CN114686990A - Promoter library and preparation method and application thereof - Google Patents
Promoter library and preparation method and application thereof Download PDFInfo
- Publication number
- CN114686990A CN114686990A CN202011642684.7A CN202011642684A CN114686990A CN 114686990 A CN114686990 A CN 114686990A CN 202011642684 A CN202011642684 A CN 202011642684A CN 114686990 A CN114686990 A CN 114686990A
- Authority
- CN
- China
- Prior art keywords
- promoter
- seq
- nucleotide sequence
- gene
- identity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B30/00—Methods of screening libraries
- C40B30/06—Methods of screening libraries by measuring effects on living organisms, tissues or cells
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B50/00—Methods of creating libraries, e.g. combinatorial synthesis
- C40B50/06—Biochemical methods, e.g. using enzymes or whole viable microorganisms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域;具体而言,涉及一种启动子文库,包含所述启动子的载体和/或宿主细胞、该启动子文库的构建方法以及启动子活性的筛选方法及其应用。The present invention belongs to the field of biotechnology; in particular, it relates to a promoter library, a vector and/or host cell comprising the promoter, a method for constructing the promoter library, a method for screening promoter activity and applications thereof.
背景技术Background technique
类球红细菌(Rhodobacter sphaeroides)是一种革兰氏阴性光合细菌,属于紫色非硫细菌中的α变形菌。类球红细菌代谢模式比较复杂,其可以通过光合作用获得能量维持生存,也可以在没有光照的情况下利用有机物进行有氧呼吸获得能量维持生命。数十年来,由于该菌含有大量光合色素,常被用作研究细菌光合作用的模式生物。除此之外,类球红细菌还有多种用途,例如合成用于治疗心血管疾病的辅酶Q10,该菌是其理想的宿主菌,生物安全性较高;还可以用于生物产氢、产聚-β-羟丁酸(poly-β-hydroxybutyrate,PHB);现在也被用于膜蛋白表达系统。目前类球红细菌因以上特性,被广泛应用于食品、医药、农业等领域,存在极高的工业开发的潜在价值。Rhodobacter sphaeroides is a gram-negative photosynthetic bacterium belonging to the alpha-proteobacteria of the purple non-sulfur bacteria. The metabolic pattern of Rhodobacter sphaeroides is relatively complex. It can obtain energy through photosynthesis to maintain its existence, or it can use organic matter for aerobic respiration to obtain energy to maintain life in the absence of light. For decades, this bacterium has been used as a model organism for studying bacterial photosynthesis because it contains a large amount of photosynthetic pigments. In addition, Rhodobacter sphaeroides has various uses, such as synthesizing coenzyme Q 10 for the treatment of cardiovascular diseases, which is an ideal host bacterium with high biological safety; it can also be used for biological hydrogen production , to produce poly-β-hydroxybutyrate (poly-β-hydroxybutyrate, PHB); it is now also used in membrane protein expression systems. At present, due to the above characteristics, Rhodobacter sphaeroides is widely used in food, medicine, agriculture and other fields, and has extremely high potential value for industrial development.
类球红细菌在低氧或者无氧的条件下,其细胞膜容易以发芽囊泡的形式内陷形成大量褶皱的细胞膜,分化产生胞浆内膜,形成胞浆内膜系统(Intracytoplasmic MembraneSystem,ICM)。ICM装配有光合作用装置用于捕捉光子进行厌氧光合作用,细菌通过该行为增加膜面积提高光合效率,由于辅酶Q10广泛分布在生物膜上,这也可能为辅酶Q10提供了多贮存和发挥作用的空间。目前辅酶Q10积累机制尚未清晰,但类球红细菌作为模式菌株,全基因组测序已经于2005年完成,光合基因表达调控机制也已研究较清楚。ICM中主要包含的光反应中心和捕光复合物主要由一个光合基因簇表达合成,该光合基因簇中的基因的表达受到多个调控系统的调节,而且控制其中各操纵子表达的启动子也有独特特征,因而光合基因簇在阐明类球红细菌积累辅酶Q10机制以及构建天然启动子文库方面的潜力引起了所在课题组的注意。其中,类球红细菌的光合作用操纵子主要包括pucBAC、pufQKBALMX、crt、bch等,其下包含pucA、pucB、pufA、pufB、pufL、pufM、puhA等基因。前人研究还表明,PrrA/PrrB、PpaA、AppA/PpsR、FnrL和IHF等重要的调控蛋白能感应氧气浓度和光照强度,调节光合作用操纵子的表达。Under hypoxic or anaerobic conditions, the cell membrane of Rhodobacter sphaeroides is easily invaginated in the form of sprouting vesicles to form a large number of folded cell membranes, differentiated to produce an intracytoplasmic membrane, and the Intracytoplasmic Membrane System (ICM) is formed. . The ICM is equipped with a photosynthetic device for capturing photons for anaerobic photosynthesis, by which bacteria increase the membrane area to increase the photosynthetic efficiency. Since CoQ10 is widely distributed on biofilms, this may also provide multiple storage and storage for CoQ10 . space to function. At present, the accumulation mechanism of coenzyme Q 10 is not yet clear, but as a model strain of Rhodobacter sphaeroides, the whole genome sequencing has been completed in 2005, and the regulation mechanism of photosynthetic gene expression has also been clearly studied. The photoreactive center and light-harvesting complex mainly included in the ICM are mainly expressed and synthesized by a photosynthetic gene cluster. The expression of the genes in the photosynthetic gene cluster is regulated by multiple regulatory systems, and the promoters that control the expression of each operon also have Due to its unique characteristics, the potential of photosynthetic gene clusters in elucidating the mechanism of CoQ10 accumulation in Rhodobacter sphaeroides and the construction of natural promoter libraries has attracted the attention of our research group. Among them, the photosynthetic operons of Rhodobacter sphaeroides mainly include pucBAC, pufQKBALMX, crt, bch, etc., which include pucA, pucB, pufA, pufB, pufL, pufM, puhA and other genes. Previous studies have also shown that important regulatory proteins such as PrrA/PrrB, PpaA, AppA/PpsR, FnrL, and IHF can sense oxygen concentration and light intensity, and regulate the expression of photosynthesis operons.
启动子(Promoter)位于DNA编码链的5’端上游,含有使RNA聚合酶结合的保守序列,对基因的表达时序性和强度起着“控制开关”的作用。其主要包括上游原件、核心启动子区域和应答结合原件三部分。在原核生物中,启动子的核心区域主要包括-10区“TATAAT”和-35区“TTGACA”两部分,这两个保守区域能够和RNA聚合酶的σ因子相互识别,值得注意的是这种结合是具有特应性,因此使得启动子具有种属特异性。-35区和-10区保守区域的核苷酸数量的变化,能够影响基因转录的活性,一般认为强启动子为16-18bp,当间距小于15bp或大于20bp时,启动子的活性会有所降低。The promoter (Promoter) is located upstream of the 5' end of the DNA coding strand and contains a conserved sequence that binds RNA polymerase, and acts as a "control switch" for the timing and intensity of gene expression. It mainly includes three parts: upstream element, core promoter region and response binding element. In prokaryotes, the core region of the promoter mainly includes two parts, the -10 region "TATAAT" and the -35 region "TTGACA". These two conserved regions can recognize each other with the σ factor of RNA polymerase. It is worth noting that this kind of Binding is idiopathic, thus making the promoter species specific. Changes in the number of nucleotides in the conserved regions of -35 and -10 regions can affect the activity of gene transcription. It is generally believed that a strong promoter is 16-18 bp. When the spacing is less than 15 bp or greater than 20 bp, the activity of the promoter will be reduced. reduce.
目前,类球红细菌中常用的天然启动子来自基因puf、pucP和aprrnB。puf和pucP基因均来自类球红细菌光合作用操纵子,与功能相适应,这两个基因的启动子受光和氧气的影响,可以在不同的培养条件下开启或关闭基因转录。PrrnB是类球红细菌核糖体RNA的启动子,是一个中等强度的组成型启动子。另外,类球红细菌中的σ93和σ37RNA聚合酶可以兼容性地识别来源于大肠杆菌的σ70和σ32依赖型启动子,因此在类球红细菌中,来源于大肠杆菌的σ70依赖型启动子如大肠杆菌启动子PlacUV5、Ptac/trc、PTn903kan、PA1/04/03和PrrnB P1均能被类球红细菌的RNA聚合酶识别。Shan Q.等用PJ95025、PJ95026、J95027、Ptac、PrrnB五种不同强度(其中PrrnB启动子并非其中强度最强的启动子)的启动子介导CrtY基因在类球红细菌中表达,其中在PrrnB启动子介导下,β-胡萝卜素的产量提高109%。这表明适合的基因表达强度更有利于调控代谢网络实现产物产量提高,而现阶段类球红细菌的启动子文库有待开发。Currently, the natural promoters commonly used in R. sphaeroides come from the genes puf, pucP and aprrnB. Both puf and pucP genes are derived from the photosynthesis operon of Rhodobacter sphaeroides, which are adapted to their functions. The promoters of these two genes are affected by light and oxygen, and can turn on or off gene transcription under different culture conditions. P rrnB is the promoter of ribosomal RNA of Rhodobacter sphaeroides and is a moderate-strength constitutive promoter. In addition, σ 93 and σ 37 RNA polymerases in R. sphaeroides can compatibly recognize σ 70 and σ 32 -dependent promoters derived from E. coli, so in R. sphaeroides, σ derived from E. coli 70 -dependent promoters such as the E. coli promoters P lacUV5 , P tac/trc , P Tn903kan , P A1/04/03 and P rrnB P1 are recognized by R. sphaeroides RNA polymerase. Shan Q. et al. used promoters of P J95025 , P J95026 , J95027, P tac and P rrnB with five different strengths (where the P rrnB promoter is not the strongest promoter) to mediate the CrtY gene in Rhodobacter sphaeroides expression, in which β-carotene production was increased by 109% under the PrrnB promoter. This indicates that the appropriate gene expression intensity is more conducive to regulating the metabolic network to improve product yield, and the promoter library of Rhodobacter sphaeroides remains to be developed at this stage.
发明内容SUMMARY OF THE INVENTION
为了解决类球红细菌中的上述问题,本发明的发明人对类球红细菌的转录组和基因组进行了分析,获得了能够在类球红细菌中提供一系列转录强度的一组启动子。In order to solve the above problems in R. sphaeroides, the inventors of the present invention analyzed the transcriptome and genome of R. sphaeroides, and obtained a set of promoters that can provide a range of transcriptional strengths in R. sphaeroides.
由此,本发明的目的在于提供用于类球红细菌的启动子文库及其应用。本发明的另一目的在于提供本发明所述的启动子文库的构建方法。Therefore, the object of the present invention is to provide a promoter library for Rhodobacter sphaeroides and its application. Another object of the present invention is to provide a method for constructing the promoter library of the present invention.
在本发明的一个方面,提供了用于类球红细菌的启动子文库,所述启动子文库包括至少两条启动子,其中,启动子A包含SEQ ID NO:1所示的核苷酸序列或与SEQ ID NO:1具有至少90%同一性的核苷酸序列,启动子B包含SEQ ID NO:2所示的核苷酸序列或与SEQ IDNO:2具有至少90%同一性的核苷酸序列。In one aspect of the present invention, a promoter library for Rhodobacter sphaeroides is provided, the promoter library includes at least two promoters, wherein the promoter A comprises the nucleotide sequence shown in SEQ ID NO: 1 or a nucleotide sequence with at least 90% identity to SEQ ID NO: 1, and promoter B comprising the nucleotide sequence shown in SEQ ID NO: 2 or a nucleotide sequence with at least 90% identity to SEQ ID NO: 2 acid sequence.
在一个优选的实施方式中,所述启动子文库进一步包括选自于由以下启动子所组成的组中的一条或多条:In a preferred embodiment, the promoter library further comprises one or more selected from the group consisting of the following promoters:
启动子C,所述启动子C包含SEQ ID NO:3所示的核苷酸序列或与SEQ ID NO:3具有至少90%同一性的核苷酸序列;a promoter C comprising the nucleotide sequence shown in SEQ ID NO: 3 or a nucleotide sequence with at least 90% identity to SEQ ID NO: 3;
启动子D,所述启动子D包含SEQ ID NO:4所示的核苷酸序列或与SEQ ID NO:4具有至少90%同一性的核苷酸序列;a promoter D comprising the nucleotide sequence shown in SEQ ID NO:4 or a nucleotide sequence having at least 90% identity with SEQ ID NO:4;
启动子E,所述启动子E包含SEQ ID NO:5所示的核苷酸序列或与SEQ ID NO:5具有至少90%同一性的核苷酸序列;a promoter E comprising the nucleotide sequence shown in SEQ ID NO:5 or a nucleotide sequence having at least 90% identity with SEQ ID NO:5;
启动子F,所述启动子F包含SEQ ID NO:6所示的核苷酸序列或与SEQ ID NO:6具有至少90%同一性的核苷酸序列;a promoter F comprising the nucleotide sequence shown in SEQ ID NO: 6 or a nucleotide sequence having at least 90% identity with SEQ ID NO: 6;
启动子G,所述启动子G包含SEQ ID NO:7所示的核苷酸序列或与SEQ ID NO:7具有至少90%同一性的核苷酸序列;a promoter G comprising the nucleotide sequence shown in SEQ ID NO:7 or a nucleotide sequence having at least 90% identity with SEQ ID NO:7;
启动子H,所述启动子H包含SEQ ID NO:8所示的核苷酸序列或与SEQ ID NO:8具有至少90%同一性的核苷酸序列;A promoter H comprising the nucleotide sequence shown in SEQ ID NO: 8 or a nucleotide sequence having at least 90% identity with SEQ ID NO: 8;
启动子I,所述启动子I包含SEQ ID NO:9所示的核苷酸序列或与SEQ ID NO:9具有至少90%同一性的核苷酸序列;和A promoter I comprising the nucleotide sequence set forth in SEQ ID NO:9 or a nucleotide sequence having at least 90% identity to SEQ ID NO:9; and
启动子J,所述启动子J包含SEQ ID NO:10所示的核苷酸序列或与SEQ ID NO:10具有至少90%同一性的核苷酸序列。A promoter J comprising the nucleotide sequence set forth in SEQ ID NO:10 or a nucleotide sequence at least 90% identical to SEQ ID NO:10.
在本发明的一个方面,提供了一种载体,所述载体包含本文所述的启动子文库中的启动子。In one aspect of the invention, there is provided a vector comprising a promoter from the promoter library described herein.
在本发明的一个方面,提供了一种遗传工程化的宿主细胞,所述细胞:含有本文所述的包含所述启动子文库中的启动子元件的载体;或其基因组中整合有所述启动子文库中的启动子元件。In one aspect of the present invention, a genetically engineered host cell is provided, the cell: the vector comprising the promoter element in the promoter library described herein; or the promoter integrated into its genome Promoter elements in sublibraries.
在一些实施方式中,所述细胞为类球红细菌细胞。例如,在本发明中,所述类球红细菌细胞可为野生型类球红细菌细胞,或经修饰的类球红细菌细胞(例如,经过化学诱变、或遗传修饰等)。In some embodiments, the cells are R. sphaeroides cells. For example, in the present invention, the R. sphaeroides cells may be wild-type R. sphaeroides cells, or modified R. sphaeroides cells (eg, chemically mutagenized, or genetically modified, etc.).
在本发明的另一方面,提供了本文所述的启动子文库的构建方法,所述方法包括:In another aspect of the present invention, there is provided a construction method of the promoter library described herein, the method comprising:
(1)获得候选启动子序列:基于类球红细菌的转录组信息,筛选基因表达强度排在至少前五十、优选前二十、更优选前十的基因,基于类球红细菌的基因组信息以及所选的基因,得到位于所述基因序列起始位点上游的候选启动子序列;(1) Obtain candidate promoter sequences: Based on the transcriptome information of Rhodobacter sphaeroides, screen genes whose expression intensity ranks at least the top fifty, preferably the top twenty, and more preferably the top ten, based on the genome information of Rhodobacter sphaeroides And the selected gene, obtain the candidate promoter sequence that is positioned at the upstream of the starting site of the gene sequence;
(2)构建重组表达载体:将所述候选启动子序列可操作性地连接的报告基因序列,并连接至能够在宿主细胞中表达的载体中,从而得到重组表达载体;以及(2) constructing a recombinant expression vector: the reporter gene sequence operably linked to the candidate promoter sequence is linked to a vector capable of being expressed in a host cell, thereby obtaining a recombinant expression vector; and
(3)观测报告基因的表达,将所述重组表达载体引入所述宿主细胞中并使得所述报告基因进行表达,选择能够使得所述报告基因得以表达的启动子,构成启动子文库。(3) Observing the expression of the reporter gene, introducing the recombinant expression vector into the host cell to express the reporter gene, and selecting a promoter capable of expressing the reporter gene to form a promoter library.
在本发明中,所述宿主细胞为类球红细菌细胞。例如,所述报告基因可选自于由以下所组成的组:荧光蛋白基因(如绿色荧光蛋白基因、黄色荧光蛋白基因)、荧光素酶(luciferase,luc)基因、和β-半乳糖苷酶基因(lacZ)和gusA基因。In the present invention, the host cells are Rhodobacter sphaeroides cells. For example, the reporter gene can be selected from the group consisting of: fluorescent protein genes (eg, green fluorescent protein gene, yellow fluorescent protein gene), luciferase (luc) gene, and beta-galactosidase gene (lacZ) and gusA gene.
在本发明的一个方面中,提供了对启动子进行筛选的方法,所述方法包括将本文所述的启动子文库中的启动子与参比启动子就其引发报告基因表达的能力进行比较,从而对所述启动子的强度进行筛选。In one aspect of the invention, there is provided a method of screening promoters, the method comprising comparing a promoter in a library of promoters described herein to a reference promoter for its ability to elicit expression of a reporter gene, The strength of the promoter is thus screened.
本发明还公开了所述启动子文库的筛选方法,获得了强度梯度分布的启动子文库,可实现目的基因的高表达或低表达和/或可实现对其表达的微调。同时,为在类球红细胞中调控代谢网络并实现产物产量提高提供了有利的工具。The invention also discloses a screening method for the promoter library, which obtains a promoter library with an intensity gradient distribution, which can realize high or low expression of the target gene and/or can realize the fine-tuning of its expression. At the same time, it provides a favorable tool for regulating the metabolic network in spheroid erythrocytes and achieving increased product yield.
在本发明的另一方面中,提供了本文所述的启动子文库在蛋白质表达中的应用。In another aspect of the invention, there is provided the use of the promoter libraries described herein in protein expression.
附图说明Description of drawings
图1:不同类球红细菌在24h、48h的转录组数据结果分析。Figure 1: Analysis of transcriptome data of different Rhodobacter sphaeroides at 24h and 48h.
图2:用于启动子活性分析的GUS表达质粒组装示意图。Figure 2: Schematic diagram of GUS expression plasmid assembly for promoter activity analysis.
图3:GUS测试中的在可见光415nm下测定生成产物对硝基苯酚的标准曲线。Figure 3: Standard curve for the determination of the resulting product p-nitrophenol at visible light 415 nm in the GUS test.
图4:GUS测试中各启动子活性表征用菌株在11h、24h、48h三个时间点处的启动活性。Figure 4: The promoter activity of each promoter activity characterization strain at three time points of 11h, 24h, and 48h in the GUS test.
图5:GUS测试中各启动子活性表征用菌株在11h、24h、48h三个时间点菌株生长情况(OD700)。Fig. 5: Growth conditions (OD 700 ) of the strains used for the characterization of each promoter activity in the GUS test at three time points of 11h, 24h, and 48h.
具体实施方式Detailed ways
定义definition
启动子的强度即其介导的下游基因的转录量的高低。在原核生物中,转录到翻译过程中调控机制较少,故翻译蛋白量亦可表示启动子的强度。The strength of a promoter is the level of transcription of the downstream gene it mediates. In prokaryotes, there are few regulatory mechanisms in the process of transcription to translation, so the amount of translated protein can also indicate the strength of the promoter.
在核酸或多肽的情况下,本文所使用的术语“分离的”或“部分纯化的”是指与至少一种其它组分(例如核酸或多肽)分离的核酸或多肽,所述其它组分在发现所述核酸或多肽的天然来源中与所述核酸或多肽共同存在;和/或所述其它组分在由细胞表达时、或者在分泌的多肽的情况下被分泌时,将与所述核酸或多肽共同存在。化学合成的核酸或多肽或使用体外转录/翻译合成的核酸或多肽被认为是“分离的”。术语“纯化的”或“基本纯化的”是指分离的核酸或多肽,其至少95wt%为目标核酸或多肽,包括例如至少96%、至少97%、至少98%、至少99%或更多。In the context of a nucleic acid or polypeptide, the terms "isolated" or "partially purified" as used herein refer to a nucleic acid or polypeptide that is separated from at least one other component (eg, nucleic acid or polypeptide) that is The nucleic acid or polypeptide is found to co-exist with the nucleic acid or polypeptide in its natural source; and/or the other components, when expressed by a cell, or secreted in the case of a secreted polypeptide, will co-exist with the nucleic acid or polypeptide or the coexistence of polypeptides. A nucleic acid or polypeptide that is chemically synthesized or synthesized using in vitro transcription/translation is considered "isolated." The term "purified" or "substantially purified" refers to an isolated nucleic acid or polypeptide that is at least 95% by weight of the nucleic acid or polypeptide of interest, including, eg, at least 96%, at least 97%, at least 98%, at least 99%, or more.
如本文所用,所述的“可操作地连接”是指两个或多个核酸区域或核酸序列的功能性的空间排列。例如,启动子被置于相对于目的基因核酸序列的特定位置,使得核酸序列的转录受到该启动子的引导,从而,启动子被“可操作地连接”到该核酸序列上。As used herein, "operably linked" refers to the functional spatial arrangement of two or more nucleic acid regions or nucleic acid sequences. For example, a promoter is placed at a specific location relative to the nucleic acid sequence of a gene of interest such that transcription of the nucleic acid sequence is directed by the promoter, and thus, the promoter is "operably linked" to the nucleic acid sequence.
如本文所用,“目的基因”是指可由本发明的启动子指导表达的基因。本发明对合适的目的基因没有特别的限制,例如包括但不限于:结构基因、编码具有特定功能的蛋白的基因、酶、报告基因(如绿色荧光蛋白基因、荧光素酶基因、半乳糖苷酶基因LazZ、GUS基因等)。As used herein, "gene of interest" refers to a gene whose expression can be directed by the promoter of the present invention. The present invention has no particular limitation on suitable target genes, for example, including but not limited to: structural genes, genes encoding proteins with specific functions, enzymes, reporter genes (such as green fluorescent protein gene, luciferase gene, galactosidase gene gene LazZ, GUS gene, etc.).
如本文所用的,“外源的”或“异源的”是指来自不同来源的两条或多条核酸或蛋白质序列之间的关系。例如,如果启动子与目的基因序列的组合通常不是天然存在的,则启动子对于该目的基因来说是外源的。特定序列对于其所插入的细胞或生物体来说是“外源的”。As used herein, "foreign" or "heterologous" refers to the relationship between two or more nucleic acid or protein sequences from different sources. For example, a promoter is foreign to a gene of interest if the combination of the promoter and the sequence of the gene of interest does not normally occur in nature. A particular sequence is "foreign" to the cell or organism into which it is inserted.
为本发明的目的,通过在比较窗口中比较两个比对的序列来计算“同一性”。序列的比对使得能够确定比较窗口中两个序列共有的位置(核苷酸或氨基酸)的数目。然后,将共有位置的数目除以比较窗口中的总位置数并乘以100,以获得同源性百分比。序列同一性百分比的确定可手动完成或者使用公知的计算机程序完成。For purposes of the present invention, "identity" is calculated by comparing two aligned sequences in a comparison window. Alignment of the sequences enables determination of the number of positions (nucleotides or amino acids) shared by the two sequences in the comparison window. Then, divide the number of shared positions by the total number of positions in the comparison window and multiply by 100 to obtain percent homology. Determination of percent sequence identity can be accomplished manually or using well-known computer programs.
启动子文库promoter library
本发明提供了用于类球红细菌的启动子文库。所述启动子文库包括至少两条启动子,其中,启动子A包含SEQ ID NO:1所示的核苷酸序列或与SEQ ID NO:1具有至少90%同一性的核苷酸序列,启动子B包含SEQ ID NO:2所示的核苷酸序列或与SEQ ID NO:2具有至少90%同一性的核苷酸序列。The present invention provides a promoter library for Rhodobacter sphaeroides. The promoter library includes at least two promoters, wherein the promoter A comprises the nucleotide sequence shown in SEQ ID NO: 1 or a nucleotide sequence with at least 90% identity with SEQ ID NO: 1, and the promoter Sub-B comprises the nucleotide sequence set forth in SEQ ID NO:2 or a nucleotide sequence that is at least 90% identical to SEQ ID NO:2.
在一些实施方式中,启动子A包含SEQ ID NO:1所示的核苷酸序列,或与SEQ IDNO:1具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:1具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列。在优选的实施方式中,启动子A由SEQ ID NO:1所示的核苷酸序列组成。In some embodiments, promoter A comprises the nucleotide sequence set forth in SEQ ID NO: 1, or a nucleotide sequence that is at least 90% identical to SEQ ID NO: 1, eg, has SEQ ID NO: 1 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity. In a preferred embodiment, promoter A consists of the nucleotide sequence shown in SEQ ID NO:1.
在一些实施方式中,启动子B包含SEQ ID NO:2所示的核苷酸序列,或与SEQ IDNO:2具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:2具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列。在优选的实施方式中,启动子B由SEQ ID NO:2所示的核苷酸序列组成。In some embodiments, promoter B comprises the nucleotide sequence set forth in SEQ ID NO:2, or a nucleotide sequence that is at least 90% identical to SEQ ID NO:2, eg, has SEQ ID NO:2 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity. In a preferred embodiment, promoter B consists of the nucleotide sequence shown in SEQ ID NO:2.
例如,所述启动子文库包含:由SEQ ID NO:1所示的核苷酸序列组成的启动子A和由SEQ ID NO:2所示的核苷酸序列组成的启动子B。For example, the promoter library comprises: promoter A consisting of the nucleotide sequence shown in SEQ ID NO: 1 and promoter B consisting of the nucleotide sequence shown in SEQ ID NO: 2.
在更优选的实施方式中,所述启动子文库进一步包括选自于由以下启动子所组成的组中的一条或多条:In a more preferred embodiment, the promoter library further comprises one or more selected from the group consisting of the following promoters:
启动子C,所述启动子C包含SEQ ID NO:3所示的核苷酸序列或与SEQ ID NO:3具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:3具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter C comprising the nucleotide sequence set forth in SEQ ID NO:3 or a nucleotide sequence at least 90% identical to SEQ ID NO:3, eg, having SEQ ID NO:3 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子D,所述启动子D包含SEQ ID NO:4所示的核苷酸序列或与SEQ ID NO:4具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:4具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter D comprising the nucleotide sequence set forth in SEQ ID NO:4 or a nucleotide sequence at least 90% identical to SEQ ID NO:4, eg, with SEQ ID NO:4 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子E,所述启动子E包含SEQ ID NO:5所示的核苷酸序列或与SEQ ID NO:5具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:5具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter E comprising the nucleotide sequence set forth in SEQ ID NO:5 or a nucleotide sequence at least 90% identical to SEQ ID NO:5, eg, having SEQ ID NO:5 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子F,所述启动子F包含SEQ ID NO:6所示的核苷酸序列或与SEQ ID NO:6具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:6具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter F comprising the nucleotide sequence set forth in SEQ ID NO:6 or a nucleotide sequence at least 90% identical to SEQ ID NO:6, eg, having SEQ ID NO:6 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子G,所述启动子G包含SEQ ID NO:7所示的核苷酸序列或与SEQ ID NO:7具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:7具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter G comprising the nucleotide sequence set forth in SEQ ID NO:7 or a nucleotide sequence at least 90% identical to SEQ ID NO:7, eg, having SEQ ID NO:7 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子H,所述启动子H包含SEQ ID NO:8所示的核苷酸序列或与SEQ ID NO:8具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:8具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;A promoter H comprising the nucleotide sequence set forth in SEQ ID NO:8 or a nucleotide sequence at least 90% identical to SEQ ID NO:8, eg, having SEQ ID NO:8 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity;
启动子I,所述启动子I包含SEQ ID NO:9所示的核苷酸序列或与SEQ ID NO:9具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:9具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列;和A promoter I comprising the nucleotide sequence set forth in SEQ ID NO:9 or a nucleotide sequence at least 90% identical to SEQ ID NO:9, eg, having SEQ ID NO:9 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity; and
启动子J,所述启动子J包含SEQ ID NO:10所示的核苷酸序列或与SEQ ID NO:10具有至少90%同一性的核苷酸序列,例如,与SEQ ID NO:10具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的同一性的核苷酸序列。A promoter J comprising the nucleotide sequence set forth in SEQ ID NO: 10 or a nucleotide sequence at least 90% identical to SEQ ID NO: 10, eg, having SEQ ID NO: 10 Nucleotide sequences of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity.
在具体的实施方式中,所述启动子文库进一步包括选自于由以下启动子所组成的组中的一条或多条:In a specific embodiment, the promoter library further comprises one or more selected from the group consisting of the following promoters:
启动子C,所述启动子C由SEQ ID NO:3所示的核苷酸序列组成;Promoter C, which is composed of the nucleotide sequence shown in SEQ ID NO: 3;
启动子D,所述启动子D由SEQ ID NO:4所示的核苷酸序列组成;Promoter D, the promoter D consists of the nucleotide sequence shown in SEQ ID NO: 4;
启动子E,所述启动子E由SEQ ID NO:5所示的核苷酸序列组成;Promoter E, the promoter E consists of the nucleotide sequence shown in SEQ ID NO: 5;
启动子F,所述启动子F由SEQ ID NO:6所示的核苷酸序列组成;Promoter F, said promoter F consists of the nucleotide sequence shown in SEQ ID NO: 6;
启动子G,所述启动子G由SEQ ID NO:7所示的核苷酸序列组成;Promoter G, said promoter G consists of the nucleotide sequence shown in SEQ ID NO: 7;
启动子H,所述启动子H由SEQ ID NO:8所示的核苷酸序列组成;Promoter H, described promoter H consists of the nucleotide sequence shown in SEQ ID NO: 8;
启动子I,所述启动子I由SEQ ID NO:9所示的核苷酸序列组成;和a promoter I consisting of the nucleotide sequence shown in SEQ ID NO: 9; and
启动子J,所述启动子J由SEQ ID NO:10所示的核苷酸序列组成。Promoter J consisting of the nucleotide sequence shown in SEQ ID NO:10.
例如,所述启动子文库中可包含至少2种启动子、至少3种启动子、至少4种启动子、至少5种启动子、至少6种启动子、至少7种启动子、至少8种启动子、至少9种启动子、或至少10种启动子。For example, the promoter library may comprise at least 2 promoters, at least 3 promoters, at least 4 promoters, at least 5 promoters, at least 6 promoters, at least 7 promoters, at least 8 promoters promoter, at least 9 promoters, or at least 10 promoters.
在本发明的启动子文库中,各启动子启动目的基因表达的强度呈现梯度分布,用于在不同强度下指导目的基因表达。例如,在宿主内表达外源蛋白,或者用于调控细胞内代谢途径等。例如,可利用本发明的启动子文库对代谢途径进行精细调控,使基因适量表达,实现代谢途径的组合优化。In the promoter library of the present invention, the intensity of each promoter to promote the expression of the target gene presents a gradient distribution, which is used to guide the expression of the target gene under different intensities. For example, the expression of exogenous proteins in the host, or the regulation of intracellular metabolic pathways, etc. For example, the promoter library of the present invention can be used to finely regulate the metabolic pathway, so that the gene can be expressed in an appropriate amount, and the combinatorial optimization of the metabolic pathway can be realized.
本发明的启动子可被可操作地连接到目的基因上,该目的基因相对于启动子而言可以是外源(异源)的。所述目的基因通常可以是任何核酸序列(如一种结构性核酸序列),所述目的基因优选编码具有特定功能的蛋白,例如某些具有重要特性或功能的蛋白。The promoter of the present invention may be operably linked to a gene of interest, which may be foreign (heterologous) to the promoter. The gene of interest can generally be any nucleic acid sequence (eg, a structural nucleic acid sequence), and the gene of interest preferably encodes a protein with a specific function, such as certain proteins with important properties or functions.
例如,当用于表达强度的研究时,所述的目的基因包括但不限于:绿色荧光蛋白、黄色荧光蛋白、荧光素酶基因、半乳糖苷酶基因LacZ、Gus基因等。For example, when used for the study of expression intensity, the target genes include but are not limited to: green fluorescent protein, yellow fluorescent protein, luciferase gene, galactosidase gene LacZ, Gus gene and the like.
作为本发明的优选方式,可以从本发明的启动子文库中选择不同强度的启动子,分别将它们与待研究的目的基因可操作地连接,或将目的基因与所述的启动子可操作的连接入合适的载体中,采取适当的方式导入到宿主细胞内,从而获得其中目的基因表达量不同的一系列细胞。可通过分析这些细胞的代谢情况、表型变化、蛋白表达情况或相互作用情况、各种信号分子的变化等,来得知该目的基因的功能或用途。As a preferred mode of the present invention, promoters with different strengths can be selected from the promoter library of the present invention, and they are respectively operably linked to the target gene to be studied, or the target gene is operably linked to the promoter. It is ligated into a suitable vector and introduced into a host cell in an appropriate manner, thereby obtaining a series of cells with different expression levels of the target gene. The function or use of the target gene can be known by analyzing the metabolism, phenotypic changes, protein expression or interaction, and changes of various signal molecules in these cells.
作为本发明的优选方式,所述目的基因可以是一种对于某一细胞而言缺失或表达量不足的基因,可将该目的基因与本发明的启动子可操作地连接,或将目的基因与本发明的启动子可操作的连接入合适的载体中,采取适当的方式导入到该细胞内,从而高水平地表达目的基因。As a preferred mode of the present invention, the target gene can be a gene that is missing or insufficiently expressed in a certain cell, and the target gene can be operably linked to the promoter of the present invention, or the target gene can be linked with the promoter of the present invention. The promoter of the present invention is operably linked into a suitable vector and introduced into the cell in an appropriate manner, thereby expressing the target gene at a high level.
本发明的启动子还可以被可操作地连接到被改进的目的基因序列上,该目的基因相对于启动子是外源(异源)的。所述的目的基因可以被改进来产生各种期望的特性。例如,目的基因可以被改进来增加必需氨基酸的含量,提高氨基酸序列的翻译,改变翻译后的修饰(如磷酸化位点),将翻译产物转运到细胞外,改善蛋白的稳定性,插入或删除细胞信号等。The promoters of the present invention may also be operably linked to an improved sequence of a gene of interest that is foreign (heterologous) to the promoter. The gene of interest can be modified to produce various desired properties. For example, the gene of interest can be modified to increase the content of essential amino acids, improve translation of amino acid sequences, alter post-translational modifications (such as phosphorylation sites), transport translation products out of the cell, improve protein stability, insertion or deletion cell signaling, etc.
此外,启动子和目的基因可以设计成下调特定基因。这一般是通过将启动子连接到目的基因序列上来实现,该序列以反义反向被引导。本领域的普通技术人员熟悉这种反义技术。任何核酸序列可以以这种方式被调节。Additionally, promoters and genes of interest can be designed to downregulate specific genes. This is typically accomplished by ligating the promoter to the gene sequence of interest, which is directed in the antisense reverse direction. One of ordinary skill in the art is familiar with such antisense technology. Any nucleic acid sequence can be modulated in this manner.
此处,在本发明中,启动子A和启动子B可视为高强度启动子,启动子C、启动子D、启动子E、启动子F可视为中强度启动子,而启动子G、启动子H、启动子I、启动子J可视为低强度启动子。在此处,高、中、低强度启动子均为相对于所测试的启动子本身的强度而言。Here, in the present invention, promoter A and promoter B can be regarded as high-strength promoters, promoter C, promoter D, promoter E, and promoter F can be regarded as medium-strength promoters, and promoter G , Promoter H, Promoter I, and Promoter J can be regarded as low-strength promoters. Here, high, medium and low strength promoters are relative to the strength of the tested promoter itself.
载体和宿主细胞Vectors and Host Cells
本发明还提供了含有本文所述的启动子文库中的启动子元件的载体。The present invention also provides vectors containing promoter elements from the promoter libraries described herein.
来自于本发明的启动子文库的任何一种启动子和/或目的基因序列可被包含在重组载体中。Any one of the promoter and/or gene sequences of interest from the promoter library of the present invention can be included in the recombinant vector.
作为一种实施方式,所述重组载体包括本发明的启动子,在所述启动子的下游任选地包含多克隆位点或至少一个酶切位点。当需要表达目的基因时,将目的基因连接入适合的多克隆位点或酶切位点内,从而将目的基因与启动子可操作地连接。作为一种实施方式,所述重组载体包括本发明的启动子,当需要表达目的基因时,将目的基因通过同源重组的方式连接入启动子的下游,从而将目的基因与启动子可操作地连接。As an embodiment, the recombinant vector includes the promoter of the present invention, and optionally contains multiple cloning sites or at least one restriction enzyme site downstream of the promoter. When the target gene needs to be expressed, the target gene is ligated into a suitable multiple cloning site or restriction enzyme site, thereby operably linking the target gene to the promoter. As an embodiment, the recombinant vector includes the promoter of the present invention, and when the target gene needs to be expressed, the target gene is connected to the downstream of the promoter by means of homologous recombination, so that the target gene and the promoter are operably connected connect.
在具体的实施方式中,所述目的基因位于启动子的下游,且与所述启动子的间隔小于2000bp,例如小于1000bp、500bp、200bp、100bp、50bp。在优选的实施方式中,所述启动子与目的基因之间不具有间隔。In a specific embodiment, the target gene is located downstream of a promoter, and the distance from the promoter is less than 2000 bp, for example, less than 1000 bp, 500 bp, 200 bp, 100 bp, 50 bp. In a preferred embodiment, there is no spacer between the promoter and the gene of interest.
作为一种实施方式,所述重组载体包括(从5’到3’方向):引导目的基因转录的启动子和目的基因。如果需要,所述重组载体还可以包括3’转录终止子、3’多聚核苷酸化信号、其它非翻译核酸序列、转运和靶向核酸序列、抗性选择标记、增强子或操作子等。As an embodiment, the recombinant vector includes (from 5' to 3' direction): a promoter for directing the transcription of the target gene and the target gene. If desired, the recombinant vector may also include 3' transcription terminators, 3' polynucleotideization signals, other untranslated nucleic acid sequences, transport and targeting nucleic acid sequences, resistance selectable markers, enhancers or operators, and the like.
在另一实施方式中,所述目的基因包括但不限于:结构基因、编码具有特定功能的蛋白的基因、报告基因(如,绿色荧光蛋白基因、荧光素酶基因、半乳糖苷酶基因LacZ、Gus基因)。In another embodiment, the target genes include but are not limited to: structural genes, genes encoding proteins with specific functions, reporter genes (eg, green fluorescent protein gene, luciferase gene, galactosidase gene LacZ, Gus gene).
在优选的实施方式中,所述重组载体为表达载体。在本发明中,术语“表达载体”指本领域熟知的细菌质粒、噬菌体、酵母质粒、哺乳动物细胞病毒或其它载体。总之,只要其能够在宿主体内复制和稳定,任何质粒和载体都是可以被采用的。优选的,所述表达载体是类球红细菌适用的表达载体。In a preferred embodiment, the recombinant vector is an expression vector. In the present invention, the term "expression vector" refers to bacterial plasmids, bacteriophages, yeast plasmids, mammalian cell viruses or other vectors well known in the art. In conclusion, any plasmids and vectors can be used as long as they are replicable and stable in the host. Preferably, the expression vector is an expression vector suitable for Rhodobacter sphaeroides.
用于制备重组载体的方法是本领域技术人员所熟知的。本领域的技术人员熟知的方法能用于构建含有本发明所述的启动子和/或目的基因序列的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。表达载体还包括翻译起始用的核糖体结合位点和转录终止子。Methods for preparing recombinant vectors are well known to those skilled in the art. Methods well known to those skilled in the art can be used to construct expression vectors containing the promoter and/or target gene sequences of the present invention. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombinant technology, and the like. Expression vectors also include a ribosome binding site for translation initiation and a transcription terminator.
此外,表达载体优选地包含一个或多个选择性标记基因,以提供用于选择转化的宿主细胞的表型性状,如二氢叶酸还原酶、新霉素抗性、潮霉素抗性以及绿色荧光蛋白(GFP)等。In addition, the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, hygromycin resistance, and green color Fluorescent protein (GFP) etc.
重组载体中除了含有本发明的启动子,还可含有一种或多种其它启动子。所述的其它启动子例如是:组织特异性的、组成型的或诱导型的。In addition to the promoter of the present invention, the recombinant vector may contain one or more other promoters. Said other promoters are, for example: tissue-specific, constitutive or inducible.
包含上述适当的启动子和目的基因的载体,可以用于转化适当的宿主细胞,以使其能够表达蛋白质。A vector comprising the appropriate promoter and gene of interest described above can be used to transform an appropriate host cell so that it can express the protein.
宿主细胞可以是原核细胞,如细菌细胞;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如植物细胞。代表性例子有:酵母,大肠杆菌,动物的组织细胞,植物细胞等。本领域一般技术人员都清楚如何选择适当的载体和宿主细胞。作为本发明的优选方式,所述的宿主细胞是类球红细菌。例如,在本发明中,所述类球红细菌细胞可为野生型类球红细菌细胞,或经修饰的类球红细菌细胞(例如,经过化学诱变、或遗传修饰等)。例如,类球红细菌细胞可为经过化学诱变或遗传修饰以高产辅酶Q10的类球红细菌。Host cells can be prokaryotic cells, such as bacterial cells; or lower eukaryotic cells, such as yeast cells; or higher eukaryotic cells, such as plant cells. Representative examples are: yeast, Escherichia coli, animal tissue cells, plant cells, etc. It will be clear to those of ordinary skill in the art how to select appropriate vectors and host cells. As a preferred embodiment of the present invention, the host cell is Rhodobacter sphaeroides. For example, in the present invention, the R. sphaeroides cells may be wild-type R. sphaeroides cells, or modified R. sphaeroides cells (eg, chemically mutagenized, or genetically modified, etc.). For example, R. sphaeroides cells can be R. sphaeroides that have been chemically mutagenized or genetically modified to produce high levels of coenzyme Q 10 .
用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物如大肠杆菌时,能吸收DNA的感受态细胞可在指数生长期后收获,用CaCl2法处理,所用的步骤在本领域众所周知。另一种方法是使用MgCl2。如果需要,转化也可用电穿孔的方法进行。当宿主是真核生物,可选用如下的DNA转染方法:磷酸钙共沉淀法,常规机械方法如显微注射、电穿孔、脂质体包装等。Transformation of host cells with recombinant DNA can be performed using conventional techniques well known to those skilled in the art. When the host is a prokaryotic organism such as E. coli, competent cells capable of uptake of DNA can be harvested after exponential growth phase and treated with the CaCl2 method using procedures well known in the art. Another method is to use MgCl 2 . If desired, transformation can also be performed by electroporation. When the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, conventional mechanical methods such as microinjection, electroporation, liposome packaging, etc.
例如,重组载体转化类球红细菌可以通过电转化、接合转移方式等方式实施。For example, transformation of Rhodobacter sphaeroides by a recombinant vector can be carried out by means of electroporation, conjugation transfer and the like.
本发明还提供了遗传工程化的宿主细胞,所述细胞:含有具有本文所述的启动子文库中的启动子元件的载体;或The present invention also provides a genetically engineered host cell that: contains a vector having a promoter element from a promoter library described herein; or
其基因组中整合有本文所述的启动子文库中的启动子元件。The promoter elements of the promoter library described herein are integrated into its genome.
在优选的实施方式中,所述细胞为大肠杆菌或类球红细菌细胞。In a preferred embodiment, the cells are Escherichia coli or Rhodobacter sphaeroides cells.
启动子文库的构建方法Construction method of promoter library
本发明所述的启动子文库的构建方法包括:The construction method of the promoter library of the present invention includes:
(1)获得候选启动子序列:基于类球红细菌的转录组信息,筛选基因表达强度排在至少前五十、优选前二十、更优选前十的基因,基于类球红细菌的基因组信息以及所选的基因,得到位于所述基因序列起始位点上游的候选启动子序列;(1) Obtain candidate promoter sequences: Based on the transcriptome information of Rhodobacter sphaeroides, screen genes whose expression intensity ranks at least the top fifty, preferably the top twenty, and more preferably the top ten, based on the genome information of Rhodobacter sphaeroides And the selected gene, obtain the candidate promoter sequence that is positioned at the upstream of the starting site of the gene sequence;
(2)构建重组表达载体:将所述候选启动子序列可操作性地连接的报告基因序列,并连接至能够在宿主细胞中表达的载体中,从而得到重组表达载体;以及(2) constructing a recombinant expression vector: the reporter gene sequence operably linked to the candidate promoter sequence is linked to a vector capable of being expressed in a host cell, thereby obtaining a recombinant expression vector; and
(3)观测报告基因的表达,将所述重组表达载体引入所述宿主细胞中并使得所述报告基因进行表达,选择能够使得所述报告基因得以表达的启动子,构成启动子文库。(3) Observing the expression of the reporter gene, introducing the recombinant expression vector into the host cell to express the reporter gene, and selecting a promoter capable of expressing the reporter gene to form a promoter library.
转录组和基因组信息可使用本领域各数据库(例如,KEGG、NCBI)中公开的信息,或者由测序获得。Transcriptomic and genomic information can be obtained using information published in various databases in the art (eg, KEGG, NCBI), or by sequencing.
候选启动子序列通常选取起始密码子上游的包含核心启动子部分的100-500bp。在优选实施方式中,可对所述片段进行进一步修饰,例如删除其中抑制启动子活性的部分,例如,ppsR结合位点。关于ppsR结合位点的确定,可参见Patrice Bruscella等,The Use ofChromatin Immunoprecipitation to Define PpsR Binding Activity in Rhodobactersphaeroides 2.4.1,JOURNAL OF BACTERIOLOGY,Oct.2008,p.6817–6828,在此以引用的方式将其整体并入本文。Candidate promoter sequences are usually chosen to be 100-500 bp upstream of the start codon that contains the core promoter portion. In preferred embodiments, the fragment may be further modified, eg, to delete a portion thereof that inhibits promoter activity, eg, the ppsR binding site. For the determination of ppsR binding sites, see Patrice Bruscella et al., The Use of Chromatin Immunoprecipitation to Define PpsR Binding Activity in Rhodobactersphaeroides 2.4.1, JOURNAL OF BACTERIOLOGY, Oct. 2008, p. 6817-6828, incorporated herein by reference Its entirety is incorporated herein.
作为报告基因,可使用绿色荧光蛋白基因、荧光素酶基因、半乳糖苷酶基因LacZ、Gus基因等。As the reporter gene, a green fluorescent protein gene, a luciferase gene, a galactosidase gene LacZ, a Gus gene, or the like can be used.
荧光蛋白基因:绿色荧光蛋白(green flourscent protein,GFP)是典型的内源性荧光蛋白,GFP对宿主而言是安全的,且荧光强度直接可反映表达量,无需外加底物,灵敏度高,利于对宿主进行非破坏性检测。Fluorescent protein gene: Green fluorescent protein (green flourscent protein, GFP) is a typical endogenous fluorescent protein, GFP is safe for the host, and the fluorescence intensity can directly reflect the expression level, no external substrate is required, and the sensitivity is high, which is conducive to Non-destructive testing of the host.
黄色荧光蛋白(YFP)可以看做绿色荧光蛋白的一种突变体,相对于绿色荧光蛋白其荧光像红色光谱偏移,与GFP荧光蛋白共用,具有波长更长的激发和发射光,最重要的是其在细胞内成像时背景低。Yellow fluorescent protein (YFP) can be regarded as a mutant of green fluorescent protein. Compared with green fluorescent protein, its fluorescence image is shifted to the red spectrum. It is shared with GFP fluorescent protein and has longer wavelength excitation and emission light. The most important thing is Because of its low background when imaged inside cells.
荧光素酶(luciferase,luc)基因:luc是生物体于有氧环境中催化荧光素或脂肪醛酶产生荧光的酶类,luc催化底物ATP、无机荧光素与氧气产生发光反应,且酶与底物特异性强,对宿主影响极小,有着高灵敏度、易于检测、无激发光干扰等特点。Luciferase (luciferase, luc) gene: luc is an enzyme that catalyzes luciferin or fatty aldolase to produce fluorescence in an organism in an aerobic environment. luc catalyzes the luminescence reaction of substrate ATP, inorganic luciferin and oxygen, and the enzyme and It has strong substrate specificity, minimal impact on the host, high sensitivity, easy detection, and no excitation light interference.
gusA基因:来源于大肠杆菌,编码β-D-葡糖醛酸酶,单体分子量68200Da,抗多种去垢剂,在巯醇类还原剂β-巯基乙醇或DTT存在时具有极高活性。此酶能催化许多β-葡萄糖苷酯类物质的水解,而无需辅酶因子或阳离子,有些物质水解后,会产生颜色的变化。少数二价金属离子如Zn2+、Cu2+可抑制其活性。其最适pH为5.2-8.0,抗热半衰期为50℃2h,活性在较长时间内存在线性关系。GUS底物均可溶,最常用的催化的底物是5-溴-4-氯-3-吲哚葡糖苷酸(X-gluc),产物为蓝色化合物,早年还常用4-甲基伞形酮葡糖苷酸(MUG)、9-羟基-3-异吩恶唑酮葡糖苷酸(ReG),ReG具有较高的荧光活性,其产物激发于560nm,发射于590nm。在生物学研究中,常把该基因放到要研究的启动子下游,可以通过对该酶的检测,分析启动子的活性。这也是报告基因最广泛的用途,起到“报告”启动活性的目的。在一个实施方式中,GUSA序列来源:Enterobacteriaceae,LOCUS:WP_000945901。gusA gene: derived from Escherichia coli, encoding β-D-glucuronidase, with a monomer molecular weight of 68200Da, resistant to a variety of detergents, and extremely active in the presence of mercapto alcohol reducing agents β-mercaptoethanol or DTT. This enzyme can catalyze the hydrolysis of many β-glucoside esters without coenzyme factors or cations, and some substances will change color after hydrolysis. A few divalent metal ions such as Zn 2+ and Cu 2+ can inhibit its activity. Its optimum pH is 5.2-8.0, the half-life of heat resistance is 50 ℃ 2h, and the activity has a linear relationship in a long time. GUS substrates are all soluble, the most commonly used catalytic substrate is 5-bromo-4-chloro-3-indole glucuronide (X-gluc), the product is a blue compound, and 4-methyl umbrella was also commonly used in the early years. Form ketone glucuronide (MUG), 9-hydroxy-3-isophenoxazolone glucuronide (ReG), ReG has high fluorescence activity, its product excitation at 560nm, emission at 590nm. In biological research, the gene is often placed downstream of the promoter to be studied, and the activity of the promoter can be analyzed by detecting the enzyme. This is also the most widely used reporter gene, which serves the purpose of "reporting" the activation activity. In one embodiment, the GUSA sequence source: Enterobacteriaceae, LOCUS: WP_000945901.
GUS试验是一个酶促反应检测实验,其基于比色测定法。例如,通过酶标仪收集样品中包含的Gus酶催化底物所产生的产物的显色,由产物的浓度进行推算出被催化底物的量,再由此反映所用的启动子的强度。例如,当使用对硝基苯基-β-D-葡萄糖醛酸作为底物生成产物对硝基苯酚时,在415nm处检测显色反应20-30min(在该时间内颜色反应趋于稳定),然后通过产物相对于415nm处的吸光度的标准曲线(例如图3),推算出样品中对应所消耗的底物,随后通过底物与反应时间的曲线斜率来反应所测试的启动子的强度。关于GUS测试,可参考Siegl,Theresa等,“Design,construction and characterisation of asynthetic promoter library for fine-tuned gene expression in actinomycetes.”,Metabolic Engineering 19.Complete(2013):98-106,在此以引用的方式将其整体并入本文。The GUS assay is an enzymatic reaction detection assay based on a colorimetric assay. For example, the color of the product produced by the Gus enzyme catalyzed substrate contained in the sample is collected by a microplate reader, and the amount of the catalyzed substrate is calculated from the concentration of the product, which reflects the strength of the promoter used. For example, when using p-nitrophenyl-β-D-glucuronic acid as the substrate to generate the product p-nitrophenol, the color reaction is detected at 415nm for 20-30min (the color reaction tends to be stable during this time), The corresponding substrate consumed in the sample was then extrapolated from a standard curve of product versus absorbance at 415 nm (eg Figure 3), followed by the slope of the substrate versus reaction time curve to reflect the strength of the promoter tested. For the GUS test, please refer to Siegl, Theresa et al., "Design, construction and characterisation of asynthetic promoter library for fine-tuned gene expression in actinomycetes.", Metabolic Engineering 19.Complete(2013):98-106, incorporated herein by reference The manner in which it is incorporated herein in its entirety.
在一些实施方式中,还可对所述候选启动子序列进行修饰。所述修饰包括置换、删除、和/或插入。在优选的实施方式中,对候选启动子序列中的抑制位点进行删除修饰。例如,删除候选启动子序列中的ppsR结合位点。关于ppsR结合位点的确定,可参见PatriceBruscella等,The Use of Chromatin Immunoprecipitation to Define PpsR BindingActivity in Rhodobacter sphaeroides 2.4.1,JOURNAL OF BACTERIOLOGY,Oct.2008,p.6817-6828,在此以引用的方式将其整体并入本文。In some embodiments, the candidate promoter sequence may also be modified. The modifications include substitutions, deletions, and/or insertions. In a preferred embodiment, the repression site in the candidate promoter sequence is modified by deletion. For example, delete the ppsR binding site in the candidate promoter sequence. For the determination of the ppsR binding site, see Patrice Bruscella et al., The Use of Chromatin Immunoprecipitation to Define PpsR BindingActivity in Rhodobacter sphaeroides 2.4.1, JOURNAL OF BACTERIOLOGY, Oct. 2008, p. 6817-6828, which is incorporated herein by reference Its entirety is incorporated herein.
例如,对所述候选启动子序列的修饰可在步骤(2)之前进行。或者,可在步骤(3)之后进行,然后返回步骤(2)。在一些实施方式中,所述修饰可以基于分离的候选启动子序列进行,或者可以基于步骤(2)所获得的重组表达载体进行。For example, modification of the candidate promoter sequence can be performed before step (2). Alternatively, it can be done after step (3) and then return to step (2). In some embodiments, the modification can be based on an isolated candidate promoter sequence, or can be based on the recombinant expression vector obtained in step (2).
筛选方法Screening method
一种对启动子进行筛选的方法,所述方法包括将根据本发明的启动子文库中的启动子就其引发目的基因表达的能力进行比较和排序,从而对所述启动子的强度进行筛选。A method for screening promoters, the method comprising comparing and ranking the promoters in the promoter library according to the present invention for their ability to induce the expression of a target gene, thereby screening the strength of the promoters.
在优选的实施方式中,所述目的基因可选自报告基因。关于报告基因的定义,请参见本文上文的描述。In a preferred embodiment, the gene of interest can be selected from reporter genes. For the definition of reporter gene, see description above in this article.
在本发明中,优选使用参比启动子与候选启动子进行比较。关于参比启动子的选择,其能够更直观且直接的反馈出候选启动子的引发报告基因表达的能力。因此,通常参比启动子选择在宿主细胞中具有良好表征的启动子。在优选的实施方式中,选择启动强度不同的两个以上的参比启动子。In the present invention, a reference promoter is preferably used for comparison with a candidate promoter. Regarding the selection of the reference promoter, it can more intuitively and directly feed back the ability of the candidate promoter to induce the expression of the reporter gene. Therefore, a promoter that is well characterized in the host cell is usually selected in reference to the promoter. In a preferred embodiment, two or more reference promoters with different activation strengths are selected.
在优选的实施方式中,所述筛选方法通过比较本文所述的启动子相对于参比启动子在启动目的基因表达的强度水平(包括高于参比的启动水平或低于参比的启动水平),所述方法包括:在相同培养条件下,分别培养由本发明启动子启动目的基因表达的宿主细胞以及由参比启动子启动目的基因表达的宿主细胞,比较两种细胞中目的基因的表达强度(或表达量)。In a preferred embodiment, the screening method is performed by comparing the level of strength of the promoters described herein relative to a reference promoter in promoting the expression of a gene of interest (including a level above the reference or a level below the reference) ), the method comprises: under identical culturing conditions, cultivate respectively the host cell that the promoter of the present invention starts the target gene expression and the host cell that the reference promoter starts the target gene expression, compares the expression intensity of the target gene in two kinds of cells (or expression).
上述筛选方法中,优选的宿主细胞是类球红细菌细胞。培养类球红细菌细胞的条件是本领域人员所熟知的,本发明中没有特别的限制。较佳地,培养类球红细菌细胞的条件是31±1℃,210±100rpm。In the above screening method, the preferred host cell is R. sphaeroides cells. The conditions for culturing R. sphaeroides cells are well known to those skilled in the art, and are not particularly limited in the present invention. Preferably, the conditions for culturing R. sphaeroides cells are 31±1° C., 210±100 rpm.
测定培养体系中目的基因(特别是报告基因)的表达情况的方法是本领域技术人员熟知的技术,也可根据目的基因的不同作出调整。作为本发明的优选方式,所述报告基因是Gus蛋白,测定该报告基因的表达情况的方法包括:测定培养体系中的酶的活性。在一些实施方式中,所述报告基因为荧光蛋白(例如绿色荧光蛋白),测定该报告基因的表达情况的方法包括:测定培养体系中的荧光强度。The method for measuring the expression of the target gene (especially the reporter gene) in the culture system is a technique well known to those skilled in the art, and it can also be adjusted according to the difference of the target gene. As a preferred mode of the present invention, the reporter gene is Gus protein, and the method for measuring the expression of the reporter gene includes: measuring the activity of the enzyme in the culture system. In some embodiments, the reporter gene is a fluorescent protein (eg, green fluorescent protein), and the method for determining the expression of the reporter gene includes: determining the fluorescence intensity in the culture system.
另外,本发明还提供了本文所述的启动子文库在蛋白质表达中的应用。In addition, the present invention also provides the use of the promoter library described herein in protein expression.
实施例Example
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例限制。本领域技术人员应该理解,对本申请技术特征所作的等同替换或相应的改进,仍属于本申请的保护范围之内。除特别说明的以外,以下实施例采用的试剂均为市售产品,溶液的配制可以采用本领域常规技术。The present invention will be further described below with reference to the embodiments and the accompanying drawings, but the present invention is not limited by the following embodiments. Those skilled in the art should understand that equivalent replacements or corresponding improvements made to the technical features of the present application still fall within the protection scope of the present application. Unless otherwise specified, the reagents used in the following examples are all commercially available products, and conventional techniques in the art can be used for the preparation of the solution.
实施例1候选启动子的获得Example 1 Acquisition of Candidate Promoters
启动子结合RNA聚合酶后开始转录出mRNA,一般转录起始位点位于启动子下游,也有重合。通过转录组信息半定量测出mRNA表达水平,并可通过所表达mRNA的序列找到菌株基因组中对应基因的位置,确定基因组上的相应编码序列以及编码序列的上游包含启动子的序列。在本实验中,对实验菌株进行了转录组学分析,在类球红细菌单链环状基因组上定位了相关的光合基因簇,将通过mRNA定位的基因组中相关基因的邻近序列视为候选启动子的存在区域,由此获得候选启动子序列信息,用于表征实验。After the promoter binds to RNA polymerase, mRNA starts to be transcribed. Generally, the transcription initiation site is located downstream of the promoter, and there are also overlaps. The mRNA expression level can be measured semi-quantitatively through the transcriptome information, and the position of the corresponding gene in the strain genome can be found through the sequence of the expressed mRNA, and the corresponding coding sequence on the genome and the sequence including the promoter upstream of the coding sequence can be determined. In this experiment, a transcriptomic analysis of the experimental strain was performed to locate the relevant photosynthetic gene clusters on the single-stranded circular genome of Rhodobacter sphaeroides, and the adjacent sequences of the relevant genes in the genome mapped by mRNA were regarded as candidate promoters The presence of the promoter region, thereby obtaining candidate promoter sequence information, used for characterization experiments.
具体而言,获得类球红细菌HY01(以下简称为R.spHY01,由类球红细菌2.4.1经亚硝基胍诱变筛选获得,高产辅酶Q10,在图1中称为ind)野生型类球红细菌2.4.1(在图1中也称为wt)在32℃、220rpm条件下用发酵培养基培养24h、48h状态下的转录组信息(分别为图1中的ind24、ind48、wt24、wt48)。对所获得的转录组信息进行转录强度分析(分析结果见图1,其中横坐标为在不同类球红细菌菌株(包括类球红细菌ind24、ind48、wt24、以及wt48)中的转录强度、纵坐标为对应的操纵子/基因名称,右侧为颜色标度)。其中,培养基为硫酸铵5g/L,味精5g/L,玉米浆粉7g/L,葡萄糖20g/L,磷酸二氢钾0.3g/L,硫酸镁7g/L,氯化钠3g/L,硫酸亚铁1g/L,硫酸锰0.4g/L,氯化钴0.008g/L,碳酸钙4g/L,PH调至6.5,121℃灭菌25min。Specifically, Rhodobacter sphaeroides HY01 (hereinafter referred to as R.sphHY01, obtained from Rhodobacter sphaeroides 2.4.1 through nitrosoguanidine mutagenesis screening, high-yield coenzyme Q 10 , referred to as ind in Figure 1) wild The transcriptome information of Rhodobacter sphaeroides 2.4.1 (also referred to as wt in Figure 1) was cultured with fermentation medium at 32°C and 220rpm for 24h and 48h (respectively ind24, ind48, wt24, wt48). Transcription intensity analysis was performed on the obtained transcriptome information (the analysis results are shown in Figure 1, where the abscissa is the transcription intensity, vertical axis in different Rhodobacter sphaeroides strains (including R. Coordinates are the corresponding operon/gene name, color scale on the right). Among them, the medium is ammonium sulfate 5g/L, monosodium glutamate 5g/L, corn steep liquor 7g/L, glucose 20g/L, potassium dihydrogen phosphate 0.3g/L, magnesium sulfate 7g/L, sodium chloride 3g/L, Ferrous sulfate 1g/L, manganese sulfate 0.4g/L, cobalt chloride 0.008g/L, calcium carbonate 4g/L, pH adjusted to 6.5, sterilized at 121°C for 25min.
选择转录强度排名前十三的基因序列,并基于KEGG数据库中的信息获得这些基因的基因组信息(此处的基因组信息为来自野生型类球红细菌2.4.1的基因组信息)。The top thirteen gene sequences with transcription intensity were selected, and the genome information of these genes was obtained based on the information in the KEGG database (the genome information here is the genome information from wild-type R. sphaeroides 2.4.1).
具体而言,转录强度排名前十三的基因分别来自以下操纵子/基因(图1中从上至下):rnpB(KEGG编号RSP_4342,该基因由于转录强度过高,因此未与其它基因的转录信息一起显示在图1中)、RSP_1185、RSP_6124、RSP_7571、RSP_2718、puhA(KEGG编号RSP_0291)、puc2B(KEGG编号RSP_1556)、crtA(KEGG编号RSP_0272)、rpsM(KEGG编号RSP_1737)、pucBAC(KEGG编号RSP_0314,在图1中显示为pucB)、bchEJ(KEGG编号RSP_0280,在图1中显示为bchJ)、pufQ(KEGG编号RSP_0259)、crtEF(KEGG编号RSP_0264,在图1中显示为crtF)。Specifically, the top thirteen genes with transcription intensity are from the following operons/genes (from top to bottom in Figure 1): rnpB (KEGG number RSP_4342, this gene is not transcribed with other genes due to its high transcription intensity) information is shown together in Figure 1), RSP_1185, RSP_6124, RSP_7571, RSP_2718, puhA (KEGG number RSP_0291), puc2B (KEGG number RSP_1556), crtA (KEGG number RSP_0272), rpsM (KEGG number RSP_1737), pucBAC (KEGG number RSP_0314 , shown as pucB in Figure 1), bchEJ (KEGG code RSP_0280, shown as bchJ in Figure 1), pufQ (KEGG code RSP_0259), crtEF (KEGG code RSP_0264, shown as crtF in Figure 1).
其中,pufQ、puc2B、puhA、crtEF、pucBAC、crtA、bchEJ均来自光合基因簇。rpsM为30S核糖体蛋白S13基因;rnpB为RNA酶P基因。RSP_7571、RSP_6124、RSP_2718、RSP_1185为尚未明确其表达蛋白的功能,启动子也尚未有明确序列信息。Among them, pufQ, puc2B, puhA, crtEF, pucBAC, crtA, bchEJ are all from photosynthetic gene clusters. rpsM is 30S ribosomal protein S13 gene; rnpB is RNase P gene. The functions of RSP_7571, RSP_6124, RSP_2718, and RSP_1185 have not yet been clarified, and the promoter sequence information has not yet been clarified.
截取基因RSP_7571、RSP_6124、RSP_2718、RSP_1185、puhA、以及rnpB的起始密码子上游500bp含核心启动子的片段,得到候选启动子PRSP-7571(SEQ ID NO:2,500bp)、PRSP-6124(SEQ ID NO:1,500bp)、PRSP_2718(SEQ ID NO:10,500bp)、PRSP-1185(该启动子的信息未示出)、PpuhA(SEQ ID NO:9,500bp)、Prnpb(SEQ ID NO:4,500bp)。The fragment containing the core promoter 500bp upstream of the initiation codon of the genes RSP_7571, RSP_6124, RSP_2718, RSP_1185, puhA, and rnpB was cut to obtain candidate promoters P RSP-7571 (SEQ ID NO: 2, 500bp), P RSP-6124 (SEQ ID NO: 1,500bp), PRSP_2718 (SEQ ID NO:10,500bp), PRSP -1185 (information on this promoter not shown), PpuhA (SEQ ID NO:9,500bp), P rnpb (SEQ ID NO: 4, 500bp).
截取基因pufQ、crtEF、pucBAC、crtA、bchEJ的起始密码子上游含核心启动子的片段并删除其中的ppsR结合位点(请参考Patrice Bruscella等,The Use of ChromatinImmunoprecipitation to Define PpsR Binding Activity in Rhodobactersphaeroides 2.4.1,JOURNAL OF BACTERIOLOGY,Oct.2008,p.6817-6828),从而获得以下候选启动子:PpufQ(SEQ ID NO:7,152bp)、PcrtEF(SEQ ID NO:5,132bp)、PpucBAC(SEQ ID NO:8,203bp)、PcrtA(SEQ ID NO:6,157bp)、PbchEJ(SEQ ID NO:3,147bp)。Cut out the fragment containing the core promoter upstream of the start codon of the genes pufQ, crtEF, pucBAC, crtA, bchEJ and delete the ppsR binding site (please refer to Patrice Bruscella et al., The Use of Chromatin Immunoprecipitation to Define PpsR Binding Activity in Rhodobactersphaeroides 2.4 .1, JOURNAL OF BACTERIOLOGY, Oct. 2008, p. 6817-6828), to obtain the following candidate promoters: P pufQ (SEQ ID NO: 7, 152 bp), P crtEF (SEQ ID NO: 5, 132 bp), P pucBAC (SEQ ID NO: 8, 203 bp), P crtA (SEQ ID NO: 6, 157 bp), P bchEJ (SEQ ID NO: 3, 147 bp).
实施例2启动子活性表征用菌株的构建Example 2 Construction of strains for characterizing promoter activity
合成启动子Pkana(SEQ ID NO:13,121bp)和Ptac(SEQ ID NO:12,79bp)。Pkana和Ptac均为大肠杆菌质粒中常用的启动子。Synthetic promoters Pkana (SEQ ID NO: 13, 121 bp) and Ptac (SEQ ID NO: 12, 79 bp). Both Pkana and Ptac are commonly used promoters in E. coli plasmids.
另外,基于SEQ ID NO:11所示的序列合成GUS基因。In addition, the GUS gene was synthesized based on the sequence shown in SEQ ID NO:11.
根据图2的示意图,将上述各候选启动子和GUS基因通过Ezmax(购自吐露港生物公司)组装到pBBR1MCSK载体(购自Novagen公司)中,构建具有各候选启动子和GUS基因的质粒。经过测序验证后,转化到大肠杆菌DH10b感受态中,并通过菌落PCR筛选阳性转化子。转化条件:冰上孵育30min,42℃热激动90s,冰上孵育2min,加入700uL LB,在37℃摇床孵育45min。According to the schematic diagram in Figure 2, the above-mentioned candidate promoters and GUS genes were assembled into pBBR1MCSK vector (purchased from Novagen) through Ezmax (purchased from Tolo Biotechnology Co., Ltd.) to construct plasmids with each candidate promoter and GUS gene. After verification by sequencing, it was transformed into E. coli DH10b competent, and positive transformants were screened by colony PCR. Transformation conditions: incubate on ice for 30 min, heat at 42 °C for 90 s, incubate on ice for 2 min, add 700 uL LB, and incubate at 37 °C for 45 min on a shaker.
从阳性转化子中提取质粒,并电转化野生型类球红细菌2.4.1单克隆(菌种编号ATCC17023)得到重组菌株。所制备的菌株如下表1所示。The plasmid was extracted from the positive transformant, and the wild-type Rhodobacter sphaeroides 2.4.1 single clone (strain number ATCC17023) was electroporated to obtain a recombinant strain. The prepared strains are shown in Table 1 below.
电转化条件如下所示:The electroconversion conditions are as follows:
1.向2mL无菌EP管中每管加2mL菌体(以TSB培养基培养菌体至OD为1-3),9000rpm离心1min;1. Add 2 mL of bacterial cells to each tube of 2 mL sterile EP tubes (cultivate the bacterial cells with TSB medium to an OD of 1-3), and centrifuge at 9000 rpm for 1 min;
2.去上清,加入1mL去离子水,吹打混匀,9000rpm离心1min,倒去上清。2. Remove the supernatant, add 1 mL of deionized water, mix by pipetting, centrifuge at 9000 rpm for 1 min, and discard the supernatant.
3.重复步骤2进行水洗三遍;3. Repeat step 2 to wash with water three times;
4.在倒去上清的每个EP管加入10%甘油80μL,重悬菌体并加入质粒(500ng)混匀;4. Add 80 μL of 10% glycerol to each EP tube from which the supernatant was discarded, resuspend the cells and add plasmid (500 ng) to mix well;
5.将混合液取出,全部注入2mm电转杯并在冰上孵育20min后,进行电转。5. Take out the mixture, pour it into a 2mm electroporation cup and incubate it on ice for 20min, then perform electroporation.
6.电转条件:2000V/200Ω/2mm;6. Electric transfer conditions: 2000V/200Ω/2mm;
7.电转完,加入600μL无抗生素TSB培养基,吹吸混匀后将液体全部取出,置于2mLEP管,32℃、200rpm孵育2h;7. After electroporation, add 600 μL of antibiotic-free TSB medium, blow and suck and mix evenly, remove all the liquid, put it in a 2 mL EP tube, and incubate at 32°C and 200 rpm for 2 hours;
8. 12000g离心1min,倒去部分上清,将剩余菌液混匀,涂布于卡那抗性平板,放于32℃培养箱培养6-7天。8. Centrifuge at 12000g for 1 min, pour off part of the supernatant, mix the remaining bacterial liquid, spread it on a kana-resistant plate, and place it in a 32°C incubator for 6-7 days.
TSB培养基:30g/L Tryptone Soya Broth。固体培养基添加2%琼脂,灭菌条件为115℃×20min。TSB medium: 30g/L Tryptone Soya Broth. 2% agar was added to the solid medium, and the sterilization conditions were 115°C × 20min.
表1本实施例构建的启动子活性表征用菌株Table 1 The strains for characterizing promoter activity constructed in this example
实施例3候选启动子的活性分析Example 3 Activity analysis of candidate promoters
在该实施例中,采用GUS试验对候选启动的活性进行了分析。相关信息可参见Siegl,Theresa等,“Design,construction and characterisation of a syntheticpromoter library for fine-tuned gene expression in actinomycetes.”,MetabolicEngineering 19.Complete(2013):98-106。In this example, the activity of candidate priming was analyzed using the GUS assay. For related information, see Siegl, Theresa et al., "Design, construction and characterisation of a syntheticpromoter library for fine-tuned gene expression in actinomycetes.", Metabolic Engineering 19.Complete(2013):98-106.
GUS实验原理:GUS experiment principle:
以对硝基苯基-β-D-葡萄糖醛酸作为酶活测定反应底物,高度敏感的β-D-葡萄糖醛酸酶(GUS报告蛋白)为催化剂,生成对硝基苯酚。将反应体系在415nm处分光光度法测量光吸收30分钟,以最终吸光度曲线的斜率被用计算酶活。Using p-nitrophenyl-β-D-glucuronic acid as the reaction substrate for enzyme activity assay, and highly sensitive β-D-glucuronidase (GUS reporter protein) as the catalyst, p-nitrophenol is generated. The reaction system was spectrophotometrically measured for light absorption at 415 nm for 30 minutes, and the slope of the final absorbance curve was used to calculate the enzymatic activity.
具体实验步骤如下:The specific experimental steps are as follows:
1.挑取实施例2中制备的各菌株的菌落1-2个接种于5mL TSB液体培养基中在50mL离心管32℃、220rpm培养24h后,取5mL转接于45mL发酵培养基(发酵培养基与实施例1中的培养基相同)中,32℃,220rpm条件下培养至平台期(48h)(在该步骤中所述发酵培养基含有50ng/ml的卡那霉素)。1. Pick 1-2 colonies of each bacterial strain prepared in Example 2 and inoculate it in 5mL TSB liquid medium, after culturing 24h at 32°C and 220rpm in a 50mL centrifuge tube, get 5mL and transfer it to 45mL fermentation medium (fermentation culture medium). The medium was the same as that in Example 1), and cultured to the plateau phase (48h) at 32°C and 220rpm (in this step, the fermentation medium contained 50ng/ml of kanamycin).
2.取OD700相同菌液(OD700值10-25的范围内),12000rpm×1min离心去除上清液。2. Take the same bacterial solution with OD 700 (in the range of OD 700 value of 10-25), centrifuge at 12000rpm×1min to remove the supernatant.
3.以900μL Gus buffer 2用将菌体重悬,然后于水浴锅中37℃孵育20min,得到各菌株的裂解液。3. Resuspend the bacteria with 900 μL of Gus buffer 2, and then incubate in a water bath at 37°C for 20 minutes to obtain the lysate of each strain.
4.然后用900μL Gus buffer 1稀释裂解液,于14000rpm,4℃下离心10min。4. Then dilute the lysate with 900 μL of
5.取500μL上清液加入500μL Gus buffer 3。5. Add 500 μL of the supernatant to 500 μL of
6.酶标仪以415nm测定吸光度,在96孔板中加入混合液体量200μL,测量时间30min,其中以100μL Gus buffer 3与100μL Gus buffer 2和Gus buffer 1同比例混合作为对照组。6. The microplate reader was used to measure the absorbance at 415 nm. Add 200 μL of mixed liquid to the 96-well plate, and the measurement time was 30 min. Mix 100 μL of
7.显色反应过程的数据通过酶标仪收集得到,在96孔板上检测30min;同时制作产物相对于415nm下的吸光度的标准曲线(见图3);根据标准曲线,将反应曲线上各时间点对应的吸光值换算为产物浓度从而推算出被催化底物的量,然后以反应时间为横坐标,被催化底物浓度为纵坐标,绘制各菌株至产物颜色稳定的时间内,随时间变化的曲线图,通过office软件拟合反应进度,计算曲线斜率,以斜率表示酶的活性,依照酶促反应原理确定公式计算酶比活力。每组菌株三个重复。7. The data of the color reaction process was collected by a microplate reader and detected on a 96-well plate for 30 minutes; at the same time, a standard curve of the product relative to the absorbance at 415 nm was prepared (see Figure 3); The absorbance value corresponding to the time point is converted into the concentration of the product to calculate the amount of the catalyzed substrate, and then take the reaction time as the abscissa and the concentration of the catalyzed substrate as the ordinate, draw the time from each strain to the product color is stable, with time Change the curve graph, fit the reaction progress through the office software, calculate the slope of the curve, express the activity of the enzyme by the slope, and calculate the specific activity of the enzyme according to the principle of the enzymatic reaction. Each group of strains was replicated in triplicate.
具体可通过Siegl,Theresa等,“Design,construction and characterisationof a synthetic promoter library for fine-tuned gene expression inactinomycetes.”,Metabolic Engineering19.Complete(2013):98-106中公开的方法计算出酶活,其中所使用的标准曲线为图3中的标准曲线。Specifically, the enzymatic activity can be calculated by the method disclosed in Siegl, Theresa et al., "Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression inactinomycetes.", Metabolic Engineering 19. Complete (2013): 98-106, wherein the The standard curve used is the one in Figure 3.
溶液:Solution:
Gus buffer 1:50mM磷酸缓冲液(pH 7.0)取30mL、5mM DTT取150μL、0.1%TritonX-100取30μL。Gus buffer 1: 30 mL of 50 mM phosphate buffer (pH 7.0), 150 μL of 5 mM DTT, and 30 μL of 0.1% TritonX-100.
Gus buffer 2:50mM磷酸缓冲液(pH 7.0)取30mL、5mM DTT取150μL、0.1%TritonX-100取30μL、溶菌酶30mg(终浓度约1mg/mL)。Gus buffer 2: 30 mL of 50 mM phosphate buffer (pH 7.0), 150 μL of 5 mM DTT, 30 μL of 0.1% TritonX-100, and 30 mg of lysozyme (the final concentration is about 1 mg/mL).
Gus buffer 3:50mM磷酸缓冲液(pH 7.0)取30mL、5mM DTT取150μL、0.1%TritonX-100取30μL、对硝基苯基-β-D-葡萄糖醛酸终浓度2mM。Gus buffer 3: 30 mL of 50 mM phosphate buffer (pH 7.0), 150 μL of 5 mM DTT, 30 μL of 0.1% TritonX-100, p-nitrophenyl-β-D-glucuronic acid final concentration 2 mM.
其中:磷酸缓冲液:1.14g K2HPO4·3H2O以去离子水配至100mL,用0.6g NaH2PO4以去离子水配至100mL,以前者为主液后者为辅液调节pH,pH 7.0时,K2HPO4·3H2O:NaH2PO4=5:4。Among them: Phosphate buffer: 1.14g K 2 HPO 4 · 3H 2 O was made up to 100mL with deionized water, and 0.6g NaH 2 PO 4 was made up to 100mL with deionized water. The former was the main solution and the latter was the auxiliary solution. pH, K 2 HPO 4 ·3H 2 O:NaH 2 PO 4 =5:4 at pH 7.0.
2mM对硝基苯基-β-D-葡萄糖醛酸:0.63g对硝基苯基-β-D-葡萄糖醛酸加入1LdH2O,配制30mL溶液时则加入18.9mg。2 mM p-nitrophenyl-β-D-glucuronic acid: 0.63 g p-nitrophenyl-β-D-glucuronic acid was added with 1 LdH 2 O, and 18.9 mg was added to prepare a 30 mL solution.
结果分析:Result analysis:
图5示出了各菌株在培养至平台期的过程中培养11h、24h、和48h时的生长状况,以OD700示出。Figure 5 shows the growth status of each strain at 11h, 24h, and 48h during cultivation to plateau, shown as OD700 .
首先算得每个启动子的吸收曲线的斜率,根据标准曲线将斜率换算成底物浓度,该浓度与报告基因表达产物的酶活呈正相关,酶活与启动子强弱正相关,由此对筛选的启动子活性进行排序,图4中纵坐标为酶活(activity),横坐标为各个启动子,从左到右启动子强度依次增大。其中第一个为空白对照,第二个为不带有启动子的gusA报告基因对照。启动子中强度较弱的是Pkana、P2718、PpuhA、PpucBAC、PPufQ,中等强度的是PCrtA、PcrtEF、Ptac、Prnpb、PbchEJ,高强度的是P7571和P6124。First, the slope of the absorption curve of each promoter is calculated, and the slope is converted into the substrate concentration according to the standard curve. The concentration is positively correlated with the enzyme activity of the reporter gene expression product, and the enzyme activity is positively correlated with the strength of the promoter. In Figure 4, the ordinate is the enzyme activity, the abscissa is each promoter, and the promoter strength increases sequentially from left to right. The first is a blank control, and the second is a gusA reporter gene control without a promoter. Among the promoters, the weak ones are P kana , P 2718 , P puhA , P pucBAC , and P PufQ , the medium ones are P CrtA , P crtEF , P tac , P rnpb , P bchEJ , and the high ones are P 7571 and P 6124 .
该实验成功获得了跨5个数量级强度差异的一系列启动子,证明了该方法能有效量化表征启动子强度,可继续使用该方法扩展类球红细菌启动子元件库。同时,实验结果显示出极强启动子对菌体生长速率和生长量的影响,一定程度上显示出菌株可承载的代谢负担。根据PrnpB结果,推测其可能存在上调机制。常用启动子Ptac、Pkana的引入对比也使这些结果更易于应用。This experiment successfully obtained a series of promoters with differences in strength across 5 orders of magnitude, proving that this method can effectively quantitatively characterize promoter strength, and can continue to use this method to expand the library of R. sphaeroides promoter elements. At the same time, the experimental results show the effect of extremely strong promoters on the growth rate and amount of bacteria, and to a certain extent, it shows the metabolic burden that the strain can carry. According to the results of PrnpB , it is speculated that there may be an up-regulation mechanism. The introduction of the commonly used promoters P tac , P kana also makes these results easier to apply.
表达蛋白质的积累量,不是由单一自变量瞬时的基因转译强度决定的,不同蛋白质产物也将有不同降解速率。所以本次实验对启动子强度的表征应视为同时间点横向参考数据。未来若能实现报告蛋白表达降解时序可控,以恒化发酵罐调控营养水平,实现降解和积累时间的区分,将更有利于清晰阐明启动子的强度以及营养限制因素。The accumulation of expressed proteins is not determined by the instantaneous gene translation strength of a single independent variable, and different protein products will also have different degradation rates. Therefore, the characterization of promoter strength in this experiment should be regarded as horizontal reference data at the same time point. In the future, if the timing of reporter protein expression and degradation can be controlled, and the nutrient level can be controlled by a chemostat fermenter to achieve the distinction between degradation and accumulation time, it will be more conducive to clearly clarify the strength of the promoter and the nutrient limiting factors.
此外,启动子工程发展迅速,许多研究者都为所研究细胞建立了人工突变改造的启动子文库,所用GUS方法同样来自表征人工启动子文库的研究。人工启动子有着更高的不受细胞代谢网络调控的可能,有助于各种单基因改造工作限制不可控变量的范围。此外,人工启动子有可能填充天然启动子不存在的强度区位,本次实验已选取来自转录组数据强度前十的启动子,而其在如P6124、P7571这样强启动子附近区域仍然有大量梯度填充空间。未来若有应用需要,可分析二者序列,找出影响启动子活性的位点进行突变,进一步丰富此文库。In addition, promoter engineering has developed rapidly, and many researchers have established artificially mutated promoter libraries for the cells under study. Artificial promoters have a higher probability of being unregulated by cellular metabolic networks, and help to limit the range of uncontrollable variables for various single-gene modification efforts. In addition, artificial promoters may fill the strength regions that do not exist in natural promoters. In this experiment, the top ten promoters from the transcriptome data have been selected, but they still have strong regions near strong promoters such as P 6124 and P 7571 . Lots of gradients to fill the space. If there are application needs in the future, the sequences of the two can be analyzed to find out the sites that affect the promoter activity and mutate to further enrich the library.
序列表sequence listing
<110> 华东理工大学<110> East China University of Science and Technology
<120> 一种启动子文库及其制备方法和应用<120> A promoter library and its preparation method and application
<130> 1<130> 1
<160> 13<160> 13
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 500<211> 500
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gtctcgacct ccagaaggtc gtcgaagacc gccgggcgca gatagtcggc ctcgacgcgg 60gtctcgacct ccagaaggtc gtcgaagacc gccgggcgca gatagtcggc ctcgacgcgg 60
cggacggcga agacgatccc gctctcggcg cgcagccgcg cctgatcgac gccgagcccg 120cggacggcga agacgatccc gctctcggcg cgcagccgcg cctgatcgac gccgagcccg 120
cgcacccatt cgctgcgggc ccgctcgatg aacttcagat agttggcgta atagacgatt 180cgcacccatt cgctgcgggc ccgctcgatg aacttcagat agttggcgta atagacgatt 180
cccgcgagat cggtgtcctc gtagtagacg cgcagggcga aacggtgcgg catgggcatc 240cccgcgagat cggtgtcctc gtagtagacg cgcagggcga aacggtgcgg catgggcatc 240
tcccggcagg atggcgcttt ccgcaggggc tagctcgaag ctgccggcgc cgcaaggaag 300tcccggcagg atggcgcttt ccgcaggggc tagctcgaag ctgccggcgc cgcaaggaag 300
gcgcggaatt tccttctgaa attgagcctc cgggcgcccg tttccatgcg gtgcgagtgt 360gcgcggaatt tccttctgaa attgagcctc cgggcgcccg tttccatgcg gtgcgagtgt 360
atgccgcacc ttcccgcgcg cgtttgtgcg tgaggaagcc gcggcacatg ctaacttcgg 420atgccgcacc ttcccgcgcg cgtttgtgcg tgaggaagcc gcggcacatg ctaacttcgg 420
ctccgcaggt gcatccgcat catcccgagg cgtgttgcgc gtctgatcat gagttctaat 480ctccgcaggt gcatccgcat catcccgagg cgtgttgcgc gtctgatcat gagttctaat 480
gcccgttaga ggagagcact 500gccccgttaga ggagagcact 500
<210> 2<210> 2
<211> 500<211> 500
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
cgccgcagcc gatggtccag acctcggccc cggcgagggc gggcgtggcc cggatccgct 60cgccgcagcc gatggtccag acctcggccc cggcgagggc gggcgtggcc cggatccgct 60
cggcgagcct ctgcgccagc gccgcctcgc cgggcgagcc cgtgaccgac cgttgccgcg 120cggcgagcct ctgcgccagc gccgcctcgc cgggcgagcc cgtgaccgac cgttgccgcg 120
tcagccacag cgcccaatcc cgggcgcggt cacgataatg ggccatgtct ctctcctgct 180tcagccacag cgcccaatcc cgggcgcggt cacgataatg ggccatgtct ctctcctgct 180
cgtccgccgg atcgcctgcc cggctgtgtc ctgtccgccc gcacgggtcc ccgtgcgcag 240cgtccgccgg atcgcctgcc cggctgtgtc ctgtccgccc gcacgggtcc ccgtgcgcag 240
cgccccggcc catcctgcgc cgaaggccgg ggcgaccgga agccccgcgc agagtgggca 300cgccccggcc catcctgcgc cgaaggccgg ggcgaccgga agccccgcgc agagtgggca 300
gtccgaaggc cggctttgcc tgcgcgggct atgcccgcag ctattcctgc gcccctccgc 360gtccgaaggc cggctttgcc tgcgcgggct atgcccgcag ctattcctgc gcccctccgc 360
cgggaagcgc ccgccacgaa agcgtgagag ggggcggcgt gatgtcgccc atgggccgca 420cgggaagcgc ccgccacgaa agcgtgagag ggggcggcgt gatgtcgccc atgggccgca 420
gcgtcgccct tcggcttgac gcaccccctg ccgggcggca acggtgaggg ctggcccagc 480gcgtcgccct tcggcttgac gcaccccctg ccgggcggca acggtgaggg ctggcccagc 480
ttgcatctga aggaggcacc 500ttgcatctga aggaggcacc 500
<210> 3<210> 3
<211> 147<211> 147
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
cccctgcgcc ccgctgccgc agggcatttc ccccgccttt gggaaagggt gggcccgtcc 60cccctgcgcc ccgctgccgc agggcatttc ccccgccttt gggaaagggt gggcccgtcc 60
gcgcgggtcg aatggtcgct ttgacatgca tcaatttgcc cgccacagaa gtaaacgtaa 120gcgcgggtcg aatggtcgct ttgacatgca tcaatttgcc cgccacagaa gtaaacgtaa 120
gcgctcgtca ggcgcgggag tccacca 147gcgctcgtca ggcgcgggag tccacca 147
<210> 4<210> 4
<211> 500<211> 500
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
gagctgcgcg cctggcacgc gggggcggga tcctgggggg gcgtgacgga tgtcaactcg 60gagctgcgcg cctggcacgc gggggcggga tcctgggggg gcgtgacgga tgtcaactcg 60
cgctcgatcg ggatcgagct cgccaatccc ggcgacaggc ccttttccga gccgcagatg 120cgctcgatcg ggatcgagct cgccaatccc ggcgacaggc ccttttccga gccgcagatg 120
gcggcgctgg agcggctgct ggcggggatc ctcgcacggt ggcggatccc gcccgcgcgg 180gcggcgctgg agcggctgct ggcggggatc ctcgcacggt ggcggatccc gcccgcgcgg 180
gtaatcggcc attccgacat ggcgccggag cggaaatgcg atccgggacc gcgcttcgac 240gtaatcggcc attccgacat ggcgccggag cggaaatgcg atccgggacc gcgcttcgac 240
tggcgccgtc tggcccgcgg cgggctctcg gtctggccct cggacggctg tccgcctgcg 300tggcgccgtc tggcccgcgg cgggctctcg gtctggccct cggacggctg tccgcctgcg 300
gaggcggaga cttttgccgc ttcggcccgc gccttcggct atcccgccgt ggaggcggag 360gaggcggaga cttttgccgc ttcggcccgc gccttcggct atcccgccgt ggaggcggag 360
cttctgctcg cggcggttcg cctgcggttt aggccctggg cgcgggggcc gctcacgggc 420cttctgctcg cggcggttcg cctgcggttt aggccctggg cgcgggggcc gctcacgggc 420
gaggatgcag ggatgatggc cgatcttgcg gcgcgctatc cggttgacgg acggacgccc 480gaggatgcag ggatgatggc cgatcttgcg gcgcgctatc cggttgacgg acggacgccc 480
caagcgtaag ccaccgccgt 500caagcgtaag ccaccgccgt 500
<210> 5<210> 5
<211> 112<211> 112
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
gcccgggatt gttgacaccc ccgtgcgggc tgtccagtat caaagaccag aaggtgtgga 60gcccgggatt gttgacaccc ccgtgcgggc tgtccagtat caaagaccag aaggtgtgga 60
gtcggcggca cggtggccgc cccggggcgc agcgatgcgc cggagctgtc ct 112gtcggcggca cggtggccgc cccggggcgc agcgatgcgc cggagctgtc ct 112
<210> 6<210> 6
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
ggcgcgaact cctgcagtgc ttgtcaacat gccccataca atagacctag tcaggttttg 60ggcgcgaact cctgcagtgc ttgtcaacat gccccataca atagacctag tcaggttttg 60
cggcttgagg gcggtgcgac ttcgcgacta atgtccgccc gcttcggttc ggtgtttgat 120cggcttgagg gcggtgcgac ttcgcgacta atgtccgccc gcttcggttc ggtgtttgat 120
cgcgcccacc ccatctgcag gaggaatgac 150cgcgcccacc ccatctgcag gaggaatgac 150
<210> 7<210> 7
<211> 152<211> 152
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
cgcgcgggcg cagcgcaatc ggacgcaggg tgacacaacg taagcgctcg tcaggctcac 60cgcgcgggcg cagcgcaatc ggacgcaggg tgacacaacg taagcgctcg tcaggctcac 60
gatgtcccgt taatgttaca cctgaagcgt cgatataggc cgacccgagt cccgcagggc 120gatgtcccgt taatgttaca cctgaagcgt cgatataggc cgacccgagt cccgcagggc 120
aggtcggccg gaagagcgcg ggggaaaacg ct 152aggtcggccg gaagagcgcg ggggaaaacg ct 152
<210> 8<210> 8
<211> 183<211> 183
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
tccggcggcc aataagtcgc acccaaaacg gtcttgtcag ccaacactga cattgaatcc 60tccggcggcc aataagtcgc acccaaaacg gtcttgtcag ccaacactga cattgaatcc 60
ataatgcgag ccggggcgga tcagaaatcg ccgacaaggt gatccaggtc tctccggtct 120ataatgcgag ccggggcgga tcagaaatcg ccgacaaggt gatccaggtc tctccggtct 120
cgtcgaagcc cgcgtgcagg ccctacacgc aaaccgtcga tttaccagtt gggagacgac 180cgtcgaagcc cgcgtgcagg ccctacacgc aaaccgtcga tttaccagtt gggagacgac 180
aca 183aca 183
<210> 9<210> 9
<211> 500<211> 500
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
tcgaccccgc ccgcatggcg ggacggggca tcctgatcgg ccttgccgcc ttcctgctcg 60tcgaccccgc ccgcatggcg ggacggggca tcctgatcgg ccttgccgcc ttcctgctcg 60
tgcttttcgc ctggcctgcc gcgtcgaagg cgatgttctt cgccggtgcg ggcctgatcg 120tgcttttcgc ctggcctgcc gcgtcgaagg cgatgttctt cgccggtgcg ggcctgatcg 120
ggatgggcgg cgggctcttt tccgtcgcca ccctcacgat ggcgatggcc atcccggtgg 180ggatgggcgg cgggctcttt tccgtcgcca ccctcacgat ggcgatggcc atcccggtgg 180
cgggtctggc cggccgcggc ctcgcgctcg gcgcctgggg ggctgcgcag gcgaccgccg 240cgggtctggc cggccgcggc ctcgcgctcg gcgcctgggg ggctgcgcag gcgaccgccg 240
cgggcctcgc catcctcatg ggcggcgcgc tgcgcgacgt catcggccac tgggccaagg 300cgggcctcgc catcctcatg ggcggcgcgc tgcgcgacgt catcggccac tgggccaagg 300
cggggcatct cggtgccgcg ctgcaggacg cggccatcgg ctacagctcc gtgtacctcc 360cggggcatct cggtgccgcg ctgcaggacg cggccatcgg ctacagctcc gtgtacctcc 360
tcgagatcgg gctgctgttc gccacactga tcgtgctggg gcctctggtc cgaaccacga 420tcgagatcgg gctgctgttc gccacactga tcgtgctggg gcctctggtc cgaaccacga 420
tcctctcatc tgaacgaccg gccggcggga cccgcgtggg actcgccgac ttccccacct 480tcctctcatc tgaacgaccg gccggcggga cccgcgtggg actcgccgac ttccccacct 480
gacaccggag gaccccttaa 500gacaccggag gaccccttaa 500
<210> 10<210> 10
<211> 500<211> 500
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
gagccttcgc gcgaggcccc gaaggccgcg ccgaagcccg aggcgcgcaa gctctcggaa 60gagccttcgc gcgaggcccc gaaggccgcg ccgaagcccg aggcgcgcaa gctctcggaa 60
ggcctcacct tcaccgagcg caagcgtctc gacgcgcttc cgggcctcat cgagcggctc 120ggcctcacct tcaccgagcg caagcgtctc gacgcgcttc cgggcctcat cgagcggctc 120
gaggccgaga tcgcgaagct cggggaattc ctcgcggccg acgacctctt cacccgcgag 180gaggccgaga tcgcgaagct cggggaattc ctcgcggccg acgacctctt cacccgcgag 180
ccggtcaaat tccagaaggc cagcgaggcg atggcggagc gtcaggccct tttgtcgcag 240ccggtcaaat tccagaaggc cagcgaggcg atggcggagc gtcaggccct tttgtcgcag 240
gccgaagagg agtggctgac gctcgaggac aaggccagca aaggttagcc gatgtcctgt 300gccgaagagg agtggctgac gctcgaggac aaggccagca aaggttagcc gatgtcctgt 300
ccgccttgcg ctggaattgg cgcatggcac tctccgcata tcacctcctc gtgagcggat 360ccgccttgcg ctggaattgg cgcatggcac tctccgcata tcacctcctc gtgagcggat 360
ctggcgaacc ccccttccga gaaataggac atgtgcacgg aaggcgtcgt catccccggc 420ctggcgaacc ccccttccga gaaataggac atgtgcacgg aaggcgtcgt catccccggc 420
gacgcgagac cgtcaacgag agatccggca tccccgcaaa agcagcagtg cggacgtcgg 480gacgcgagac cgtcaacgag agatccggca tccccgcaaa agcagcagtg cggacgtcgg 480
aagcttaatt ggagacagag 500aagcttaatt ggagacagag 500
<210> 11<210> 11
<211> 1812<211> 1812
<212> DNA<212> DNA
<213> 大肠杆菌(Escherichia coli)<213> Escherichia coli
<400> 11<400> 11
atgttacgtc ctgtagaaac cccaacccgt gaaatcaaaa aactcgacgg cctgtgggca 60atgttacgtc ctgtagaaac cccaacccgt gaaatcaaaa aactcgacgg cctgtgggca 60
ttcagtctgg atcgcgaaaa ctgtggaatt gatcagcgtt ggtgggaaag cgcgttacaa 120ttcagtctgg atcgcgaaaa ctgtggaatt gatcagcgtt ggtgggaaag cgcgttacaa 120
gaaagccggg caattgctgt gccaggcagt tttaacgatc agttcgccga tgcagatatt 180gaaagccggg caattgctgt gccaggcagt tttaacgatc agttcgccga tgcagatatt 180
cgtaattatg tgggcaacgt ctggtatcag cgcgaagtct ttataccgaa aggttgggca 240cgtaattatg tgggcaacgt ctggtatcag cgcgaagtct ttataccgaa aggttgggca 240
ggccagcgta tcgtgctgcg tttcgatgcg gtcactcatt acggcaaagt gtgggtcaat 300ggccagcgta tcgtgctgcg tttcgatgcg gtcactcatt acggcaaagt gtgggtcaat 300
aatcaggaag tgatggagca tcagggcggc tatacgccat ttgaagccga tgtcacgccg 360aatcaggaag tgatggagca tcagggcggc tatacgccat ttgaagccga tgtcacgccg 360
tatgttattg ccgggaaaag tgtacgtatc accgtttgtg tgaacaacga actgaactgg 420tatgttattg ccgggaaaag tgtacgtatc accgtttgtg tgaacaacga actgaactgg 420
cagactatcc cgccgggaat ggtgattacc gacgaaaacg gcaagaaaaa gcagtcttac 480cagactatcc cgccgggaat ggtgattacc gacgaaaacg gcaagaaaaa gcagtcttac 480
ttccatgatt tctttaacta cgccggcatc catcgcagcg taatgctcta caccacgccg 540ttccatgatt tctttaacta cgccggcatc catcgcagcg taatgctcta caccacgccg 540
aacacctggg tggacgatat caccgtggtg acgcatgtcg cgcaagcctg taaccacgcg 600aacacctggg tggacgatat caccgtggtg acgcatgtcg cgcaagcctg taaccacgcg 600
tctgttgact ggcaggtggt ggccaatggt gatgtcagcg ttgaactgcg tgatgcggat 660tctgttgact ggcaggtggt ggccaatggt gatgtcagcg ttgaactgcg tgatgcggat 660
caacaggtgg ttgcaactgg acaaggcacc agcgggactt tgcaagtggt gaatccgcac 720caacaggtgg ttgcaactgg acaaggcacc agcgggactt tgcaagtggt gaatccgcac 720
ctctggcaat cgggtgaagg ttatctctat gaactgtgcg tcacagccaa aagccagaca 780ctctggcaat cgggtgaagg ttatctctat gaactgtgcg tcacagccaa aagccagaca 780
gagtgtgata tctacccgct gcgcgtcggc atccggtcag tggcagtgaa gggcgaacag 840gagtgtgata tctacccgct gcgcgtcggc atccggtcag tggcagtgaa gggcgaacag 840
ttcctgatca accacaaacc gttctacttt actggctttg gccgtcatga agatgcggat 900ttcctgatca accacaaacc gttctacttt actggctttg gccgtcatga agatgcggat 900
ttgcgcggca aaggattcga taacgtgctg atggtgcacg atcacgcatt aatggactgg 960ttgcgcggca aaggattcga taacgtgctg atggtgcacg atcacgcatt aatggactgg 960
attggggcca actcctaccg tacctcgcat tacccttacg ctgaagagat gctcgactgg 1020attggggcca actcctaccg tacctcgcat tacccttacg ctgaagagat gctcgactgg 1020
gcagatgaac atggcatcgt ggtgattgat gaaactgcag ctgtcggctt taacctctct 1080gcagatgaac atggcatcgt ggtgattgat gaaactgcag ctgtcggctt taacctctct 1080
ttaggcattg gtttcgaagc gggcaacaag ccgaaagaac tgtacagcga agaggcagtc 1140ttaggcattg gtttcgaagc gggcaacaag ccgaaagaac tgtacagcga agaggcagtc 1140
aacggggaaa ctcagcaggc gcacttacag gcgattaaag agctgatagc gcgtgacaaa 1200aacggggaaa ctcagcaggc gcacttacag gcgattaaag agctgatagc gcgtgacaaa 1200
aaccacccaa gcgtggtgat gtggagtatt gccaacgaac cggatacccg tccgcaaggt 1260aaccacccaa gcgtggtgat gtggagtatt gccaacgaac cggatacccg tccgcaaggt 1260
gcacgggaat atttcgcgcc actggcggaa gcaacgcgta aactcgaccc gacgcgtccg 1320gcacgggaat atttcgcgcc actggcggaa gcaacgcgta aactcgaccc gacgcgtccg 1320
atcacctgcg tcaatgtaat gttctgcgac gctcacaccg ataccatcag cgatctcttt 1380atcacctgcg tcaatgtaat gttctgcgac gctcacaccg ataccatcag cgatctcttt 1380
gatgtgctgt gcctgaaccg ttattacgga tggtatgtcc aaagcggcga tttggaaacg 1440gatgtgctgt gcctgaaccg ttattacgga tggtatgtcc aaagcggcga tttggaaacg 1440
gcagagaagg tactggaaaa agaacttctg gcctggcagg agaaactgca tcagccgatt 1500gcagagaagg tactggaaaa agaacttctg gcctggcagg agaaactgca tcagccgatt 1500
atcatcaccg aatacggcgt ggatacgtta gccgggctgc actcaatgta caccgacatg 1560atcatcaccg aatacggcgt ggatacgtta gccgggctgc actcaatgta caccgacatg 1560
tggagtgaag agtatcagtg tgcatggctg gatatgtatc accgcgtctt tgatcgcgtc 1620tggagtgaag agtatcagtg tgcatggctg gatatgtatc accgcgtctt tgatcgcgtc 1620
agcgccgtcg tcggtgaaca ggtatggaat ttcgccgatt ttgcgacctc gcaaggcata 1680agcgccgtcg tcggtgaaca ggtatggaat ttcgccgatt ttgcgacctc gcaaggcata 1680
ttgcgcgttg gcggtaacaa gaagggcatc ttcacccgcg accgcaaacc gaagtcggcg 1740ttgcgcgttg gcggtaacaa gaagggcatc ttcacccgcg accgcaaacc gaagtcggcg 1740
gcttttctgc tgcaaaaacg ctggactggc atgaacttcg gtgaaaaacc gcagcaggga 1800gcttttctgc tgcaaaaacg ctggactggc atgaacttcg gtgaaaaacc gcagcaggga 1800
ggcaaacaat ga 1812ggcaaacaat ga 1812
<210> 12<210> 12
<211> 79<211> 79
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
ctgttgacaa ttaatcatcg gctcgtataa tgtgtggaat tgtgagcgga taacaatttc 60ctgttgacaa ttaatcatcg gctcgtataa tgtgtggaat tgtgagcgga taacaatttc 60
acacaggaaa cagtattcg 79acacaggaaa cagtattcg 79
<210> 13<210> 13
<211> 121<211> 121
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
gaagatcctt tgatcttttc tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa 60gaagatcctt tgatcttttc tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa 60
gggattttgg tcatgaacaa taaaactgtc tgcttacata aacagtaata caaggggtgt 120gggattttgg tcatgaacaa taaaactgtc tgcttacata aacagtaata caaggggtgt 120
t 121t 121
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011642684.7A CN114686990A (en) | 2020-12-30 | 2020-12-30 | Promoter library and preparation method and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011642684.7A CN114686990A (en) | 2020-12-30 | 2020-12-30 | Promoter library and preparation method and application thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114686990A true CN114686990A (en) | 2022-07-01 |
Family
ID=82136044
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011642684.7A Pending CN114686990A (en) | 2020-12-30 | 2020-12-30 | Promoter library and preparation method and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114686990A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024230015A1 (en) * | 2023-05-11 | 2024-11-14 | 上海蓝晶微生物科技有限公司 | Microbial promoter library and use thereof |
| WO2024229976A1 (en) * | 2023-05-11 | 2024-11-14 | 上海蓝晶微生物科技有限公司 | Promoter library and application thereof in different bacteria |
| WO2025029678A3 (en) * | 2023-07-28 | 2025-03-13 | Dana-Farber Cancer Institute, Inc. | Synthetic promoters, transcriptional units, vectors, and pharmaceutical compositions with enhanced ovarian cancer cell specificity and methods |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101922047A (en) * | 2009-06-17 | 2010-12-22 | 华东理工大学 | Gap promoter library and application thereof |
-
2020
- 2020-12-30 CN CN202011642684.7A patent/CN114686990A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101922047A (en) * | 2009-06-17 | 2010-12-22 | 华东理工大学 | Gap promoter library and application thereof |
Non-Patent Citations (2)
| Title |
|---|
| "CP001150.1", NCBI, 30 January 2014 (2014-01-30) * |
| HU ET AL.: "Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 45, no. 16, 20 March 2020 (2020-03-20), pages 9451 - 9458, XP086079368, DOI: 10.1016/j.ijhydene.2020.01.240 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024230015A1 (en) * | 2023-05-11 | 2024-11-14 | 上海蓝晶微生物科技有限公司 | Microbial promoter library and use thereof |
| WO2024229976A1 (en) * | 2023-05-11 | 2024-11-14 | 上海蓝晶微生物科技有限公司 | Promoter library and application thereof in different bacteria |
| WO2025029678A3 (en) * | 2023-07-28 | 2025-03-13 | Dana-Farber Cancer Institute, Inc. | Synthetic promoters, transcriptional units, vectors, and pharmaceutical compositions with enhanced ovarian cancer cell specificity and methods |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Andersson et al. | Application of bioluminescence to the study of circadian rhythms in cyanobacteria | |
| US7527943B2 (en) | Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof | |
| CN114686990A (en) | Promoter library and preparation method and application thereof | |
| US20070178505A1 (en) | Promoter engineering and genetic control | |
| CN109477115A (en) | Expression systems for eukaryotes | |
| CN105112436A (en) | Complete-biological synthesis method of adipic acid | |
| US6806066B2 (en) | Expression vectors with modified ColE1 origin of replication for control of plasmid copy number | |
| CN110144626A (en) | A kind of construction method of promoter library | |
| Bai et al. | Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness | |
| US6218145B1 (en) | Bacterial expression systems based on plastic or mitochondrial promoter combinations | |
| US11203760B2 (en) | Gene therapy DNA vector GDTT1.8NAS12 and the method for obtaining thereof | |
| CN111254143B (en) | Construction method of simple Arthrobacter engineering strain with excellent stress tolerance, strain and application thereof | |
| CN102212546B (en) | Integrative Candida maltose gene expression system and applications thereof | |
| US20050170460A1 (en) | Method for diversifying the chemical composition of proteins produced in vivo by genetically disabling the editing function of their aminoacyl tRNA synthetases | |
| JPH0272881A (en) | Method and system for transformation of chlamydomonas reinhardtii | |
| CN117106101B (en) | Plasmid and ASFV protease inhibitor screening and drug effect evaluation method | |
| CN110129355A (en) | A method for gene cluster blockade of Saccharopolyspora chinensis based on linear fragment homologous recombination | |
| CN112175952B (en) | Biological stress inducible promoter PBBI7 and application thereof | |
| EP4534667A1 (en) | Modified promoter, expression vector, microorganism, production method for substance, modified cyanobacteria, and manufacturing method for modified promoter | |
| KR20250092382A (en) | Transcription factor-based biosensor for Vibrio microorganisms detecting 3-Hydroxypropionic acid production and use thereof | |
| CN120384090A (en) | A method for high-throughput screening of key genes in the biosynthetic pathway of 1,5-pentanediamine in Escherichia coli | |
| CN120118924A (en) | Cytochrome P450 gene AmCYP71AF43, polypeptide, vector and their applications | |
| KR20250121203A (en) | promoter for Bacillus spp. and use thereof | |
| KR20250021161A (en) | Biosensor for detecting cinnamic acid and uses thereof | |
| CN113817736A (en) | Promoter with quorum sensing characteristic and application thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |