CN114672645B - Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings - Google Patents
Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings Download PDFInfo
- Publication number
- CN114672645B CN114672645B CN202210329236.4A CN202210329236A CN114672645B CN 114672645 B CN114672645 B CN 114672645B CN 202210329236 A CN202210329236 A CN 202210329236A CN 114672645 B CN114672645 B CN 114672645B
- Authority
- CN
- China
- Prior art keywords
- vanadium titano
- magnetite tailings
- vanadium
- tailings
- ferrotitanium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 26
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 18
- 239000000956 alloy Substances 0.000 title claims abstract description 18
- 229910001200 Ferrotitanium Inorganic materials 0.000 title claims abstract description 17
- 239000008188 pellet Substances 0.000 claims abstract description 35
- 239000011230 binding agent Substances 0.000 claims abstract description 21
- 238000001035 drying Methods 0.000 claims abstract description 21
- 238000005453 pelletization Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 10
- 238000003723 Smelting Methods 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000000571 coke Substances 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 235000013379 molasses Nutrition 0.000 claims description 3
- 239000006072 paste Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052719 titanium Inorganic materials 0.000 abstract description 18
- 239000010936 titanium Substances 0.000 abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 17
- 229910052742 iron Inorganic materials 0.000 abstract description 13
- 238000011084 recovery Methods 0.000 abstract description 11
- 230000008901 benefit Effects 0.000 abstract description 5
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 239000011651 chromium Substances 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- 238000009853 pyrometallurgy Methods 0.000 abstract description 2
- GFNGCDBZVSLSFT-UHFFFAOYSA-N titanium vanadium Chemical compound [Ti].[V] GFNGCDBZVSLSFT-UHFFFAOYSA-N 0.000 description 33
- 239000000203 mixture Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 229910001021 Ferroalloy Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 229910000640 Fe alloy Inorganic materials 0.000 description 8
- IXQWNVPHFNLUGD-UHFFFAOYSA-N iron titanium Chemical compound [Ti].[Fe] IXQWNVPHFNLUGD-UHFFFAOYSA-N 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 241001062472 Stokellia anisodon Species 0.000 description 7
- 238000010891 electric arc Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/006—Starting from ores containing non ferrous metallic oxides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/12—Making spongy iron or liquid steel, by direct processes in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/2406—Binding; Briquetting ; Granulating pelletizing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1281—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using carbon containing agents, e.g. C, CO, carbides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/20—Obtaining niobium, tantalum or vanadium
- C22B34/22—Obtaining vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域Technical field
本发明属于火法冶金技术领域,具体涉及一种利用钒钛磁铁矿尾矿制备钛铁合金的方法。The invention belongs to the technical field of pyrometallurgy, and specifically relates to a method for preparing titanium-iron alloy using vanadium-titanium magnetite tailings.
背景技术Background technique
我国钒钛磁铁矿储量已达到100亿吨以上,矿中主要含Fe、V、Ti三种有价元素。其中铁的储存量占全国各类铁矿总储存量的10%左右,钛储量占全国的86%,钒储存量约占全国48%。而每生产500万吨铁精矿,同时就会产生750万吨钒钛磁铁矿尾矿,尾矿中含有铁、钛、钪、硫、钴、镍等多种有价元素,其中铁含量13%-15%,二氧化钛含量8%-10%,五氧化二钒约0.1%,钪含量0.0039%-0.0042%,硫含量0.4%-0.69%,钴含量0.01%-0.017%,镍含量0.0011%-0.0042%。my country's vanadium-titanium magnetite reserves have reached more than 10 billion tons, and the ore mainly contains three valuable elements: Fe, V, and Ti. Among them, iron reserves account for about 10% of the country's total reserves of various iron ores, titanium reserves account for 86% of the country's reserves, and vanadium reserves account for about 48% of the country's total. For every 5 million tons of iron concentrate produced, 7.5 million tons of vanadium-titanium magnetite tailings will be produced. The tailings contain iron, titanium, scandium, sulfur, cobalt, nickel and other valuable elements. The iron content 13%-15%, titanium dioxide content 8%-10%, vanadium pentoxide about 0.1%, scandium content 0.0039%-0.0042%, sulfur content 0.4%-0.69%, cobalt content 0.01%-0.017%, nickel content 0.0011% -0.0042%.
大量尾矿堆积不仅占用了很多宝贵的土地资源,造成严重的生态破坏和环境污染,同时存在着严重的安全隐患,尾矿因为本身颗粒细小松散易流动的特点,很容易造成滑坡和崩塌。尾矿中含有大量的金属元素和非金属元素,针对钒钛磁铁矿尾矿大量堆积造成的环境污染和资源浪费现象,少许文献显示采用湿法冶金的办法分离出其中的部分有价资源,但都未产业化,资源回收率也都不高;就现有的技术而言,采用选矿和提取冶金的方法很难将其中的有价资源进行分离回收,很多元素无法回收或回收成本太高,所以长期以来一直没有得到有效利用,这就造成了资源的流失浪费。对钒钛磁铁矿尾矿进行熔炼制备钛铁合金,回收其中的铁、钛、钒等有价资源的技术,目前尚未见报道。The accumulation of large amounts of tailings not only occupies a lot of valuable land resources, causing serious ecological damage and environmental pollution, but also poses serious safety risks. Because of its small, loose and easy-flowing characteristics, tailings can easily cause landslides and collapses. Tailings contain a large number of metallic elements and non-metallic elements. In view of the environmental pollution and resource waste caused by the large accumulation of vanadium-titanium magnetite tailings, some literature shows that hydrometallurgy is used to separate some of the valuable resources. But none of them have been industrialized, and the resource recovery rate is not high. As far as the existing technology is concerned, it is difficult to separate and recover valuable resources using mineral processing and extraction metallurgy methods. Many elements cannot be recovered or the recovery cost is too high. , so it has not been effectively utilized for a long time, which has resulted in the loss and waste of resources. The technology of smelting vanadium-titanium magnetite tailings to prepare titanium-ferroalloy and recovering valuable resources such as iron, titanium and vanadium has not yet been reported.
发明内容Contents of the invention
本发明所要解决的技术问题是现有技术回收钒钛磁铁矿尾矿中有价资源回收率较低的问题。The technical problem to be solved by the present invention is the problem of low recovery rate of valuable resources in the prior art of recovering vanadium-titanium magnetite tailings.
本发明解决其技术问题所采用的技术方案是:利用钒钛磁铁矿尾矿制备钛铁合金的方法,包括如下步骤:The technical solution adopted by the present invention to solve the technical problem is: a method for preparing titanium-iron alloy using vanadium-titanium magnetite tailings, which includes the following steps:
a.将钒钛磁铁矿尾矿、粘结剂和水按100∶2-3∶4-9的质量比混合造球,干燥后得到干球团;a. Mix vanadium-titanium magnetite tailings, binder and water at a mass ratio of 100:2-3:4-9 to form pellets, and dry them to obtain dry pellets;
b.将干球团和还原剂按100∶4-6的质量比混匀,然后在1400-1600℃下熔炼15-50min,得到钛铁合金。b. Mix the dry pellets and the reducing agent at a mass ratio of 100:4-6, and then smelt at 1400-1600°C for 15-50 minutes to obtain a titanium-iron alloy.
上述步骤a中,粘结剂为聚乙烯醇、羧甲基纤维素、糖蜜、蔗糖、淀粉、浆糊中至少一种。In the above step a, the binder is at least one of polyvinyl alcohol, carboxymethylcellulose, molasses, sucrose, starch, and paste.
上述步骤b中,还原剂为焦炭、石墨、活性炭、木炭、蓝炭中至少一种。In the above step b, the reducing agent is at least one of coke, graphite, activated carbon, charcoal, and blue carbon.
进一步的是,所述还原剂的粒度为1-5mm。Further, the particle size of the reducing agent is 1-5 mm.
上述步骤a中,钒钛磁铁矿尾矿的粒度为100-325目。In the above step a, the particle size of the vanadium-titanium magnetite tailings is 100-325 mesh.
上述步骤a中,造球方式为按比例加入钒钛磁铁矿尾矿于造球机中,喷入粘结剂和水,待形成母球后,继续按比例加入钒钛磁铁矿尾矿、粘结剂和水,直到母球长大到所需大小后取出球团。In the above step a, the pelletizing method is to add the vanadium-titanium magnetite tailings in proportion to the pelletizing machine, spray in the binder and water, and after forming the cue ball, continue to add the vanadium-titanium magnetite tailings in proportion. , binder and water until the cue ball grows to the desired size and then remove the pellet.
进一步的是,球团的尺寸为8-15mm。Further, the size of the pellets is 8-15mm.
上述步骤a中,造球转速为15-20r/min。In the above step a, the balling speed is 15-20r/min.
上述步骤a中,干燥温度为100-150℃,干燥时间为40-100min。In the above step a, the drying temperature is 100-150°C and the drying time is 40-100 minutes.
本发明的有益效果是:本发明的利用钒钛磁铁矿尾矿制备钛铁合金的方法,针对钒钛磁铁矿尾矿的特性,特别设计了造球原料混合比例并限定了球团尺寸,得到的球团配合本发明的熔炼工艺,最终制备得到的钛铁合金中:铁的品位为74-81.3%,钛的品位为23.4-26.5%,钒的品位为0.20-0.23%;铁的回收率为96-97%,钛的回收率为84.5-86.9%,钒的回收率为78.4-79.5%。采用本发明的方法将钒钛磁铁矿尾矿冶炼为钛铁合金,可有效将钒钛磁铁矿尾矿中有价资源回收且具有较高的回收率。The beneficial effects of the present invention are: the method of preparing titanium ferroalloy by utilizing vanadium titanium magnetite tailings of the present invention specifically designs the mixing ratio of the pelletizing raw materials and limits the pellet size in view of the characteristics of the vanadium titanium magnetite tailings. The obtained pellets are combined with the smelting process of the present invention, and in the finally prepared ferrotitanium alloy: the grade of iron is 74-81.3%, the grade of titanium is 23.4-26.5%, and the grade of vanadium is 0.20-0.23%; the iron recovery rate The recovery rate of titanium is 96-97%, the recovery rate of titanium is 84.5-86.9%, and the recovery rate of vanadium is 78.4-79.5%. By using the method of the present invention to smelt vanadium-titanium magnetite tailings into titanium-iron alloy, valuable resources in the vanadium-titanium magnetite tailings can be effectively recovered with a high recovery rate.
本发明方法适用于火法冶炼铁钒等行业,改善和克服了目前钒钛磁铁矿尾矿堆存及处理过程中存在的环境污染严重、资源利用率低、工艺流程长、经济效益低等缺点,具有工艺简单、成本低廉、周期短、产品附加值高等优点,能高效地从钒钛磁铁矿尾矿中富集出铁、钛、钒、铬等有价资源,制备出的钛铁合金具有较高的经济效益。The method of the invention is suitable for industries such as pyrometallurgical smelting of iron and vanadium, and improves and overcomes the serious environmental pollution, low resource utilization rate, long process flow, and low economic benefits existing in the current vanadium-titanium magnetite tailings storage and treatment processes. Disadvantages: It has the advantages of simple process, low cost, short cycle, and high added value of products. It can efficiently enrich valuable resources such as iron, titanium, vanadium, and chromium from vanadium-titanium magnetite tailings, and prepare ferro-titanium alloys. It has high economic benefits.
附图说明Description of the drawings
图1为本发明利用钒钛磁铁矿尾矿制备钛铁合金的方法的工艺流程图;Figure 1 is a process flow chart of the method for preparing titanium ferroalloy by utilizing vanadium titanium magnetite tailings according to the present invention;
图2为本发明实施例3制备的钛铁合金的XRD谱图。Figure 2 is an XRD spectrum of the ferrotitanium alloy prepared in Example 3 of the present invention.
具体实施方式Detailed ways
本发明的技术方案,具体可以按照以下方式实施。The technical solution of the present invention can be implemented specifically in the following manner.
本发明利用钒钛磁铁矿尾矿制备钛铁合金的方法的具体工艺流程图如图1所示。The specific process flow chart of the method of preparing titanium ferroalloy by utilizing vanadium titanium magnetite tailings according to the present invention is shown in Figure 1.
利用钒钛磁铁矿尾矿制备钛铁合金的方法,包括如下步骤:A method for preparing titanium-iron alloy using vanadium-titanium magnetite tailings includes the following steps:
a.将钒钛磁铁矿尾矿、粘结剂和水按100∶2-3∶4-9的质量比混合造球,干燥后得到干球团;a. Mix vanadium-titanium magnetite tailings, binder and water at a mass ratio of 100:2-3:4-9 to form pellets, and dry them to obtain dry pellets;
b.将干球团和还原剂按100∶4-6的质量比混匀,然后在1400-1600℃下熔炼15-50min,得到钛铁合金。b. Mix the dry pellets and the reducing agent at a mass ratio of 100:4-6, and then smelt at 1400-1600°C for 15-50 minutes to obtain a titanium-iron alloy.
上述步骤a中,粘结剂为聚乙烯醇、羧甲基纤维素、糖蜜、蔗糖、淀粉、浆糊中至少一种;所述钒钛磁铁矿尾矿的粒度为100-325目。In the above step a, the binder is at least one of polyvinyl alcohol, carboxymethyl cellulose, molasses, sucrose, starch, and paste; the particle size of the vanadium titanium magnetite tailings is 100-325 mesh.
上述步骤a中,采用圆盘造球机造球,造球转速为15-20r/min。造球过程中,加入适当的钒钛磁铁矿尾矿于圆盘造球机中,喷入适当的粘结剂和水;当母球形成后,继续添加矿粉、水及粘结剂,直到母球长大到所需大小;优选的,球团的尺寸为8-15mm。In the above step a, a disc pelletizing machine is used to make balls, and the ball making speed is 15-20r/min. During the pelletizing process, add appropriate vanadium-titanium magnetite tailings into the disc pelletizing machine, spray in appropriate binder and water; when the cue ball is formed, continue to add mineral powder, water and binder. Until the cue ball grows to the required size; preferably, the size of the pellet is 8-15mm.
上述步骤a中,干燥步骤在鼓风干燥箱中进行,干燥温度为100-150℃,干燥时间为40-100min。In the above step a, the drying step is performed in a blast drying oven, the drying temperature is 100-150°C, and the drying time is 40-100 minutes.
上述步骤b中,还原剂为焦炭、石墨、活性炭、木炭、蓝炭中至少一种;优选的是,所述还原剂的粒度为1-5mm。In the above step b, the reducing agent is at least one of coke, graphite, activated carbon, charcoal, and blue carbon; preferably, the particle size of the reducing agent is 1-5 mm.
优选的是,上述步骤b中,熔炼在电弧炉或者电阻炉中进行。Preferably, in the above step b, smelting is performed in an electric arc furnace or resistance furnace.
下面通过实际的例子对本发明的技术方案和效果做进一步的说明。The technical solutions and effects of the present invention will be further described below through practical examples.
实施例Example
本发明提供三组采用本发明方法制备钛铁合金的实施例和1组对比例,实施例1-3和对比例1中采用的钒钛磁铁矿尾矿的品位为:Fe11.43%,TiO24.157%,V2O50.039%,Cr2O30.004%。The present invention provides three groups of examples and one group of comparative examples for preparing ferrotitanium alloys using the method of the present invention. The grades of vanadium-titanium magnetite tailings used in Examples 1-3 and Comparative Example 1 are: Fe11.43%, TiO 2 4.157%, V 2 O 5 0.039%, Cr 2 O 3 0.004%.
实施例1Example 1
a.将10kg钒钛磁铁矿尾矿细磨,过100目筛后装入容器内混匀待用;a. Finely grind 10kg of vanadium-titanium magnetite tailings, pass through a 100-mesh sieve, put it into a container and mix well for use;
b.开启圆盘造球机,调节转速至15r/min,设置倾角为50°;然后将2kg尾矿粉加入圆盘造球机中,喷入40g粘结剂和150ml水;待形成母球后,继续添加尾矿粉、水及粘结剂,直到母球长大到所需大小后取出,随后重复进行该步骤直至将10kg钒钛磁铁矿尾矿全部造球,得到平均尺寸为9mm的湿球团;b. Turn on the disc pelletizing machine, adjust the speed to 15r/min, and set the inclination angle to 50°; then add 2kg of tailings powder into the disc pelletizing machine, spray in 40g of binder and 150ml of water; wait until a cue ball is formed After that, continue to add tailings powder, water and binder until the cue ball grows to the required size and then take it out. Then repeat this step until all 10kg of vanadium titanium magnetite tailings are pelletized, and the average size is 9mm. of wet pellets;
c.将制得的所有湿球团放于坩埚中,在鼓风干燥箱中干燥,干燥时间为30min,干燥温度为100℃,得到9.56kg干球团;c. Place all the wet pellets obtained in the crucible and dry them in a forced air drying oven. The drying time is 30 minutes and the drying temperature is 100°C to obtain 9.56kg dry pellets;
d.将干球团和焦炭颗粒(粒度约3mm)按100∶4的质量比混匀后在电弧炉内进行熔炼,熔炼温度为1600℃,熔炼时间为20min,得到1.5kg钛铁合金和8.1kg炉渣。d. Mix the dry pellets and coke particles (particle size about 3mm) in a mass ratio of 100:4 and smelt them in an electric arc furnace. The melting temperature is 1600°C and the melting time is 20 minutes to obtain 1.5kg of titanium ferroalloy and 8.1kg. Slag.
实施例2Example 2
a.将10kg钒钛磁铁矿尾矿细磨,过100目筛后装入容器内混匀待用;a. Finely grind 10kg of vanadium-titanium magnetite tailings, pass through a 100-mesh sieve, put it into a container and mix well for use;
b.开启圆盘造球机,调节转速至18r/min,设置倾角为50°;然后将1kg尾矿粉加入圆盘造球机中,喷入22g粘结剂和70ml水;待形成母球后,继续添加尾矿粉、水及粘结剂,直到母球长大到所需大小后取出,随后重复进行该步骤直至将10kg钒钛磁铁矿尾矿全部造球,得到平均尺寸为12mm的湿球团;b. Turn on the disc pelletizing machine, adjust the speed to 18r/min, and set the inclination angle to 50°; then add 1kg of tailings powder into the disc pelletizing machine, spray in 22g of binder and 70ml of water; wait until a cue ball is formed After that, continue to add tailings powder, water and binder until the cue ball grows to the required size and then take it out. Then repeat this step until all 10kg of vanadium titanium magnetite tailings are pelletized, and the average size is 12mm. of wet pellets;
c.将制得的所有湿球团放于坩埚中,在鼓风干燥箱中干燥,干燥时间为20min,干燥温度为120℃,得到9.24kg干球团;c. Place all the wet pellets obtained in the crucible and dry them in a blast drying oven with a drying time of 20 minutes and a drying temperature of 120°C to obtain 9.24kg of dry pellets;
d.将干球团和焦炭颗粒(粒度约4mm)按100∶5的质量比混匀后在电弧炉内进行熔炼,熔炼温度为1700℃,熔炼时间为15min,得到1.3kg钛铁合金和8.18kg炉渣。d. Mix dry pellets and coke particles (particle size about 4mm) in a mass ratio of 100:5 and smelt them in an electric arc furnace. The melting temperature is 1700°C and the melting time is 15 minutes to obtain 1.3kg of titanium ferroalloy and 8.18kg. Slag.
实施例3Example 3
a.将10kg钒钛磁铁矿尾矿细磨,过100目筛后装入容器内混匀待用;a. Finely grind 10kg of vanadium-titanium magnetite tailings, pass through a 100-mesh sieve, put it into a container and mix well for use;
b.开启圆盘造球机,调节转速至20r/min,设置倾角为60°;然后将2kg尾矿粉加入圆盘造球机中,喷入40g粘结剂和150ml水;待形成母球后,继续添加尾矿粉、水及粘结剂,直到母球长大到所需大小后取出,随后重复进行该步骤直至将10kg钒钛磁铁矿尾矿全部造球,得到平均尺寸为13mm的湿球团;b. Turn on the disc pelletizing machine, adjust the speed to 20r/min, and set the inclination angle to 60°; then add 2kg of tailings powder into the disc pelletizing machine, spray in 40g of binder and 150ml of water; wait until a cue ball is formed After that, continue to add tailings powder, water and binder until the cue ball grows to the required size and then take it out. Then repeat this step until all 10kg of vanadium titanium magnetite tailings are pelletized, and the average size is 13mm. of wet pellets;
c.将制得的所有湿球团放于坩埚中,在鼓风干燥箱中干燥,干燥时间为20min,干燥温度为120℃,得到9.12kg干球团;c. Place all the wet pellets obtained in the crucible and dry them in a blast drying oven. The drying time is 20 minutes and the drying temperature is 120°C to obtain 9.12kg dry pellets;
d.将干球团和焦炭颗粒(粒度约5mm)按100∶6的质量比混匀后在电弧炉内进行熔炼,熔炼温度为1650℃,熔炼时间为20min,得到1.45kg钛铁合金和7.82kg炉渣。d. Mix the dry pellets and coke particles (particle size about 5mm) in a mass ratio of 100:6 and smelt them in an electric arc furnace. The melting temperature is 1650°C and the melting time is 20 minutes to obtain 1.45kg of titanium ferroalloy and 7.82kg. Slag.
对比例1Comparative example 1
a.将10kg钒钛磁铁矿尾矿细磨,过100目筛后装入容器内混匀待用;a. Finely grind 10kg of vanadium-titanium magnetite tailings, pass through a 100-mesh sieve, put it into a container and mix well for use;
b.开启圆盘造球机,调节转速至12r/min,设置倾角为60°;然后将1kg尾矿粉加入圆盘造球机中,喷入15g粘结剂和35ml水;待形成母球后,继续添加尾矿粉、水及粘结剂,直到母球长大到所需大小后取出,随后重复进行该步骤直至将10kg钒钛磁铁矿尾矿全部造球,得到尺寸为20mm的湿球团;;b. Turn on the disc pelletizing machine, adjust the speed to 12r/min, and set the inclination angle to 60°; then add 1kg of tailings powder into the disc pelletizing machine, spray in 15g of binder and 35ml of water; wait until a cue ball is formed Finally, continue to add tailings powder, water and binder until the cue ball grows to the required size and then take it out. Then repeat this step until all 10kg of vanadium titanium magnetite tailings are pelletized to obtain a 20mm size. Wet pellets;;
c.将制得的所有湿球团放于坩埚中,在鼓风干燥箱中干燥,干燥时间为20min,干燥温度为120℃,得到8.08kg干球团;c. Place all the wet pellets obtained in the crucible and dry them in a blast drying oven with a drying time of 20 minutes and a drying temperature of 120°C to obtain 8.08kg of dry pellets;
d.将干球团和焦炭颗粒(粒度约5mm)按100∶3的质量比混匀后在电弧炉内进行熔炼,熔炼温度为1600℃,熔炼时间为30min,得到0.98kg钛铁合金和7.34kg炉渣。d. Mix the dry pellets and coke particles (particle size about 5mm) in a mass ratio of 100:3 and smelt them in an electric arc furnace. The melting temperature is 1600°C and the melting time is 30 minutes to obtain 0.98kg of titanium ferroalloy and 7.34kg. Slag.
对实施例1-3和对比例1中得到的钛铁合金品位进行测试,并计算回收率,结果如表1所示。The grade of the ferrotitanium alloy obtained in Examples 1-3 and Comparative Example 1 was tested, and the recovery rate was calculated. The results are shown in Table 1.
表1钛铁合金测试结果Table 1 Test results of titanium ferroalloy
对实施例3制备的钛铁合金进行X射线衍射分析,得到的XRD谱图如图2所示。X-ray diffraction analysis was performed on the ferrotitanium alloy prepared in Example 3, and the obtained XRD spectrum is shown in Figure 2.
通过图2可知,本发明制备的合金为钛铁合金;由表1可知,采用本发明的方法可将钒钛磁铁矿尾矿中的铁钛钒等资源化利用,制得高品质的钛铁合金产品,且具有较高的回收率。As can be seen from Figure 2, the alloy prepared by the present invention is a titanium-iron alloy; as shown in Table 1, the method of the present invention can be used to utilize resources such as iron, titanium and vanadium in the vanadium-titanium magnetite tailings to produce high-quality titanium-iron alloys. products with high recovery rates.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210329236.4A CN114672645B (en) | 2022-03-30 | 2022-03-30 | Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210329236.4A CN114672645B (en) | 2022-03-30 | 2022-03-30 | Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114672645A CN114672645A (en) | 2022-06-28 |
| CN114672645B true CN114672645B (en) | 2024-01-30 |
Family
ID=82076407
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210329236.4A Active CN114672645B (en) | 2022-03-30 | 2022-03-30 | Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114672645B (en) |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996012047A1 (en) * | 1994-10-17 | 1996-04-25 | Magmint Limited | Titanium and vanadium recovery process |
| RU2069234C1 (en) * | 1996-04-23 | 1996-11-20 | Заболотный Василий Васильевич | Method of producing agglomerate |
| CN1804059A (en) * | 2005-12-15 | 2006-07-19 | 鲜帆 | Direction reduction and electric furnace smelting-separation preparation process of vanadium-titanium magnetite cold bound pellet |
| CN101519721A (en) * | 2009-04-17 | 2009-09-02 | 攀枝花学院 | Method for smelting vanadium-titanium-iron ore concentrate |
| CN101597774A (en) * | 2009-06-29 | 2009-12-09 | 重庆大学 | A kind of method that utilizes vanadium-titanium magnetite iron beneficiation tailings to prepare ferro-titanium alloy |
| CN102277462A (en) * | 2011-08-17 | 2011-12-14 | 北京科技大学 | Method for comprehensive utilization of vanadium titanomagnetite |
| CN102776364A (en) * | 2012-08-16 | 2012-11-14 | 中冶北方(大连)工程技术有限公司 | Process for recovering titanium and iron from titanomagnetite tailings |
| RU2492245C1 (en) * | 2012-02-28 | 2013-09-10 | ООО "Управление и Инновации" | Method of processing vanadium-bearing titanium-magnetite concentrate |
| CN106801181A (en) * | 2016-12-10 | 2017-06-06 | 包钢集团矿山研究院(有限责任公司) | A kind of method that ferro-titanium is smelted in carbon thermal reduction |
| CN107267750A (en) * | 2017-07-04 | 2017-10-20 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of method of granulating of high-chromic vanadium-titanium ferroferrite sinter mixture |
| CN107937715A (en) * | 2017-11-19 | 2018-04-20 | 东北大学 | A kind of method that high-chromic vanadium-titanium ferroferrite prepares pellet with addition of chromite |
| CN108359792A (en) * | 2018-03-19 | 2018-08-03 | 攀枝花学院 | Ilmenite concentrate and vanadium iron concentrate bulk concentrate acidic oxidation pelletizing and preparation method thereof |
| KR102328235B1 (en) * | 2021-04-05 | 2021-11-19 | 한국지질자원연구원 | Method for directly recovering vanadium from vanadium titanomagnetite |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2628586C2 (en) * | 2013-05-17 | 2017-08-21 | Инститьют Оф Проусес Энжиниринг, Чайниз Экэдеми Оф Сайенсиз | Method of processing vanadium-titanium-magnetite concentrate of wet process |
| CN106854702B (en) * | 2015-12-09 | 2019-03-15 | 中国科学院过程工程研究所 | The method of iron, vanadium and titanium in one step conversion separation sefstromite concentrate |
-
2022
- 2022-03-30 CN CN202210329236.4A patent/CN114672645B/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996012047A1 (en) * | 1994-10-17 | 1996-04-25 | Magmint Limited | Titanium and vanadium recovery process |
| RU2069234C1 (en) * | 1996-04-23 | 1996-11-20 | Заболотный Василий Васильевич | Method of producing agglomerate |
| CN1804059A (en) * | 2005-12-15 | 2006-07-19 | 鲜帆 | Direction reduction and electric furnace smelting-separation preparation process of vanadium-titanium magnetite cold bound pellet |
| CN101519721A (en) * | 2009-04-17 | 2009-09-02 | 攀枝花学院 | Method for smelting vanadium-titanium-iron ore concentrate |
| CN101597774A (en) * | 2009-06-29 | 2009-12-09 | 重庆大学 | A kind of method that utilizes vanadium-titanium magnetite iron beneficiation tailings to prepare ferro-titanium alloy |
| CN102277462A (en) * | 2011-08-17 | 2011-12-14 | 北京科技大学 | Method for comprehensive utilization of vanadium titanomagnetite |
| RU2492245C1 (en) * | 2012-02-28 | 2013-09-10 | ООО "Управление и Инновации" | Method of processing vanadium-bearing titanium-magnetite concentrate |
| CN102776364A (en) * | 2012-08-16 | 2012-11-14 | 中冶北方(大连)工程技术有限公司 | Process for recovering titanium and iron from titanomagnetite tailings |
| CN106801181A (en) * | 2016-12-10 | 2017-06-06 | 包钢集团矿山研究院(有限责任公司) | A kind of method that ferro-titanium is smelted in carbon thermal reduction |
| CN107267750A (en) * | 2017-07-04 | 2017-10-20 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of method of granulating of high-chromic vanadium-titanium ferroferrite sinter mixture |
| CN107937715A (en) * | 2017-11-19 | 2018-04-20 | 东北大学 | A kind of method that high-chromic vanadium-titanium ferroferrite prepares pellet with addition of chromite |
| CN108359792A (en) * | 2018-03-19 | 2018-08-03 | 攀枝花学院 | Ilmenite concentrate and vanadium iron concentrate bulk concentrate acidic oxidation pelletizing and preparation method thereof |
| KR102328235B1 (en) * | 2021-04-05 | 2021-11-19 | 한국지질자원연구원 | Method for directly recovering vanadium from vanadium titanomagnetite |
Non-Patent Citations (1)
| Title |
|---|
| 钒钛磁铁矿尾矿含碳球团强度性能研究;李俊翰等;《钢铁钒钛》;第40卷(第6期);第90-95页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114672645A (en) | 2022-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101838743B (en) | Method for recovering iron, vanadium, chromium and gallium from tailings of vanadium extraction | |
| CN109097562B (en) | A kind of method for selective sulfide roasting of laterite nickel ore | |
| CN106086467B (en) | A kind of method and system for extracting nickel oxide using lateritic nickel ore | |
| CN101514401B (en) | A method for efficiently enriching nickel and cobalt from low-grade lateritic nickel ore | |
| CN103757200B (en) | Method for separating and enriching ferronickel from laterite-nickel ore | |
| CN104152724B (en) | A kind of method being enriched with chromium from laterite | |
| CN102534194A (en) | Method for producing ferronickel from laterite-nickel ore | |
| CN104195279A (en) | Process for preparing ferric-nickel from laterite-nickel ore | |
| CN103993182B (en) | The comprehensive recovering process of secondary resource in a kind of iron vitriol slag | |
| CN108559838A (en) | Method for preparing nickel-iron alloy by mixed smelting of laterite nickel ore | |
| CN110016549A (en) | It is a kind of to strengthen the compound additive and its application that lateritic nickel ore is reduced directly | |
| CN106587056A (en) | Method for preparing active carbon from carbocoal | |
| CN106119573B (en) | A kind of method and system for extracting nickel oxide using lateritic nickel ore | |
| CN108149008A (en) | To discard lump ore as the method for lateritic nickel ore hearth layer for sintering | |
| CN105256131B (en) | A kind of preparation method of sulphur cobalt concentrate metallized pellet | |
| CN102643976B (en) | Composite additive for producing nickel-iron particles by using laterite, and application method thereof | |
| CN103866115B (en) | The preparation of red soil nickel ore single stage method is containing the method for nickel and stainless steel raw material | |
| CN115483467B (en) | A method for recovering high-purity graphite from the negative electrode of waste lithium-ion batteries | |
| CN115261638B (en) | Method for Synergistically Preparing Ferronickel and Iron Concentrate Using High Magnesium Laterite Nickel Ore and Red Mud | |
| CN105586491A (en) | Comprehensive recycling method for waste hard alloy | |
| CN114672645B (en) | Method for preparing ferrotitanium alloy from vanadium titano-magnetite tailings | |
| CN117144143B (en) | Method for extracting lithium from waste lithium ion battery anode material | |
| CN112210634B (en) | A kind of method and device for preparing nickel-molybdenum-iron alloy by using low-grade nickel-molybdenum ore | |
| CN103215446B (en) | A kind of serpentine type laterite nickel ore hydrochloric acid normal pressure leaching clean preparation method | |
| CN106086468B (en) | A kind of method and system extracting nickel oxide using ferronickel powder |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |