[go: up one dir, main page]

CN114740155B - A device and method for detecting evapotranspiration in forest ecosystems - Google Patents

A device and method for detecting evapotranspiration in forest ecosystems Download PDF

Info

Publication number
CN114740155B
CN114740155B CN202210334425.0A CN202210334425A CN114740155B CN 114740155 B CN114740155 B CN 114740155B CN 202210334425 A CN202210334425 A CN 202210334425A CN 114740155 B CN114740155 B CN 114740155B
Authority
CN
China
Prior art keywords
evapotranspiration
forest ecosystem
forest
ecosystem
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210334425.0A
Other languages
Chinese (zh)
Other versions
CN114740155A (en
Inventor
张欣
秦富仓
萨如拉
张秋良
田原
刘璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Agricultural University
Original Assignee
Inner Mongolia Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Agricultural University filed Critical Inner Mongolia Agricultural University
Priority to CN202210334425.0A priority Critical patent/CN114740155B/en
Publication of CN114740155A publication Critical patent/CN114740155A/en
Application granted granted Critical
Publication of CN114740155B publication Critical patent/CN114740155B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Botany (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种森林生态系统蒸散量的检测装置及方法,所述装置包括:多个植被蒸散监测装置;每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量;第一计算模块,用于基于预先获取的气象站的历史时间段内的气象资料计算得到第二蒸散量;第二计算模块,用于基于每一预设位置处的第一蒸散量和第二蒸散量计算得到第一系数;数据采集装置,用于获取所述森林生态系统当前所对应的气象资料;第三计算模块,用于基于该森林生态系统当前所对应的气象资料计算得到该森林生态系统当前所对应的第三蒸散量;第四计算模块,用于基于所述第一系数和所述森林生态系统当前所对应的第三蒸散量,获取该森林生态系统的实际蒸散量。

The invention relates to a device and a method for detecting evapotranspiration in a forest ecosystem. The device includes: a plurality of vegetation evapotranspiration monitoring devices; each vegetation evapotranspiration monitoring device is used to collect the first signal at a preset position in the forest ecosystem. an evapotranspiration; a first calculation module for calculating a second evapotranspiration based on pre-acquired meteorological data within a historical time period of a weather station; a second calculation module for calculating a second evapotranspiration based on the first evapotranspiration at each preset location The first coefficient is calculated by calculating the amount and the second evapotranspiration; the data acquisition device is used to obtain the current meteorological data corresponding to the forest ecosystem; the third calculation module is used to calculate based on the current corresponding meteorological data of the forest ecosystem Obtain the third evapotranspiration currently corresponding to the forest ecosystem; a fourth calculation module is used to obtain the actual evapotranspiration of the forest ecosystem based on the first coefficient and the third evapotranspiration currently corresponding to the forest ecosystem. quantity.

Description

一种森林生态系统蒸散量的检测装置及方法A device and method for detecting evapotranspiration in forest ecosystems

技术领域Technical field

本发明涉及蒸散量检测技术领域,尤其涉及一种森林生态系统蒸散量的检测装置及方法。The present invention relates to the technical field of evapotranspiration detection, and in particular to a device and method for detecting evapotranspiration in a forest ecosystem.

背景技术Background technique

现有技术中研究森林蒸散量的方法很多,如水分平衡法、能量平衡法、实测法、经验公式(如彭门公式)法等。其中,彭门公式法所需要的气象资料可以从气象站得到,然后在根据实测法或者能量平衡法的实测数据与彭门公式计算的可能蒸散量之比值,推算全年的蒸散量,用此方法可以得到比较简便地得到蒸散量的数据,为高海拔地区长期蒸散的研究提供了方便。There are many methods for studying forest evapotranspiration in the existing technology, such as water balance method, energy balance method, actual measurement method, empirical formula (such as Pengmen formula) method, etc. Among them, the meteorological data required by the Pengmen formula method can be obtained from weather stations, and then the annual evapotranspiration is calculated based on the ratio of the actual measured data or the energy balance method to the possible evapotranspiration calculated by the Pengmen formula. This method can obtain evapotranspiration data relatively easily, providing convenience for long-term evapotranspiration research in high-altitude areas.

但是,采用此方法也有一定的弊端,如彭门公式不能够直接的计算不同林型的蒸散量,在对森林生态系统的蒸散量的检测中没有考虑到不同林型的蒸散量的权重,同时,现有技术中也没有对森林生态系统蒸散量的检测装置,如授权公告号为CN104459052B的专利文件中所提及的一种适用于复杂地表的植被蒸散监测装置只是针对一块很小面积的地表上的植被的蒸散量进行监测,并不能对整个森林生态系统的蒸散量进行检测。However, there are certain drawbacks to using this method. For example, the Pengmen formula cannot directly calculate the evapotranspiration of different forest types. The weight of evapotranspiration of different forest types is not taken into account in the detection of evapotranspiration of forest ecosystems. At the same time, , there is no detection device for forest ecosystem evapotranspiration in the existing technology. For example, the vegetation evapotranspiration monitoring device suitable for complex ground surfaces mentioned in the patent document with the authorization announcement number CN104459052B only targets a small area of the surface. Monitoring the evapotranspiration of vegetation on the ground cannot detect the evapotranspiration of the entire forest ecosystem.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

鉴于现有技术的上述缺点、不足,本发明提供一种森林生态系统蒸散量的检测装置及方法,其解决了现有技术中并没有考虑到不同林型的蒸散量的权重同时不能对整个森林生态系统的蒸散量进行检测的技术问题。In view of the above-mentioned shortcomings and deficiencies of the prior art, the present invention provides a device and method for detecting evapotranspiration in a forest ecosystem, which solves the problem that the prior art does not take into account the weight of evapotranspiration of different forest types and cannot simultaneously measure the evapotranspiration of the entire forest. Technical issues in detecting evapotranspiration of ecosystems.

(二)技术方案(2) Technical solutions

为了达到上述目的,本发明采用的主要技术方案包括:In order to achieve the above objectives, the main technical solutions adopted by the present invention include:

第一方面,本发明实施例提供一种森林生态系统蒸散量的检测装置,包括:In a first aspect, embodiments of the present invention provide a device for detecting evapotranspiration in a forest ecosystem, including:

分别设置在森林生态系统中不同预设位置处的多个植被蒸散监测装置;Multiple vegetation evapotranspiration monitoring devices respectively installed at different preset positions in the forest ecosystem;

其中,每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量;Wherein, each vegetation evapotranspiration monitoring device is used to collect the first evapotranspiration amount at a preset position in the forest ecosystem;

第一计算模块,用于基于预先获取的气象站的该森林生态系统所对应的历史时间段内的气象资料采用彭门公式计算方法计算得到该森林生态系统所对应的第二蒸散量;The first calculation module is used to calculate the second evapotranspiration corresponding to the forest ecosystem by using the Pengmen formula calculation method based on the meteorological data in the historical time period corresponding to the forest ecosystem obtained from the weather station in advance;

第二计算模块,用于基于所述林生态系统中每一预设位置处的第一蒸散量和该森林生态系统所对应的第二蒸散量计算得到第一系数;A second calculation module, configured to calculate a first coefficient based on the first evapotranspiration at each preset position in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem;

数据采集装置,用于获取所述森林生态系统当前所对应的气象资料;A data collection device used to obtain current meteorological data corresponding to the forest ecosystem;

第三计算模块,用于基于该森林生态系统当前所对应的气象资料采用彭门公式计算方法计算得到该森林生态系统当前所对应的第三蒸散量;The third calculation module is used to calculate the third evapotranspiration corresponding to the forest ecosystem based on the current meteorological data corresponding to the forest ecosystem using the Pengmen formula calculation method;

第四计算模块,用于基于所述第一系数和所述森林生态系统当前所对应的第三蒸散量,获取该森林生态系统的实际蒸散量。A fourth calculation module is configured to obtain the actual evapotranspiration of the forest ecosystem based on the first coefficient and the third evapotranspiration currently corresponding to the forest ecosystem.

优选地,Preferably,

森林生态系统中每一所述预设位置的面积为5m×5m;The area of each preset location in the forest ecosystem is 5m×5m;

森林生态系统中每一预设位置处的第一蒸散量为预设位置的地表上的植被的蒸散量。The first evapotranspiration at each preset position in the forest ecosystem is the evapotranspiration of vegetation on the ground surface at the preset position.

优选地,Preferably,

所述植被蒸散监测装置的数量为N个;The number of vegetation evapotranspiration monitoring devices is N;

其中,N大于等于5。Among them, N is greater than or equal to 5.

优选地,Preferably,

所述历史时间段包括180天;The historical time period includes 180 days;

该森林生态系统所对应的历史时间段内的气象资料,包括:历史时间段内每一天的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射。The meteorological data corresponding to the historical time period of the forest ecosystem include: the highest temperature, lowest temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation for each day during the historical period.

优选地,所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:Preferably, the second calculation module calculates the first coefficient based on the first evapotranspiration at each location in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem, specifically including:

基于所有所述森林生态系统中每一位置处的第一蒸散量,获取相应的所有的第一蒸散量的平均值;Based on the first evapotranspiration at each location in all the forest ecosystems, obtain the corresponding average value of all first evapotranspiration;

基于所有的第一蒸散量的平均值和所述该森林生态系统所对应的第二蒸散量采用公式(1)计算得到第一系数;The first coefficient is calculated using formula (1) based on the average value of all first evapotranspiration and the second evapotranspiration corresponding to the forest ecosystem;

所述公式(1)为:The formula (1) is:

其中,f为第一系数;Among them, f is the first coefficient;

E为第二蒸散量;E is the second evapotranspiration;

Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices.

优选地,Preferably,

每一所述植被蒸散监测装置所在的森林生态系统中预设位置为森林生态系统中的任一中林型的所在的位置。The preset location in the forest ecosystem where each vegetation evapotranspiration monitoring device is located is the location of any medium forest type in the forest ecosystem.

优选地,所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:Preferably, the second calculation module calculates the first coefficient based on the first evapotranspiration at each location in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem, specifically including:

基于所有所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量采用公式(2)计算得到第一系数;The first coefficient is calculated using formula (2) based on the first evapotranspiration at each location in all the forest ecosystems and the second evapotranspiration corresponding to the forest ecosystem;

其中,所述公式(2)为:Among them, the formula (2) is:

其中,f为第一系数;Among them, f is the first coefficient;

E为第二蒸散量;E is the second evapotranspiration;

Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices.

ai为i个植被蒸散监测装置所采集的第一蒸散量所对应的预先设定的权重值。 ai is the preset weight value corresponding to the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices.

优选地,Preferably,

所述当前的气象资料包括:当前日期内的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射。The current meteorological data includes: maximum temperature, minimum temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation within the current date.

优选地,所述第四计算模块基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,获取该生态系统的实际蒸散量,具体包括:Preferably, the fourth calculation module obtains the actual evapotranspiration of the forest ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient, specifically including:

所述第四计算模块,用于基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,采用公式(3)计算获取该森林生态系统的实际蒸散量;The fourth calculation module is used to calculate and obtain the actual evapotranspiration of the forest ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient using formula (3);

所述公式(3)为:The formula (3) is:

其中,所述EA为该森林生态系统所对应的第三蒸散量;Wherein, the E A is the third evapotranspiration corresponding to the forest ecosystem;

所述EB为森林生态系统的实际蒸散量。The E B is the actual evapotranspiration of the forest ecosystem.

第二方面,本实施例还提供一种森林生态系统蒸散量的检测方法,所述方法由上述任一所述的森林生态系统蒸散量的检测装置所执行。In a second aspect, this embodiment also provides a method for detecting evapotranspiration in a forest ecosystem, which method is executed by any of the above-described devices for detecting evapotranspiration in a forest ecosystem.

(三)有益效果(3) Beneficial effects

本发明的有益效果是:本发明的一种森林生态系统蒸散量的检测装置,由于具有分别设置在森林生态系统中不同预设位置处的多个植被蒸散监测装置,每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量;以及第一计算模块,用于基于预先获取的气象站的该森林生态系统所对应的历史时间段内的气象资料采用彭门公式计算方法计算得到该森林生态系统所对应的第二蒸散量;和第二计算模块,用于基于所述林生态系统中每一预设位置处的第一蒸散量和该森林生态系统所对应的第二蒸散量计算得到第一系数;相对于现有技术中根据实测法或者能量平衡法的实测数据与彭门公式计算的可能蒸散量之比值来说,本发明所得到的第一系数由于从开始就使用了不同预设位置处的多个植被蒸散监测装置所得到的第一蒸散量,因此得到的第一系数更为贴合实际,进一步,使得最终获取的森林生态系统的实际蒸散量更为准确。The beneficial effects of the present invention are: the forest ecosystem evapotranspiration detection device of the present invention has a plurality of vegetation evapotranspiration monitoring devices respectively arranged at different preset positions in the forest ecosystem. Each vegetation evapotranspiration monitoring device, is used to collect the first evapotranspiration at a preset position in the forest ecosystem; and a first calculation module is used to use meteorological data in the historical time period corresponding to the forest ecosystem based on the pre-acquired weather station to calculate the amount of evapotranspiration. The gate formula calculation method calculates the second evapotranspiration corresponding to the forest ecosystem; and the second calculation module is used to calculate the second evapotranspiration corresponding to the forest ecosystem based on the first evapotranspiration at each preset position in the forest ecosystem and the location of the forest ecosystem. The corresponding second evapotranspiration is calculated to obtain the first coefficient; compared with the ratio of the possible evapotranspiration calculated according to the actual measurement method or the energy balance method and the Pengmen formula in the prior art, the first coefficient obtained by the present invention Since the first evapotranspiration obtained from multiple vegetation evapotranspiration monitoring devices at different preset positions has been used from the beginning, the first coefficient obtained is more realistic, and further, the actual evapotranspiration of the forest ecosystem is finally obtained. The quantity is more accurate.

进一步,每一所述植被蒸散监测装置所在的森林生态系统中预设位置为森林生态系统中的任一中林型的所在的位置,每一个植被蒸散监测装置所采集的第一蒸散量所对应的预先设定的权重值,因此考虑到不同林型的蒸散量的权重,使得最终获取的森林生态系统的实际蒸散量更为准确。Further, the preset position in the forest ecosystem where each vegetation evapotranspiration monitoring device is located is the position of any forest type in the forest ecosystem, and the first evapotranspiration amount collected by each vegetation evapotranspiration monitoring device corresponds to The preset weight value takes into account the weight of evapotranspiration of different forest types, making the actual evapotranspiration of the forest ecosystem finally obtained more accurate.

附图说明Description of the drawings

图1为本发明的一种森林生态系统蒸散量的检测装置结构示意图。Figure 1 is a schematic structural diagram of a detection device for forest ecosystem evapotranspiration of the present invention.

具体实施方式Detailed ways

为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。In order to better explain the present invention and facilitate understanding, the present invention will be described in detail below through specific embodiments in conjunction with the accompanying drawings.

为了更好的理解上述技术方案,下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更清楚、透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。In order to better understand the above technical solutions, exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the invention are shown in the drawings, it should be understood that the invention may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided so that the present invention may be understood more clearly and thoroughly, and the scope of the present invention may be fully conveyed to those skilled in the art.

参见图1,本实施例提供一种森林生态系统蒸散量的检测装置,包括:Referring to Figure 1, this embodiment provides a device for detecting evapotranspiration in a forest ecosystem, including:

分别设置在森林生态系统中不同预设位置处的多个植被蒸散监测装置。Multiple vegetation evapotranspiration monitoring devices are respectively installed at different preset positions in the forest ecosystem.

其中,每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量。Wherein, each vegetation evapotranspiration monitoring device is used to collect the first evapotranspiration amount at a preset position in the forest ecosystem.

本实施例中的植被蒸散监测装置可以是现有技术中的授权公告号为CN104459052B中所描述的一种适用于复杂地表的植被蒸散检测装置,或者是该授权公告号为CN104459052B中所描述的一种适用于复杂地表的植被蒸散检测装的整体放大装置结构。The vegetation evapotranspiration monitoring device in this embodiment may be a vegetation evapotranspiration detection device suitable for complex ground surfaces described in the prior art authorization announcement number CN104459052B, or a device described in the authorization announcement number CN104459052B. An overall amplification device structure suitable for vegetation evapotranspiration detection equipment on complex ground surfaces.

第一计算模块,用于基于预先获取的气象站的该森林生态系统所对应的历史时间段内的气象资料采用彭门公式计算方法计算得到该森林生态系统所对应的第二蒸散量。The first calculation module is used to calculate the second evapotranspiration corresponding to the forest ecosystem using the Pengmen formula calculation method based on the meteorological data in the historical time period corresponding to the forest ecosystem obtained from the weather station in advance.

第二计算模块,用于基于所述林生态系统中每一预设位置处的第一蒸散量和该森林生态系统所对应的第二蒸散量计算得到第一系数。The second calculation module is used to calculate the first coefficient based on the first evapotranspiration at each preset position in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem.

数据采集装置,用于获取所述森林生态系统当前所对应的气象资料。A data collection device is used to obtain the current meteorological data corresponding to the forest ecosystem.

第三计算模块,用于基于该森林生态系统当前所对应的气象资料采用彭门公式计算方法计算得到该森林生态系统当前所对应的第三蒸散量。The third calculation module is used to calculate the current third evapotranspiration of the forest ecosystem based on the current corresponding meteorological data of the forest ecosystem using the Pengmen formula calculation method.

第四计算模块,用于基于所述第一系数和所述森林生态系统当前所对应的第三蒸散量,获取该森林生态系统的实际蒸散量。A fourth calculation module is configured to obtain the actual evapotranspiration of the forest ecosystem based on the first coefficient and the third evapotranspiration currently corresponding to the forest ecosystem.

在本实施例的实际应用中,森林生态系统中每一所述预设位置的面积为5m×5m。In the actual application of this embodiment, the area of each preset position in the forest ecosystem is 5m×5m.

森林生态系统中每一预设位置处的第一蒸散量为预设位置的地表上的植被的蒸散量。The first evapotranspiration at each preset position in the forest ecosystem is the evapotranspiration of vegetation on the ground surface at the preset position.

在本实施例的实际应用中,所述植被蒸散监测装置的数量为N个。In the practical application of this embodiment, the number of vegetation evapotranspiration monitoring devices is N.

其中,N大于等于5。Among them, N is greater than or equal to 5.

在本实施例的实际应用中,所述历史时间段包括180天。In the actual application of this embodiment, the historical time period includes 180 days.

该森林生态系统所对应的历史时间段内的气象资料,包括:历史时间段内每一天的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射。The meteorological data corresponding to the historical time period of the forest ecosystem include: the highest temperature, lowest temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation for each day during the historical period.

在本实施例的实际应用中,所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:In the practical application of this embodiment, the second calculation module calculates the first evapotranspiration based on the first evapotranspiration at each location in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem. Coefficients, specifically include:

基于所有所述森林生态系统中每一位置处的第一蒸散量,获取相应的所有的第一蒸散量的平均值。Based on the first evapotranspiration at each location in all the forest ecosystems, the corresponding average value of all the first evapotranspiration is obtained.

基于所有的第一蒸散量的平均值和所述该森林生态系统所对应的第二蒸散量采用公式(1)计算得到第一系数。The first coefficient is calculated using formula (1) based on the average value of all first evapotranspiration and the second evapotranspiration corresponding to the forest ecosystem.

所述公式(1)为:The formula (1) is:

其中,f为第一系数。Among them, f is the first coefficient.

E为第二蒸散量。E is the second evapotranspiration.

Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices.

在本实施例的实际应用中,每一所述植被蒸散监测装置所在的森林生态系统中预设位置为森林生态系统中的任一中林型的所在的位置。In the practical application of this embodiment, the preset position in the forest ecosystem where each vegetation evapotranspiration monitoring device is located is the position of any middle forest type in the forest ecosystem.

在本实施例的实际应用中,所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:In the practical application of this embodiment, the second calculation module calculates the first evapotranspiration based on the first evapotranspiration at each location in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem. Coefficients, specifically include:

基于所有所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量采用公式(2)计算得到第一系数。The first coefficient is calculated using formula (2) based on the first evapotranspiration at each location in all the forest ecosystems and the second evapotranspiration corresponding to the forest ecosystem.

其中,所述公式(2)为:Among them, the formula (2) is:

其中,f为第一系数。Among them, f is the first coefficient.

E为第二蒸散量。E is the second evapotranspiration.

Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices.

ai为为i个植被蒸散监测装置所采集的第一蒸散量所对应的预先设定的权重值。也就是说,在本实施例中,每个植被蒸散监测装置所采集的第一蒸散量都对应有相应的权重值,举例说明,在不同的林型的位置处分别设置植被蒸散监测装置,那么,不同的林型也对应有不同的权重值,因此,在具体后续的计算过程中,因此考虑到不同林型的蒸散量的权重,使得最终获取的森林生态系统的实际蒸散量更为准确。 ai is the preset weight value corresponding to the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices. That is to say, in this embodiment, the first evapotranspiration collected by each vegetation evapotranspiration monitoring device corresponds to a corresponding weight value. For example, if vegetation evapotranspiration monitoring devices are respectively installed at different forest types, then , different forest types also correspond to different weight values. Therefore, in the specific subsequent calculation process, the weights of evapotranspiration of different forest types are taken into account, so that the actual evapotranspiration of the forest ecosystem finally obtained is more accurate.

在本实施例的实际应用中,所述当前的气象资料包括:当前日期内的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射。In the practical application of this embodiment, the current meteorological data includes: the highest temperature, lowest temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation within the current date.

在本实施例的实际应用中,所述第四计算模块基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,获取该生态系统的实际蒸散量,具体包括:In the practical application of this embodiment, the fourth calculation module obtains the actual evapotranspiration of the forest ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient, which specifically includes:

所述第四计算模块,用于基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,采用公式(3)计算获取该森林生态系统的实际蒸散量;The fourth calculation module is used to calculate and obtain the actual evapotranspiration of the forest ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient using formula (3);

所述公式(3)为:The formula (3) is:

其中,所述EA为该森林生态系统所对应的第三蒸散量。Wherein, the E A is the third evapotranspiration corresponding to the forest ecosystem.

所述EB为森林生态系统的实际蒸散量。The E B is the actual evapotranspiration of the forest ecosystem.

本实施例中的一种森林生态系统蒸散量的检测装置,由于具有分别设置在森林生态系统中不同预设位置处的多个植被蒸散监测装置,每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量;以及第一计算模块,用于基于预先获取的气象站的该森林生态系统所对应的历史时间段内的气象资料采用彭门公式计算方法计算得到该森林生态系统所对应的第二蒸散量;和第二计算模块,用于基于所述林生态系统中每一预设位置处的第一蒸散量和该森林生态系统所对应的第二蒸散量计算得到第一系数;相对于现有技术中根据实测法或者能量平衡法的实测数据与彭门公式计算的可能蒸散量之比值来说,本发明所得到的第一系数由于从开始就使用了不同预设位置处的多个植被蒸散监测装置所得到的第一蒸散量,因此得到的第一系数更为贴合实际,进一步,使得最终获取的森林生态系统的实际蒸散量更为准确。The device for detecting evapotranspiration in a forest ecosystem in this embodiment has a plurality of vegetation evapotranspiration monitoring devices respectively disposed at different preset positions in the forest ecosystem. Each vegetation evapotranspiration monitoring device is used to detect evapotranspiration in the forest ecosystem. The first evapotranspiration is collected at a preset position in the system; and a first calculation module is used to calculate the meteorological data in the historical time period corresponding to the forest ecosystem based on the pre-obtained weather station using the Pengmen formula calculation method. Obtain the second evapotranspiration corresponding to the forest ecosystem; and a second calculation module for based on the first evapotranspiration at each preset position in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem. The first coefficient is obtained by calculating the amount; compared with the ratio of the possible evapotranspiration calculated by the actual measurement method or the energy balance method and the Pengmen formula in the prior art, the first coefficient obtained by the present invention is used from the beginning. The first evapotranspiration obtained by multiple vegetation evapotranspiration monitoring devices at different preset positions is obtained, so the obtained first coefficient is more realistic, and further, the actual evapotranspiration of the forest ecosystem finally obtained is more accurate.

进一步,每一所述植被蒸散监测装置所在的森林生态系统中预设位置为森林生态系统中的任一中林型的所在的位置,每一个植被蒸散监测装置所采集的第一蒸散量所对应的预先设定的权重值,因此考虑到不同林型的蒸散量的权重,使得最终获取的森林生态系统的实际蒸散量更为准确。Further, the preset position in the forest ecosystem where each vegetation evapotranspiration monitoring device is located is the position of any forest type in the forest ecosystem, and the first evapotranspiration amount collected by each vegetation evapotranspiration monitoring device corresponds to The preset weight value takes into account the weight of evapotranspiration of different forest types, making the actual evapotranspiration of the forest ecosystem finally obtained more accurate.

第二方面,本实施例还提供一种森林生态系统蒸散量的检测方法,所述方法由上述任一所述的森林生态系统蒸散量的检测装置所执行。In a second aspect, this embodiment also provides a method for detecting evapotranspiration in a forest ecosystem, which method is executed by any of the above-described devices for detecting evapotranspiration in a forest ecosystem.

在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "first" and "second" are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more than two, unless otherwise explicitly and specifically limited.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly stated and limited, the terms "installation", "connection", "connection", "fixing" and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”,可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”,可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”,可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度低于第二特征。In the present invention, unless otherwise expressly stated and limited, a first feature is "on" or "below" a second feature, which may mean that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediary. indirect contact. Furthermore, the terms "above", "above" and "above" the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature. . The first feature being "below", "below" and "under" the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature is lower in level than the second feature.

在本说明书的描述中,术语“一个实施例”、“一些实施例”、“实施例”、“示例”、“具体示例”或“一些示例”等的描述,是指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the terms "one embodiment", "some embodiments", "embodiments", "examples", "specific examples" or "some examples", etc., refer to the description in conjunction with the embodiment or example. A specific feature, structure, material, or characteristic described is included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行改动、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above-mentioned embodiments are illustrative and should not be construed as limitations of the present invention. Those of ordinary skill in the art can make modifications to the above-mentioned embodiments within the scope of the present invention. The embodiments are subject to alterations, modifications, substitutions and variations.

Claims (7)

1.一种森林生态系统蒸散量的检测装置,其特征在于,包括:1. A detection device for forest ecosystem evapotranspiration, which is characterized in that it includes: 分别设置在森林生态系统中不同预设位置处的多个植被蒸散监测装置;Multiple vegetation evapotranspiration monitoring devices respectively installed at different preset positions in the forest ecosystem; 其中,每一植被蒸散监测装置,用于在森林生态系统中所在的预设位置处采集第一蒸散量;Wherein, each vegetation evapotranspiration monitoring device is used to collect the first evapotranspiration amount at a preset position in the forest ecosystem; 第一计算模块,用于基于预先获取的气象站的该森林生态系统所对应的历史时间段内的气象资料采用彭门公式计算方法计算得到该森林生态系统所对应的第二蒸散量;The first calculation module is used to calculate the second evapotranspiration corresponding to the forest ecosystem by using the Pengmen formula calculation method based on the meteorological data in the historical time period corresponding to the forest ecosystem obtained from the weather station in advance; 第二计算模块,用于基于所述林生态系统中每一预设位置处的第一蒸散量和该森林生态系统所对应的第二蒸散量计算得到第一系数;A second calculation module, configured to calculate a first coefficient based on the first evapotranspiration at each preset position in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem; 数据采集装置,用于获取所述森林生态系统当前所对应的气象资料;A data collection device used to obtain current meteorological data corresponding to the forest ecosystem; 第三计算模块,用于基于该森林生态系统当前所对应的气象资料采用彭门公式计算方法计算得到该森林生态系统当前所对应的第三蒸散量;The third calculation module is used to calculate the third evapotranspiration corresponding to the forest ecosystem based on the current meteorological data corresponding to the forest ecosystem using the Pengmen formula calculation method; 当前所对应的气象资料包括:当前日期内的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射;The current corresponding meteorological data includes: maximum temperature, minimum temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation within the current date; 第四计算模块,用于基于所述第一系数和所述森林生态系统当前所对应的第三蒸散量,获取该森林生态系统的实际蒸散量;A fourth calculation module, configured to obtain the actual evapotranspiration of the forest ecosystem based on the first coefficient and the third evapotranspiration currently corresponding to the forest ecosystem; 所述历史时间段包括180天;The historical time period includes 180 days; 该森林生态系统所对应的历史时间段内的气象资料,包括:历史时间段内每一天的最高气温、最低气温、最大风速、相对湿度、降水量、日照时数、太阳短波辐射;The meteorological data corresponding to the historical time period of the forest ecosystem include: the highest temperature, lowest temperature, maximum wind speed, relative humidity, precipitation, sunshine hours, and solar shortwave radiation for each day during the historical period; 所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:The second calculation module calculates a first coefficient based on the first evapotranspiration at each location in the forest ecosystem and the second evapotranspiration corresponding to the forest ecosystem, specifically including: 基于所有所述森林生态系统中每一位置处的第一蒸散量,获取相应的所有的第一蒸散量的平均值;Based on the first evapotranspiration at each location in all the forest ecosystems, obtain the corresponding average value of all first evapotranspiration; 基于所有的第一蒸散量的平均值和所述该森林生态系统所对应的第二蒸散量采用公式(1)计算得到第一系数;The first coefficient is calculated using formula (1) based on the average value of all first evapotranspiration and the second evapotranspiration corresponding to the forest ecosystem; 所述公式(1)为:The formula (1) is: 其中,f为第一系数;Among them, f is the first coefficient; E为第二蒸散量;E is the second evapotranspiration; Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices. 2.根据权利要求1所述的装置,其特征在于,2. The device according to claim 1, characterized in that, 森林生态系统中每一所述预设位置的面积为5m×5m;The area of each preset location in the forest ecosystem is 5m×5m; 森林生态系统中每一预设位置处的第一蒸散量为预设位置的地表上的植被的蒸散量。The first evapotranspiration at each preset position in the forest ecosystem is the evapotranspiration of vegetation on the ground surface at the preset position. 3.根据权利要求2所述的装置,其特征在于,3. The device according to claim 2, characterized in that, 所述植被蒸散监测装置的数量为N个;The number of vegetation evapotranspiration monitoring devices is N; 其中,N大于等于5。Among them, N is greater than or equal to 5. 4.根据权利要求3所述的装置,其特征在于,4. The device according to claim 3, characterized in that, 每一所述植被蒸散监测装置所在的森林生态系统中预设位置为森林生态系统中的任一中林型的所在的位置。The preset location in the forest ecosystem where each vegetation evapotranspiration monitoring device is located is the location of any medium forest type in the forest ecosystem. 5.根据权利要求4所述的装置,其特征在于,所述第二计算模块,基于所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量计算得到第一系数,具体包括:5. The device according to claim 4, characterized in that the second calculation module is based on the first evapotranspiration at each location in the forest ecosystem and the second corresponding to the forest ecosystem. Evapotranspiration is calculated to obtain the first coefficient, which specifically includes: 基于所有所述森林生态系统中每一位置处的第一蒸散量和所述该森林生态系统所对应的第二蒸散量采用公式(2)计算得到第一系数;The first coefficient is calculated using formula (2) based on the first evapotranspiration at each location in all the forest ecosystems and the second evapotranspiration corresponding to the forest ecosystem; 其中,所述公式(2)为:Among them, the formula (2) is: 其中,f为第一系数;Among them, f is the first coefficient; E为第二蒸散量;E is the second evapotranspiration; Ei为i个植被蒸散监测装置所采集的第一蒸散量。E i is the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices. ai为i个植被蒸散监测装置所采集的第一蒸散量所对应的预先设定的权重值。 ai is the preset weight value corresponding to the first evapotranspiration collected by i vegetation evapotranspiration monitoring devices. 6.根据权利要求5所述的装置,其特征在于,所述第四计算模块基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,获取该生态系统的实际蒸散量,具体包括:6. The device according to claim 5, wherein the fourth calculation module obtains the actual evapotranspiration of the ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient. , specifically including: 所述第四计算模块,用于基于所述该森林生态系统所对应的第三蒸散量和所述第一系数,采用公式(3)计算获取该森林生态系统的实际蒸散量;The fourth calculation module is used to calculate and obtain the actual evapotranspiration of the forest ecosystem based on the third evapotranspiration corresponding to the forest ecosystem and the first coefficient using formula (3); 所述公式(3)为:The formula (3) is: 其中,所述EA为该森林生态系统所对应的第三蒸散量;Wherein, the E A is the third evapotranspiration corresponding to the forest ecosystem; 所述EB为森林生态系统的实际蒸散量。The E B is the actual evapotranspiration of the forest ecosystem. 7.一种森林生态系统蒸散量的检测方法,其特征在于,所述方法由上述权利要求1-6任一所述的森林生态系统蒸散量的检测装置所执行。7. A method for detecting evapotranspiration in a forest ecosystem, characterized in that the method is executed by the device for detecting evapotranspiration in a forest ecosystem according to any one of claims 1-6.
CN202210334425.0A 2022-03-30 2022-03-30 A device and method for detecting evapotranspiration in forest ecosystems Active CN114740155B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210334425.0A CN114740155B (en) 2022-03-30 2022-03-30 A device and method for detecting evapotranspiration in forest ecosystems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210334425.0A CN114740155B (en) 2022-03-30 2022-03-30 A device and method for detecting evapotranspiration in forest ecosystems

Publications (2)

Publication Number Publication Date
CN114740155A CN114740155A (en) 2022-07-12
CN114740155B true CN114740155B (en) 2023-10-10

Family

ID=82279027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210334425.0A Active CN114740155B (en) 2022-03-30 2022-03-30 A device and method for detecting evapotranspiration in forest ecosystems

Country Status (1)

Country Link
CN (1) CN114740155B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115423265A (en) * 2022-08-10 2022-12-02 生态环境部南京环境科学研究所 Device to split of forest ecosystem evapotranspiration volume

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459052A (en) * 2014-12-10 2015-03-25 中国科学院亚热带农业生态研究所 Vegetation evapotranspiration monitoring device and method suitable for complex surface
KR20150062396A (en) * 2013-11-29 2015-06-08 주식회사 데이터큐브 Method for providing information of green shower
CN106718695A (en) * 2017-01-04 2017-05-31 吉林省沃特管业有限公司 A kind of intelligent water-saving irrigates Internet of Things network control system
CN106768348A (en) * 2016-11-15 2017-05-31 北京大学深圳研究生院 A kind of roof vegetation evapotranspiration quantity measuring method based on thermal imaging
CN109657730A (en) * 2018-12-27 2019-04-19 中国农业大学 Predict the method and system of Fuzzy Transpiration amount
CN112136667A (en) * 2020-11-26 2020-12-29 江苏久智环境科技服务有限公司 An intelligent sprinkler irrigation method and system based on edge machine learning
CN112602563A (en) * 2020-12-15 2021-04-06 珠海市现代农业发展中心(珠海市金湾区台湾农民创业园管理委员会、珠海市农渔业科研与推广中心) Water-saving irrigation system and accurate irrigation method
WO2022032874A1 (en) * 2020-08-14 2022-02-17 贵州东方世纪科技股份有限公司 Adversarial neural network-based hydrological parameter calibration method for data region

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620480B2 (en) * 2003-04-25 2013-12-31 George Alexanian Irrigation water conservation with automated water budgeting and time of use technology
EP4047517A1 (en) * 2021-02-22 2022-08-24 Yara International ASA Remote soil and vegetation properties determination method and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062396A (en) * 2013-11-29 2015-06-08 주식회사 데이터큐브 Method for providing information of green shower
CN104459052A (en) * 2014-12-10 2015-03-25 中国科学院亚热带农业生态研究所 Vegetation evapotranspiration monitoring device and method suitable for complex surface
CN106768348A (en) * 2016-11-15 2017-05-31 北京大学深圳研究生院 A kind of roof vegetation evapotranspiration quantity measuring method based on thermal imaging
CN106718695A (en) * 2017-01-04 2017-05-31 吉林省沃特管业有限公司 A kind of intelligent water-saving irrigates Internet of Things network control system
CN109657730A (en) * 2018-12-27 2019-04-19 中国农业大学 Predict the method and system of Fuzzy Transpiration amount
WO2022032874A1 (en) * 2020-08-14 2022-02-17 贵州东方世纪科技股份有限公司 Adversarial neural network-based hydrological parameter calibration method for data region
CN112136667A (en) * 2020-11-26 2020-12-29 江苏久智环境科技服务有限公司 An intelligent sprinkler irrigation method and system based on edge machine learning
CN112602563A (en) * 2020-12-15 2021-04-06 珠海市现代农业发展中心(珠海市金湾区台湾农民创业园管理委员会、珠海市农渔业科研与推广中心) Water-saving irrigation system and accurate irrigation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
兴安落叶松天然林蒸腾特征及其影响因素研究;刘浩 等;西北农林科技大学学报(自然科学版);第49卷(第10期);56-63 *

Also Published As

Publication number Publication date
CN114740155A (en) 2022-07-12

Similar Documents

Publication Publication Date Title
CN107202570B (en) Water level flow rate monitoring integration device, monitoring system and monitoring method
CN110146008B (en) Method for monitoring icing parameters and states based on interdigital capacitive sensor
CN207066494U (en) Transmission line icing monitoring system
EP2813870B1 (en) System for determination of the snow water equivalent (SWE) of a snow layer
CN103604464A (en) System and method for monitoring environmental parameters of wireless communication electric power transmission line
CN104091046A (en) Method and system for calculating icing thickness of tension resistant tower wire based on weighing method
CN114740155B (en) A device and method for detecting evapotranspiration in forest ecosystems
CN104897993A (en) Carrying capacity evaluation method of overhead transmission line
CN207472299U (en) Remote icing parameter monitoring system based on more rotated conductors
CN104063811A (en) Current-carrying limiting value estimation method of overhead transmission line
CN117928631B (en) Method for evaluating safety state of transmission line tower in extreme cold tide environment
CN108121893A (en) A kind of distribution shaft tower wind resistance appraisal procedure based on the coupling of tower line
CN207036621U (en) A kind of photovoltaic cell surface soil deposition measuring device
CN108917959B (en) Atmosphere reverse radiation test system
CN207730956U (en) Ultrasound that is a kind of while acquiring 7 meteorological elements involves digital meteorology sensor
CN204903698U (en) Insulator pollution flashover early warning device based on meteorological phenomena and neural network
CN118706194A (en) Ice and snow monitoring method, system and device based on radar waves
CN209910719U (en) A weighing type power line remote icing data monitoring equipment
CN111405056A (en) Grid type soil moisture content monitoring system and method based on Internet of things
CN203275678U (en) Agrometeorological observation system
CN207281094U (en) Wind energy conversion system cabin integrated form wind speed and direction measuring device
CN107179122A (en) Photovoltaic cell surface soil deposition and the measuring method and device of effective solar radiation
CN208522990U (en) Slope monitoring gnss receiver dispatching device
CN110058325A (en) Ultrasound that is a kind of while acquiring 7 meteorological elements involves digital meteorology sensor
CN208420183U (en) A kind of ground infrared remote sensing surface temperature observation device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant