜单中的排列顺序,在步骤S201中可从电子书平台等中采集用户针对待处理榜单中的书籍的历史行为数据。其中,历史行为数据可包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据。历史行为数据还可包括用户与书籍之间发生交互的其他的数据,此处不做限定。In this embodiment, considering that the user's historical behavior data for books in the list to be processed can reflect the user's preference for books, the user's historical behavior data for books is introduced into the ranking mechanism. The historical behavior data affects the order of the books in the list to be processed. In step S201, the user's historical behavior data for the books in the list to be processed may be collected from an e-book platform or the like. The historical behavior data may include behavior data of exposing books, behavior data of clicking books, behavior data of reading books, and behavior data of adding bookshelves. The historical behavior data may also include other data of interaction between the user and the book, which is not limited here.
步骤S202,按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点。Step S202, setting multi-level feedback nodes on the user's behavior path for the book according to the behavior path depth.
通过对用户针对书籍的行为路径进行分析可知,该行为路径主要包括:曝光书籍、点击书籍、进入书籍详情页面、阅读书籍、加入书架等多个节点。图2b示出了用户针对书籍的行为路径的示意图,如图2b所示,该行为路径主要包括:在书籍榜单页面向用户曝光书籍的书籍信息;判断用户是否点击书籍的书籍信息,若点击,则进入书籍详情页面,若未点击,则用户可返回书籍榜单页面,在书籍榜单页面向用户曝光其他的书籍的书籍信息;在进入书籍详情页面之后,判断用户是否触发阅读按钮,若触发,则进入书籍阅读页面,若未触发,则用户可返回书籍榜单页面,在书籍榜单页面向用户曝光其他的书籍的书籍信息;在进入书籍阅读页面之后,如果用户通过阅读发现喜欢这本书籍想以后继续阅读时,可将其加入书架,如果用户通过阅读发现不喜欢这本书籍,则可返回书籍榜单页面,在书籍榜单页面向用户曝光其他的书籍的书籍信息。By analyzing the user's behavior path for books, it can be seen that the behavior path mainly includes multiple nodes such as exposing books, clicking books, entering book details pages, reading books, and adding bookshelves. Figure 2b shows a schematic diagram of the user's behavior path for books. As shown in Figure 2b, the behavior path mainly includes: exposing the book information of the book to the user on the book list page; judging whether the user clicks the book information of the book, if clicked , then enter the book details page, if not clicked, the user can return to the book list page, and expose the book information of other books to the user on the book list page; after entering the book details page, determine whether the user triggers the read button, if If it is triggered, it will enter the book reading page. If it is not triggered, the user can return to the book list page and expose the book information of other books to the user on the book list page; after entering the book reading page, if the user finds that he likes this book through reading When the book wants to continue reading in the future, it can be added to the bookshelf. If the user finds that he does not like this book through reading, he can return to the book list page and expose the book information of other books to the user on the book list page.
通过该行为路径可知,根据用户针对待处理榜单中的书籍的操作行为可预测用户对书籍的偏好,若用户的操作行为是“曝光书籍+点击书籍+阅读书籍+加入书架”,则可确定该用户喜欢这本书籍;反之,若用户执行了“曝光书籍”、“点击书籍”以及“阅读书籍”一系列操作,但是最终没有将该书籍加入书架,则可确定用户对该书籍不感兴趣;由于用户对一本书籍了解的越多,其所做出的决定的可能性就越高,那么在未加入书架的前提下,上述一系列操作行为执行的越多,则表示确定该用户对该书籍不感兴趣的可能性越高。According to the behavior path, the user's preference for books can be predicted according to the user's operation behavior on the books in the list to be processed. The user likes the book; on the contrary, if the user performs a series of operations of "expose the book", "click the book" and "read the book", but finally does not add the book to the bookshelf, it can be determined that the user is not interested in the book; Since the more the user knows about a book, the higher the possibility of his decision, the more the above series of operations are performed on the premise of not being added to the bookshelf, it means that the user is determined to The higher the probability that books are not of interest.
在步骤S202中,对用户针对书籍的行为路径进行分析,查找能够反映用户负向反馈的节点,并按照行为路径深度,在行为路径上设置多级反馈节点。具体地,考虑到曝光了书籍但用户未点击书籍、用户点击了书籍但未阅读以及阅读了书籍但未加入书架都能表示用户的负向反馈,能够用于反映用户对该书籍不感兴趣的程度,那么设置的多级反馈节点可包括:曝光书籍而未点击书籍对应的反馈节点、点击书籍而未阅读书籍对应的反馈节点以及阅读书籍而未加入书架对应的反馈节点。其中,由于用户对一本书籍了解的越多,其所做出的决定的可能性就越高,那么在未加入书架的前提下,行为路径深度越深,则表示确定该用户对该书籍不感兴趣的可能性越高,其对应的反馈节点的级别越高。如图2b所示,曝光书籍而未点击书籍对应的反馈节点为一级反馈节点,点击书籍而未阅读书籍对应的反馈节点为二级反馈节点,阅读书籍而未加入书架对应的反馈节点为三级反馈节点,其中,3个不同级别的反馈节点的级别数据能够用于反映用户对书籍的不感兴趣的程度,三级反馈节点的级别高于二级反馈节点的级别,二级反馈节点的级别高于一级反馈节点的级别。In step S202, analyze the user's behavior path for the book, search for nodes that can reflect the user's negative feedback, and set multi-level feedback nodes on the behavior path according to the depth of the behavior path. Specifically, considering that the book was exposed but the user did not click on the book, the user clicked the book but did not read, and read the book but did not add it to the bookshelf can represent negative feedback from the user, which can be used to reflect the user's disinterest in the book. , then the set multi-level feedback nodes may include: a feedback node corresponding to exposing a book but not clicking a book, a feedback node corresponding to clicking a book but not reading a book, and a feedback node corresponding to reading a book but not adding to the bookshelf. Among them, since the more the user knows about a book, the higher the possibility of his decision, the deeper the behavior path is without adding to the bookshelf, it means that the user does not feel the book. The higher the probability of interest, the higher the level of its corresponding feedback node. As shown in Figure 2b, the feedback node corresponding to exposing the book without clicking the book is the first-level feedback node, the feedback node corresponding to clicking the book but not reading the book is the second-level feedback node, and the feedback node corresponding to reading the book but not adding to the bookshelf is the third-level feedback node Level feedback node, wherein the level data of three different levels of feedback nodes can be used to reflect the degree of user disinterest in books, the level of the third level feedback node is higher than the level of the second level feedback node, the level of the second level feedback node A level higher than the first-level feedback node.
步骤S203,对历史行为数据的行为路径深度进行分析,得到行为路径深度对应的反馈节点,将反馈节点的节点数据作为用户针对书籍的负向反馈级别数据。Step S203: Analyze the behavior path depth of the historical behavior data to obtain a feedback node corresponding to the behavior path depth, and use the node data of the feedback node as the user's negative feedback level data for the book.
具体地,分析步骤S201采集到的历史行为数据的行为路径深度,若分析到的行为路径深度具有对应的反馈节点,则将反馈节点的节点数据作为书籍的负向反馈级别数据。其中,反馈节点的节点数据具体可包括反馈节点的级别、反馈节点对应的行为路径深度等数据。本领域技术人员还可设置节点数据包括其他数据,此处不做限定。Specifically, the behavior path depth of the historical behavior data collected in step S201 is analyzed. If the analyzed behavior path depth has a corresponding feedback node, the node data of the feedback node is used as the negative feedback level data of the book. The node data of the feedback node may specifically include data such as the level of the feedback node, the depth of the behavior path corresponding to the feedback node, and the like. Those skilled in the art can also set the node data to include other data, which is not limited here.
例如,多级反馈节点如图2b所示,若采集到的用户针对待处理榜单中的书籍1的历史行为数据的行为路径深度为曝光书籍而未点击书籍,则其对应于一级反馈节点,将一级反馈节点的节点数据作为书籍1的负向反馈级别数据,例如书籍1的负向反馈级别数据可包括一级,对应的行为路径深度为曝光书籍而未点击书籍。For example, a multi-level feedback node is shown in Figure 2b. If the collected behavior path depth of the user's historical behavior data for book 1 in the list to be processed is the exposed book without clicking on the book, it corresponds to the first-level feedback node. , the node data of the first-level feedback node is taken as the negative feedback level data of book 1. For example, the negative feedback level data of book 1 may include level one, and the corresponding behavior path depth is exposure books without clicking books.
在得到了负向反馈级别数据之后,即可依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。若某本书籍具有负向反馈级别数据,说明用户对该书籍不太感兴趣,则可依据负向反馈级别数据,对应降低其推荐权重,以将该书籍在待处理榜单中的排列顺序往后排。在实际应用场景中,待处理榜单是指预先按照榜单初始排序指标对电子书平台中的书籍进行排列所形成的排行榜,待处理榜单中包含很多本书籍,例如一个待处理榜单包含有30万本书籍,而在相同的榜单初始排序指标下也会存在很多本书籍,那么可在相同的榜单初始排序指标下,依据这些书籍的负向反馈级别数据来调整其在待处理榜单中的排列顺序。而对于具有不同的榜单初始排序指标的书籍,则仍是按照榜单初始排序指标的预设顺序来排序。具体地,通过步骤S204至步骤S208进行实现。After the negative feedback level data is obtained, the arrangement order of the books in the list to be processed can be adjusted according to the negative feedback level data to obtain the processed list. If a book has negative feedback level data, indicating that the user is not very interested in the book, the recommendation weight can be correspondingly reduced according to the negative feedback level data, so that the book is ranked in the pending list. back row. In practical application scenarios, the list to be processed refers to a list formed by arranging the books in the e-book platform according to the initial ranking index of the list in advance. The list to be processed contains many books, such as a list to be processed. There are 300,000 books, and there will be many books under the same initial ranking index of the list, so under the same initial ranking index of the list, the negative feedback level data of these books can be used to adjust their waiting list. Handle the sorting order in the list. For books with different initial ranking indicators of the list, they are still sorted according to the preset order of the initial ranking indicators of the list. Specifically, it is implemented through steps S204 to S208.
步骤S204,采集待处理榜单中的各本书籍的榜单初始排序指标。Step S204, collecting the initial ranking index of each book in the list to be processed.
其中,榜单初始排序指标包括:书籍人气值、阅读人数、书籍点赞人数、书籍收藏人数、书籍评分、更新时间、作者关注参数和/或阅读累计时长。作者关注参数具体可为作者粉丝数量等。Among them, the initial ranking indicators of the list include: book popularity value, number of readers, number of book likes, number of book collectors, book rating, update time, author attention parameters and/or cumulative reading time. The parameters of the author's attention may be the number of the author's followers, etc.
步骤S205,判断待处理榜单中的任两本书籍的榜单初始排序指标是否相同;若是,则执行步骤S206;若否,则执行步骤S207。Step S205, it is judged whether the initial ranking index of any two books in the list to be processed is the same; if so, step S206 is executed; if not, step S207 is executed.
步骤S206,依据负向反馈级别数据,调低负向反馈级别数据对应的书籍的推荐权重,按照推荐权重,调整任两本书籍在待处理榜单中的排列顺序。Step S206, according to the negative feedback level data, lower the recommendation weight of the books corresponding to the negative feedback level data, and adjust the arrangement order of any two books in the list to be processed according to the recommendation weight.
在判断得到任两本书籍的榜单初始排序指标相同的情况下,则依据负向反馈级别数据,调低负向反馈级别数据对应的书籍的推荐权重,按照推荐权重的预设顺序,调整任两本书籍在待处理榜单中的排列顺序,其中,推荐权重与负向反馈级别数据相对应,负向反馈级别数据的级别越高,则推荐权重越低。In the case where it is judged that the initial ranking index of any two books is the same, the recommendation weight of the book corresponding to the negative feedback level data is lowered according to the negative feedback level data. The order of the two books in the list to be processed. The recommendation weight corresponds to the negative feedback level data. The higher the level of the negative feedback level data, the lower the recommendation weight.
下面以榜单初始排序指标为书籍人气值进行介绍。在待处理榜单中,整体上按照书籍人气值从高到低的顺序对各本书籍进行排序,其中,书籍人气值通常是以万为单位的。针对具有相同书籍人气值的多本书籍,通过对负向反馈级别数据对应的书籍的推荐权重进行调低,以使负向反馈级别数据的级别越高,其所对应的书籍的推荐权重越低。也就是说,针对具有相同书籍人气值的多本书籍,这多本书籍中,未曝光的书籍的推荐权重>曝光而未点击的书籍的推荐权重>点击而未阅读的书籍的推荐权重>阅读而未加入书架的书籍的推荐权重,推荐权重越高,其对应的书籍在具有相同书籍人气值的多本书籍中的排列顺序越靠前。图2c示出了具有相同书籍人气值的多本书籍从前到后的排列顺序的示意图,如图2c所示,在具有相同书籍人气值的多本书籍中,未曝光的书籍的排列顺序最靠前,将曝光而未点击的书籍排列在未曝光的书籍的后面,将点击而未阅读的书籍排列在曝光而未点击的书籍的后面,将阅读而未加入书架的书籍排列在点击而未阅读的书籍的后面。The following is an introduction based on the initial ranking index of the list as the book popularity value. In the to-be-processed list, as a whole, the books are sorted in descending order of popularity value of books, wherein the popularity value of books is usually in units of 10,000. For multiple books with the same book popularity value, the recommendation weight of the book corresponding to the negative feedback level data is lowered, so that the higher the level of the negative feedback level data, the lower the recommendation weight of the corresponding book. . That is to say, for multiple books with the same book popularity value, among the multiple books, the recommendation weight of unexposed books > the recommendation weight of exposed but unclicked books > the recommendation weight of clicked but unread books > read As for the recommendation weight of the books that are not added to the bookshelf, the higher the recommendation weight, the higher the order of the corresponding books in the multiple books with the same book popularity value. Figure 2c shows a schematic diagram of the arrangement order of multiple books with the same book popularity value from front to back. As shown in Figure 2c, among the multiple books with the same book popularity value, the unexposed books are ranked the most in order Before, arrange the exposed but not clicked books behind the unexposed books, the clicked but not read books after the exposed but not clicked books, the read but not added bookshelf books after the clicked but not read the back of the book.
步骤S207,按照榜单初始排序指标的预设顺序,确定任两本书籍在待处理榜单中的排列顺序。Step S207, according to the preset order of the initial ranking index of the list, determine the ranking order of any two books in the list to be processed.
其中,预设顺序可为从高到低或者从低到高的顺序。以榜单初始排序指标为书籍人气值,预设顺序为从高到低的顺序为例,假设其中两本书籍为书籍1和书籍2,该用户针对书籍1具有负向反馈级别数据,针对书籍2不具有负向反馈级别数据,但由于书籍1的书籍人气值高于书籍2的书籍人气值,所以在待处理榜单中书籍1的排列顺序位于书籍2的排列顺序之前,也就是说,书籍1排在书籍2的前面。The preset order may be from high to low or from low to high. Take the initial ranking index of the list as the popularity value of books, and the preset order is from high to low as an example. Suppose two of the books are Book 1 and Book 2. The user has negative feedback level data for Book 1, and the user has negative feedback level data for Book 1. 2 does not have negative feedback level data, but since the book popularity value of book 1 is higher than that of book 2, the order of book 1 in the pending list is before the order of book 2, that is, Book 1 comes before Book 2.
步骤S208,得到处理后的榜单。In step S208, the processed list is obtained.
针对待处理榜单中的所有书籍都完成上述排序后,即可得到处理后的榜单。After completing the above sorting for all the books in the list to be processed, the processed list can be obtained.
步骤S209,依据历史行为数据,为书籍添加行为标记。Step S209, adding a behavior mark to the book according to the historical behavior data.
为了便于用户快速识别出书籍榜单页面中哪些书籍是其阅读而未加入书架的书籍,哪些书籍是其已加入书架的书籍,可依据历史行为数据,为历史行为数据对应的书籍添加行为标记,其中,行为标记包括已阅读标记和/或在书架标记。本领域技术人员可根据实际需要设置行为标记的具体标记形式,此处不做限定。In order to facilitate users to quickly identify which books on the book list page are the books they read but have not added to the bookshelf, and which books are the books that they have added to the bookshelf, behavior tags can be added to the books corresponding to the historical behavior data according to the historical behavior data. Among them, the behavior mark includes the mark that has been read and/or the mark on the bookshelf. Those skilled in the art can set the specific mark form of the behavior mark according to actual needs, which is not limited here.
具体地,已阅读标记用于标识已被用户阅读过而未加入书架的书籍,在书架标记用于标识已被用户加入书架的书籍。若依据某书籍的历史行为数据得知,用户已阅读过该书籍但未将其加入书架,则为该书籍添加已阅读标记;若依据某书籍的历史行为数据得知,用户已将该书籍加入书架,则为该书籍添加在书架标记。Specifically, the read mark is used to identify books that have been read by the user but not added to the bookshelf, and the bookshelf mark is used to identify books that have been added to the bookshelf by the user. If it is known based on the historical behavior data of a certain book that the user has read the book but has not added it to the bookshelf, a read mark will be added to the book; if known based on the historical behavior data of a certain book, the user has added the book to the bookshelf Bookshelf, add the Bookshelf mark for the book.
步骤S210,在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。In step S210, the book information of each book in the processed list and the behavior mark of each book are displayed on the book list page.
当用户进入书籍榜单页面时,可在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。图2d示出了书籍榜单页面的显示示意图一,如图2d所示,书籍榜单页面中示出的是按照书籍人气值从高到低的顺序对出版类型的书籍进行排列所得到的榜单,其中,在书籍榜单页面中展示有多本书籍的书籍卡片区域21,在每个书籍的书籍卡片区域21中展示有该书籍的书籍信息,书籍信息包括书籍封面、书名、书籍描述文本,其中,“X”表示字符。针对用户已阅读过但未加入书架的书籍,在书籍卡片区域21的右上角展示有已阅读标记22,即图2d所示的“已阅读”文本形式的标记;针对用户已加入书架的书籍,在书籍卡片区域21的右上角展示有在书架标记23,即图2d所示的“在书架”文本形式的标记。When the user enters the book list page, the book information of each book in the processed list and the behavior mark of each book may be displayed on the book list page. Fig. 2d shows the first display diagram of the book list page. As shown in Fig. 2d, the book list page shows the list obtained by arranging the books of the publication type according to the book popularity value from high to low. In the book list page, the
可选地,在书籍榜单页面中还可提供对榜单中用户已阅读但未加入书架的书籍进行屏蔽的功能。其中,在书籍榜单页面的预设位置处可设置有已读屏蔽开关组件,本领域技术人员可根据实际需要对预设位置进行设置。用户可通过对已读屏蔽开关组件的触发进行开启或关闭屏蔽功能。Optionally, on the book list page, a function of shielding the books that the user has read but not added to the bookshelf in the list may also be provided. Wherein, a read shielding switch assembly can be set at a preset position on the book list page, and those skilled in the art can set the preset position according to actual needs. The user can turn on or off the muting function by triggering the read muting switch component.
具体地,响应于用户针对书籍榜单页面中的已读屏蔽开关组件的开启请求,从书籍榜单页面所展示的处理后的榜单的各本书籍中去除用户的已读书籍,这里的已读书籍具体可包括用户已阅读过但未加入书架的书籍。本领域技术人员还可设置已读书籍还包括用户已阅读且已加入书架的书籍等,此处不做限定。Specifically, in response to the user's request for turning on the read blocking switch component on the book list page, the user's read books are removed from each book in the processed list displayed on the book list page. The read books may specifically include books that the user has read but not added to the bookshelf. Those skilled in the art can also set that the read books also include books that the user has read and added to the bookshelf, etc., which is not limited here.
也就是说,在书籍榜单页面中可仅对该用户的未读书籍进行展示,而不展示该用户的已读书籍,以便用户快速地从榜单中筛选出未读书籍进行浏览。另外,在用户开启了屏蔽功能的情况下,可通过再次触发已读屏蔽开关组件来关闭屏蔽功能,具体地,响应于用户针对书籍榜单页面中的已读屏蔽开关组件的关闭请求,恢复用户的已读书籍在书籍榜单页面中的展示,也就是说,在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息,其中,所展示的书籍包括该用户的未读书籍以及已读书籍。That is to say, only the unread books of the user may be displayed on the book list page, but the read books of the user may not be displayed, so that the user can quickly select unread books from the list for browsing. In addition, when the user has turned on the blocking function, the blocking function can be turned off by triggering the read blocking switch component again. Specifically, in response to the user's request for closing the read blocking switch component in the book list page, the user is restored Display of the read books on the book list page, that is, the book information of each book in the processed list is displayed on the book list page, wherein the displayed books include the user's unread books Books and Books Read.
如图2d所示,在书籍榜单页面的右上角位置处设置有已读屏蔽开关组件24,用户可通过对已读屏蔽开关组件24的触发来开启或关闭屏蔽功能。若用户通过触发已读屏蔽开关组件24而开启了屏蔽功能,那么更新后的书籍榜单页面可如图2e所示,在书籍榜单页面所展示的榜单中去除了具有已阅读标记的书籍,即去除了书籍1,并按照榜单中各本书籍的排列顺序展示出更多书籍的书籍信息。若用户在图2e所示的页面状态下继续触发已读屏蔽开关组件24,那么则会关闭屏蔽功能,书籍榜单页面将会恢复为图2d所示的页面状态。As shown in FIG. 2d , a read shielding
利用本实施例提供的榜单处理方法,将用户针对书籍的历史行为数据引入至榜单排序机制中,按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点,通过分析历史行为数据的行为路径深度来确定用户针对书籍的负向反馈级别数据,针对具有相同榜单初始排序指标的多本书籍,通过对负向反馈级别数据对应的书籍的推荐权重进行调低,以使负向反馈级别数据的级别越高,其所对应的书籍的推荐权重越低,从而依据推荐权重将用户不感兴趣的书籍往后排,使得书籍在榜单中的排列顺序能够很好地融合用户的偏好,有助于获得更好的书籍推荐效果;并且,还可依据历史行为数据为书籍添加行为标记,使得用户能够快速、方便地识别出书籍榜单页面中哪些书籍是其阅读而未加入书架的书籍,哪些书籍是其已加入书架的书籍;另外,还提供了已读屏蔽功能,为用户筛除榜单中已读书籍,极大地方便了用户查找未读书籍。Using the list processing method provided in this embodiment, the user's historical behavior data for books is introduced into the ranking mechanism, multi-level feedback nodes are set on the user's behavior path for books according to the depth of the behavior path, and the historical behavior data is analyzed by analyzing the historical behavior data. The depth of the behavior path to determine the user’s negative feedback level data for books, and for multiple books with the same initial ranking index of the list, the recommendation weight of the books corresponding to the negative feedback level data is adjusted down, so as to make the negative feedback level data lower. The higher the level of feedback level data, the lower the recommendation weight of the corresponding book, so that the books that the user is not interested in are ranked backward according to the recommendation weight, so that the order of the books in the list can be well integrated with the user's preference. , which is helpful to obtain better book recommendation effect; in addition, it can also add behavior tags to books based on historical behavior data, so that users can quickly and easily identify which books on the book list page are read but not added to the bookshelf Books, which books are the books that have been added to the bookshelf; in addition, a read blocking function is also provided to filter out the read books from the list for users, which greatly facilitates users to find unread books.
实施例三Embodiment 3
本发明实施例三提供了一种非易失性存储介质,存储介质存储有至少一可执行指令,该可执行指令可执行上述任意方法实施例中的榜单处理方法。Embodiment 3 of the present invention provides a non-volatile storage medium, where the storage medium stores at least one executable instruction, and the executable instruction can execute the list processing method in any of the foregoing method embodiments.
可执行指令具体可以用于使得处理器执行以下操作:采集用户针对待处理榜单中的书籍的历史行为数据;对历史行为数据的行为路径深度进行分析,得到用户针对书籍的负向反馈级别数据;依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。The executable instructions can specifically be used to cause the processor to perform the following operations: collect the historical behavior data of the user for the books in the list to be processed; analyze the behavior path depth of the historical behavior data to obtain the negative feedback level data of the user for the books ;According to the negative feedback level data, adjust the order of books in the list to be processed, and get the processed list.
在一种可选的实施方式中,历史行为数据包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据。In an optional implementation manner, the historical behavior data includes behavior data of exposing books, behavior data of clicking books, behavior data of reading books, and behavior data of adding bookshelves.
在一种可选的实施方式中,可执行指令进一步使处理器执行以下操作:按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点;对历史行为数据的行为路径深度进行分析,得到行为路径深度对应的反馈节点,将反馈节点的节点数据作为用户针对书籍的负向反馈级别数据。In an optional embodiment, the executable instructions further cause the processor to perform the following operations: set multi-level feedback nodes on the user's behavior path for the book according to the behavior path depth; analyze the behavior path depth of the historical behavior data, The feedback node corresponding to the depth of the behavior path is obtained, and the node data of the feedback node is used as the negative feedback level data of the user for the book.
在一种可选的实施方式中,多级反馈节点包括:曝光书籍而未点击书籍对应的反馈节点、点击书籍而未阅读书籍对应的反馈节点以及阅读书籍而未加入书架对应的反馈节点。In an optional embodiment, the multi-level feedback nodes include: a feedback node corresponding to exposing a book without clicking on a book, a feedback node corresponding to clicking a book without reading a book, and a feedback node corresponding to reading a book without adding to the bookshelf.
在一种可选的实施方式中,可执行指令进一步使处理器执行以下操作:采集待处理榜单中的各本书籍的榜单初始排序指标;判断待处理榜单中的任两本书籍的榜单初始排序指标是否相同;若是,则依据负向反馈级别数据,调低负向反馈级别数据对应的书籍的推荐权重,按照推荐权重,调整任两本书籍在待处理榜单中的排列顺序;若否,则按照榜单初始排序指标的预设顺序,确定任两本书籍在待处理榜单中的排列顺序。In an optional implementation manner, the executable instructions further cause the processor to perform the following operations: collect the initial ranking index of each book in the list to be processed; determine the ranking of any two books in the list to be processed Whether the initial ranking indicators of the list are the same; if so, according to the negative feedback level data, lower the recommendation weight of the books corresponding to the negative feedback level data, and adjust the order of any two books in the pending list according to the recommendation weight ; if not, determine the order of any two books in the list to be processed according to the preset order of the initial ranking index of the list.
在一种可选的实施方式中,榜单初始排序指标包括:书籍人气值、阅读人数、书籍点赞人数、书籍收藏人数、书籍评分、更新时间、作者关注参数和/或阅读累计时长。In an optional implementation manner, the initial ranking indicators of the list include: book popularity value, number of readers, number of likes of the book, number of book collectors, book rating, update time, author attention parameter and/or cumulative reading time.
在一种可选的实施方式中,可执行指令进一步使处理器执行以下操作:依据历史行为数据,为书籍添加行为标记;其中,行为标记包括已阅读标记和/或在书架标记;在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。In an optional embodiment, the executable instructions further cause the processor to perform the following operations: add a behavior mark to the book according to the historical behavior data; wherein, the behavior mark includes a read mark and/or a mark on the bookshelf; The book information of each book in the processed list and the behavior mark of each book are displayed on a single page.
在一种可选的实施方式中,可执行指令进一步使处理器执行以下操作:响应于用户针对书籍榜单页面中的已读屏蔽开关组件的开启操作,从书籍榜单页面所展示的处理后的榜单的各本书籍中去除用户的已读书籍。In an optional implementation manner, the executable instructions further cause the processor to perform the following operation: in response to the user's turning on operation of the read blocking switch component in the book list page, from the processed post-processing displayed on the book list page Remove the user's read books from the books in the list.
实施例四Embodiment 4
图3示出了根据本发明实施例四的一种计算设备的结构示意图,本发明具体实施例并不对计算设备的具体实现做限定。FIG. 3 shows a schematic structural diagram of a computing device according to Embodiment 4 of the present invention. The specific embodiment of the present invention does not limit the specific implementation of the computing device.
如图3所示,该计算设备可以包括:处理器(processor)302、通信接口(Communications Interface)304、存储器(memory)306、以及通信总线308。As shown in FIG. 3 , the computing device may include: a processor (processor) 302 , a communications interface (Communications Interface) 304 , a memory (memory) 306 , and a communication bus 308 .
其中:in:
处理器302、通信接口304、以及存储器306通过通信总线308完成相互间的通信。The processor 302 , the
通信接口304,用于与其它设备比如客户端或其它服务器等的网元通信。The
处理器302,用于执行程序310,具体可以执行上述种榜单处理方法实施例中的相关步骤。The processor 302 is configured to execute the
具体地,程序310可以包括程序代码,该程序代码包括计算机操作指令。Specifically, the
处理器302可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。计算设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 302 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention. The one or more processors included in the computing device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.
存储器306,用于存放程序310。存储器306可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 306 is used to store the
程序310具体可以用于使得处理器302执行以下操作:采集用户针对待处理榜单中的书籍的历史行为数据;对历史行为数据的行为路径深度进行分析,得到用户针对书籍的负向反馈级别数据;依据负向反馈级别数据,调整书籍在待处理榜单中的排列顺序,得到处理后的榜单。The
在一种可选的实施方式中,历史行为数据包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据。In an optional implementation manner, the historical behavior data includes behavior data of exposing books, behavior data of clicking books, behavior data of reading books, and behavior data of adding bookshelves.
在一种可选的实施方式中,程序310进一步使得处理器302执行以下操作:按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点;对历史行为数据的行为路径深度进行分析,得到行为路径深度对应的反馈节点,将反馈节点的节点数据作为用户针对书籍的负向反馈级别数据。In an optional embodiment, the
在一种可选的实施方式中,多级反馈节点包括:曝光书籍而未点击书籍对应的反馈节点、点击书籍而未阅读书籍对应的反馈节点以及阅读书籍而未加入书架对应的反馈节点。In an optional embodiment, the multi-level feedback nodes include: a feedback node corresponding to exposing a book without clicking on a book, a feedback node corresponding to clicking a book without reading a book, and a feedback node corresponding to reading a book without adding to the bookshelf.
在一种可选的实施方式中,程序310进一步使得处理器302执行以下操作:采集待处理榜单中的各本书籍的榜单初始排序指标;判断待处理榜单中的任两本书籍的榜单初始排序指标是否相同;若是,则依据负向反馈级别数据,调低负向反馈级别数据对应的书籍的推荐权重,按照推荐权重,调整任两本书籍在待处理榜单中的排列顺序;若否,则按照榜单初始排序指标的预设顺序,确定任两本书籍在待处理榜单中的排列顺序。In an optional implementation manner, the
在一种可选的实施方式中,榜单初始排序指标包括:书籍人气值、阅读人数、书籍点赞人数、书籍收藏人数、书籍评分、更新时间、作者关注参数和/或阅读累计时长。In an optional implementation manner, the initial ranking indicators of the list include: book popularity value, number of readers, number of likes of the book, number of book collectors, book rating, update time, author attention parameter and/or cumulative reading time.
在一种可选的实施方式中,程序310进一步使得处理器302执行以下操作:依据历史行为数据,为书籍添加行为标记;其中,行为标记包括已阅读标记和/或在书架标记;在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。In an optional embodiment, the
在一种可选的实施方式中,程序310进一步使得处理器302执行以下操作:响应于用户针对书籍榜单页面中的已读屏蔽开关组件的开启操作,从书籍榜单页面所展示的处理后的榜单的各本书籍中去除用户的已读书籍。In an optional implementation manner, the
程序310中各步骤的具体实现可以参见上述榜单处理实施例中的相应步骤对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。For the specific implementation of each step in the
通过本实施例提供的方案,通过分析历史行为数据的行为路径深度来确定用户针对书籍的负向反馈级别数据,依据负向反馈级别数据来调整书籍在榜单中的排列顺序,实现了对用户不感兴趣的书籍的排列顺序的有效调整,使得能够融合用户的偏好来确定书籍在榜单中的排列顺序。Through the solution provided in this embodiment, the user's negative feedback level data for books is determined by analyzing the behavior path depth of historical behavior data, and the arrangement order of books in the list is adjusted according to the negative feedback level data, so that the user's negative feedback level data is adjusted. The effective adjustment of the arrangement order of uninteresting books makes it possible to integrate the user's preference to determine the arrangement order of books in the list.
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。The algorithms and displays provided herein are not inherently related to any particular computer, virtual system, or other device. Various general-purpose systems can also be used with teaching based on this. The structure required to construct such a system is apparent from the above description. Furthermore, the present invention is not directed to any particular programming language. It should be understood that various programming languages may be used to implement the inventions described herein, and that the descriptions of specific languages above are intended to disclose the best mode for carrying out the invention.
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it is to be understood that in the above description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together into a single embodiment, figure, or its description. However, this disclosure should not be construed as reflecting an intention that the invention as claimed requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art will understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. The modules or units or components in the embodiments may be combined into one module or unit or component, and further they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination, unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will appreciate that although some of the embodiments described herein include certain features, but not others, included in other embodiments, that combinations of features of different embodiments are intended to be within the scope of the invention within and form different embodiments. For example, in the claims, any of the claimed embodiments may be used in any combination.
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-described embodiments illustrate rather than limit the invention, and that alternative embodiments may be devised by those skilled in the art without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. The use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.
本发明公开了:The present invention discloses:
A1.一种榜单处理方法,包括:A1. A list processing method, including:
采集用户针对待处理榜单中的书籍的历史行为数据;Collect historical behavior data of users for the books in the list to be processed;
对所述历史行为数据的行为路径深度进行分析,得到用户针对所述书籍的负向反馈级别数据;Analyzing the behavior path depth of the historical behavior data to obtain the negative feedback level data of the user for the book;
依据所述负向反馈级别数据,调整所述书籍在所述待处理榜单中的排列顺序,得到处理后的榜单。According to the negative feedback level data, the arrangement order of the books in the to-be-processed list is adjusted to obtain a processed list.
A2.根据A1所述的方法,所述历史行为数据包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据。A2. The method according to A1, wherein the historical behavior data includes: exposing book behavior data, clicking book behavior data, reading book behavior data, and adding bookshelf behavior data.
A3.根据A1所述的方法,在所述对所述历史行为数据的行为路径深度进行分析,得到用户针对所述书籍的负向反馈级别数据之前,所述方法还包括:按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点;A3. The method according to A1, before the depth of the behavior path of the historical behavior data is analyzed to obtain the negative feedback level data of the user for the book, the method further comprises: according to the depth of the behavior path Set multi-level feedback nodes on the user's behavior path for books;
所述对所述历史行为数据的行为路径深度进行分析,得到用户针对所述书籍的负向反馈级别数据进一步包括:The depth analysis of the behavior path of the historical behavior data to obtain the negative feedback level data of the user for the book further includes:
对所述历史行为数据的行为路径深度进行分析,得到所述行为路径深度对应的反馈节点,将所述反馈节点的节点数据作为用户针对所述书籍的负向反馈级别数据。The behavior path depth of the historical behavior data is analyzed to obtain a feedback node corresponding to the behavior path depth, and the node data of the feedback node is used as the negative feedback level data of the user for the book.
A4.根据A3所述的方法,多级反馈节点包括:曝光书籍而未点击书籍对应的反馈节点、点击书籍而未阅读书籍对应的反馈节点以及阅读书籍而未加入书架对应的反馈节点。A4. According to the method of A3, the multi-level feedback nodes include: a feedback node corresponding to exposing a book but not clicking a book, a feedback node corresponding to clicking a book but not reading a book, and a feedback node corresponding to reading a book but not adding to the bookshelf.
A5.根据A1-A4任一项所述的方法,所述依据所述负向反馈级别数据,调整所述书籍在所述待处理榜单中的排列顺序,得到处理后的榜单进一步包括:A5. The method according to any one of A1-A4, wherein according to the negative feedback level data, adjusting the arrangement order of the books in the to-be-processed list, and obtaining the processed list further includes:
采集所述待处理榜单中的各本书籍的榜单初始排序指标;Collect the initial ranking index of each book in the to-be-processed list;
判断所述待处理榜单中的任两本书籍的榜单初始排序指标是否相同;Determine whether the initial ranking index of any two books in the to-be-processed list is the same;
若是,则依据所述负向反馈级别数据,调低所述负向反馈级别数据对应的书籍的推荐权重,按照所述推荐权重,调整所述任两本书籍在所述待处理榜单中的排列顺序;If yes, adjust the recommendation weight of the book corresponding to the negative feedback level data according to the negative feedback level data, and adjust the ranking of any two books in the list to be processed according to the recommendation weight. Order;
若否,则按照所述榜单初始排序指标的预设顺序,确定所述任两本书籍在所述待处理榜单中的排列顺序。If not, according to the preset sequence of the initial ranking index of the list, determine the sequence of the any two books in the list to be processed.
A6.根据A5所述的方法,所述榜单初始排序指标包括:书籍人气值、阅读人数、书籍点赞人数、书籍收藏人数、书籍评分、更新时间、作者关注参数和/或阅读累计时长。A6. According to the method described in A5, the initial ranking indicators of the list include: book popularity, number of readers, number of likes of books, number of book collectors, book ratings, update time, author attention parameters and/or cumulative reading time.
A7.根据A1-A6任一项所述的方法,所述方法还包括:A7. The method according to any one of A1-A6, the method further comprises:
依据所述历史行为数据,为所述书籍添加行为标记;其中,所述行为标记包括已阅读标记和/或在书架标记;Add a behavior mark to the book according to the historical behavior data; wherein, the behavior mark includes a read mark and/or a book shelf mark;
在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。The book information of each book in the processed list and the behavior mark of each book are displayed on the book list page.
A8.根据A1-A7任一项所述的方法,所述方法还包括:A8. The method according to any one of A1-A7, the method further comprises:
响应于用户针对书籍榜单页面中的已读屏蔽开关组件的开启操作,从书籍榜单页面所展示的处理后的榜单的各本书籍中去除所述用户的已读书籍。In response to the user's turning on the read blocking switch component on the book list page, the read books of the user are removed from the books in the processed list displayed on the book list page.
B9.一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;B9. A computing device, comprising: a processor, a memory, a communication interface and a communication bus, wherein the processor, the memory and the communication interface communicate with each other through the communication bus;
所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行以下操作:The memory is used to store at least one executable instruction, and the executable instruction causes the processor to perform the following operations:
采集用户针对待处理榜单中的书籍的历史行为数据;Collect historical behavior data of users for the books in the list to be processed;
对所述历史行为数据的行为路径深度进行分析,得到用户针对所述书籍的负向反馈级别数据;Analyzing the behavior path depth of the historical behavior data to obtain the negative feedback level data of the user for the book;
依据所述负向反馈级别数据,调整所述书籍在所述待处理榜单中的排列顺序,得到处理后的榜单。According to the negative feedback level data, the arrangement order of the books in the to-be-processed list is adjusted to obtain a processed list.
B10.根据B9所述的计算设备,所述历史行为数据包括:曝光书籍行为数据、点击书籍行为数据、阅读书籍行为数据以及加入书架行为数据。B10. The computing device according to B9, wherein the historical behavior data includes behavior data of exposing books, behavior data of clicking books, behavior data of reading books, and behavior data of adding bookshelves.
B11.根据B9所述的计算设备,所述可执行指令进一步使所述处理器执行以下操作:B11. The computing device of B9, the executable instructions further cause the processor to perform the following operations:
按照行为路径深度在用户针对书籍的行为路径上设置多级反馈节点;Set multi-level feedback nodes on the user's behavior path for books according to the depth of the behavior path;
对所述历史行为数据的行为路径深度进行分析,得到所述行为路径深度对应的反馈节点,将所述反馈节点的节点数据作为用户针对所述书籍的负向反馈级别数据。The behavior path depth of the historical behavior data is analyzed to obtain a feedback node corresponding to the behavior path depth, and the node data of the feedback node is used as the negative feedback level data of the user for the book.
B12.根据B11所述的计算设备,多级反馈节点包括:曝光书籍而未点击书籍对应的反馈节点、点击书籍而未阅读书籍对应的反馈节点以及阅读书籍而未加入书架对应的反馈节点。B12. The computing device according to B11, the multi-level feedback nodes include: feedback nodes corresponding to exposing books without clicking on books, feedback nodes corresponding to clicking books without reading books, and feedback nodes corresponding to reading books without adding bookshelves.
B13.根据B9-B12任一项所述的计算设备,所述可执行指令进一步使所述处理器执行以下操作:B13. The computing device of any of B9-B12, the executable instructions further cause the processor to perform the following operations:
采集所述待处理榜单中的各本书籍的榜单初始排序指标;Collect the initial ranking index of each book in the to-be-processed list;
判断所述待处理榜单中的任两本书籍的榜单初始排序指标是否相同;Determine whether the initial ranking index of any two books in the to-be-processed list is the same;
若是,则依据所述负向反馈级别数据,调低所述负向反馈级别数据对应的书籍的推荐权重,按照所述推荐权重,调整所述任两本书籍在所述待处理榜单中的排列顺序;If yes, adjust the recommendation weight of the book corresponding to the negative feedback level data according to the negative feedback level data, and adjust the ranking of any two books in the list to be processed according to the recommendation weight. Order;
若否,则按照所述榜单初始排序指标的预设顺序,确定所述任两本书籍在所述待处理榜单中的排列顺序。If not, according to the preset order of the initial ranking index of the list, determine the order of the any two books in the list to be processed.
B14.根据B13所述的计算设备,所述榜单初始排序指标包括:书籍人气值、阅读人数、书籍点赞人数、书籍收藏人数、书籍评分、更新时间、作者关注参数和/或阅读累计时长。B14. The computing device according to B13, the initial ranking index of the list includes: book popularity value, number of readers, number of book likes, number of book collectors, book score, update time, author attention parameters and/or cumulative reading time .
B15.根据B9-B14任一项所述的计算设备,所述可执行指令进一步使所述处理器执行以下操作:B15. The computing device of any of B9-B14, the executable instructions further cause the processor to perform the following operations:
依据所述历史行为数据,为所述书籍添加行为标记;其中,所述行为标记包括已阅读标记和/或在书架标记;Add a behavior mark to the book according to the historical behavior data; wherein, the behavior mark includes a read mark and/or a book shelf mark;
在书籍榜单页面中展示处理后的榜单中的各本书籍的书籍信息以及各本书籍的行为标记。The book information of each book in the processed list and the behavior mark of each book are displayed on the book list page.
B16.根据B9-B15任一项所述的计算设备,所述可执行指令进一步使所述处理器执行以下操作:B16. The computing device of any of B9-B15, the executable instructions further cause the processor to perform the following operations:
响应于用户针对书籍榜单页面中的已读屏蔽开关组件的开启操作,从书籍榜单页面所展示的处理后的榜单的各本书籍中去除所述用户的已读书籍。In response to the user's turning on the read blocking switch component on the book list page, the read books of the user are removed from the books in the processed list displayed on the book list page.
C17.一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如A1-A8中任一项所述的榜单处理方法对应的操作。C17. A computer storage medium, where at least one executable instruction is stored in the storage medium, and the executable instruction enables a processor to perform an operation corresponding to the method for processing a ranking list according to any one of A1-A8.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210283796.0A CN114637914B (en) | 2022-03-22 | 2022-03-22 | List processing method, computing device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210283796.0A CN114637914B (en) | 2022-03-22 | 2022-03-22 | List processing method, computing device and storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114637914A true CN114637914A (en) | 2022-06-17 |
| CN114637914B CN114637914B (en) | 2025-09-16 |
Family
ID=81950049
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210283796.0A Active CN114637914B (en) | 2022-03-22 | 2022-03-22 | List processing method, computing device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114637914B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117235356A (en) * | 2023-09-06 | 2023-12-15 | 支付宝(杭州)信息技术有限公司 | Game list processing method, device and equipment |
| CN117290608A (en) * | 2023-11-23 | 2023-12-26 | 深圳数拓科技有限公司 | Marketing scheme intelligent pushing method, system and storage medium |
| WO2024188097A1 (en) * | 2023-03-10 | 2024-09-19 | 北京字跳网络技术有限公司 | Book information presentation method and apparatus, and computer device and storage medium |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9852215B1 (en) * | 2012-09-21 | 2017-12-26 | Amazon Technologies, Inc. | Identifying text predicted to be of interest |
| CN107943871A (en) * | 2017-11-10 | 2018-04-20 | 深圳市华阅文化传媒有限公司 | Recommended user reads the method and device of the books of hobby |
| WO2019000472A1 (en) * | 2017-06-30 | 2019-01-03 | 广东欧珀移动通信有限公司 | Navigation method and apparatus, storage medium, and server |
| CN109254945A (en) * | 2018-09-13 | 2019-01-22 | 掌阅科技股份有限公司 | The methods of exhibiting of e-book calculates equipment and computer storage medium |
| CN110516027A (en) * | 2019-07-22 | 2019-11-29 | 北京达佳互联信息技术有限公司 | Update method, device, electronic equipment and the storage medium of information aggregate |
| CN110825974A (en) * | 2019-11-22 | 2020-02-21 | 厦门美柚股份有限公司 | Recommendation system content ordering method and device |
| CN111125314A (en) * | 2019-12-25 | 2020-05-08 | 掌阅科技股份有限公司 | Display method of book query page, electronic device and computer storage medium |
| CN111552795A (en) * | 2020-04-24 | 2020-08-18 | 掌阅科技股份有限公司 | Book list page display method, electronic equipment and storage medium |
| CN113434753A (en) * | 2020-03-23 | 2021-09-24 | 北京达佳互联信息技术有限公司 | Information pushing method and device, electronic equipment and storage medium |
-
2022
- 2022-03-22 CN CN202210283796.0A patent/CN114637914B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9852215B1 (en) * | 2012-09-21 | 2017-12-26 | Amazon Technologies, Inc. | Identifying text predicted to be of interest |
| WO2019000472A1 (en) * | 2017-06-30 | 2019-01-03 | 广东欧珀移动通信有限公司 | Navigation method and apparatus, storage medium, and server |
| CN107943871A (en) * | 2017-11-10 | 2018-04-20 | 深圳市华阅文化传媒有限公司 | Recommended user reads the method and device of the books of hobby |
| CN109254945A (en) * | 2018-09-13 | 2019-01-22 | 掌阅科技股份有限公司 | The methods of exhibiting of e-book calculates equipment and computer storage medium |
| CN110516027A (en) * | 2019-07-22 | 2019-11-29 | 北京达佳互联信息技术有限公司 | Update method, device, electronic equipment and the storage medium of information aggregate |
| CN110825974A (en) * | 2019-11-22 | 2020-02-21 | 厦门美柚股份有限公司 | Recommendation system content ordering method and device |
| CN111125314A (en) * | 2019-12-25 | 2020-05-08 | 掌阅科技股份有限公司 | Display method of book query page, electronic device and computer storage medium |
| CN113434753A (en) * | 2020-03-23 | 2021-09-24 | 北京达佳互联信息技术有限公司 | Information pushing method and device, electronic equipment and storage medium |
| CN111552795A (en) * | 2020-04-24 | 2020-08-18 | 掌阅科技股份有限公司 | Book list page display method, electronic equipment and storage medium |
Non-Patent Citations (2)
| Title |
|---|
| 朱涤尘;夏换;: "基于数据可视化和线性回归的豆瓣图书榜单数据分析", 信息技术与信息化, no. 12, 25 December 2019 (2019-12-25) * |
| 邹婧琳;范炜;: "基于网络读书社区阅读行为的书目推荐模型研究", 数字图书馆论坛, no. 04, 25 April 2014 (2014-04-25) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024188097A1 (en) * | 2023-03-10 | 2024-09-19 | 北京字跳网络技术有限公司 | Book information presentation method and apparatus, and computer device and storage medium |
| CN117235356A (en) * | 2023-09-06 | 2023-12-15 | 支付宝(杭州)信息技术有限公司 | Game list processing method, device and equipment |
| CN117290608A (en) * | 2023-11-23 | 2023-12-26 | 深圳数拓科技有限公司 | Marketing scheme intelligent pushing method, system and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114637914B (en) | 2025-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2004240188B2 (en) | Building and using subwebs for focused search | |
| US7974970B2 (en) | Detection of undesirable web pages | |
| JP5736469B2 (en) | Search keyword recommendation based on user intention | |
| US8725732B1 (en) | Classifying text into hierarchical categories | |
| TWI424369B (en) | Activity based users' interests modeling for determining content relevance | |
| CN114637914A (en) | List processing method, computing device and storage medium | |
| US11681765B2 (en) | System and method for integrating content into webpages | |
| US20110246457A1 (en) | Ranking of search results based on microblog data | |
| US20170161259A1 (en) | Method and Electronic Device for Generating a Summary | |
| US20080140641A1 (en) | Knowledge and interests based search term ranking for search results validation | |
| JP2017157192A (en) | Method of matching between image and content item based on key word | |
| CN108304444A (en) | Information query method and device | |
| CN111522886B (en) | Information recommendation method, terminal and storage medium | |
| US9594835B2 (en) | Lightning search aggregate | |
| CN111552795B (en) | Book list page display method, electronic equipment and storage medium | |
| JP6363682B2 (en) | Method for selecting an image that matches content based on the metadata of the image and content | |
| US9152705B2 (en) | Automatic taxonomy merge | |
| US10282358B2 (en) | Methods of furnishing search results to a plurality of client devices via a search engine system | |
| AU2016228246B2 (en) | System and method for concept-based search summaries | |
| US20110131536A1 (en) | Generating and ranking information units including documents associated with document environments | |
| CN114647782A (en) | Book recommendation method, computing device and storage medium for bookshelf pages | |
| US11886477B2 (en) | System and method for quote-based search summaries | |
| Midhunchakkaravarthy et al. | Feature fatigue analysis of product usability using Hybrid ant colony optimization with artificial bee colony approach | |
| JP4973503B2 (en) | File search program, method and apparatus | |
| US20170337570A1 (en) | Analytics system for product retention management |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |