[go: up one dir, main page]

CN114726437B - Digital optical transmitter edge jitter detector - Google Patents

Digital optical transmitter edge jitter detector Download PDF

Info

Publication number
CN114726437B
CN114726437B CN202210639757.XA CN202210639757A CN114726437B CN 114726437 B CN114726437 B CN 114726437B CN 202210639757 A CN202210639757 A CN 202210639757A CN 114726437 B CN114726437 B CN 114726437B
Authority
CN
China
Prior art keywords
edge
analog
digital converter
clock
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202210639757.XA
Other languages
Chinese (zh)
Other versions
CN114726437A (en
Inventor
黄涛
苏君
邱琪
范志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210639757.XA priority Critical patent/CN114726437B/en
Publication of CN114726437A publication Critical patent/CN114726437A/en
Application granted granted Critical
Publication of CN114726437B publication Critical patent/CN114726437B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种数字光发射机边沿抖动检测器及检测方法,属于数字信号参数测量技术领域。所述数字光发射机边沿抖动检测器包括1×2光分路器,第三光电探测器,时钟数据恢复模块,时钟分路器,时钟倍频整形模块,光纤延迟线,双端口调制器,第一光电探测器,第二光电探测器,第一模数转换器,第二模数转换器,边沿抖动测量模块,系统控制及数据处理模块。本发明提供的一种数字光发射机边沿抖动检测器及检测方法,对测量时间段内的所有边沿信号逐一测量,极大地提升了测量有效性,降低了测量过程中的对元器件的参数要求和资源开销,解决了传统测量方法中的技术瓶颈。

Figure 202210639757

An edge jitter detector and a detection method of a digital optical transmitter belong to the technical field of digital signal parameter measurement. The digital optical transmitter edge jitter detector includes a 1×2 optical splitter, a third photodetector, a clock data recovery module, a clock splitter, a clock frequency multiplication and shaping module, an optical fiber delay line, a dual-port modulator, A first photodetector, a second photodetector, a first analog-to-digital converter, a second analog-to-digital converter, an edge jitter measurement module, and a system control and data processing module. An edge jitter detector and a detection method of a digital optical transmitter provided by the invention measure all edge signals one by one in a measurement time period, which greatly improves the measurement effectiveness and reduces the parameter requirements for components in the measurement process. and resource overhead, solving the technical bottleneck in traditional measurement methods.

Figure 202210639757

Description

一种数字光发射机边沿抖动检测器A Digital Optical Transmitter Edge Jitter Detector

技术领域technical field

本发明属于数字信号参数测量技术领域,具体涉及一种数字光发射机边沿抖动检测器及检测方法。The invention belongs to the technical field of digital signal parameter measurement, and in particular relates to an edge jitter detector and a detection method of a digital optical transmitter.

背景技术Background technique

数字信号参数测量是数字通信中的重要检测过程,主要获取信号的码率、幅度、边沿抖动等关键技术参数,对于保证数字通信链路的正常建立及低误码率传输具有重要意义。其中,边沿抖动测量是其中的关键测量过程,可用于评估发射机的输出信号质量。Digital signal parameter measurement is an important detection process in digital communication. It mainly obtains key technical parameters such as signal rate, amplitude, edge jitter, etc., which is of great significance to ensure the normal establishment of digital communication links and low bit error rate transmission. Among them, edge jitter measurement is a key measurement process, which can be used to evaluate the quality of the output signal of the transmitter.

数字光发射机输出光信号的边沿抖动大小及概率分布直接关系着接收机对于输入信号的判决,过高的抖动会导致出现接收误码。现有测量方法主要通过高速示波器采集光发射机的信号眼图,基于眼图的高度及宽度对边沿抖动的大小进行估计。该测量方法中需要示波器的采样率远高于数字信号的传输码率,一般大于10倍,并且需在测量过程中实时记录信号波形数据,要求示波器具备较大的存储深度。这些要求大大制约了对于高码率光信号的实时抖动测量,其系统复杂度和成本限制了该方法在工程测试中的广泛应用。The edge jitter size and probability distribution of the output optical signal of the digital optical transmitter are directly related to the receiver's judgment on the input signal. Too high jitter will lead to reception errors. The existing measurement method mainly collects the signal eye diagram of the optical transmitter through a high-speed oscilloscope, and estimates the size of the edge jitter based on the height and width of the eye diagram. In this measurement method, the sampling rate of the oscilloscope is much higher than the transmission code rate of the digital signal, generally greater than 10 times, and the signal waveform data needs to be recorded in real time during the measurement process, which requires the oscilloscope to have a large storage depth. These requirements greatly restrict the real-time jitter measurement of high-bit-rate optical signals, and its system complexity and cost limit the wide application of this method in engineering testing.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于,针对背景技术存在的缺陷,提出了一种数字光发射机边沿抖动检测器及检测方法。The purpose of the present invention is to provide an edge jitter detector and a detection method for a digital optical transmitter in view of the defects in the background art.

为实现上述目的,本发明采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:

一种数字光发射机边沿抖动检测器,包括:A digital optical transmitter edge jitter detector, comprising:

1×2光分路器,用于将数字光发射机输出的强度调制的光信号串分为两路,分别输入光纤延迟线和第三光电探测器;The 1×2 optical splitter is used to divide the intensity-modulated optical signal string output by the digital optical transmitter into two channels, which are respectively input to the fiber delay line and the third photodetector;

第三光电探测器,用于将接收到的光信号串还原为电信号串,并输入时钟数据恢复模块;The third photodetector is used to restore the received optical signal string to an electrical signal string, and input the clock data recovery module;

时钟数据恢复模块,用于从第三光电探测器输出的电信号串中恢复出数字光发射机输出的数字信号以及数字信号的参考时钟,参考时钟输入时钟分路器,数字信号输入系统控制及数据处理模块;The clock data recovery module is used to recover the digital signal output by the digital optical transmitter and the reference clock of the digital signal from the electrical signal string output by the third photodetector, the reference clock is input to the clock splitter, the digital signal is input to the system control and data processing module;

时钟分路器,用于将参考时钟分为两路,一路输入系统控制及数据处理模块,另一路输入时钟倍频整形模块;Clock splitter, used to divide the reference clock into two channels, one input to the system control and data processing module, the other input to the clock multiplication and shaping module;

时钟倍频整形模块,将输入的参考时钟进行二倍频和整形,得到信号切片时钟,输出至双端口调制器;The clock frequency multiplication and shaping module doubles and reshapes the input reference clock to obtain a signal slice clock, which is output to the dual-port modulator;

光纤延迟线,在系统控制及数据处理模块输出的光纤延迟线控制信号的控制下,对接收到的光信号串进行可控延时后输出至双端口调制器;The optical fiber delay line, under the control of the optical fiber delay line control signal output by the system control and data processing module, performs controllable delay on the received optical signal string and outputs it to the dual-port modulator;

双端口调制器,在信号切片时钟的控制下,对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,分别输入至第一光电探测器和第二光电探测器;The dual-port modulator, under the control of the signal slicing clock, slices the optical signal string output by the optical fiber delay line to obtain two optical pulse signals, which are respectively input to the first photodetector and the second photodetector;

第一光电探测器和第二光电探测器,用于将双端口调制器输出的两路光脉冲信号转换为电脉冲信号,并分别输入第一模数转换器和第二模数转换器;The first photodetector and the second photodetector are used to convert the two-path optical pulse signals output by the dual-port modulator into electrical pulse signals, and input them to the first analog-to-digital converter and the second analog-to-digital converter respectively;

第一模数转换器和第二模数转换器,用于对第一光电探测器和第二光电探测器输出的电脉冲信号进行数字量化,量化后的信号输入边沿抖动测量模块;The first analog-to-digital converter and the second analog-to-digital converter are used to digitally quantize the electrical pulse signals output by the first photodetector and the second photodetector, and the quantized signal is input to the edge jitter measurement module;

边沿抖动测量模块,将第一模数转换器和第二模数转换器输出的量化后的信号转换为边沿抖动测量结果,并输出至系统控制及数据处理模块;The edge jitter measurement module converts the quantized signals output by the first analog-to-digital converter and the second analog-to-digital converter into edge jitter measurement results, and outputs the result to the system control and data processing module;

系统控制及数据处理模块,接收时钟数据恢复模块的数字信号、时钟分路器输出的参考时钟和边沿抖动测量模块的边沿抖动测量结果,产生光纤延迟线控制信号和输出最终的边沿抖动测量结果。The system control and data processing module receives the digital signal of the clock data recovery module, the reference clock output by the clock splitter and the edge jitter measurement result of the edge jitter measurement module, generates the optical fiber delay line control signal and outputs the final edge jitter measurement result.

一种基于上述数字光发射机边沿抖动检测器的检测方法,包括以下步骤:A detection method based on the above-mentioned digital optical transmitter edge jitter detector, comprising the following steps:

步骤S0、设定光纤延迟线的延迟量的初始值为0;Step S0, setting the initial value of the delay amount of the optical fiber delay line to 0;

步骤S1、在信号切片时钟的控制下,双端口调制器对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,然后分别经双端口调制器A口和双端口调制器B口输入至第一光电探测器和第二光电探测器进行光电转换,得到两路电脉冲信号;Step S1, under the control of the signal slicing clock, the dual-port modulator slices the optical signal string output by the optical fiber delay line to obtain two optical pulse signals, and then passes through the dual-port modulator A port and the dual-port modulator B port respectively. Input to the first photodetector and the second photodetector for photoelectric conversion to obtain two-way electrical pulse signals;

步骤S2、两路电脉冲信号分别在第一模数转换器和第二模数转换器中进行数字量化,得到两路量化后的信号;In step S2, the two circuits of electrical pulse signals are digitally quantized in the first analog-to-digital converter and the second analog-to-digital converter, respectively, to obtain two-path quantized signals;

步骤S3、定义光信号串的边沿时刻超前于信号切片时钟的边沿时刻为正抖动,光信号串的边沿时刻滞后于信号切片时钟的边沿时刻为负抖动,光信号串的边沿时刻等于信号切片时钟的边沿时刻为零抖动;Step S3, define that the edge time of the optical signal string is ahead of the edge time of the signal slice clock as positive jitter, and the edge time of the optical signal string lags behind the edge time of the signal slice clock as negative jitter, and the edge time of the optical signal string is equal to the signal slice clock. zero jitter at the edge moment of ;

边沿抖动测量模块对第一模数转换器和第二模数转换器的相邻两次采样值进行判断,得到边沿抖动测量结果,具体判断规则为:The edge jitter measurement module judges the adjacent two sampling values of the first analog-to-digital converter and the second analog-to-digital converter, and obtains the edge jitter measurement result. The specific judgment rules are:

当第一模数转换器的采样值NA= M,且第二模数转换器的采样值NB满足0<NB<M时,边沿抖动测量结果为:上升沿正抖动,边沿抖动值D1=NB/M,M为第一模数转换器和第二模数转换器的满幅度最大值;When the sampling value N A = M of the first analog-to-digital converter, and the sampling value N B of the second analog-to-digital converter satisfies 0<N B <M, the edge jitter measurement result is: positive jitter on the rising edge, edge jitter value D 1 =N B /M, where M is the full-scale maximum value of the first analog-to-digital converter and the second analog-to-digital converter;

当第一模数转换器的采样值NA>0.95M,且第二模数转换器的采样值NB>0时,边沿抖动测量结果为:上升沿零抖动,边沿抖动值D2=0;When the sampling value of the first analog-to-digital converter N A >0.95M, and the sampling value of the second analog-to-digital converter N B >0, the edge jitter measurement result is: zero jitter on the rising edge, edge jitter value D 2 =0 ;

当第一模数转换器的采样值NA<M,且第二模数转换器的采样值NB=0时,边沿抖动测量结果为:上升沿负抖动,边沿抖动值D3=(M-NA)/M;When the sampling value of the first analog-to-digital converter N A <M and the sampling value of the second analog-to-digital converter N B =0, the edge jitter measurement result is: negative jitter on the rising edge, edge jitter value D 3 =(MN A )/M;

当第一模数转换器的采样值NA=0,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿正抖动,边沿抖动值D4=(M-NB)/M;When the sampling value of the first analog-to-digital converter N A =0, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: positive jitter on the falling edge, edge jitter value D 4 =(MN B )/M;

当第一模数转换器的采样值NA>0,且第二模数转换器的采样值NB>0.95M时,边沿抖动测量结果为:下降沿零抖动,边沿抖动值D5=0;When the sampling value of the first analog-to-digital converter N A >0, and the sampling value of the second analog-to-digital converter N B >0.95M, the edge jitter measurement result is: zero jitter on the falling edge, edge jitter value D 5 =0 ;

当第一模数转换器的采样值NA=M,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿负抖动,边沿抖动值D6=NA/M;When the sampling value of the first analog-to-digital converter N A =M, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: negative jitter on the falling edge, edge jitter value D 6 =N A /M;

当系统控制及数据处理模块通过数字信号和参考时钟检测到边沿跳变时,提取边沿抖动测量模块输出的边沿抖动测量结果并存储;When the system control and data processing module detects the edge transition through the digital signal and the reference clock, the edge jitter measurement result output by the edge jitter measurement module is extracted and stored;

步骤S4、系统控制及数据处理模块根据步骤S3存储的边沿抖动测量结果判断光信号串与信号切片时钟是否对准;当光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布时,光信号串与信号切片时钟对准,则执行步骤S1~S3,开始正式测量,并输出最终的边沿抖动测量结果;当光信号串的边沿抖动测量结果中所有边沿抖动值不满足均值为0的正态分布时,光信号串与信号切片时钟未对准,此时系统控制及数据处理模块产生光纤延迟线控制信号控制光纤延迟线的延迟量,均值为负时增加光纤延迟线的延迟量,均值为正时减小光纤延迟线的延迟量,重复步骤S1~S3,直到光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布。Step S4, the system control and data processing module judges whether the optical signal string and the signal slice clock are aligned according to the edge jitter measurement result stored in step S3; When the optical signal string is aligned with the signal slice clock, steps S1~S3 are executed to start the formal measurement, and the final edge jitter measurement result is output; when all the edge jitter values in the edge jitter measurement result of the optical signal string do not satisfy When the mean value is 0, the optical signal string and the signal slice clock are not aligned. At this time, the system control and data processing module generates the fiber delay line control signal to control the delay amount of the fiber delay line. When the mean value is negative, the fiber delay line is added. When the average value is positive, reduce the delay amount of the optical fiber delay line, and repeat steps S1 to S3 until all edge jitter values in the edge jitter measurement results of the optical signal string satisfy a normal distribution with a mean value of 0.

进一步的,步骤S1中,当信号切片时钟为1时,光信号串经双端口调制器A口输入第一光电探测器;当信号切片时钟为0时,光信号串经双端口调制器B口输入第二光电探测器。Further, in step S1, when the signal slice clock is 1, the optical signal string is input to the first photodetector through port A of the dual-port modulator; when the signal slice clock is 0, the optical signal string is passed through the port B of the dual-port modulator. Enter the second photodetector.

进一步的,步骤S2中,第一模数转换器和第二模数转换器的采样时间间隔T,采样速率均为时钟数据恢复模块输出的参考时钟的速率,T=1/f CLK3f CLK3为信号切片时钟的频率。Further, in step S2, the sampling time interval T of the first analog-to-digital converter and the second analog-to-digital converter, the sampling rate is the rate of the reference clock output by the clock data recovery module, T=1/ f CLK3 , f CLK3 is the frequency of the signal slice clock.

进一步的,步骤S3中,所述相邻两次采样值为边沿前一时刻的第二模数转换器的采样值NB和边沿后一时刻的第一模数转换器的采样值NAFurther, in step S3, the two adjacent sampling values are the sampling value NB of the second analog-to-digital converter at the moment before the edge and the sampling value NA of the first analog - to - digital converter at the moment after the edge.

与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:

本发明提供的一种数字光发射机边沿抖动检测器及检测方法,对测量时间段内的所有边沿信号逐一测量,极大地提升了测量有效性,降低了测量过程中的对元器件的参数要求和资源开销,解决了传统测量方法中的技术瓶颈。An edge jitter detector and a detection method of a digital optical transmitter provided by the present invention measure all edge signals one by one in a measurement time period, which greatly improves the measurement effectiveness and reduces the parameter requirements for components in the measurement process. and resource overhead, solving the technical bottleneck in traditional measurement methods.

附图说明Description of drawings

图1为本发明提供的一种数字光发射机边沿抖动检测器的结构示意图;1 is a schematic structural diagram of a digital optical transmitter edge jitter detector provided by the present invention;

图2为本发明光信号切片过程示意图;2 is a schematic diagram of an optical signal slicing process of the present invention;

图3为边沿抖动测量结果判断过程示意图。FIG. 3 is a schematic diagram of the judgment process of the edge jitter measurement result.

具体实施方式Detailed ways

一种数字光发射机边沿抖动检测器,如图1所示,包括:A digital optical transmitter edge jitter detector, as shown in Figure 1, includes:

1×2光分路器,用于将数字光发射机输出的强度调制的光信号串分为两路,分别输入光纤延迟线和第三光电探测器;The 1×2 optical splitter is used to divide the intensity-modulated optical signal string output by the digital optical transmitter into two channels, which are respectively input to the fiber delay line and the third photodetector;

第三光电探测器,用于将接收到的光信号串还原为电信号串,并输入时钟数据恢复模块;The third photodetector is used to restore the received optical signal string to an electrical signal string, and input the clock data recovery module;

时钟数据恢复模块,用于从第三光电探测器输出的电信号串中恢复出数字光发射机输出的数字信号DATA以及该数字信号的参考时钟CLK0,参考时钟CLK0输入时钟分路器,数字信号DATA输入系统控制及数据处理模块;The clock data recovery module is used for recovering the digital signal DATA output by the digital optical transmitter and the reference clock CLK 0 of the digital signal from the electrical signal string output by the third photodetector, and the reference clock CLK 0 is input to the clock divider, Digital signal DATA input system control and data processing module;

时钟分路器,用于将参考时钟CLK0分为两路,一路CLK1输入系统控制及数据处理模块,另一路CLK2输入时钟倍频整形模块;Clock splitter, used to divide the reference clock CLK 0 into two channels, one channel CLK 1 is input to the system control and data processing module, and the other channel CLK 2 is input to the clock multiplication and shaping module;

时钟倍频整形模块,将输入的参考时钟CLK2进行二倍频和整形,得到信号切片时钟CLK3,输出至双端口调制器;The clock frequency multiplication and shaping module doubles and reshapes the input reference clock CLK 2 to obtain the signal slice clock CLK 3 , which is output to the dual-port modulator;

光纤延迟线,在系统控制及数据处理模块输出的光纤延迟线控制信号的控制下,对接收到的光信号串进行可控延时后输出至双端口调制器;The optical fiber delay line, under the control of the optical fiber delay line control signal output by the system control and data processing module, performs controllable delay on the received optical signal string and outputs it to the dual-port modulator;

双端口调制器,在信号切片时钟CLK3的控制下,对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,分别输入至第一光电探测器和第二光电探测器;The dual-port modulator, under the control of the signal slicing clock CLK 3 , slices the optical signal string output by the optical fiber delay line to obtain two optical pulse signals, which are respectively input to the first photodetector and the second photodetector;

第一光电探测器和第二光电探测器,用于将双端口调制器输出的两路光脉冲信号转换为电脉冲信号,并分别输入第一模数转换器和第二模数转换器;The first photodetector and the second photodetector are used to convert the two-path optical pulse signals output by the dual-port modulator into electrical pulse signals, and input them to the first analog-to-digital converter and the second analog-to-digital converter respectively;

第一模数转换器和第二模数转换器,用于对第一光电探测器和第二光电探测器输出的电脉冲信号进行数字量化,量化后的信号输入边沿抖动测量模块;The first analog-to-digital converter and the second analog-to-digital converter are used to digitally quantize the electrical pulse signals output by the first photodetector and the second photodetector, and the quantized signal is input to the edge jitter measurement module;

边沿抖动测量模块,将第一模数转换器和第二模数转换器输出的量化后的信号转换为边沿抖动测量结果,并输出至系统控制及数据处理模块;The edge jitter measurement module converts the quantized signals output by the first analog-to-digital converter and the second analog-to-digital converter into edge jitter measurement results, and outputs the result to the system control and data processing module;

系统控制及数据处理模块,接收时钟数据恢复模块的数字信号DATA、时钟分路器输出的参考时钟CLK1和边沿抖动测量模块的边沿抖动测量结果,产生光纤延迟线控制信号和输出最终的边沿抖动测量结果。The system control and data processing module receives the digital signal DATA of the clock data recovery module, the reference clock CLK 1 output by the clock splitter and the edge jitter measurement result of the edge jitter measurement module, generates the optical fiber delay line control signal and outputs the final edge jitter measurement results.

一种基于上述数字光发射机边沿抖动检测器的检测方法,包括以下步骤:A detection method based on the above-mentioned digital optical transmitter edge jitter detector, comprising the following steps:

步骤S0、设定光纤延迟线的延迟量的初始值为0;Step S0, setting the initial value of the delay amount of the optical fiber delay line to 0;

步骤S1、在信号切片时钟CLK3的控制下,双端口调制器对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,然后分别经双端口调制器A口(通道A)和双端口调制器B口(通道B)输入至第一光电探测器和第二光电探测器进行光电转换,得到两路电脉冲信号;其中,当信号切片时钟CLK3为1时,光信号串经双端口调制器A口(通道A)输入第一光电探测器,当信号切片时钟CLK3为0时,光信号串经双端口调制器B口(通道B)输入第二光电探测器,如图2所示;Step S1, under the control of the signal slicing clock CLK 3 , the dual-port modulator slices the optical signal string output by the optical fiber delay line to obtain two optical pulse signals, and then pass through the dual-port modulator A port (channel A) and The B port (channel B) of the dual-port modulator is input to the first photodetector and the second photodetector for photoelectric conversion to obtain two electrical pulse signals; wherein, when the signal slice clock CLK 3 is 1, the optical signal serial Port A (channel A) of the dual-port modulator is input to the first photodetector. When the signal slice clock CLK 3 is 0, the optical signal string is input to the second photodetector through port B (channel B) of the dual-port modulator, as shown in the figure 2 shown;

步骤S2、两路电脉冲信号分别在第一模数转换器和第二模数转换器中进行数字量化,得到两路量化后的信号;其中,第一模数转换器和第二模数转换器的采样时间间隔T,采样速率均为参考时钟CLK0的速率,T=1/f CLK3f CLK3为信号切片时钟的频率;由模数转换器基本原理可知,其在进行电压信号转换过程中,分为两个过程:信号取样和信号量化;模数转换器以参考时钟CLK0的速率进行采样,其转换周期为2T,2T=2/f CLK3=1/f CLK0f CLK0为参考时钟CLK0的频率;信号取样在T时间长度内完成,信号量化在后一个T时间长度内完成,在信号取样中模数转换器获得的信号幅值为输入电压信号的积分,信号量化将该幅值转换为数字信号;In step S2, the two circuits of electrical pulse signals are digitally quantized in the first analog-to-digital converter and the second analog-to-digital converter, respectively, to obtain two quantized signals; wherein, the first analog-to-digital converter and the second analog-to-digital converter The sampling time interval T of the converter, the sampling rate is the rate of the reference clock CLK 0 , T=1/ f CLK3 , f CLK3 is the frequency of the signal slice clock; from the basic principle of the analog-to-digital converter, it can be known that it is in the process of voltage signal conversion. , divided into two processes: signal sampling and signal quantization; the analog-to-digital converter samples at the rate of the reference clock CLK 0 , and its conversion period is 2T, 2T=2/ f CLK3 =1/ f CLK0 , f CLK0 is the reference The frequency of the clock CLK 0 ; the signal sampling is completed within the T time length, and the signal quantization is completed within the next T time length. In the signal sampling, the signal amplitude obtained by the analog-to-digital converter is the integral of the input voltage signal, and the signal quantization Amplitude is converted to digital signal;

步骤S3、光信号串切片后针对信号上升沿和下降沿,均存在三种抖动形式。定义光信号串的边沿时刻超前于信号切片时钟的边沿时刻为正抖动,光信号串的边沿时刻滞后于信号切片时钟的边沿时刻为负抖动,光信号串的边沿时刻等于信号切片时钟的边沿时刻为零抖动;In step S3, after the optical signal string is sliced, there are three types of jitter for the rising edge and the falling edge of the signal. It is defined that the edge time of the optical signal string is ahead of the edge time of the signal slice clock as positive jitter, and the edge time of the optical signal string lags behind the edge time of the signal slice clock as negative jitter, and the edge time of the optical signal string is equal to the edge time of the signal slice clock. zero jitter;

边沿抖动测量模块对第一模数转换器和第二模数转换器的相邻两次采样值进行判断,得到边沿抖动测量结果,如图3所示;其中,所述相邻两次采样值为边沿前一时刻的第二模数转换器的采样值NB和边沿后一时刻的第一模数转换器的采样值NA;具体判断规则为:The edge jitter measurement module judges the adjacent two sampling values of the first analog-to-digital converter and the second analog-to-digital converter, and obtains the edge jitter measurement result, as shown in Figure 3; wherein, the two adjacent sampling values be the sampling value N B of the second analog-to-digital converter at the moment before the edge and the sampling value N A of the first analog-to-digital converter at the moment after the edge; the specific judgment rule is:

假设第一模数转换器和第二模数转换器的满幅度最大值为M,第一模数转换器的采样值为NA,第二模数转换器的采样值为NBAssuming that the maximum full-scale value of the first analog-to-digital converter and the second analog-to-digital converter is M, the sampling value of the first analog-to-digital converter is N A , and the sampling value of the second analog-to-digital converter is N B ;

当第一模数转换器的采样值NA= M,且第二模数转换器的采样值NB满足0<NB<M时,边沿抖动测量结果为:上升沿正抖动,边沿抖动值D1=NB/M;When the sampling value N A = M of the first analog-to-digital converter, and the sampling value N B of the second analog-to-digital converter satisfies 0<N B <M, the edge jitter measurement result is: positive jitter on the rising edge, edge jitter value D 1 =N B /M;

当第一模数转换器的采样值NA>0.95M,且第二模数转换器的采样值NB>0时,边沿抖动测量结果为:上升沿零抖动,边沿抖动值D2=0;When the sampling value of the first analog-to-digital converter N A >0.95M, and the sampling value of the second analog-to-digital converter N B >0, the edge jitter measurement result is: zero jitter on the rising edge, edge jitter value D 2 =0 ;

当第一模数转换器的采样值NA<M,且第二模数转换器的采样值NB=0时,边沿抖动测量结果为:上升沿负抖动,边沿抖动值D3=(M-NA)/M;When the sampling value of the first analog-to-digital converter N A <M and the sampling value of the second analog-to-digital converter N B =0, the edge jitter measurement result is: negative jitter on the rising edge, edge jitter value D 3 =(MN A )/M;

当第一模数转换器的采样值NA=0,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿正抖动,边沿抖动值D4=(M-NB)/M;When the sampling value of the first analog-to-digital converter N A =0, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: positive jitter on the falling edge, edge jitter value D 4 =(MN B )/M;

当第一模数转换器的采样值NA>0,且第二模数转换器的采样值NB>0.95M时,边沿抖动测量结果为:下降沿零抖动,边沿抖动值D5=0;When the sampling value of the first analog-to-digital converter N A >0, and the sampling value of the second analog-to-digital converter N B >0.95M, the edge jitter measurement result is: zero jitter on the falling edge, edge jitter value D 5 =0 ;

当第一模数转换器的采样值NA=M,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿负抖动,边沿抖动值D6=NA/M;When the sampling value of the first analog-to-digital converter N A =M, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: negative jitter on the falling edge, edge jitter value D 6 =N A /M;

当系统控制及数据处理模块通过数字信号DATA和参考时钟CLK1检测到边沿跳变时,提取边沿抖动测量模块输出的边沿抖动测量结果并存储;When the system control and data processing module detects the edge jump through the digital signal DATA and the reference clock CLK 1 , extract and store the edge jitter measurement result output by the edge jitter measurement module;

步骤S4、系统控制及数据处理模块根据步骤S3存储的边沿抖动测量结果判断光信号串与信号切片时钟CLK3是否对准;当光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布时,光信号串与信号切片时钟对准,则执行步骤S1~S3,开始正式测量,并输出最终的边沿抖动测量结果;当光信号串的边沿抖动测量结果中所有边沿抖动值不满足均值为0的正态分布时,光信号串与信号切片时钟未对准,此时系统控制及数据处理模块产生光纤延迟线控制信号控制光纤延迟线的延迟量,光信号串的边沿抖动测量结果中所有边沿抖动值的均值为负时增加光纤延迟线的延迟量,光信号串的边沿抖动测量结果中所有边沿抖动值的均值为正时减小光纤延迟线的延迟量,重复步骤S1~S3,直到光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布。Step S4, the system control and data processing module judges whether the optical signal string is aligned with the signal slice clock CLK 3 according to the edge jitter measurement result stored in step S3; when all edge jitter values in the edge jitter measurement result of the optical signal string meet the mean value of 0 When the normal distribution of , the optical signal string is aligned with the signal slice clock, then perform steps S1~S3, start the formal measurement, and output the final edge jitter measurement result; when all the edge jitter values in the edge jitter measurement result of the optical signal string When the normal distribution with mean value of 0 is not satisfied, the optical signal string and the signal slice clock are not aligned. At this time, the system control and data processing module generates the optical fiber delay line control signal to control the delay amount of the optical fiber delay line, and the edge jitter of the optical signal string When the mean value of all edge jitter values in the measurement result is negative, increase the delay amount of the optical fiber delay line, and when the mean value of all edge jitter values in the edge jitter measurement result of the optical signal string is positive, reduce the delay amount of the optical fiber delay line, and repeat step S1 ~S3, until all edge jitter values in the edge jitter measurement result of the optical signal string satisfy a normal distribution with a mean value of 0.

Claims (2)

1.一种数字光发射机边沿抖动检测器,其特征在于,包括:1. a digital optical transmitter edge jitter detector, is characterized in that, comprises: 1×2光分路器,用于将数字光发射机输出的强度调制的光信号串分为两路,分别输入光纤延迟线和第三光电探测器;The 1×2 optical splitter is used to divide the intensity-modulated optical signal string output by the digital optical transmitter into two channels, which are respectively input to the fiber delay line and the third photodetector; 第三光电探测器,用于将接收到的光信号串还原为电信号串,并输入时钟数据恢复模块;The third photodetector is used to restore the received optical signal string to an electrical signal string, and input the clock data recovery module; 时钟数据恢复模块,用于从第三光电探测器输出的电信号串中恢复出数字光发射机输出的数字信号以及数字信号的参考时钟,参考时钟输入时钟分路器,数字信号输入系统控制及数据处理模块;The clock data recovery module is used to recover the digital signal output by the digital optical transmitter and the reference clock of the digital signal from the electrical signal string output by the third photodetector, the reference clock is input to the clock splitter, the digital signal is input to the system control and data processing module; 时钟分路器,用于将参考时钟分为两路,一路输入系统控制及数据处理模块,另一路输入时钟倍频整形模块;Clock splitter, used to divide the reference clock into two channels, one input to the system control and data processing module, the other input to the clock multiplication and shaping module; 时钟倍频整形模块,将输入的参考时钟进行二倍频和整形,得到信号切片时钟,输出至双端口调制器;The clock frequency multiplication and shaping module doubles and reshapes the input reference clock to obtain a signal slice clock, which is output to the dual-port modulator; 光纤延迟线,在系统控制及数据处理模块输出的光纤延迟线控制信号的控制下,对接收到的光信号串进行可控延时后输出至双端口调制器;The optical fiber delay line, under the control of the optical fiber delay line control signal output by the system control and data processing module, performs controllable delay on the received optical signal string and outputs it to the dual-port modulator; 双端口调制器,在信号切片时钟的控制下,对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,分别输入至第一光电探测器和第二光电探测器;当信号切片时钟为1时,光信号串经双端口调制器A口输入第一光电探测器,当信号切片时钟为0时,光信号串经双端口调制器B口输入第二光电探测器;The dual-port modulator, under the control of the signal slicing clock, slices the optical signal string output by the fiber delay line to obtain two optical pulse signals, which are respectively input to the first photodetector and the second photodetector; when the signal is sliced When the clock is 1, the optical signal string is input to the first photodetector through port A of the dual-port modulator, and when the signal slice clock is 0, the optical signal string is input to the second photodetector through port B of the dual-port modulator; 第一光电探测器和第二光电探测器,用于将双端口调制器输出的两路光脉冲信号转换为电脉冲信号,并分别输入第一模数转换器和第二模数转换器;The first photodetector and the second photodetector are used to convert the two-path optical pulse signals output by the dual-port modulator into electrical pulse signals, and input them to the first analog-to-digital converter and the second analog-to-digital converter respectively; 第一模数转换器和第二模数转换器,用于对第一光电探测器和第二光电探测器输出的电脉冲信号进行数字量化,量化后的信号输入边沿抖动测量模块;The first analog-to-digital converter and the second analog-to-digital converter are used to digitally quantize the electrical pulse signals output by the first photodetector and the second photodetector, and the quantized signal is input to the edge jitter measurement module; 边沿抖动测量模块,将第一模数转换器和第二模数转换器输出的量化后的信号转换为边沿抖动测量结果,并输出至系统控制及数据处理模块;The edge jitter measurement module converts the quantized signals output by the first analog-to-digital converter and the second analog-to-digital converter into edge jitter measurement results, and outputs the result to the system control and data processing module; 系统控制及数据处理模块,接收时钟数据恢复模块的数字信号、时钟分路器输出的参考时钟和边沿抖动测量模块的边沿抖动测量结果,产生光纤延迟线控制信号和输出最终的边沿抖动测量结果;The system control and data processing module receives the digital signal of the clock data recovery module, the reference clock output by the clock splitter and the edge jitter measurement result of the edge jitter measurement module, generates the optical fiber delay line control signal and outputs the final edge jitter measurement result; 所述数字光发射机边沿抖动检测器的检测方法,具体包括以下步骤:The detection method of the edge jitter detector of the digital optical transmitter specifically includes the following steps: 步骤S0、设定光纤延迟线的延迟量的初始值为0;Step S0, setting the initial value of the delay amount of the optical fiber delay line to 0; 步骤S1、在信号切片时钟的控制下,双端口调制器对光纤延迟线输出的光信号串进行切片,得到两路光脉冲信号,然后分别经双端口调制器A口和双端口调制器B口输入至第一光电探测器和第二光电探测器进行光电转换,得到两路电脉冲信号;Step S1, under the control of the signal slicing clock, the dual-port modulator slices the optical signal string output by the optical fiber delay line to obtain two optical pulse signals, and then passes through the dual-port modulator A port and the dual-port modulator B port respectively. Input to the first photodetector and the second photodetector for photoelectric conversion to obtain two-way electrical pulse signals; 步骤S2、两路电脉冲信号分别在第一模数转换器和第二模数转换器中进行数字量化,得到两路量化后的信号;In step S2, the two circuits of electrical pulse signals are digitally quantized in the first analog-to-digital converter and the second analog-to-digital converter, respectively, to obtain two-path quantized signals; 步骤S3、定义光信号串的边沿时刻超前于信号切片时钟的边沿时刻为正抖动,光信号串的边沿时刻滞后于信号切片时钟的边沿时刻为负抖动,光信号串的边沿时刻等于信号切片时钟的边沿时刻为零抖动;Step S3, define that the edge time of the optical signal string is ahead of the edge time of the signal slice clock as positive jitter, and the edge time of the optical signal string lags behind the edge time of the signal slice clock as negative jitter, and the edge time of the optical signal string is equal to the signal slice clock. zero jitter at the edge moment of ; 边沿抖动测量模块对第一模数转换器和第二模数转换器的相邻两次采样值进行判断,得到边沿抖动测量结果,所述相邻两次采样值为边沿前一时刻的第二模数转换器的采样值NB和边沿后一时刻的第一模数转换器的采样值NA;具体判断规则为:The edge jitter measurement module judges the adjacent two sampling values of the first analog-to-digital converter and the second analog-to-digital converter, and obtains the edge jitter measurement result, and the two adjacent sampling values are the second time before the edge. The sampling value N B of the analog-to-digital converter and the sampling value N A of the first analog-to-digital converter at a moment after the edge; the specific judgment rule is: 当第一模数转换器的采样值NA= M,且第二模数转换器的采样值NB满足0<NB<M时,边沿抖动测量结果为:上升沿正抖动,边沿抖动值D1=NB/M,M为第一模数转换器和第二模数转换器的满幅度最大值;When the sampling value N A = M of the first analog-to-digital converter, and the sampling value N B of the second analog-to-digital converter satisfies 0<N B <M, the edge jitter measurement result is: positive jitter on the rising edge, edge jitter value D 1 =N B /M, where M is the full-scale maximum value of the first analog-to-digital converter and the second analog-to-digital converter; 当第一模数转换器的采样值NA>0.95M,且第二模数转换器的采样值NB>0时,边沿抖动测量结果为:上升沿零抖动,边沿抖动值D2=0;When the sampling value of the first analog-to-digital converter N A >0.95M, and the sampling value of the second analog-to-digital converter N B >0, the edge jitter measurement result is: zero jitter on the rising edge, edge jitter value D 2 =0 ; 当第一模数转换器的采样值NA<M,且第二模数转换器的采样值NB=0时,边沿抖动测量结果为:上升沿负抖动,边沿抖动值D3=(M-NA)/M;When the sampling value of the first analog-to-digital converter N A <M and the sampling value of the second analog-to-digital converter N B =0, the edge jitter measurement result is: negative jitter on the rising edge, edge jitter value D 3 =(MN A )/M; 当第一模数转换器的采样值NA=0,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿正抖动,边沿抖动值D4=(M-NB)/M;When the sampling value of the first analog-to-digital converter N A =0, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: positive jitter on the falling edge, edge jitter value D 4 =(MN B )/M; 当第一模数转换器的采样值NA>0,且第二模数转换器的采样值NB>0.95M时,边沿抖动测量结果为:下降沿零抖动,边沿抖动值D5=0;When the sampling value of the first analog-to-digital converter N A >0, and the sampling value of the second analog-to-digital converter N B >0.95M, the edge jitter measurement result is: zero jitter on the falling edge, edge jitter value D 5 =0 ; 当第一模数转换器的采样值NA=M,且第二模数转换器的采样值NB<M时,边沿抖动测量结果为:下降沿负抖动,边沿抖动值D6=NA/M;When the sampling value of the first analog-to-digital converter N A =M, and the sampling value of the second analog-to-digital converter N B <M, the edge jitter measurement result is: negative jitter on the falling edge, edge jitter value D 6 =N A /M; 当系统控制及数据处理模块通过数字信号和参考时钟检测到边沿跳变时,提取边沿抖动测量模块输出的边沿抖动测量结果并存储;When the system control and data processing module detects the edge transition through the digital signal and the reference clock, the edge jitter measurement result output by the edge jitter measurement module is extracted and stored; 步骤S4、系统控制及数据处理模块根据步骤S3存储的边沿抖动测量结果判断光信号串与信号切片时钟是否对准;当光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布时,光信号串与信号切片时钟对准,则执行步骤S1~S3,开始正式测量,并输出最终的边沿抖动测量结果;当光信号串的边沿抖动测量结果中所有边沿抖动值不满足均值为0的正态分布时,光信号串与信号切片时钟未对准,此时系统控制及数据处理模块产生光纤延迟线控制信号控制光纤延迟线的延迟量,均值为负时增加光纤延迟线的延迟量,均值为正时减小光纤延迟线的延迟量,重复步骤S1~S3,直到光信号串的边沿抖动测量结果中所有边沿抖动值满足均值为0的正态分布。Step S4, the system control and data processing module judges whether the optical signal string and the signal slice clock are aligned according to the edge jitter measurement result stored in step S3; When the optical signal string is aligned with the signal slice clock, steps S1~S3 are executed to start the formal measurement, and the final edge jitter measurement result is output; when all the edge jitter values in the edge jitter measurement result of the optical signal string do not satisfy When the mean value is 0, the optical signal string and the signal slice clock are not aligned. At this time, the system control and data processing module generates the fiber delay line control signal to control the delay amount of the fiber delay line. When the mean value is negative, the fiber delay line is added. When the average value is positive, reduce the delay amount of the optical fiber delay line, and repeat steps S1 to S3 until all edge jitter values in the edge jitter measurement results of the optical signal string satisfy a normal distribution with a mean value of 0. 2.根据权利要求1所述的数字光发射机边沿抖动检测器,其特征在于,步骤S2中,第一模数转换器和第二模数转换器的采样时间间隔T,采样速率均为时钟数据恢复模块输出的参考时钟的速率,T=1/f CLK3 f CLK3为信号切片时钟的频率。2. The digital optical transmitter edge jitter detector according to claim 1, characterized in that, in step S2, the sampling time interval T of the first analog-to-digital converter and the second analog-to-digital converter, and the sampling rate is a clock The rate of the reference clock output by the data recovery module, T=1/ f CLK3 , where f CLK3 is the frequency of the signal slice clock.
CN202210639757.XA 2022-06-08 2022-06-08 Digital optical transmitter edge jitter detector Expired - Fee Related CN114726437B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210639757.XA CN114726437B (en) 2022-06-08 2022-06-08 Digital optical transmitter edge jitter detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210639757.XA CN114726437B (en) 2022-06-08 2022-06-08 Digital optical transmitter edge jitter detector

Publications (2)

Publication Number Publication Date
CN114726437A CN114726437A (en) 2022-07-08
CN114726437B true CN114726437B (en) 2022-10-14

Family

ID=82232398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210639757.XA Expired - Fee Related CN114726437B (en) 2022-06-08 2022-06-08 Digital optical transmitter edge jitter detector

Country Status (1)

Country Link
CN (1) CN114726437B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115866108B (en) * 2022-12-01 2024-12-17 天津电气科学研究院有限公司 Clock data recovery method for long-distance industrial optical fiber communication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366631B1 (en) * 1997-09-13 2002-04-02 Sony Precision Engineering Center (S) Pte. Ltd. Jitter measuring method utilizing A/D conversion and device
CN1705885A (en) * 2002-10-18 2005-12-07 勒克罗伊公司 Method and apparatus for determining inter-symbol interference for estimating data dependent jitter
CN1838584A (en) * 2005-03-24 2006-09-27 蔚华科技股份有限公司 Method and device for measuring signal jitter
CN1975688A (en) * 2005-11-29 2007-06-06 特克特朗尼克公司 Transmission delay and dithering measure
CN101232333A (en) * 2008-01-16 2008-07-30 中兴通讯股份有限公司 Clock shake measuring method and oscilloscope for measuring clock shake
CN110398292A (en) * 2019-07-11 2019-11-01 北京大学 A high-sensitivity optical frequency comb clock jitter measurement method and system
CN111555930A (en) * 2020-04-23 2020-08-18 电子科技大学 Method and system for measuring digital signal time jitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355623A (en) * 2018-12-24 2020-06-30 苏州超锐微电子有限公司 Method for detecting gigabit Ethernet SerDes signal jitter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366631B1 (en) * 1997-09-13 2002-04-02 Sony Precision Engineering Center (S) Pte. Ltd. Jitter measuring method utilizing A/D conversion and device
CN1705885A (en) * 2002-10-18 2005-12-07 勒克罗伊公司 Method and apparatus for determining inter-symbol interference for estimating data dependent jitter
CN1838584A (en) * 2005-03-24 2006-09-27 蔚华科技股份有限公司 Method and device for measuring signal jitter
CN1975688A (en) * 2005-11-29 2007-06-06 特克特朗尼克公司 Transmission delay and dithering measure
CN101232333A (en) * 2008-01-16 2008-07-30 中兴通讯股份有限公司 Clock shake measuring method and oscilloscope for measuring clock shake
CN110398292A (en) * 2019-07-11 2019-11-01 北京大学 A high-sensitivity optical frequency comb clock jitter measurement method and system
CN111555930A (en) * 2020-04-23 2020-08-18 电子科技大学 Method and system for measuring digital signal time jitter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Design of 6.8 mW All Digital Delay Locked Loop With Digitally Controlled Dither Cancellation for TDC in Ranging Sensor;Muhammad Riaz Ur Rehman等;《IEEE Access》;20200324;全文 *
一种基于自参考源的高精度时间抖动测量方法;徐鹏;《中国优秀硕士学位论文全文数据库 基础科学辑》;20210615;全文 *
光电振荡器及其应用研究;范志强;《中国博士学位论文全文数据库 信息科技辑》;20210315;全文 *

Also Published As

Publication number Publication date
CN114726437A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
CA1152164B (en) Dc free encoding for data transmission system
US4631538A (en) Single frequency multitransmitter telemetry system
CN114726437B (en) Digital optical transmitter edge jitter detector
KR101817544B1 (en) Bluetooth signal receiving method and device using improved carrier frequency offset compensation
US8077063B2 (en) Method and system for determining bit stream zone statistics
CN113992319A (en) CDR circuit for receiver, Duo-Binary PAM4 receiver and transmission system
CN111988108B (en) Anti-jamming and high-precision signal synchronization method based on access code in bluetooth receiver
US7844020B2 (en) Transmission system, transmitter, receiver, and transmission method
US3838214A (en) Synchronization method and an arrangement for recovery of binary signals
EP0090728B1 (en) Process for transmitting a hdbn coded signal with an auxiliary binary signal, coder and decoder according to the process and remote repeater supervision of a digital link by such an auxiliary signal
CN106508104B (en) A kind of method of extension remote measurement coherent receiver frequency offset estimation range
CN114448595A (en) Clock data recovery circuit and serial receiver
CN102870386B (en) Decision feedback equalizer and receiver
CN103812505B (en) bit synchronization lock detector
CN107817721B (en) Electric power wave recording data synchronous acquisition system
US6271777B1 (en) Data transmission system employing clock-enriched data coding and sub-harmonic de-multiplexing
CN108880666B (en) Serial communication analyzer based on microwave photon technology and waveform reconstruction method thereof
CN114268433A (en) Nonlinear Compensation Method for High Speed Continuous Variable Quantum Key Distribution System
Dou et al. Jitter decomposition in high-speed communication systems
US20250097080A1 (en) Digital serializer/deserializer circuit and data eye monitoring method thereof
CN116470966B (en) Method, device and programmable controller for extracting optical signals
CN110943786B (en) Signal recovery device and method suitable for quantum teleportation system
Simon et al. Power spectrum of unbalanced NRZ and biphase signals in the presence of data asymmetry
CN115001587B (en) Single-photon Fourier transform signal analysis method
CN115296695B (en) A rate recovery method based on spreading factor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221014

CF01 Termination of patent right due to non-payment of annual fee